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0.1. Introduction. Let H be a separable Hilbert space. Denote by U := {uξ| uξ ∈
H}ξ∈I and V := {vξ| vξ ∈ H}ξ∈I collections of elements of H parametrised by a
discrete set I. We assume that the system U is a basis of the space H and the system
V is biorthogonal to U in H. Then (uξ, vη)H = δξη, where δξη is the Kronecker delta,
equal to 1 for ξ = η, and to 0 otherwise. In this case from the classical Bari’s work
[3] ((see also Gelfand’s paper [7]) it follows that the system V is also basis in H.

We define U– and V–convolutions in the following form:

(0.1) f ?U g :=
∑
ξ∈I

(f, vξ)(g, vξ)uξ

and

(0.2) h ?V j :=
∑
ξ∈I

(h, uξ)(j, uξ)vξ

for appropriate elements f, g, h, j ∈ H.

0.2. Example. We give an example, which can be considered as an extension of the
periodic calculus studied in [12].

Consider an operator O
(1)
h defined by the action O

(1)
h := −i d

dx
for h > 0, on the

interval (0, 1) with the boundary condition hy(0) = y(1).When h = 1, O(1)
1 is defined

by the periodic condition, and elements of systems U and V are eigenfunctions of
the operator O

(1)
1 and its conjugate O

(1)
1

∗
coincide, and are given by U = V =

{uj(x) = e2πixj, j ∈ Z}. That is, we get the classical Fourier analysis on a closed
circle. Corresponding pseudo–differential calculus was developed in [12], which based
on the previous investigations of Agranovich [1, 2] and others.

For h 6= 1 the operator O
(1)
h is not self–adjoint. The spectral properties of O(1)

h

are well–known (see Titchmarsh [16] and Cartwright [4]). The corresponding bi-
orthogonal families of eigenfunctions of O(1)

h and its adjoint are given by U = {uj(x) =
hxe2πixj, j ∈ Z} and V = {vj(x) = h−xe2πixj, j ∈ Z}, respectively. They form Riesz
bases in H = L2(0, 1).

In this case, the convolution (0.1) has the form

(f ?U g)(x) =

∫ x

0

f(x− t)g(t)dt+ 1

h

∫ 1

x

f(1 + x− t)g(t)dt,

which coincides with the standard convolution when h = 1. This convolution was
investigated in papers [9, 11].
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0.3. Formulation of results. We are aiming at discussion of convolutions from
more abstract point of view, that is, when there is only given a Riesz basis in the
Hilbert space without any additional assumptions on the operator with eigenfunctions
form this basis.

Easy to check, that the expressions (0.1) and (0.2) are correctly defined:

Theorem 0.1. Let f?Ug and h?Vj are given by formulae (0.1) and (0.2), respectively.
Suppose that the families of functions U and V are uniformly bounded in H. Then
there exists a constant M > 0 such that the inequalities hold:

(0.3) ‖f ?U g‖H ≤M sup
ξ∈I
‖uξ‖H‖f‖H‖g‖H, ‖h ?V j‖H ≤M sup

ξ∈I
‖vξ‖H‖h‖H‖j‖H,

for all f, g, h, j ∈ H.

Let us introduce U– and V–Fourier transforms by formulae

(0.4) FU(f)(ξ) := (f, vξ) =: f̂(ξ)

and

(0.5) FV(g)(ξ) := (g, uξ) =: ĝ∗(ξ),

respectively, for any f, g ∈ H and for arbitrary ξ ∈ I. The inverse transforms have
the following forms

(0.6) (F−1U a)(x) :=
∑
ξ∈I

a(ξ)uξ

and

(0.7) (F−1V a)(x) :=
∑
ξ∈I

a(ξ)vξ.

Now we formulate the statement about the relationship between U - and V–convolutions,
and Fourier transforms:

Theorem 0.2. For all f, g, h, j ∈ H we have

f̂ ?U g = f̂ ĝ, ĥ ?V j∗ = ĥ∗ ĵ∗.

Thus, the convolutions are commutative and associative.
Let K : H ×H → H be a bilinear operation. If for all f, g ∈ H the form K(f, g)

satisfies

(0.8) K̂(f, g) = f̂ ĝ,

then K is a U–convolution, that is K(f, g) = f ∗U g.
Analogously, if K(f, g) satisfies the property

(0.9) K̂(f, g)∗ = f̂∗ ĝ∗

then K is a V–convolution, that is K(f, g) = f ∗V g.

In particular, the last part of Theorem means that the convolution (0.1) is uniquely
determined by the condition: the Fourier transform of the convolution of elements is
a product of Fourier transforms of elements.
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0.4. Discussion. Let us discuss some additional aspects of the arisen convolutions.
1. By putting H = L2(X) for some set X, we write

(0.10) (f ?U g)(x) =

∫
X

∫
X

F (x, y, z)f(y)g(z)dydz,

where
F (x, y, z) =

∑
ξ∈I

uξ(x) vξ(y) vξ(z).

Here, we understand the integral (0.10) and the last series in the generalised function
sense. In the example from Section 0.2, when h = 1, we have F (x, y, z) = δ(x−y−z)
(see [12]).

3. Obviously, convolutions (0.1) and (0.2) are commutative and associative. Moreover,
they possess many properties of the standard convolution. The most important one
is mapping to a product of Fourier transforms associated with U and V .

4. Very often biorthogonal families arise as systems of eigenfunctions densely
defined non–self–adjoint operators inH, and the corresponding notion of the convolution
leads to the development of the associated Fourier Analysis. In this case, when
eigenfunctions do not have zeros, then the corresponding global analysis of pseudo–
differential operators is developed in the recent paper [13]. Without zero condition is
removed in [14], and an application of the analysis to the wave equation for Landau
Hamiltonian is given in [15]. Also, we note papers [5, 6], where properties of pseudo–
differential operators on manifolds with and without boundary are studied.

5. We also consider a convolution generated by Ionkin operator from [8]. Ionkin
operator Y is defined in H := L2(0, 1), and generated by the differential expression
− d2

dx2
, x ∈ (0, 1), with boundary conditions u(0) = 0, u′(0) = u′(1). The operator

has the system of eigen– and associated function

u0(x) = x, u2ξ−1(x) = sin(2πξx), u2ξ(x) = x cos(2πξx), ξ ∈ N,
which forms a basis in L2(0, 1). Denote them by U . The corresponding biorthogonal
basis can be given as

v0(x) = 2, v2ξ−1(x) = 4(1− x) sin(2πξx), v2ξ(x) = 4 cos(2πξx), ξ ∈ N,
for more information we refer to [8]. We define Y–convolution by the formula

(0.11) f ?Y g(x) :=
1

2

∫ 1

x

f(1 + x− t)g(t)dt

+
1

2

∫ 1

1−x
f(x− 1 + t)g(t)dt+

∫ x

0

f(x− t)g(t)dt

− 1

2

∫ 1−x

0

f(1− x− t)g(t)dt+ 1

2

∫ x

0

f(1 + t− x)g(t)dt.

Similar Y–convolution is studied in the paper [10]. In particular, it satisfies the
following properties:

Y(f ?Y g) = (Yf) ?Y g = f ?Y (Yg).
For the basis

U := {uξ : u0(x) = x, u2ξ−1(x) = sin(2πξx), u2ξ(x) = x cos(2πξx), ξ ∈ N},
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we have f̂ ?Y g(0) = f̂(0)ĝ(0), f̂ ?Y g(2ξ) = f̂(2ξ)ĝ(2ξ), and f̂ ?Y g(2ξ − 1) = f̂(2ξ −
1)ĝ(2ξ) + f̂(2ξ)ĝ(2ξ) + f̂(2ξ)ĝ(2ξ − 1), ξ ∈ N. Thus, by Theorem 0.2, it follows that
the Y–convolution coincides with the U–convolution.

References
1. M. S. Agranovich, Funkts. analiz i ego pril., 13:4 (1979), 54–56. 2. M. S.

Agranovich, Trudy MMO, 47 (1984), 22–67. 3. N. K. Bari, Uch. zapiski Mosk. gos. un-
ta. Matematika, 148:4 (1951), 69–107. 4. M. L. Cartwright. Quart. J. Math., Oxford
Ser., 1(1):38–59, 1930. 5. J. Delgado, M. Ruzhansky. J. Anal. Math. (https://arxiv.org/abs/1404.6479)
6. J. Delgado, M. Ruzhansky and N. Tokmagambetov. J. Math. Pures Appl., 107:6
(2017), 758–783. 7. I. M. Gelfand, Uch. zapiski Mosk. gos. un-ta. Matematika, 148:4
(1951), 224–225. 8. N. I. Ionkin, Differents. uravneniya, 13:2 (1977), 294–304. 9.
B. Kanguzhin and N. Tokmagambetov. Fourier Analysis: Trends in Mathematics,
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