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In Brief

A major manifestation of cancer is the

alteration of protein measurements.

However, proteins are harder and more

expensive to measure than genes and

transcripts. To address this problem, we

crowdsourced it via the NCI-CPTAC

DREAM proteogenomics challenge. We

provided participants data to buildmodels

to predict protein and phosphorylation

levels from genomic and transcriptomic

data in cancer patients. We then asked

participants to use suchmodels to predict

unseen (phospho)protein data from given

genomic and transcriptomic data in other

patients. This experiment allowed us to

assess the predictive performance of the

proposed methods in an unbiased and

‘‘double-blinded’’ manner. We found that

ensemblemethodsperformbetter, andwe

identified which proteins and biological

processes are easier or harder to predict.

In general, performance was limited,

suggesting that (phospho)proteomic

cannot be replaced, at least yet, by

genomic and transcriptomic profiling.
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SUMMARY

Cancer is driven by genomic alterations, but the processes causing this disease are largely performedby pro-
teins. However, proteins are harder and more expensive to measure than genes and transcripts. To catalyze
developments of methods to infer protein levels from other omicsmeasurements, we leveraged crowdsourc-
ing via the NCI-CPTAC DREAM proteogenomic challenge. We asked for methods to predict protein and
phosphorylation levels from genomic and transcriptomic data in cancer patients. The best performance
was achieved by an ensemble of models, including as predictors transcript level of the corresponding genes,
interaction between genes, conservation across tumor types, and phosphosite proximity for phosphorylation
prediction. Proteins from metabolic pathways and complexes were the best and worst predicted, respec-
tively. The performance of even the best-performing model was modest, suggesting that many proteins
are strongly regulated through translational control and degradation. Our results set a reference for the lim-
itations of computational inference in proteogenomics.
A record of this paper’s transparent peer review process is included in the Supplemental Information.

INTRODUCTION

The central dogma of molecular biology describes the two-step

process, transcription and translation, by which the information

in genes flows into proteins: DNA / RNA / protein. Proteins

can be further modified post-translationally to regulate cellular

function. The processes of transcription and translation are

regulated in numerous ways. Understanding these regulations

and how they are altered in tumors, holds the promise to

advance cancer research and treatment (Alfaro et al., 2014).

Dysregulated protein activity—including kinase signaling and

chromatin acetylation—is most directly assessed with mea-

surements of proteins and their post-translational modifica-

tions. Therefore, proteomics holds important complementary

value to the genomic and transcriptomic characterization of

tumors.
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The relationship between mRNA transcripts and proteins is

fundamental to our understanding and application of molecular

biology (Crick, 1958). With the rise of comprehensive cellular

measurement of both transcripts and proteins, this relationship

has been extensively explored (Payne, 2015; Vogel and Mar-

cotte, 2012; Liu et al., 2016). Since gene expression is regulated

at both transcription and translation, transcript and protein levels

are not necessarily expected to be correlated, and the relative

strength of the transcriptional and translational regulation varies

widely between genes. Genes with little translational regulation

will have a highly correlated transcript and protein levels, but

the vast majority of proteins have a non-negligible translational

regulation. Measurements of transcript levels provide informa-

tion about how many transcripts are available for translation at

that moment. In contrast, protein level measurements provide

a historical record of the protein production and degradation.

Therefore, differences in degradation rates between transcripts

and proteins will decrease the correlation. Given the different

regulations of transcripts and proteins, it is neither surprising

nor controversial that for some genes transcript and protein

levels are highly correlated, but for the others they are not. In

this challenge, we assess howmuch information about the differ-

ences in transcript and protein regulation is contained in the tran-

script quantities of other genes. Many groups have attempted at

measuring the quantitative correlation between transcript and

protein levels (Gygi et al., 1999; Nagaraj et al., 2011) or compu-

tationally predicted protein levels from transcript levels (Wilhelm

et al., 2014) with onlymodest success (Fortelny et al., 2017). Pro-

teogenomic analyses of large cohorts of primary tumors have

repeatedly shown low correlations between transcript and pro-

tein levels, with large inter-gene variability (Zhang et al., 2014,

2016; Mertins et al., 2016; Sinha et al., 2019). Given the impor-

tance of proteomics data for understanding cancer phenotypes

(Alfaro et al., 2014) and the costs of mass spectrometry-based

proteomic experiments, it is of great interest to assess and

improve the predictability of protein levels based on other

data. This would enable discovery analysis of data from many

large cohorts with only DNA ormRNAdata. For all these reasons,

it is crucial to understand to what extent protein levels can be in-

ferred from transcript levels.

To improve the performance of using gene copy number and

transcript levels in predicting protein and phosphorylation levels,

we launched a community-based collaborative competition

(Saez-Rodriguez et al., 2016): the NCI-CPTAC DREAM proteo-

genomics challenge in November 2017 (https://www.synapse.

org/ProteogenomicsChallenge). In this challenge, participants

applied different computational methods to proteogenomic

data generated by the clinical proteomic tumor analysis con-

sortium (CPTAC) to predict protein and phosphorylation levels

based on genomic and transcriptomic data. Participants had ac-

cess to quantitative measurements of gene copy number, tran-

script, protein, and phosphorylation levels for thousands of

genes for two cancer cohorts. In addition to the omics data, par-

ticipants were invited to use prior information from existing data-

bases, such as protein-protein interactions and physicochem-

ical properties to improve performance.

Here, we present the outcome of the NCI-CPTACDREAMpro-

teogenomics challenge, where we investigated results from the

winning team and created a consensus algorithm from the top

performers. We revealed factors influencing protein predictabil-

ity and biological pathways associated with the top predictor

genes. Finally, we applied the consensus algorithm to additional

ovarian tumor data (Cancer Genome Atlas Research Network,

2011) and showed that inferred phosphorylation levels predict

overall survival and capture disease related mechanisms better

than the corresponding protein level, illustrating the value of

the methods produced in the challenge.

Our unbiased assessment of predictive methods suggests

that, while these methods can provide additional insight and

might work well for specific proteins, we are far from being

able to predict proteomics from transcriptomics and genomics

globally.

RESULTS

Challenge Design
We posed the following two questions: (1) How accurately can

protein levels be predicted from transcriptome and gene copy

number variation data (Figure 1A; the proteomics sub-chal-

lenge)? (2) How accurately can phosphoprotein levels be
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Figure 1. Challenge Overview and Best Performing Methods

(A) Protein prediction task: participants are given gene copy numbers and transcript levels to predict protein levels for breast and ovarian tumors.

(B) Phosphoprotein prediction task: participants are given gene copy numbers, transcript levels and protein levels to predict phosphoprotein level data for the

breast and ovarian tumors.

(C) Graphic of data involved in the challenge and sample size for breast and ovarian data sets.

(D) Characteristics of models implemented for the prediction of protein levels.

(E) Protein prediction task: themethods used by each of the four performing teams for the protein prediction task: (1) TeamHongyang Li and Yuanfang Guan used

an ensemble of the transcript level as proxy, a random forest regression model and a transfer model using data from both tissues to train the random forest; (2)

Team Hyu selected features using KEGG pathways and protein-protein interactions (human protein reference database) to train a random forest regression

model; (3) Team DEARGENpg built models on protein families and used them to train an ensemble of random forest, XGboost and gradient boost models,

including additional features such as codon bias, GC count and protein folding energy; (4) TeamDMIS_PTG used least absolute shrinkage and selection operator

(legend continued on next page)
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predicted from protein levels, transcript levels, and gene copy

number (Figure 1B; the phosphoproteomics sub-challenge)?

The CPTAC proteogenomic challenge had multiple rounds of

competition: two leaderboard rounds, a final round, and a collab-

orative phase. For these challenges, genomics, transcriptomics,

proteomics, and phosphoproteomics data from the CPTAC dis-

covery collection of 77 breast (Mertins et al., 2016) and 174

ovarian (Zhang et al., 2016) tumors were utilized to train the

models (Figure 1C; Table S1). All proteomics and phosphopro-

teomics data were processed using the CPTAC common data

analysis pipeline (Rudnick et al., 2016) (STARMethods). An over-

view of the data in terms of the missing data rate and the batch

effect is contained in Figures S1 and S2. In order to assess the

predictive performance of different methods, the CPTAC confir-

matory datawere utilized as a validation set. These data included

108 breast and 82 ovarian cancer samples (Figure 1C). Since the

test data were not published at the time of the competition,

Docker containers were utilized to store pre-trained models

and to perform prediction of test data (Guinney and Saez-Rodri-

guez, 2018). The predictive performance of each job was as-

sessed using the Docker system, and the corresponding score

was released to participants so that they could further improve

their models throughout the leaderboard rounds. In the final

round, participants evaluated the predictive performance of their

models on the confirmatory breast and ovarian cancer data. In

order to limit overfitting, during the final round, a maximum num-

ber of three submissions per team was allowed. The final-round

submissions were scored against a held-out dataset and the

best-performing teams were identified. In the collaborative

phase, top-performing teams of the final round built an ensemble

prediction model.

Methods and General Outcome of the Challenge
A total number of 30 and 15 teams participated in the proteomics

and phosphoproteomics prediction sub-challenges, respec-

tively. Among the teams participating in the proteomics chal-

lenge, 25 teams performed prediction of both breast and ovarian

cancer data in the final round, while all the teams submitted jobs

for both cancer types for the prediction of phosphoproteome

levels. The predictive performance of different models was eval-

uated using Pearson’s correlation and mean squared error be-

tween observed proteome or phosphoproteome levels versus

predicted values across different patients in the testing data.

As the final score, the average metric across all proteins was

considered. A variety of models including ensemble methods,

linear regression, andmethods taking into account prior informa-

tion were utilized (Figures 1D–1G). Most teams utilized prior in-

formation for the prediction of proteomics data and preferred

linear versus non-linear models (Figure 1D). A different trend

was observed for the prediction of phosphorylation levels where

most teams opted for non-linear models and no-prior informa-

tion (Figure 1F). Figures 1E, 1G, and S3 illustrate the models uti-

lized by the top four performers in the two challenges. The same

team, Hongyang and Yuangfang, achieved the best predictive

performance in both challenges. Specifically, for the prediction

of proteome data, the best-performing method was built as an

ensemble of the following models: (1) a model using the corre-

sponding transcript level as a proxy, (2) a model accounting for

protein-protein interactions, and (3) a model borrowing informa-

tion across tumor types (Figure 1E; STARMethods). Similarly, for

phosphorylation level prediction, they utilized an ensemble algo-

rithm based on the following models: (1) a model using protein

level as proxy, (2) amodel accounting for the interaction between

proteins, (3) a model accounting for correlation between nearby

phosphorylation sites, and (4) a model borrowing information

across cancer types (Figure 1G; STAR Methods). The winning

team applied quantile normalization on the input features of the

training and testing data within the Docker system (STAR

Methods). Other high-performing teams utilized information

from existing biological pathways, protein-protein interaction

databases, and physicochemical properties of transcripts and

proteins. During the collaborative phase, the top five high-per-

forming teams built an ensemble model combining their models

(Figures 1E and 1G).

Prediction of Protein Levels

For breast cancer data, 26 teams participating in the competi-

tion submitted a total of 35 models, while for the ovarian cancer

data, 25 teams participating in the challenge submitted a total

number of 44 different models during the final round. The

average prediction performance across different algorithms in

terms of correlation metric was R = 0.26 (SD = 0.17) for breast

cancer and R = 0.29 (SD = 0.18) for ovarian cancer (Figure 2A).

The best-performing algorithm resulted in an average correla-

tion between actual and predicted values of 0.51 (Figures 2A

and S4) for breast cancer and R = 0.53 for ovarian cancer (Fig-

ure 2A). Most performing teams utilized ensemble algorithms to

predict proteomics data (Figures 2A and S3) and preferred

linear over non-linear models. However, the top-performing

team utilized a non-linear model based on the random forest

(Figure 2A). Indeed, linear models and penalized linear regres-

sion performed worse than ensemble methods in the prediction

of protein levels (Wilcoxon test p < 0.05) (Figure 2A). In addition,

algorithms utilizing prior knowledge such as protein-protein

interaction database performed better in the prediction of pro-

tein levels (Wilcoxon test p < 0.05). From the post challenge

survey, all teams found transcript levels more predictive than

gene copy number data in the proteome prediction challenge,

and protein levels more predictive than all other data for phos-

phoproteome prediction (Table S2). The top team performed

better than a simple model (R = 0.53 versus R = 0.47) utilizing

the corresponding transcript level as a proxy for protein-level

prediction (hereafter, the proxy model). This highlights the utility

of a multivariate model in predicting proteome based on

genomic data (Figure S3). Specifically, the best-performing

(LASSO) with features selected based on gene prediction networks, CORUM protein complexes and protein-protein interactions. See STAR Methods for more

details.

(F) Characteristics of models implemented for the prediction of phosphorylation levels.

(G) The methods used by each team for the phosphoproteome prediction task: (1) Team Hongyang Li and Yuanfang Guan used protein level as a proxy, the

correlation among phosphorylation sites on a given protein, and the pan-cancer models to train a random forest regression model; (2) Team Ardigen used the

protein level as proxy to train a least-angle regression (LARS) model. See STAR Methods for more details.
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team utilized an ensemble algorithm borrowing information

across different cancer types when predicting the protein level

of a given protein (STAR Methods). This joint analysis resulted

in better predictive performance compared to the cancer-spe-

cific models for both breast and ovarian cancers. In fact, for

ovarian cancer data the ovarian-specific model resulted in an

average correlation of 0.44; while for breast cancer data the

breast cancer-specific model resulted in an average correlation

of 0.38.

Prediction of Phosphoprotein Levels

For breast data, 15 teams participated in the challenge with 52

models submitted, resulting in an average performance of R =

0.17 (SD = 0.16) and best performance of R = 0.42 (Figures 2A

and S4). For ovarian cancer data, 15 teams submitted 32

A

B

Figure 2. Factors Influencing Predictability and Commonly Predictive Genes

(A) Top: performance of submitted algorithms (dot-plot) compared to the baseline machine learning model (dashed line) for breast and ovarian cancer based on

proteomics sub-challenge and phosphoproteomics sub-challenge. Bottom: Performance of teams participating in the challenge based on correlation metric for

stratified based on the type of algorithms utilized. p values were computed using a Wilcoxon test.

(B) proteomics and phosphoproteomics prediction tasks: the best performer’s prediction performance is shown for: (1) all proteins (all); (2) subset of proteins or

phosphoproteins for which the corresponding transcript/protein is measured (RNA+/Protein+); (3) subset of proteins or phosphoproteins for which the corre-

sponding transcript/protein is missing (RNA-/Protein-); (4) subset of proteins belonging to a protein complex from CORUM database (Complex IN); (5) subset of

proteins not belonging to a protein complex (Complex OUT). In each boxplot, above the median, the number of proteins is indicated, and below is the average

prediction performance or correlation.
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models, with an average performance of R = 0.11 (SD = 0.11) and

best performance of R = 0.33. Hence, predictive performance

was markedly lower for the prediction of phospho proteomics

compared with the prediction of proteomics data (Figure 2A).

Contrary to the prediction of protein levels, ensemble methods

and algorithms considering prior information did not perform

better in the prediction of phosphorylation levels. However, this

result might be due to the lack of statistical power given the

smaller number of teams participating in the prediction of phos-

phorylation levels (Figure 2A).

The performance of the teams participating in the two sub-

challenges was compared to baseline models implemented by

the challenge organizers to predict protein levels based on tran-

script levels and phosphorylation levels from protein levels (Sup-

plemental Notes). Team Hongyang Li and Yuanfang Guan (Uni-

versity of Michigan) achieved the best performance in both

prediction challenges (Figure 2A; Supplemental Notes; Figures

S5 and S6) and outperformed both baseline models. All

models submitted by the participants in Docker containers are

freely available for public reuse at https://www.synapse.org/

ProteogenomicsChallenge. Predicted protein and phosphoryla-

tion levels are available for visualization in an R Shiny application

(ProteoExplorer).

Global Insights
Factors Influencing Protein and Phosphorylation

Prediction Performance

When considering proteins with available transcript levels (4,528

proteins for ovarian and 7,856 proteins for breast), the winning

team reached an average correlation of 0.53 and 0.55 for breast

and ovarian tumors, respectively (Figure 2B). Expectedly, the

levels of proteins whose corresponding transcripts were

observed in all samples were better predicted compared with

those with missing transcript levels (Figure 2B, mean R = 0.53

versus 0.30 and 0.55 versus 0.41, p < 0.001, Wilcoxon test, for

breast and ovarian tissues, respectively). In addition, proteins

which were not in a protein complex were better predicted

than those belonging to a protein complex, as defined by the

CORUM database (Figure 2B, mean R = 0.52 versus 0.45 and

0.55 versus 0.48, p < 0.001,Wilcoxon test, for breast and ovarian

tissues, respectively). Indeed, proteins forming complexes can

be co-regulated through post-transcriptional mechanisms,

including degradation (Gonçalves et al., 2017) (e.g., a compo-

nent of a complex that is available in higher amounts than the

other components is degraded faster, making the levels of com-

plex components more robust to transient variation of transcript

level). We observed the same phenomenon with phosphopro-

teins, where the best predicted ones are not in protein com-

plexes (mean R = 0.39 versus 0.43 and R = 0.30 versus 0.34

P < 0.001, Wilcoxon test, for breast and ovarian tissues, respec-

tively). Finally, howwell protein levels can be predicted are corre-

lated between breast and ovarian tissues (R = 0.63, p < 10�10,

Student’s t test, Supplemental Notes). No association was found

between predictability of a given protein and the protein level, as

shown in Figure S7. The correlation of prediction performance

between breast and ovarian tissues is R = 0.63 (p < 1 3 10�10,

Figure S8).

In order to assess the effect of protein and gene half-life on

predictive performance, we leveraged transcript and protein

half-life estimations from two previous publications (Tani et al.,

2012), (Zecha et al., 2018). Genes overlapping with ovarian and

breast cancer data were categorized into four groups depending

on transcript and protein half-life: long-long, short-long, short-

short, and long-short. Despite the low correlation between pro-

tein half-life and predictive performance (Figure S9A: R = 0.13

and 0.15 in ovarian and breast cancer, respectively), we

observed greater performance in genes with longer protein

half-lives (Figure S9B), regardless of the half-lives of transcripts

and the cancer type (p < 0.001, Wilcoxon test, for breast and

ovarian tissues, respectively).

We assessed the biological insights in the best-performing

method. In particular, for each protein, predictive features were

selected based on the importance score resulting from random

forest (STAR Methods). Then, common predictors of protein

level were identified by considering the predictive features

selected across a large number of proteins. We found that genes

commonly predictive of protein levels may be more essential for

cancer cell development (STARMethods; Figures S10 and S11),

and potentially involved in survival outcome, especially in ovarian

cancer tumors (STAR Methods; Table S3).

Pathway Analysis of Top Predicted Proteins in Ovarian
Cancer
Subsequently, we assessed whether the most predictable pro-

teins in ovarian cancer were enriched in any biological mecha-

nisms. For this purpose, we considered the canonical pathways

from the MSigDB database (Liberzon et al., 2011), and specif-

ically 1,101 pathways that contained at least 5 proteins

observed in both the training and testing data. Based on the

ensemble model, proteins were ordered from the most predict-

able to the least predictable using the correlation between the

predicted value and true value as metric. Then, an enrichment

analysis was performed to identify pathways overrepresented

at the top of this list. Most of the pathways enriched at the

top of the list were metabolic pathways (Figure 3A; Tables S4

and S5). Although the number of enriched pathways was simi-

larly based on the proxy model and ensemble method at 10%

false discovery rate (FDR) (i.e., 37 and 41 pathways enriched,

respectively), the ensemble method outperformed the proxy

model in terms of predictive performance (Figure 3B). Accord-

ingly, proteins mapping to enriched pathways were predicted

with better accuracy based on the ensemble model rather

than the proxy model (Tables S4 and S5) (Benjamini-Hochberg

adjusted p value from t test < 10%). An interesting pathway

was the ‘‘KEGG ECM interaction pathway,’’ whose proteins

were predicted with higher accuracy based on the ensemble

method compared to the proxy model (Figure 3). Several

studies demonstrated the role of extracellular matrix in cell pro-

liferation, migration, and apoptosis (Pickup et al., 2014).

Although in ovarian cancer, dysregulation and loss of ECM

components are observed, it is still unclear how tumor cells in-

fluence ECM remodeling (Cho et al., 2015). Based on the best-

performing model, we found a total of 337 unique genes regu-

lating proteins in ‘‘KEGG ECM interaction pathway.’’ In partic-

ular, these predictors were enriched for ‘‘KEGG ECM-receptor

interaction,’’ ‘‘KEGG focal adhesion,’’ ‘‘PI3K-Akt signaling

pathway,’’ and ‘‘regulation of actin cytoskeleton’’ adjusted

p = 1310�5).
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Survival-Enriched Pathways in Phosphorylation
Prediction
A total number of 1,318 phosphoproteins in 82 ovarian cancer

patients was predicted by the proxy and ensemble models in

the phosphoproteomics prediction challenge. Based on the

ensemble model, we predicted the phosphorylation levels

among additional 105 ovarian tumors whose protein but not

phosphorylation measurements were available in CPTAC. We

evaluated the performance of predicted phosphorylation levels

in identifying pathways associated with overall survival (OS)

(STAR Methods). Neither measured phosphoproteomics data

from the training set nor measured proteomics data from the

training and prediction set identified any KEGG pathway associ-

ated to OS (FDR < 0.05). However, predicted phosphorylation

scores based on the ensemble model identified one KEGG

pathway, vascular muscle contraction, as being associated

with survival in the prediction data. This pathway also showed

the trend of significance in the real protein and phosphoprotein

data (p < 0.05) but did not reach the FDR cutoff (STARMethods).

None of the pathways were identified based on the proxy model.

A total of 25 predicted phosphoproteins from the vascular

muscle contraction pathway were available in our prediction da-

taset (Figure S12). Based on these phosphoproteins, we further

performed principal component analysis (PCA) and created a

survival score by combining the 2nd and 3rd principal compo-

nents (PCs), which were found associated with OS. This PC-

based signature was significantly associated with survival

(HR = 1.32, p = 0.003). Stratified by high versus low score, the

Kaplan-Meier curve separated the patient population (rank score

p = 0.001; HR=3.2, p = 0.002). Among the top contributing phos-

phoproteins of the PC-score, PRKCB resulted in a strong nega-

tive loading (Figure S12). PRKCB generally functions as a tumor

suppressor (Antal et al., 2015) and is therefore associated with

better outcome if overexpressed (Figure S12). In addition,

PPP1R14A resulted in a positive loading (Figure S12), and

thus, an increased level of this phosphoprotein was associated

with a poorer outcome (Figure S12). Of note, similar analyses

were performed for the proteomics prediction challenge, but

no pathways were found associated with OS.

DISCUSSION

In this study, we performed an unbiased assessment of compu-

tational models to predict protein and phosphorylation levels

from transcript levels and gene copy number. The broad context

is an open-ended hypothesis generating omics experiments in

which we are attempting to quantitatively measure as many

genes as possible, without limiting ourselves with a hypothesis.

The overarching question is how much information about the

proteome is contained in the transcriptome, and we show that

this information varies substantially for different genes and, in

general, it is quite modest. Therefore, we conclude that it is

important to measure the proteome, i.e., the functional gene

products directly, to generate most useful hypotheses. After

having generated hypotheses for small sets of genes, these

should be investigated in targeted functional studies to validate

the results of the proteomics results.

By crowdsourcing this question, we were able to extensively

sample computational approaches for answering it. Thus, the

achieved performance is unlikely to improve significantly by

applying other algorithms and represents a probable approxima-

tion to the actual capacity to predict protein levels, at least for the

datasets we have used. The best-performing methods were

tree- and ensemble-based models. External information, such

as functional pathways, interaction networks, codon count, GC

percentage, protein folding energy, and transcription factors,

A B

Figure 3. Most Predictable Pathways based on Ensemble Method for Ovarian Cancer

( A) List of pathways enriched in the set of most predictable and least predictable proteins in the community phase ensemble model. A subset of enriched

pathways at 10% FDR for ovarian data. Correlation between predicted and true value for each protein, with proteins ordered in decreasing order of correlation.

Then, for each pathway, the position of the genes included in the pathway is shown.

(B) Comparison between proxy and ensemble model in predicting proteins contained in each of the enriched pathways. Only proteins with corresponding

transcript data were considered. The dashed line shows the average correlation between predicted and true value across all proteins.
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was also useful but not critical for good performance. Further in-

formation, such as transcript and protein half-lives, and the ef-

fect of codons on protein-to-transcript ratio, which have been

shown to be informative (Eraslan et al., 2019), were not used

by the participants. The best-performing teams mainly used

transcript levels to predict protein levels and found no benefit

by including gene copy number data. For the phosphoproteo-

mics prediction task, protein level was the most effective data

type to predict phosphorylation levels, and the inclusion of

gene copy numbers or transcript levels did not provide any addi-

tional improvement over using protein levels only. Another key

feature of the winning team was to borrow information across

cancer data to increase the effective sample size, and thus the

performance of the predictive model. This is important when

dealing with relatively small sample size and a high number of

features (‘‘large p small n problem’’).

Overall, the prediction performances for most participants

were below the baseline methodology, implementing a single

task machine learning algorithm without using prior knowledge,

and some teams even performed close to random (Figure 1E).

The overall low performance could be due to multiple reasons,

including the small sample size compared to the number of fea-

tures, or largely simply because a significant part of the biology is

not captured by the available molecular data, which did not

include quantitative measurements of all the molecules involved

in the regulation of a cell. In addition, we had no data capturing

the dynamics of the underlying processes, such as rates of trans-

lation and rates of degradation of transcripts and proteins.

Whether using additional molecular data can improve results, re-

mains open and should be addressed in future work.

The relationship between transcript and protein levels have

been extensively studied. During highly dynamic phases, such

as cellular differentiation or stress response, the transcript-pro-

tein correlation is weak (Liu et al., 2016), while in steady-state

conditions, protein levels are largely determined by transcript

levels. Additional mechanisms, including differences in half-lives

and post-transcriptional regulation (Haider and Pal, 2013) also

largely determine the correlations, but our understanding of

this dynamic process is still far from complete.

We observed that proteins for which the corresponding tran-

scripts have been measured were better predicted compared

with those which have not (Figure 2A). In contrast, we did not

observe a better predictive performance for high abundance

proteins (Figure S7). Proteins not belonging to complexes were

better predicted than those belonging to a protein complex (Fig-

ure 2A). This can be explained by the fact that degradation rates

of proteins can be different if they are in a complex, e.g., a pair of

proteins can be stabilizedwhen in a complex, and therefore, their

protein levels will be correlated (Gonçalves et al., 2017; Ori et al.,

2016)(Liu et al., 2016). This additional regulation through degra-

dation renders the protein less likely to follow the transient

variation of transcript level. Despite the globally modest perfor-

mance, some proteins could be predicted accurately. In some

cases, the transcript levels themselves are good predictors;

here, a direct use of RNA as proxy of proteins seems adequate.

For others, the model predicted well and better than the RNA

proxy; here is where the approaches developed within the chal-

lenge are most useful. In contrast, proteins subjected to tight

control, such as those in complexes, are harder to predict.

Using results from the challenge, we were able to identify

metabolic and extracellular matrix pathways enriched in the

set of most predictable proteins. Highly connected nodes

are more pleiotropic and more likely to be essential than other

nodes (Macneil and Walhout, 2011). Therefore, we explored

the feature importance in the best-performing model and

identified the most predictive genes of protein levels. We

found that commonly predictive genes were more essential

and predictive of patient survival for ovarian cancer (Supple-

mental Notes). Predicted phosphorylation scores using an

ensemble model significantly identified the KEGG vascular

muscle contraction pathway to be associated with patient sur-

vival for ovarian cancer. We further built a score based on this

pathway, which was significantly associated with survival

(HR = 1.32, p = 0.003).

A drawback of this study is given by the limited coverage of

proteomic profiling. In fact, even for the deep mass spectrom-

etry-based proteomics data, the coverage in terms of proteins

measured is limited and it is therefore difficult to quantify specific

splice forms. Because of the limited coverage, we chose to

quantify proteins at the gene level to avoid unreliable quantitation

of splice forms. For transcripts, the RNA-seq data could give

some splice form quantitation, but because the mass spectrom-

etry data do not support quantifying splice forms, we chose to

use the more reliable gene-level quantitation for both transcripts

and proteins.

In summary, we leveraged crowdsourcing to establish an un-

biased framework for protein level prediction. We explored to

what extent protein levels can be predicted based on transcript

levels and gene copy number. We made the best-performing

models available for reuse and provided the challenge predic-

tions as a resource for understanding protein-transcript relation-

ships and further development of methods by the community.

Methods derived from this challenge could be used for predict-

ing protein level on patient samples for which only transcript level

measurements are available. We found that, despite their limita-

tions, the resulting models can derive meaningful insights, at

least at an aggregated level, such as new associations between

pathways and survival from predicted proteomic data. Thus, we

suggest scientists to run these methods on transcriptomic data

to obtain large-scale estimated proteogenomic characterization

of tumor samples, that could help better understand cancer

biology and identify novel biomarkers to predict survival and

for patient stratification.

Key Changes Prompted by Reviewer Comments
Based on reviewers’ comments, we have implemented a number

of major changes to the manuscript. First, we refocused the pa-

per on the challenge itself. For this purpose, we included a

detailed description of predictive models utilized by different

teams and their performance (Figures 1C, 1D, 1F, and 2A), and

we revised the corresponding text accordingly. We also included

more details on the data utilized in the challenge in the STAR

Methods and commented on missing data rate (Figure S1).

Further, we removed downstream analysis based on cell line

datasets.

We also expanded some of our analyses. In particular, we

commented on the essentiality of common predictors and

included Figures S10 and S11. To gain insight on factors
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influencing predictability, we added Figure S7, which shows: (1)

the association between predictive performance and protein

levels and (2) the overall distribution of correlation metric across

all measured proteins. The corresponding text was added to the

section Global Insights. We added Figure S9 to show the effect

of RNA and protein half-lives on the prediction of proteomics-

based transcriptomics data. Corresponding text was added to

the section Global Insights.

Finally, we toned down the claim of common predictors of pro-

tein expression being predictive of patient survival and only

mentioned it briefly in the Introduction section. We have

improved the readability of Figure S3. We have moved the figure

concerning the survival analysis based on predicted phosphory-

lation levels to supplementary figures (Figure S12).

For context, the complete transparent peer review record is

included within the Supplemental Information.

STAR+METHODS

Detailed methods are provided in the online version of this paper

and include the following:

d KEY RESOURCES TABLE

d RESOURCE AVAILABILITY

B Lead Contact

B Materials Availability

B Data and Code Availability

d METHOD DETAILS

B Description of Challenge Data

B Training Data

B Team Ardigen Method

SUPPLEMENTAL INFORMATION

Supplemental Information can be found online at https://doi.org/10.1016/j.

cels.2020.06.013.
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STAR+METHODS

KEY RESOURCES TABLE

RESOURCE AVAILABILITY

Lead Contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Julio

Saez-Rodriguez (julio.saez@bioquant.uni-heidelberg.de)

Materials Availability
This study did not generate new materials.

Data and Code Availability
The challenge website can be found at https://www.synapse.org/ProteogenomicsChallenge

A Shiny application ProteoExplorer is at https://heidelberg.shinyapps.io/proteoexplorer/

Codes and python module ProteoEstimator are freely available for download at https://github.com/Sage-Bionetworks/NCI-

CPTAC-DREAM-Proteogenomics-Challenge

METHOD DETAILS

Description of Challenge Data
The NCI-CPTAC DREAM challenge utilized the CPTAC discovery data (TCGA) from breast and ovarian tumor samples as training

data (Mertins et al., 2016; Zhang et al., 2016); while the CPTAC confirmatory data was used as testing data for performance evalu-

ation (NCI-CPTAC data portal). Both discovery and confirmatory data included proteomics, phosphoproteomics, transcriptomics

(mRNA) and copy number alteration data (CNA). Sample size varied between different platforms due to the availability and quality

of original tumor samples at the time of the study. Mass-Spectrometry based proteomic and phosphoproteomic characterization

of these tumor samples yield quantitative measurements of thousands of proteins and tens of thousands of phosphorylation sites,

which served as the target to be predicted in the sub-challenges.

Training Data
Breast Cancer

d Proteome: 10005 proteins for 77 patients

d Phosphoproteome: 31981 phosphosites for 77 patients

d CNA: 16884 genes for 77 patients

d mRNA: 15107 genes for 77 patients

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited Data

Testing breast and ovarian proteome and

phosphoproteome

This paper https://www.synapse.org/

ProteogenomicsChallenge

Training breast and ovarian proteome and

phosphoproteome

Mertins et al., 2016; Zhang et al., 2016 https://cptac-data-portal.georgetown.edu/

cptacPublic

Software and Algorithms

Python Python Software Foundation http://www.python.org

R version 3.4.0 R Foundation for Statistical Computing https://www.r-project.org/

Code Repository This paper https://github.com/Sage-Bionetworks/

NCI-CPTAC-DREAM-Proteogenomics-

Challenge/tree/master/Subchallenges_2_3

Proteome

Estimator

This paper https://github.com/Sage-Bionetworks/

NCI-CPTAC-DREAM-Proteogenomics-

Challenge/tree/master/

Subchallenges_2_3/ProteoEstimator

ProteoExplorer This paper https://heidelberg.shinyapps.io/

proteoexplorer/

ll
OPEN ACCESSReport

Cell Systems 11, 1–10.e1–e9, August 26, 2020 e1

Please cite this article in press as: Yang et al., Community Assessment of the Predictability of Cancer Protein and Phosphoprotein Levels from Ge-
nomics and Transcriptomics, Cell Systems (2020), https://doi.org/10.1016/j.cels.2020.06.013

mailto:julio.saez@bioquant.uni-heidelberg.de
https://www.synapse.org/ProteogenomicsChallenge
https://heidelberg.shinyapps.io/proteoexplorer/
https://github.com/Sage-Bionetworks/NCI-CPTAC-DREAM-Proteogenomics-Challenge
https://github.com/Sage-Bionetworks/NCI-CPTAC-DREAM-Proteogenomics-Challenge
https://www.synapse.org/ProteogenomicsChallenge
https://www.synapse.org/ProteogenomicsChallenge
https://cptac-data-portal.georgetown.edu/cptacPublic
https://cptac-data-portal.georgetown.edu/cptacPublic
http://www.python.org
https://www.r-project.org/
https://github.com/Sage-Bionetworks/NCI-CPTAC-DREAM-Proteogenomics-Challenge/tree/master/Subchallenges_2_3
https://github.com/Sage-Bionetworks/NCI-CPTAC-DREAM-Proteogenomics-Challenge/tree/master/Subchallenges_2_3
https://github.com/Sage-Bionetworks/NCI-CPTAC-DREAM-Proteogenomics-Challenge/tree/master/Subchallenges_2_3
https://github.com/Sage-Bionetworks/NCI-CPTAC-DREAM-Proteogenomics-Challenge/tree/master/Subchallenges_2_3/ProteoEstimator
https://github.com/Sage-Bionetworks/NCI-CPTAC-DREAM-Proteogenomics-Challenge/tree/master/Subchallenges_2_3/ProteoEstimator
https://github.com/Sage-Bionetworks/NCI-CPTAC-DREAM-Proteogenomics-Challenge/tree/master/Subchallenges_2_3/ProteoEstimator
https://github.com/Sage-Bionetworks/NCI-CPTAC-DREAM-Proteogenomics-Challenge/tree/master/Subchallenges_2_3/ProteoEstimator
https://heidelberg.shinyapps.io/proteoexplorer/
https://heidelberg.shinyapps.io/proteoexplorer/


Ovarian Cancer

d Proteome from PNNL: 7061 proteins for 84 patients

d Proteome from JHU: 7061 proteins for 122 patients

d Phosphoproteome: 10057 phosphosites for 69 patients

d CNA: 11859 genes for 559 patients

d mRNA (Array): 15121 genes for 569 patients

d mRNA (RNA-seq): 15121 genes for 294 patients

Training proteomics and phosphoproteomics data of breast and ovarian tumors were downloaded from the CPTAC data portal

(https://cptac-data-portal.georgetown.edu/cptacPublic/) and processed by the common data analysis pipeline from CPTAC. For

breast proteome, 105 (77 passed QC) tumors from different patients were analyzed at the Broad Institute. The log ratios of protein

levels were calculated, including only peptides mapping unambiguously to a single gene. Breast tumor samples (’TCGA-AO-A12B’,

’TCGA-AO-A12D’, ’TCGA-C8-A131’ assayed in duplicate for quality control purposes) were mean aggregated in the uploaded

training data (https://cptac-data-portal.georgetown.edu/cptac/s/S015). For ovarian proteome, 206 samples were collected from

174 unique patients (84 from Pacific Northwest National Laboratory (PNNL), 122 from Johns Hopkins University and 32 measured

by both centers). We provided the participants with both proteome collections for training to cover the maximum number of samples

for the Proteomics sub-challenge. However, for the phosphoproteomics sub-challenge, ovarian phosphoproteome of 69 patients

were measured exclusively by PNNL.

Breast cancerRNA-seqdatawith 1212 sampleswasdownloaded from:http://gdac.broadinstitute.org/runs/stddata__2016_01_28/

data/BRCA/20160128/gdac.broadinstitute.org_BRCA.mRNAseq_Preprocess.Level_3.2016012800.0.0.tar.gz

OvarianMicroarray data was downloaded from Zhang et al. (Zhang et al., 2016) and Breast cancer RNA-seq data was downloaded

from broad firehose. The main reason for providing participants microarray data was that sample coverage was greater between mi-

croarray and proteome data compared to RNAseq data. However, only RNA-seq data was measured for the CPTAC confirmatory

collection (testing data). CNA data was directly downloaded from the two corresponding CPTAC publications (Mertins et al.,

2016; Zhang et al., 2016). Non-unique gene IDs were median aggregated.

Testing Data

CNA, RNA-seq, Proteome and Phosphoproteome from the CPTAC confirmatory collected patients were provided as testing data for

Proteomics and Phosphoproteomics sub-challenges. Since during the first and second round of the challenge only ovarian cancer

testing data was available, predictive performance was evaluated on ovarian cancer data only. In particular, the same testing data

was utilized in both rounds to allow participants to improve the prediction of their proposed algorithms. This testing data based on

ovarian cancer included:

d Proteome data containing 7061 proteins for 20 patients

d Phosphoproteome data containing 10057 phosphosites for 20 patients

d CNA data containing 11859 genes for 20 patients

d mRNA(RNA-seq) containing 15121 genes for 20 patients

During the final round, predictive performance was evaluated based on both breast and ovarian cancer data. The breast cancer

data included

d Proteome data containing 10005 proteins for 108 patients

d Phosphoproteome data containing 31981 phosphosites for 108 patients

d CNA data containing 16884 genes for 108 patients

d mRNA data containing 15107 genes for 108 patients

while the ovarian cancer data included

d Proteome data containing 7061 proteins for 62 patients

d Phosphoproteome data containing 10057 phosphosites for 62 patients

d CNA data containing 11859 genes for 62 patients

d mRNA(RNA-seq) data containing 15121 genes for 62 patients

Quality of Proteomics and Phosphoproteomics Data

For both ovarian cancer and breast cancer tissues, proteome and phosphoproteome of training data were acquired using mass

spectrometry experiments with isobaric mass tags (iTRAQ: Isobaric Tags for Relative and Absolute Quantification); while TMT (Tan-

dem Mass Tags) platform was used to produce testing datasets. All of the proteome and phosphoproteome intensity tables were

quantified with the CPTAC common data analysis pipeline (CDAP). As the output of this quantification pipeline, log ratios of protein

levels between regular samples and reference samples in the same multiplex were calculated, including only peptides mapping

unambiguously to a single gene. With the multiplex design of this experiment, substantial missing values were produced in the final

data matrix. For example in the training data, proteomic and phosphoproteomic data of ovarian cancer presented 17.96% and

58.18% missing values. Similarly, proteomics and phosphoproteomics of breast cancer presented 8.90% and 49.65% missing
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values, respectively (Figure S1). Proteins or phosphosites with higher missing values are much less informative in either training pre-

diction model or evaluating performance, and features with missing rate over 30%were removed from the data sets in the challenge.

Description of CPTAC Common Data Analysis Pipeline (CDAP)

Raw files retrieved from the CPTAC Data Coordinating Center were verified with MD4 checksums. File conversion was performed

with the National Institute of Standards and Technology (NIST)- developed converter ReAdW4Mascot2.exe. MS-GF+ was used

for peptide identification. Training MS1 data processing used for label-free quantitation was calculated with NIST-ProMS, a program

developed by NIST. The proteome database was integrated from RefSeq H. sapiens (build 37) and the sequence for S. scrofa

(porcine) trypsinogen. The resulting output for the dream challenge is a matrix where each row represents genes/genes_phospho

site and columns represent tumor samples. Detailed documentation is also available at NCI-CPTAC CDAP portal (cptac-data-

portal.georgetown.edu).

Batch Effect

Different techniques utilized to generate the CPTAC discovery and confirmatory data resulted in a batch effect between training and

testing data for both proteomics and phospho-proteomics data. In order to remove this batch effect, different techniques were

implemented. First, each sample in the training and testing data was median normalized (samplewise). However, this simple normal-

ization was not able to eliminate the batch effect in the data (Figure S2). As the next normalization strategy, after sample-wise normal-

izing of both CPTAC discovery and confirmatory data, genes in the confirmatory data were normalized to have the same mean and

standard deviation of the genes in the discovery data (Genewise). This simple normalization could substantially eliminate the batch

effect between the two datasets (Figure S2). Given the satisfying performance of Genewise normalization, this strategy was adopted

during the challenge; confirmatory data was normalized accordingly and uploaded on Synapse. However, given that the discovery

data was uploaded on Synapse months before confirmatory data became available, the raw and original version of discovery data

was available on Synapse. In summary, to eliminate any batch effect in the data, participants needed to apply a sample-wise normal-

ization on discovery data.

Best Performing Methods

Winning Method. For the protein prediction task, the winning team used a weighted average of three models (Figure 1C) which will

be referred to as protein proxy model, interaction model and pan-cancer model.

Protein Proxy Model. This model is based on the observation that protein and transcript levels are correlated, and simply uses the

transcript level of a given gene as a proxy for its protein level. Missing values positions are replaced with the gene average across

non-missing samples. This model has several limitations including that it assumes no differential translational regulation and degra-

dation, and it disregards interaction between genes.

Interaction Model. Since different genes are regulated differently, individual models were built for each gene using random forests

withmaximumdepth of 5 and 100 trees. The response variables for training are the non-missing observations across all samples, and

the values for all genes are used as the training features to take into account gene-gene interactions.

Pan-Cancer Model. The performance of the interaction model is limited by the sample size. The training data only contain 77 and

174 tumors for breast and ovarian, respectively. This is a relatively small sample size, but when combining all the samples from both

tissues, a better performancewas achieved as themajority of genes have similar regulation across different tumor tissues (Kosti et al.,

2016; Wang et al., 2013).

For the phosphorylation prediction task, the proxymodel was changed to use protein levels instead of transcript levels and a fourth

model was added (Figure 1D).

Phosphorylation ProxyModel. This model is based on the observations that protein and phosphorylation levels are correlated albeit

only modestly, and simply uses the protein level of a given gene as a proxy for its phosphorylation level. This model assumes that for

any given gene a constant fraction of the proteins is phosphorylated.

Phosphosite Correlation Model. The levels of multiple phosphorylation sites from the same protein are not independent. The bio-

logical rationale behind this model is that if a protein is phosphorylated, it is likely that multiple phosphosites are phosphorylated

simultaneously. In addition, for technical limitations it is sometimes not possible to distinguish two phosphosites that are very close

in the linear sequence so that they are in the same peptide after digestion and no fragment peaks are observed from fragmentation

between them. Therefore, a phosphorylation site is correlated with other phosphorylation sites on the same protein. The winning

team utilized this and calculated the weighted average prediction from all phosphorylation sites of the same gene as the multi-

site prediction.

Other Best Performing Methods for Proteomics Sub-challenge

We next sought to further improve the prediction by organizing a collaboration round between the top ranked teams (Figures 1C and

1D; Supplemental Notes). In addition to the winning team, these included:

Team HYU trained a Random Forest using transcript levels as proxy. For each protein, cross-validation was performed to build

individual prediction models. The missing values present in the transcript data were imputed using k-Nearest Neighbors (kNN)

with k=10. Features were standardized and filtered based on KEGG signaling pathway and human PPI network from Human Protein

Reference Database (HPRD) and their correlationwith the responses.When a protein is present in the networks, all neighbors within a

distance of two in either KEGG pathway or PPI network were selected. The set of features was further expanded by important genes

from the pathways ofmRNA surveillance, RNA degradation, RNA polymerase, basal transcription factors, cell cycle, protein process-

ing in endoplasmic reticulum, and microRNAs in cancer. These pathways are assumed to play important roles in regulating gene

expression.
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Team DEARGENpg predicted protein levels by building a model on a group of proteins. For a single protein, there might be only a

small number of samples available in the training set, but for a group of proteins, the data can be combined, partially overcoming the

issue of small sample size. A group was defined by a set of proteins whose coding genes show high correlation with each other, and

the group size was limited to 16 proteins for breast and 10 proteins for ovarian, yielding 628 and 707 protein groups, respectively.

Each group was trained using several types of features: (i) the copy number and transcript level for a protein in a group, (ii) Pearson

score-based features, (iii) gene metadata related to protein levels; codon bias, GC count and folding energy of each protein, and (iv)

clustering label (STAR Methods). And an ensemble model was constructed using the average of XGboost, Extra Tree and Random

Forest.

Team DMIS_PTG trained models for each protein using LASSO regression. Features were selected based on PPI networks, bio-

logical pathways and LASSO. The following PPI networks have been used: (i) Protein-Protein interaction network (BioGRID) that

include protein and genetic interactions; (ii) Gene predictory network: a task-specific gene predictory network was built based on

the given transcript level data using Boosted Tree based gene predictory NETwork (BTNET(Park et al., 2018)); (iii) Protein complex

network (CORUM): the team assumed that the proteins in a single complex shared edges with each other, and the relationship was

treated as a network. These three networks were combined into a single union network. Finally, only genes directly connected to a

target protein in the final network were selected as input features for LASSO.

Second Best Performing Method for Phosphoproteomics Sub-challenge

Team Ardigen used a two-stage approach where the model used in the first stage captured the main effect and the model in the sec-

ond stage captured corrections to the main effect (e.g. interactions among genes), by fitting to the residuals of the first stage model.

To this end, the model in the first stage was in most cases (see Supplemental Information for details) the phosphoprotein proxy

model, whereas in the second stage a forward-feature selection procedure was applied using all protein levels. The forward-feature

selection procedure was terminated when the cross-validation score of the resultingmodel droppedwith adding a new feature. Least

Angle Regression (LARS) was used as the second stage model. In the final solution an ensemble of models over different cross-vali-

dation fold splits was used.

Ensemble Method - Proteomics Sub-challenge

To improve the prediction performance, an ensemble algorithm based on the models of the top four teams (i.e., Team Hongyang Li

and Yuanfang Guan, Team DMIS_PTG, Team DEARGENpg and Team HYU) was derived. By analyzing the 5-fold cross validation

results of these models on the training data, the prediction correlation of each protein was calculated. For each protein, the corre-

lation scores were used as the stacking weights of these top four models (hereafter referred to as the individual ensemble model). To

estimate the overall performance, the average correlation of all proteins was calculated and used as the weights for all proteins (here-

after referred to as the global ensemble model). For ovarian cancer, we observed a significant improvement (i.e., correlation equal

to 0.56) of the global ensemble model, compared with the best performer in the challenge final round (i.e., correlation equal to

0.53), P < 0.05. There was also a reduction of NRMSE from 0.19 to 0.18. However, the improvement of the global ensemble model

was very marginal in breast cancer with a correlation change from 0.505 to 0.506, P > 0.99.

Ensemble Method - Phosphoproteomics Sub-challenge

Within the collaborative phase for phosphoproteomics sub-challenge, we used an ensemble model based on the models developed

by the winning team and Ardigen. The final solution is obtained as a weighted average of four models: three of themodels used by the

winning team (Protein proxy model, Interaction model, and Pan-cancer model) and the Ardigen’s model. The four weights of these

models are determined by optimization for the holdout set score (we used 20% randomly selected samples as the holdout set). Dur-

ing the collaborative phase we introduced slight modifications to the models: (i) the Phosphosite correlation model is disregarded

from the final solution as it does not improve the score; (ii) cancer type is included as a binary variable for the ovarian cancer to

the Pan-cancer model (for the breast cancer it does not improve the score and is not included); (iii) Ardigen’s model modifications

are discussed in the Supplemental Information (removal of the CNA and mRNA variables from the forward-selection procedure is

the most important modification). For both cancer types we observed a significant improvement with respect to the final round of

the challenge. The final prediction correlations are 0.37 for the ovarian cancer and 0.48 for the breast cancer (NRMSEs are 0.20

and 0.16, respectively).

Team HYU Method

The prediction of protein levels based on RNA/DNA information is treated as a regression problemwhere the protein levels of a partic-

ular protein is modeled as function of RNA/DNA levels of all the proteins.

Prediction of protein expression can be challenging due to complex regulations at multiple levels (e.g., post-transcriptional, post-

translational), and mRNA measures are not always available for corresponding proteins. To address these problems, predictive

models were built relying on two assumptions. First, the expression of a protein is modeled as a function of genes belonging to

the same biological pathways or interacting with such pathways. Second, high order interactions are considered in the regression

model for certain proteins due to complex pattern of regulations. Specifically, features (RNAs) are selected based on the Kyoto Ency-

clopedia of Genes and Genomes (KEGG, Kanehisa, 2008) pathway database and the Human Protein Reference Database (HPRD)

human protein-protein interaction (PPI) network(Keshava Prasad et al., 2009). RandomForests was utilized tomodel the level of each

protein as a function of the features.

Only RNA-seq data was used as predictors to predict protein level. Two sources of protein level data are available for some ovarian

cancer patients. In such cases, the average of the two measures was used as response variable. For both breast cancer and ovarian
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cancer data sets, missing values were present in RNA data and were imputed with the k-Nearest Neighbors algorithm (kNN) using

k=10. RNA-seq data was gene-wisely normalized to z score (i.e., mean zero and unit variance).

Features were filtered based on signaling pathways from the KEGG database and human PPI network information. Since inclusion

of non-informative features can greatly affect the prediction performance, our purpose was to exclude as many irrelevant genes as

possible based on prior biological knowledge, while retaining most important predictors.

The networks of KEGG signaling pathways were obtained through R package graphite(Sales et al., 2012; Sales et al., 2019), while

the human PPI network was obtained from HPRD(Keshava Prasad et al., 2009). Given the two network topologies, all genes

belonging to the second order neighborhood of a given protein in either network were selected. This set was further refined by adding

genes in pathways ofmRNA surveillance, RNA degradation, RNA polymerase, basal transcription factors, cell cycle, protein process-

ing in endoplasmic reticulum andmicroRNAs in cancer, which are assumed to play important roles in regulating translation. Given the

large number of genes selected based on this criteria, the set of features was refined based on the PPI network. In particular, only

genes with degrees greater or equal to 10 in the PPI network were considered. Finally, this set was modified by adding genes whose

Pearson’s correlation coefficient with the protein of interest was greater than 0.3.

Random Forest based models (RF) were compared with a baseline method using 5-fold cross validation, in which the RNA level is

directly used as a proxy of corresponding protein level. For all proteins RF delivered the best performance, or which do not have cor-

responding RNA data available, Random Forests were used. The baseline model was used for the remaining proteins.

Team DEARGENpg Method

To predict protein level based on RNA data, proteins were first grouped in different clusters and a predictive model for each group of

proteins was utilized. This strategy borrowing information across proteins was adopted in order to increase the power of the predic-

tive model. Specifically, two different grouping methods were utilized, one based on proteins correlation and the other based on

alphabetically divided group. During the community phase, the method used to group proteins was further improved.

Pearson Score Based Selected Features

For both CNA andmRNAdata, the Pearson’s correlation between a group’s vectorized protein level and each feature was computed,

and then only the top 300 features (genes) with highest correlation were considered in the predictive model.

Gene Metadata

As metadata,codon bias count, GC count and folding energy of each protein and corresponding genes were considered.

(i) Codon count based on codon bias: top five codons which were best-expressed in humans were selected. Information about

the percentage of the selected codons in each gene sequencewere considered. This information is important since genes con-

taining codons that are frequently used in the specific organism can be more stably translated to proteins.

(ii) GC count: When SNP occurs at G or C base position, it usually does not lead to mutation. Also AT-rich sequences within the

gene could cause premature transcriptional termination and reduced mRNA levels, which affects protein levels. Based on

these biological backgrounds, DEARGENpg hypothesized that the GC content in the gene sequence will eventually affect pro-

tein levels and calculated the ratio of GC-base in the entire sequence.

(iii) Folding energy: Another important factor for stable protein levels is folding energy of protein. Lower folding energy is better for

proteins to be folded into stable secondary structure. The propensity of the 5-end of the mRNA, called Kozak sequence in

eukaryotes cases, plays a major role in protein folding and since that Kozak sequence is available for human. The percentage

of similarity between the 5’-end region of each gene and the human kozak sequence was calculated and included that per-

centage into the gene metadata.

Clustering Label

Samples were clustered based on CNA and RNA data. CNA and RNA data were combined into one matrix and then collapsed to two

dimensions using principal components. Using this reduced data, samples were clustered into 2 clusters via K-means clustering. For

breast cancer data, clustering result lead to similar classification as PAM50 breast subtypes label of each patient (i.e., basal-like &

HER2 and Luminal A & Luminal B).

Grouping Using Simplified Final Round Method

During the community phase, a simplified version of the model was used. Protein groups were identified only for making protein

group, protein-protein correlation based grouping method was used, and not the alphabetical group. For each protein, only the

top 350 features with a correlation higher than 0.1 were considered in the regression modelInstead of selecting top 300 features

with the highest correlation, a correlation threshold of 0.1 was utilized and all features with the maximum feature number as 350.

Also, unlike the previous method of stacking three methods (XGboost, random forest, tree regressor) for model training, the average

of threemethodswas used. Every groupwas trained using several types of features: (i) CNA/mRNA level of coding gene of protein in a

group, (ii) Pearson score based features, (iii) genemetadata related to protein levels; codon bias, GC count and folding energy of each

protein, and (iv) clustering label.

Team DMIS_PTG Method

In the Proteomics sub-challenge, protein level was predicted based on genomics and transcriptomics (i.e. RNAseq and copy number

variation data). Since the number of features wasmuch larger than the number of samples, feature selection was necessary to build a

reliable prediction model. Specifically, features were selected as follows:
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(i) a biological union network was constructed based on protein-protein interaction database, inferred gene predictory networks,

and protein complex information. This final network was utilized in order to select features for each protein. In particular, only

genes directly related to a target protein in the union network were considered as features. For this set of genes, both CNV and

RNA data was utilized as predictors.

(ii) MSigDB database(Liberzon et al., 2011) was considered to derive meta genes. For each pathway, the median mRNA values

across genes in the pathway was considered as feature.

(iii) Although prior biological knowledge was utilized to reduce the number of features, the number of samples was still insufficient

to avoid the curse of dimensionality issues caused by the high-dimensional feature space. To address this, a penalized linear

regression such as LASSO was utilized to model each protein as a function of features.

It is important to notice that, for each protein, a different set of features was selected. The final model based on LASSO regression

was estimated based on 5-fold cross validation.

First, Z-score normalization was applied to the mRNA expression values. Between microarray and RNAseq data, to train the pre-

diction models, microarray data was utilized since it involved a higher number of samples.

Considering the insufficient number of samples, using all the CNA and mRNA levels as features was infeasible. A combined bio-

logical network was first constructed using the following resources:

d Protein-Protein interaction network from BioGRID(Stark et al., 2006)

d Gene predictory network: task-specific gene predictory network was constructed based on mRNA data using BTNET(Park

et al., 2018) - a Boosted Tree based gene predictory NETwork. BTNET trains a tree-based model and considers the feature

importance in the model as the weight of the predictory relationships between a feature gene and a target gene.

d Protein complex network: Some proteins gather and form a single protein complex with each protein complex having its own

unique function. Protein complex information from the CORUM database(Ruepp et al., 2008) was leveraged to form a protein

complex network. In particular, the network was built by connecting all proteins in the same protein complex.

The three networks were combined into a single network by aggregating edges which were present in at least one network. Next,

genes directly connected to a target protein in the combined network were used as feature in the regressionmodel. In particular, both

CNA and mRNA levels of the selected genes were considered as features. The average of the number of the selected gene features

for all protein models was approximately 20 for both cancer types. As mentioned previously, in addition to raw gene expression and

copy number variation data, gene-set level information was considered as a feature. In particular, for each pathway, the median

mRNA values across genes in the pathway was considered as feature. For this analysis, only pathways in the MSigDB database

with all genes observed in the RNAseq data were considered. This filtering criteria resulted in 700 pathways being included in the

final predictive model. Finally, the LASSO algorithm was utilized to model each protein as a function of the selected features.

Team Ardigen Method
In the phosphoproteomics sub-challenge, the task was to predict phosphoprotein levels based on genomic, transcriptomic and pro-

teomic data. Due to a large number of variables that could be used for this purpose (above 30 000) and a small number of training

samples (around 100), as well as possible batch effects, model generalization was a serious issue, a two-stage procedure was used.

In the first stage, given a target phosphoprotein, two models relating directly to the target phosphoprotein were considered: (i) a

model on its parent protein level (equivalent to phosphoproteomic proxy model in the main text) and (ii) a model on its parent protein

and its mRNA level (we apply LARS). Of the two models, the one which yields a higher 5-fold cross-validation (CV) score was

selected. In the absence of the parent protein level among the variables, the best of the following three univariate models was

selected: (i) a model on the mRNA level corresponding to the target phosphoprotein, (ii), (iii) models on the protein level with the high-

est correlation to the target phosphoprotein level selected among proteins known as transcription factors (labeled ‘‘hc: TFs’’; http://

www.tfcheckpoint.org/) (ii) and kinases (labeled ‘‘hc: kinases’’; http://kinase.com/human/kinome/) (iii).

In the second stage, a model was fit to the residuals of the first stage model. All protein levels were considered as variables and a

forward feature selection procedure was used. At each step, the variable with the highest correlation was added to the residuals of

the current model. The procedure terminated when a decrease in the CV score was observed. Note that we may have different vari-

ables in the model for each train-test split of the cross-validation procedure. Finally, an ensemble (arithmetic average) of models

trained per cross-validation fold splits was used. For ovarian (breast) cancer, an ensemble obtained by 13 (7) runs of the procedure

with 5 folds was used, which yielded 13 x 5 (7 x 5) models used tomake the prediction. For imputing missing values, mean imputation

was used.

During the challenge, the same hierarchical two-stage approach was used. However, in the collaborative phase, several modifi-

cations were introduced, which improved the model performance: (i) the test-set mRNA levels have been normalized to have the

same mean and standard deviation as in training set; (ii) in the second stage of the procedure, CNA and mRNA variables were

removed and only protein levels were considered; (iii) the auxiliary model used by the team to predict generalization properties of

stage 1 models was disregarded and the best of the considered models was selected (this model was built on the JHU and

PNNL results relating to Proteomics sub-challenge); (iv) only the CV score was used for model selection (in the challenge, models

with more variables were penalized); (v) all CNA variables we1re disregarded (also from the first stage of the procedure).
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Baseline Methods

For predicting proteomics data, we used RNAseq for breast andmicroarray for ovarian, and trained a standard Elastic net model with

5 fold cross validation and a = 0.5. For each protein, we repeated over 10 iterations, and at each iteration, we obtained an optimal l

parameter. Finally, we fit the average lambda (over the 10 iterations) to all available samples and saved the model.

For the prediction of phospho-proteomics levels, a random forest resulted in a better performance compared to lasso model and,

therefore, was considered as the benchmark. Specifically, each phosphosite was modeled as a function of the protein level of all the

proteins via random forest. To reduce the dimensionality of the problem, proteins were first selected based on the training data before

being utilized in a random forest model. In particular, for each phospho-site, only the top 200 proteins more correlated to the phos-

pho-site were considered in the predictive model. In the random forest model, a total number of 1,000 trees were considered and at

each node a total number of N=p variables with p being the total number of predictors were sampled and proposed for the splitting

rule. The predictive model was trained on the training data and, then, directly utilized to predict the phospho-level of samples in the

test data.

Scoring

To evaluate the performance of different methods, the Pearson’s correlation between predicted and actual values was chosen as the

primary metric for the following reasons: (i) since in precision medicine patients are stratified based on biomarker level, the relative

level of a specific protein (if used as a biomarker) across patients is important. (ii) Metrics which emphasize effect size (such as sumof

residuals) require the training and test features normalized in the same way. However, since users do not necessarily have access to

the training data, the Pearson’s correlation is more appropriate to evaluate the true performance of a prediction model.

Proteomics Sub-challenge: Prediction of Protein Levels Based on mRNA Levels

These models were evaluated in two novel, unpublished held-out datasets of ovarian and breast cancer. Only proteins with less than

30%missing values in both training and testing data were considered for the analysis (i.e. 5220 proteins for ovarian and 8649 proteins

for breast). For model evaluation, first, the Pearson’s correlation between observed and predicted levels across all samples was

computed for each protein. Then, the mean of correlations across proteins in the test dataset was considered as the final evaluation

score. When a tie was observed, NRMSE for all proteins was utilized to select the best performing team.

Phosphoproteomics Sub-challenge: Prediction of Phosphosite Levels Based on Protein Levels

Only phosphosites with less than 30% missing values in both training and testing data were considered in the challenge (i.e.,1318

phosphosites for ovarian and 4907 phosphosites for breast). We first computed the Pearson’s correlation between observed and

predicted phosphosite levels across all samples for each phosphoprotein. We then took the mean correlations of phosphoproteins

in the test data set as the final evaluation score. If there is a tie, we further used NRMSE for all phosphoproteins to select the winner.

Tie Breaking

Bootstrapping was utilized in order to identify the best performing team. Specifically, from each team, we obtained a p-by-nmatrix X

of predictive values, with n being the number of samples and p the number of variables. For each bootstrap iteration, we sampledwith

replacement n columns of X.We then computed the twometrics (i.e., correlation andNRMSE) using the bootstrapped set of samples.

We performed 1,000 bootstrap iterations and assessed significance using two criteria:

1. Confidence Intervals. Specifically, for each team, 95% confidence interval was computed across bootstrap iterations. Then, two

teams were declared statistically different when the corresponding confidence intervals did not overlap.

2. Bayes Factor. Given two teams, we estimated the Bayes Factor using the same strategy as in (Menden et al., 2019).

Proteomics Sub-challenge

The four teams scoring the best performance based on both Ovarian and Breast Data, i.e., Hongyang Li and Yuanfang Guan,

DMIS_PTG, Hyu and DEARGENpg, were considered to assess the top performing team. In particular, the top performer (Hongyang

Li and Yuanfang Guan) was the same for both Ovarian and Breast data. Therefore, we were interested in assessing whether Hon-

gyang Li and Yuanfang Guan significantly outperformed other teams. Figure S5 shows the 95% confidence intervals for the four

best scoring teams in Proteomics sub-challenge. As shown, for ovarian cancer data, a tie was observed between teams Hongyang

Li and Yuanfang Guan and DMIS_PTG. In fact, the two teams resulted in overlapping 95% confidence intervals of both metrics (i.e.,

correlation and NRMSE) On the other hand, the Bayes factor always favored the best scoring team (BF=infinity). In fact, the corre-

lation metric of Hongyang Li and Yuanfang Guanwas greater than the correlation of the other teams for all bootstrapped samples. In

conclusion, based on ovarian data, a tie was observed between Hongyang Li and Yuanfang Guan and DMIS_PTG based on 95%

confidence intervals. For Breast cancer data, as shown by the 95% confidence intervals in Figure S5, Hongyang Li and Yuanfang

Guan significantly outperformed the other teams. Also, the Bayes factor always favored Hongyang Li and Yuanfang Guan over other

teams (BF=infinity). In conclusion, for this sub-challenge the best performing team was Hongyang Li and Yuanfang Guan.

Phosphoproteomics Sub-challenge

For this sub-challenge, Hongyang Li and Yuanfang Guan and Ardigen were the best performing teams based on both ovarian and

breast data, with Hongyang Li and Yuanfang Guan being the best performer. Figure S6 shows 95% confidence intervals of these

two teams in phosphoproteomics sub-challenge for ovarian (a, b) and breast (c,d) data. As shown, for both cancer types, Hongyang

Li and Yuanfang Guan significantly outperformed the other team in terms of both correlation and NRMSEmetric. Also the Bayes fac-

tor favored team Hongyang Li and Yuanfang Guan over the other team (BF=infinity). In conclusion, Hongyang Li and Yuanfang Guan

were the best performers in the phosphoproteomics sub-challenge.
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Pathway Analysis of Protein Prediction Performance

In order to identify higher predictable pathways, we implemented the following test. Proteins were sorted from the most predictable

to the least predictable based on the prediction correlation. Specifically, let fg1;g2;.; gGg be the sequence of sorted proteins. For

each pathway M containing nM proteins, the following statistics were computed:

KLðiÞ =
X

j:ðgj˛MÞ&ðj%iÞ

1

nM

�
X

j:ðgj;MÞ&ðj%iÞ

1

G� nM

; i˛f1;.;Gg (Equation 1)

The final test statistics was derived as the maximum deviation from zero of the sequence fKLðiÞgGi = 1. The significance of pathway

enriched was assessed using permutation techniques. Specifically, for each permutation p, proteins were randomly reordered and

Equation 1 was computed. By repeating this step P= 10; 000 times, we obtained scores fKLði;pÞgGi = 1g
P

p=1 which were utilized to

derive p-values and adjust for multiple comparison. Before deriving false discovery rates, scores fKLðiÞgGi = 1 and fKLði;pÞgGi = 1g
P

p=1

were properly adjusted for pathway size using the strategy illustrated by Subramanian et al., 2005.

Identifying the Common Regulators

The team performing the best in both challenges utilized a method based on random forest to predict the abundance of each protein

as a function of gene expression data. For each predictor, random forest returns a measure of importance defined as the

summation of node impurities across all nodes utilizing a particular predictor for the splitting rule divided by the total number of trees

in the random forest model. In order to derive a final list of regulators, a proper cutoff value for importance scores must be

derived. This cut-off can be derived via permutation techniques. Let fIj/kg be the importance score corresponding to the regulatory

event (j / k). To derive a proper cutoff value for importance scores, we utilize the following permutation-based procedure:

(a) For b ˛ {1, $$$, B}, with B being the number of permutations:

(a.1) For any target protein k, we first permute its sample order and fit random forest to predict the abundance of protein k based

on the expression of all genes. Repeating this procedure for each permutation, we obtain a list of importance

scores fIbj/kg
B

b=1
(b) For each threshold i, we compute

fðiÞ =
1
B

PB
i = 1

P
j1
�
Ibj/k>i

�
P

j1ðIj/k>iÞ (Equation 2)

where 1(,) is the indicator function, equal to one if event3 occurs and zero otherwise. f(i) can serve as an approximation of the false

discovery rate (FDR). In the following numerical studies, we use i0 = min{i: f(i) % 0.001} and declare an edge between j and k if

Ij/k>i0.

Essentiality of Common Protein Predictors

We considered the top 83 common predictors of 10% proteins in breast and ovarian tissues, and checked their essentiality with the

BROAD DepMap’s Combined RNAi (McFarland et al., 2018) and CRISPR-Cas9 Avana screen (Meyers et al., 2017) (Figures S10

and S11).

Top common predictors were enriched in the set of genes associated with cancer survival. We reasoned that genes regulating a

larger number of proteins were more likely to be essential for cancer cell progression (Macneil and Walhout, 2011) and thus having

larger impact on disease outcomes. Subsequently, genes were ordered based on the number of proteins that they regulated, and the

top 10% (i.e., 824 for breast and 516 for ovarian cancer) were selected for downstream analysis. Among the 824 top predictors of

breast cancer, 96 showed association with patient survival outcomes in Cox survival analysis adjusted for age, gender and cancer

subtype (FDR < 25%), which corresponded to a 1.28 fold (P = 0.038, Fisher’s exact test) enrichment compared to the rest of the

genome (Table S3). Similarly, among the 516 common predictors in ovarian tumors, after correcting for age, stage and grade, 6

out of the 516 predictors were found associated with overall survival, whereas only 14 out of the 14605 non-common predictor genes

were correlated (12 fold enrichment; P = 3.96x10-5, Fisher’s exact test).

Survival Pathway Enrichment Analysis with Real and Predicted Data

We first conducted Cox proportional hazard regression to assess the association between each (phospho)protein with overall sur-

vival (OS). Then, we leveraged the KEGG pathway database to compare if the p-values for (phospho)proteins in a pathway were

significantly smaller than those outside the pathway via one-sided Wilcoxon rank test. This comparison was conducted among

top 55 well-predicted KEGG pathways, selected by comparing the correlations between true phosphoprotein and prediction scores

in independent confirmatory data. At FDR < 0.05 control, neither real phosphoprotein data (from 69 training set) nor real protein data

(from 105 prediction set) identified any significant KEGG pathway; predicted phosphoprotein scores in 105 prediction data,

using ensemble model trained in 69 samples, significantly identified a KEGG pathway associated with survival. This pathway was
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at P < 0.05 in 69 training set for association between real phosphoprotein and OS and between real protein and OS. None of the

pathways were identified based on the proxy prediction model. The significant pathway: ‘‘Vascular muscle contraction’’ contained

a total of 25 phosphoproteins in our prediction data set. We further performed PCA among the 25 phosphoproteins, and evaluated

the associations between the top 3 principal components (PCs). The top 3 PCs explained 65%, 10% and 8% of the variation in the

data with the 2nd and 3rd PCs being associated with OS. A PC-based survival score was created by combining the 2nd and 3rd PCs

(Figure S12).
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