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Abstract—As a non-causal optimal control problem, the per-
formance of wave energy converter (WEC) control relies on
the accuracy of the future incoming wave prediction. However,
the inevitable prediction errors can degrade WEC performance
dramatically especially when a long prediction horizon is needed
by a WEC non-causal optimal controller. This paper proposes
a novel non-causal linear optimal control with adaptive sliding
mode observer (NLOC+ASMO) scheme, which can effectively
mitigate the control performance degradation caused by wave
prediction errors. This advantage is achieved by embedding the
following enabling techniques into the scheme: (i) an adaptive s-
liding mode observer (ASMO) to estimate current excitation force
in real-time with explicitly formulated boundary of estimation
error, (ii) an auto-regressive (AR) model to predict the incoming
excitation force with explicitly formulated boundary of prediction
error using a set of latest historical data of ASMO estimations
from (i), and (iii) a compensator to compensate for both the
estimation error and the prediction error of excitation force.
Moreover, the proposed NLOC+ASMO scheme does not cause
heavy computational load enabling its real-time implementation
on standard computational hardware, which is especially critical
for the control of WECs with complicated dynamics. The pro-
posed NLOC+ASMO framework is generic and can be applied
to a wide range of WECs, and in this paper we demonstrate the
efficacy by using a multi-float and multi-motion WEC called M4
as a case study, whose control problem is more challenging than
the widely studied point absorbers. Simulation results show the
effectiveness of the proposed control scheme in a wide range of
sea states, and it is also found that the controller is not sensitive
to change of ASMO parameters.

Index Terms—Wave energy converter (WEC), Excitation force
estimation and prediction, sliding mode compensator, non-causal
linear optimal control (NLOC), M4

I. INTRODUCTION

Sea wave energy is an enormous source of offshore renew-
able energy with high energy density [1]. Many types of wave
energy converters (WECs) have been designed to harness the
wave power [2], such as point absorbers, oscillating water
columns, overtopping devices and attenuators, etc.

Y. Zhang is with School of Mechanical and Construction Engineering,
Northumbria University, NE1 8ST, U.K. e-mail: yaozhanghit@outlook.com.

G. Li is with School of Engineering and Materials Science, Queen Mary
University of London, E1 4NS, U.K. e-mail: g.li@qmul.ac.uk.

P. Stansby is with the Department of Mechanical, Aerospace and Civil
Engineering, University of Manchester, Manchester, M13 9PL, U.K. email:
p.k.stansby@manchester.ac.uk.

This work was supported in part by a research contract from Wave Energy
Scotland Control Systems programme, in part by EPSRC grant ’Launch
and Recovery in Enhanced Sea States’ (no. EP/P023002/1). This work was
completed when Y. Zhang was with School of Engineering and Materials
Science, Queen Mary University of London.

Many control strategies have been proposed to maximize
the energy output of WECs and maintain their safe operations
[3]. The energy maximization control for WECs has been
developed from causal control in the early stage [3], [4] to
non-causal control in recent studies, such as non-causal linear
optimal control (NLOC) [5], model predictive control (MPC)
[6]–[9], etc. Non-causal control is a control strategy such that
the future information contributes to the current control input.
In particular, the non-causal control for WECs is based on the
prediction of the incoming wave excitation force or the wave
elevation, and it has been recognized that real-time control of
WECs benefits from excitation force predictions [10], [11].

The wave prediction methods are mainly divided into two
categories: 1) deterministic prediction methods that are based
on the measurements at multiple nearby locations around
the WECs, such as the deterministic sea wave prediction
(DSWP) [12] and 2) statistical methods based on the analysis
of the past measurement data using statistical models, such as
the Auto-Regressive (AR) model [13]–[16]. In comparison,
deterministic methods provide a much longer and reliable
prediction horizon of wave profiles but at an increased cost
of measurement hardware installation and maintenance. No
matter which wave prediction technique is adopted by non-
causal WEC control, prediction error is unavoidable and this
error grows with the increase of the prediction horizon. More-
over, for some optimal non-causal WEC control strategies, e.g.
NLOC and MPC, we normally need a long prediction horizon
to approximate the optimal control performance within the
computational burden limit. Thus for the applications of these
control strategies in many practical cases, the prediction error
can significantly degrade the WEC control performance. The
sensitivity of non-causal control of WECs to excitation force
prediction errors has been analyzed in [17], [18].

In this paper, we aim to develop a robust non-causal
linear optimal control framework for WEC control problem
to explicitly compensate for the prediction errors caused by
statistical wave prediction methods. To achieve non-causal
control using the statistical methods with satisfactory perfor-
mance relies on a combination of a wave force estimation
technique with sufficient accuracy and the following prediction
method based on a segment of latest historical data produced
by the wave estimation. To estimate the excitation force in real-
time, extended Kalman filter (EKF) [13], [19], unknown input
observer [20] and adaptive sliding mode observer (ASMO)
[21] have been proposed to cope with uncertainties with ac-
ceptable estimation error. Based on the historical estimations,
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AR and EKF have been applied to predict incoming excitation
forces [13]–[16].The proposed NLOC+ASMO has its roots
in the recent techniques developed in [5], [18], [21]. The
enhanced robustness to prediction error is achieved by fusing
the following enabling technologies within one framework:

1) an ASMO to estimate current excitation force in real-
time with explicitly formulated boundary of estimation
error,

2) an online-updated AR model to predict the incoming
excitation force using a set of latest historical estimation
data with explicitly formulated boundary of prediction
error,

3) a real-time sliding mode compensator to mitigate the
estimation and prediction error, and

4) the NLOC control strategy [5] to determine optimal con-
trol input based on improved accuracy of the estimated
and predicted wave excitation forces.

The paper extends the results in [22] and [21] with some
novel development. Different from the control method in [22]
and [21], the incoming excitation force is obtained by ASMO
and AR predictor, and the estimation and prediction error de-
grading control performance significantly are explicitly taken
into account by sliding mode compensator. The advantages
and novelties of this method are summarized as follows:
• Only the position and velocity of floats are essential for

the proposed strategy (accelerometers are available in
practice to give the velocity and position by integrations),
which significantly reduces the cost of hardware installa-
tions;

• Owing to the novel features of proposed compensator,
the prediction error caused by AR is explicitly handled,
which effectively avoids control performance degradation
and enables long-term predictions without error or with
reduced error to contribute to the non-causal LOC per-
formance;

• Since parameters of the proposed control scheme can
be determined off line, the proposed method achieves
real-time implementations with low computational load,
which is of great importance for M-WECs with high
number of freedoms and high model order.

To demonstrate the efficacy and effectiveness of the pro-
posed NLOC+ASMO scheme, we apply to a multi-float and
multi-motion WEC (M-WEC), although the scheme can be
more easily applied to single float WECs. In particular, an
attenuator type M-WEC, called M4, is chosen in this paper as
a case study to demonstrate the efficacy and effectiveness of
the proposed control scheme. Although M4 device has linear
hydrodynamic characteristics, controller design for a M-WEC
is much more challenging than for a single float WEC, due to
the dramatically increased computational burden. As shown
in Fig. 1, M4 is based on a reconfigurable design, whose
detailed design has been demonstrated in [23]–[26]. A 1:40
laboratory scale geometry of 3-float M4 is shown in Fig. 2.
From left to right, the bow float, middle float, stern float, beam
connecting bow and middle float, beam connecting middle and
stern float, and the power take off unit are indexed from 1 to 6,
i = 1, · · · , 6, respectively. For a body interacting with wave, it

Fig. 1. Tank experiment of M4 in Manchester, UK [23]

Fig. 2. The schematic diagram of laboratory scale 3-float 1-1-1 M4 [23]

has six degrees of freedom. They are surge, sway, heave, roll,
pitch and yaw, noted as mode from 1 to 6, respectively, with
sway, roll and yaw not relevant here. A 1-1-1 format M4 is
considered in this paper. (Details of M4 design are shown in
[23]–[26].) The larger number of floats are being investigated
hydrodynamically [23] will provide a future challenge.

The state-space modeling and the non-causal LOC design
of M4 have been proposed in [22], which verifies the effec-
tiveness of the non-causal LOC being applied in M-WECs.
Based on this work, a generic non-causal LOC integrated with
excitation force prediction has been proposed in [16], which
applies extended Kalman Filter (EKF) to estimate and predict
the wave excitation force, while the control degradation by the
prediction error is presented in [16]. Thus this paper can also
be seen as an extension of these works by improving these
existing WEC control methods.

Notations of this paper are listed in Table I. In the se-
quel, x(Q) denotes each component of vector x with Q =
x0, z0, θ1, θ2. 0l1×l2 denotes the zero matrix with the size
of l1 × l2, and Il1 is an identity with the size of l1. l1 and
l2 are positive integers. The rest of the paper is organized
as follows. Section II includes control-oriented modelof M4
and the existing controller. The proposed control scheme is
designed in Section III. Simulation results of the comparison
between the proposed controller and the existing method are
shown in Section IV. The conclusions are summarized in
Section V.

II. PRELIMINARY WITH INTRODUCTION

In this section, notations and the state-space (control-
oriented) model of M4 are introduced. The previous result of
a non-causal LOC for M4 [22] is briefly recalled, in which the
perfect future excitation force is assumed. The requirements
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TABLE I
NOTATIONS

Variables in M4 Model

q , M4 state vector,
q =

[
q(x0) q(z0) q(θ1) q(θ2)

]T
q(x0)/ q(z0) , surge/heave position of the hinge O
q(θ1)/ q(θ2) , pitch angle of i which is on the left of the

hinge O (i = 1, 2, 4)/on the right of the hinge
O (i = 3, 5, 6)

ms / m∞ , M4 mass/added mass, M := ms +m∞
K , M4 restoring force coefficient matrix

(Ar, Br, Cr, Dr) , state-space representation of radiation force
Fr , the convolution term of radiation force
r , the nr × 1 state vector corresponding to the

radiation force, no physical meaning
fu , PTO force

Actual Excitation Force/Moment

fe, w , actual wave excitation force,
w =

[
w(x0) w(z0) w(θ1) w(θ2)

]T
w(x0) / w(z0) , actual surge/heave excitation force
w(θ1) / w(θ2) , actual excitation moment of i which is on the

left of the hinge O (i = 1, 2, 4)/on the right
of the hinge O (i = 3, 5, 6)

wk,np , vector of actual future wave excitation force,

wk,np =
[
wT
k wT

k+1 · · · wT
k+np−1

]T
np , prediction horizon/steps

Estimated Excitation Force/Moment

f̂e, ŵ , real-time estimation of wave excitation force,
ŵ =

[
ŵ(x0) ŵ(z0) ŵ(θ1) ŵ(θ2)

]T
ŵ(Q) , real-time estimation of excitation force along

Q component, Q = x0, z0, θ1, θ2
f̃e, w̃ , estimation error of wave excitation force,

w̃ =
[
w̃(x0) w̃(z0) w̃(θ1) w̃(θ2)

]T
w̃(Q) , estimation error of excitation force along Q

component, Q = x0, z0, θ1, θ2

Predicted Excitation Force/Moment

ŵk+i , i-step-ahead prediction of wave excitation
force, i = 0, ..., np − 1,

ŵk+i =
[
ŵ

(x0)
k+i ŵ

(z0)
k+i ŵ

(θ1)
k+i ŵ

(θ2)
k+i

]T
ŵ

(Q)
k+i , i-step-ahead prediction of excitation force a-

long Q component, Q = x0, z0, θ1, θ2
ŵk,np , vector of predicted wave excitation force,

ŵk,np =
[
ŵT
k ŵT

k+1 · · · ŵT
k+np−1

]T
wk+i , i-step-ahead actual wave excitation force, i =

0, ..., np − 1,

wk+i =
[
w

(x0)
k+i w

(z0)
k+i w

(θ1)
k+i w

(θ2)
k+i

]T
w

(Q)
k+i , i-step-ahead actual excitation force along Q

component, Q = x0, z0, θ1, θ2
w̃k+i|k , i-step-ahead prediction error of wave excita-

tion force, i = 0, ..., np − 1,

w̃k+i|k =
[
w̃

(x0)
k+i w̃

(z0)
k+i w̃

(θ1)
k+i w̃

(θ2)
k+i

]T
w̃

(Q)
k+i|k , i-step-ahead prediction error along Q compo-

nent, Q = x0, z0, θ1, θ2
w̃k,np , vector of excitation force prediction error,

w̃k,np =
[
w̃T
k w̃T

k+1 · · · w̃T
k+np−1

]T

for the designs of observer, predictor and controller for energy
maximization of a WEC in real scenario are analyzed, which
demonstrate the main motivations of integrating ASMO, AR
model and SMC to the non-causal LOC.

A. State-space (control-oriented) model of M4

The dynamic model of M4 [22] is as follows
Mq̈ = −Kq − fr + fe + fu

ṙ = Arr +Br q̇

fr = Crr +Dr q̇

(1)

Define the states as x1 := q, x2 := r and x3 := q̇. Define the
control input (the PTO force) and the disturbance (excitation
force) as u := fu and w := fe respectively. Define the output
(the relative pitch velocity) as y = θ̇1 − θ̇2. Substituting the
system state x = [xT

1 xT
2 xT

3 ]T = [qT rT q̇T]T into (1), we
have the following state-space model{

ẋ = Acx+Bucu+Bwcw

y = Ccx
(2)

where

Ac =

 04×4 04×nr I4
04×4 Ar Br
−M−1K −M−1Cr −M−1Dr


Buc =

[
04×1 0nr×1 M−1[0 0 1 − 1]T

]T
Bwc =

[
04×4 0nr×4 M−1

]T
Cc =

[
01×6 1 −1 01×nr

]
A discrete-time model (2) can be obtained from the
continuous-time model by a zero-order hold{

xk+1 = Axk +Buuk +Bwwk
yk = Cxk

(3)

where (A,Bu, Bw, C) are the discrete-time state space ma-
trices of the corresponding continuous model with matrices
(Ac, Buc, Bwc, Cc).

B. Problem Introduction

For the WEC control, the main aim is to maximize the en-
ergy output by solving the following optimal control problem
[5], [22]:

min
u0,...,uN

ΣNk=0

{
ykuk +

1

2
xT
kQcxk +

1

2
Ru2

k

}
(4)

subject to the state-space model (3), where Qc and R are
positive definite.

For the first term in the cost function, since the power output
is Pk = −ykuk, to minimize ykuk is to maximize of power,
whose integration is the energy output. The second and third
terms are introduced to construct a convex optimization prob-
lem and add soft constraints.The second term is to penalize the
magnitude of the state vector xk to ensure safe operations. The
third term is to limit the maximal PTO torque by tuning the
weight R. As reported in [22], given the accurate information
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Fig. 3. Block diagram of the proposed control framework

of the incoming excitation force wk,np , the solution of the non-
causal optimal problem (4) is the non-causal linear optimal
control law

uLOC = Kxxk +Kdwk,np (5)

where np is the wave prediction horizon. Kx and Kd

are constant gain parameters to be pre-calculated off-
line [5] by Kx = −(R + BT

u Y Bu)−1(C + BT
u Y A),

Kd = −(R + BT
u Yk+1Bu)−1BT

uΨ and Y = Qc +
ATY A − (Ck + BT

u Y A)T(R + BT
u Y Bu)−1(C + BT

u Y A),
where Y is algebraic Ricatti equation solution and Ψ :=
[Y Bw,ΦY Bw, . . . ,Φ

np−1Y Bw] with Φ = (A+BuKx)T.

C. Requirements in Practical Application

The NLOC (5) provides the optimal solution of energy
maximization based on the accurate information of current and
future wave excitation force. However, in the real scenario, we
enhance the robustness of the NLOC, because wave excitation
force estimation and prediction inevitably introduces errors,
which degrade the WEC control performance. The require-
ments of controller and observer design can be summarized
as follows:
• The excitation force observer should explicitly formulate

the estimation error boundary which enables controller to
compensate in order to maintain control performance;

• The prediction method should account for the changes of
sea states to provide accurate excitation force predictions.
Furthermore, since the control policy applied in this paper
is a non-causal control, the prediction method should
ensure that the prediction error boundary can be estimated
so that it can be compensated for by the non-causal
controller;

• The controller should be robust against the inaccurate
estimations and predictions of the excitation force.

III. NON-CAUSAL LINEAR OPTIMAL CONTROL WITH
ADAPTIVE SLIDING MODE OBSERVER FOR ENERGY

MAXIMIZATION

In this section, the overall control scheme is firstly proposed.
An ASMO and improved AR model are briefly introduced

which are used for derivation of the estimation error boundary
and prediction error boundary, respectively. The proposed
NLOC+ASMO is then designed to optimize the WEC energy
output using inaccurate estimations and predictions.

A. Overall strategy

As shown in Fig. 3, the overall strategy of the proposed
scheme of WEC control are as follows:

• Since the excitation force cannot be measured easily, an
observer is proposed to estimate excitation force in real
time. The upper boundary of the prediction error is explic-
itly formulated which enables the proposed compensator
to compensate for estimation error.

• Considering that the future wave excitation force is
required to contribute to the current control input, the
AR method with time-varying coefficients is applied to
provide short-term prediction of incoming wave excita-
tion force.

• The prediction error boundary of the excitation force can
be obtained by a linear combination of the latest historical
prediction error boundaries;

• A compensator is incorporated into the control scheme to
explicitly cope with the wave force estimation error and
prediction error.

B. Excitation Force Observer Design

To meet the requirement of observer design analyzed in
Section II-C, an adaptive sliding mode observer (ASMO)
[21] is adopted to estimate wave excitation force in real-time
based on the model (1) and (2), and ensures a pre-defined
convergence time. The boundary of the estimation error is also
calculated.

Assumption 1. Each components of the wave excitation force
and the first time derivatives are bounded, i.e. |w(Q)| ≤ F (Q)

e

and |ẇ(Q)| ≤ Ω(Q) hold, where F (Q)
e and Ω(Q) are constants.

A sliding surface is chosen as s := q̇ − h, where h is
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designed as

Mh =

∫
(u+ ŵ + µ0s

α + µ1sgn(s)−Kq −Dr q̇ − Crr)dt
(6)

where ŵ = [ŵ(x0), ŵ(z0), ŵ(θ1), ŵ(θ2)]T is a vector of the
estimation, µ0 > 0 and α > 1 are constants and µ1 is designed
as µ1 = ‖ŵ‖+Fe + k1, where Fe = max{F (Q)

e } and k1 > 0
are constants.

The proposed ASMO is designed [21] as{
ŵ = λ+Mq̇

λ =
∫

(Kq +Dr q̇ + Crr − u− ŵ + (Ω̂ +Kµ)sgn(s))dt
(7)

where λ ∈ R4 is an observer internal variable and Kµ = µ2I4
is a constant matrix with µ2 > 0 a constant. The definition

of the function of sgn(∆) is sgn(∆) =

{
∆
‖∆‖ , ∆ 6= 0

0, ∆ = 0
, Ω̂ =

diag{Ω̂(x0), Ω̂(z0), Ω̂(θ1), Ω̂(θ2)} is the matrix of the boundary
estimation of the first derivative of the wave excitation force
with respect to time, whose derivative is designed as

˙̂
Ω(Q) = −k2Ω̂(Q) + 2|ŵ(Q)|+ 2F (Q)

e , Ω(Q)(t0) = 0 (8)

where k2 > 0 is a constant.

Lemma 1. [21]. The estimation error boundary is available
by ASMO when t ≥ T1 holds, and it can be explicitly
calculated by

|w̃(Q)(t)| ≤ F̃ (Q)
e (t) (9)

where

F̃ (Q)
e (t) =

k2 + 4k2(Ω(Q))2

8(1− 2Ω(Q)+2F
(Q)
e

(t−T1)min{2µ2,k2/
√

2} )min{2µ2, k2/
√

2}

and
T1 =

1

k1
λ

1
2
max(M) +

1

µ0(α− 1)
λ
α+1
2

max(M)

with λmax(M) > 0 as the largest eigenvalue of the matrix
M .

Remark 1. The period 0 ≤ t < T1 is a warming-up process
allowing the estimation error to be steered into a bound
determined by (9). The controller starts to work at t = T1.
T1 is fixed once parameters k1, µ0 and α are set.

Remark 2. (Parameter tuning guide of ASMO) The param-
eters k1, µ0 and α determine the length of warming-up
period. In particular, greater values of k1 and µ0 lead to a
smaller value of T1 representing a shorter warming-up period,
and α =

√
2λmax(M) + 1 leads to the fastest warming-up

process, which is obtained by taking the extreme value of the
partial derivative.

C. Wave Excitation Force Prediction

To meet the requirements of the wave excitation force
predictor as analyzed in Section II-C, an improved AR model
[21] is employed to 1) provide the prediction of the incoming
excitation force based on the past estimations and 2) explicitly
formulate the prediction error bounds.

One-step-ahead prediction of the excitation force along the
Q-component is

ŵ
(Q)
k+1|k =

p−1∑
i=0

(φiŵ
(Q)
k−i) (10)

where p is AR prediction model order, and φi are the AR
model coefficients with i = 0, 1, ..., p − 1, which are trained
online by the latest estimations in order to account for the
varying sea states. The l-step-ahead prediction of the excitation
force is calculated based on one-step-ahead prediction. The
error of one-step-ahead prediction w̃(Q)

k+1|k is

|w̃(Q)
k+1|k| =

p−1∑
j=0

(φjF̃
(Q)
ek+m−j

) (11)

where

F̃ (Q)
ek+m−j

=
k2 + 4k2(Ω(Q))2

8min{2µ2, k2/
√

2} − 16(Ω(Q)+F
(Q)
e )

(k+m−j)T−T1

is a constant with T as the sampling time. The l-step-ahead
prediction error is calculated by an iterative combination of
one-step-ahead prediction errors.

D. Non-causal Linear Optimal Control with Adaptive Sliding
Mode Observer

In this subsection, the NLOC is applied to maximize the
energy output by using the predicted excitation force (10) and
a compensation mechanism is embedded into the non-causal
LOC to compensate for the prediction error whose boundary
is estimated by (11).

The prediction error of the excitation force is defined as
w̃ := w− ŵ, where ŵ is the excitation force prediction that is
used by the non-causal LOC. The model (2) is then rewritten
in the following form

ẋ = Acx+Bucu+Bwcŵ +Bwcw̃ (12)

The first three terms on the right-hand side of (12) represent
all the available information which can be used by the non-
causal LOC for energy maximization, and the last term on the
right-hand side of (12) represents all the unknown information
which is to be handled by the compensator.

The nominal (disturbance-free) model of (12) is{
ż = Acz +Bucv +Bwcŵ

yz = Cz
(13)

where z and v are the nominal state and input. The nominal
discrete-time model is{

zk+1 = Azk +Buvk +Bwŵk

yzk = Czk
(14)

where the state matrices (A,Bu, Bw, C) are given in (3).
The proposed controller is

u = uLOC + uSMC (15)
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Ideally, when the perfect predictions are used by non-causal
LOC, i.e. u = uSMC+Kxx+Kdwk,np , we have the following
model

ẋ = Acx+Buc(uSMC +Kxx+Kdwk,np) +Bwcŵ+Bwcw̃
(16)

The disturbance-free model of (16) is

ż = Acz +Buc(Kxx+Kdŵk,np) +Bwcŵ (17)

Since the prediction error w̃k,np is not available, we prove
that the proposed control policy (15) enables the ideal model
(16) involving unavailable information to be approximated by
the nominal model (17) which only uses known but inaccurate
information.

The first term uLOC of (15) is based on the non-causal LOC
in [5], [22], which is designed as follows based on the nominal
model (14)

uLOC = Kxzk +Kdŵk,np (18)

The second term uSMC of (15) is the sliding mode con-
troller used to cope with the prediction error by using the
boundary of the prediction error (11), which is designed as

uSMC = −ζ sgn(sc) (19)

where ζ > 0 is a constant satisfying the condition of

ζ ≥ ‖GBwc‖
‖GBuc‖

max{|w̃(Q)
k+j|k|}+ 2np‖Kd‖max{|w̃(Q)

k+j|k|}
(20)

holds with k = 0, 1, .., np − 1 and the sliding variable is
proposed as

sc =G[x(t)− x(0)−
∫ t

t0

(Acx(τ) +BucuLOC +Bwcŵ(τ)

− npBuc‖Kd‖max{|w̃(Q)
k+j|k|}sgn(sc))dτ ]

(21)
which is a constant, and G is a vector with 8 + nr elements
such that GBuc is invertible.

Theorem 1. The prediction error is eliminated by the compen-
sator (19), and the dynamics of the ideal model (16) becomes
the dynamics of the nominal model (17).

Proof: Choose a Lyapunov function as Vsmc = 1
2s

2
c ,

whose first time derivative is

V̇smc =scṡc

≤− ‖sc‖(ζ‖GBuc‖ − (‖GBwc‖max{|w̃(Q)
k+j|k|}

+ 2np‖GBuc‖‖Kd‖max{|w̃(Q)
k+j|k|}))

(22)

Substituting (20) into (22), we have

{
V̇smc < 0, sc 6= 0

V̇smc = 0, sc = 0
holds for all sc. Hence, the sliding mode sc = ṡc = 0 is
maintained. Considering that sc = ṡc = 0 holds, we have the
following dynamics

ṡc = G(ẋ−Acx−BcuLOC −Bwcŵ) = 0 (23)

which yields

ẋ = Acx+BcuLOC +Bwcŵ (24)

By substituting the nominal input v = uLOC into the
nominal model (13), it can be found by comparison with (24)
that the actual state x in the sliding mode becomes the nominal
state z. Therefore, the dynamics of (13) and (24) becomes the
same.

Remark 3. In practical implementations, the sign function in
both ASMO and controller can be replaced by f(x) = x

‖x‖+dc
with dc > 0 as an arbitrary small constant to avoid chattering
phenomenon.

To avoid overlarge PTO torque, the gain of compensator
is suggested to be selected as ζ = ‖GBwc‖

‖GBuc‖max{|w̃(Q)
k+j|k|} +

2np‖Kd‖max{|w̃(Q)
k+j|k|}.

IV. SIMULATION RESULTS

Wave profiles are of Joint North Sea Wave Project (JON-
SWAP) form. The added mass m∞ and the incoming excita-
tion force are generated by a hydrodynamic software WAMIT
[27]. The weighting matrices of the non-causal LOC are
chosen as

Qc =

[
0.1I8 08×8

0128×128 10−3I128

]
, r = 0.08 (25)

, as suggested in [22]. The sampling time is T = 0.009 s. The
following 4 sets of simulation are done.
• Set 1: Performance degradation by insufficiently long

prediction horizons and prediction errors
• Set 2: Comparison between the proposed control method

and “non-causal LOC + Kalman Filter + AR” strategy
proposed in [16]

• Set 3: Control performance with various sea-states
• Set 4: Design of prediction horizon np and control

performance with different choices of ASMO parameters

A. Simulation Set 1: Performance degradation by insufficiently
long prediction horizons and prediction errors

In this subsection, two factors degrading the control per-
formance of non-causal LOC are investigated respectively.
Firstly, perfect prediction of wave forces is assumed to
demonstrate the performance degradation influenced by the
length of prediction horizon; secondly, with a suitably chosen
prediction horizon, several cases considering prediction errors
are simulated to show the influences on control performance
by the prediction error. We choose the values of significant
wave height, the peakedness factor and the peak period as
Hs = 0.04 m, γ = 1 and Tp = 1.8 s as suggested in [16],
[22]. Since a 1:40 scaled model of M4 is used in simulation,
the corresponding actual wave height is scaled to 1.6 m and
the corresponding actual peak period is scaled to 11.4 s. A
wide range of sea states are tested in Simulation Sets 2 & 3.

1) Performance degradation by prediction horizon length:
The energy output of LOC with different wave prediction
horizon lengths is shown in Fig. 4 to find the best choice of
wave prediction horizon. The control performance degradation
of non-causal LOC by insufficiently long prediction horizons
is summarized in Table II.
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TABLE II
ENERGY LOSS BY INSUFFICIENTLY LONG PREDICTION HORIZONS

Prediction horizon (s) Energy output (J) Energy loss (%)
0× Tp 12.6577 44.73%
2× Tp 20.2809 11.45%
4× Tp 21.7036 5.24%
5× Tp 22.9036 0.00%

TABLE III
CONTROL PERFORMANCE DEGRADATION BY PREDICTION ERRORS

Prediction error (%) λ Energy loss (J) Energy loss (%)
5% λ = 1.001 0.3613 2.31%
25% λ = 1.01 1.0012 6.37%
35% λ = 1.02 2.3789 15.14%

no prediction - 4.6327 29.48%
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Fig. 4. Energy output after 100 s of LOC

It can be found from Fig. 4 that a suitable choice of the
prediction horizon is np = 5 × Tp, which achieves a good
tradeoff between the prediction length and the WEC control
performance. Table II quantifies the energy loss by different
prediction horizon lengths.

2) Performance degradation by prediction errors: In this
subsection, the prediction horizon is set to be 5 × Tp, which
represents the best performance of the non-causal LOC. The
prediction error of the wave excitation force is modelled as
w̃k = Lw̃k−1 + ξk, k = 1, ..., 1000, with L > 1. The filter
is unstable matching prediction error in real scenario where it
increases with the evolution of the prediction time. We choose
ξk ∼ N (0, 0.2) and w̃0 ∼ N (0, 0.5) as Gaussian white noises.
The values of λ are chosen as λ = 1.001, λ = 1.01 and λ =
1.02, which are equivalent to 5%, 25% and 35% prediction
errors, respectively. The energy output of non-causal LOC by
different amplitudes of prediction errors is shown in Table III.
It can be found in Table III that the prediction error degrades
the control performance and is not negligible.

B. Simulation Set 2: Comparison between the proposed con-
trol method and “non-causal LOC + Kalman Filter + AR”
strategy

To demonstrate the control performance of “non-causal
LOC + Kalman Filter + AR” strategy proposed in [16], a
wide range of simulations were run to obtain the capture
width radio (CWR) of M4 with wave peak periods ranging
from 0.7s to 1.8s with 0.1s interval, as shown in Fig. 5.
The CWR is essentially non-dimensional power equal to the
average power absorbed divided by wave power (incident

0.6 0.8 1 1.2 1.4 1.6 1.8

Peak period (s)
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Non-causal LOC with 2Tp perfect prediction
Non-causal LOC with 2Tp AR prediction
Non-causal LOC with 5Tp perfect prediction
Non-causal LOC with 5Tp AR prediction

Fig. 5. CWR of “non-causal LOC + Kalman Filter + AR” strategy with
wave excitation force prediction horizon as 2× Tp and 5× Tp (Hs = 0.04
m) [16]

power per metre crest) times wavelength of energy period
(period corresponding to frequency of spectrum centroid) [23],
[24].

As shown in Fig. 4, the best control performance of non-
causal LOC is with a 5 × Tp prediction horizon, while it is
found in Fig. 5 that by using “non-causal LOC + Kalman +
AR” strategy proposed in [16], the longest prediction ensuring
an acceptable control performance is 2×Tp. This is caused by
two factors: 1) for the statistical method AR, prediction error
of the excitation force grows as the prediction time grows; 2)
wave force estimation errors by KF can affect the prediction
accuracy, which in turn degrade control performance.

It can be found in [16] and [21] that the predictions of first
2 wave periods by both of strategies are accurate with 10.6%
and 8.3% prediction errors respectively, while the predictions
beyond 2 wave periods by both strategies are too large to be
acceptable. Therefore, to achieve the best control performance
by non-causal LOC which requires 5 × Tp wave excitation
force prediction, it is essential to design a SM compensator
to compensate for both estimation and prediction errors. The
control performance with and without SM compensation is
compared in the case of Hs = 0.04 m and Tp = 1.8 s. Since
the proposed “ASMO + improved AR” strategy enables us to
explicitly calculate the estimation boundary and the prediction
boundary, the gain parameter of SMC can be determined by
(20). The energy output and power generated are shown in Fig.
6, which demonstrates that the effectiveness of the SM com-
pensator on coping with the estimation and prediction error
of excitation force. The trajectories of PTO torque with and
without SM compensator are shown in Fig. 7, and Figs. 8 and 9
show the states of M4 device. It can be found that the proposed
SM compensation based non-causal LOC does not increase
the magnitude of PTO torque significantly, which means the
proposed method ensures energy maximization subject to both
estimation and prediction error without requiring extra PTO
torque limit. Furthermore, the surge, heave, left pitch angle,
right pitch angle and their velocities are barely affected, which
ensures safe operations by using the proposed method.

C. Simulation Set 3: Control performance with various sea-
states

To investigate the control performance in a wide range of
sea states, the CWRs by the proposed control method and
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Fig. 7. PTO torques with and without SM compensation
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Fig. 8. Trajectories of surge, heave, pitch left and pitch right with and without
SM compensation
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Fig. 9. Trajectories of surge velocity, heave velocity, left angular velocity
and right angular velocity with and without SM compensation
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Fig. 10. CWR of proposed control and control in [16] with prediction horizon
as 5× Tp

“non-causal LOC + Kalman Filter + AR” strategy [16] are
shown in Fig. 10, in which wave height is fixed as Hs = 0.04
m. It can be found that the proposed SMC compensates for
the estimation and prediction error effectively, by which the
energy output is barely affected. Compared with the “non-
causal LOC + Kalman Filter + AR” strategy [16], the proposed
controller increases the energy output significantly.

Furthermore, irregular sea states with different wave heights
(Hs = 0.03 m, Hs = 0.05 m and Hs = 0.07 m) are
tested. With 5Tp AR prediction, the control performance of
the method proposed in [16] without compensation and the
proposed method with compensation is demonstrated by CWR.
The CWRs of M4 with wave peak period ranging from 0.7s
to 1.8s with 0.1s interval are shown in Fig. 11. It can be found
that with the proposed compensator, a significant improvement
on M4 energy conversion is achieved. Hence, the proposed
method is verified to be effective in improving energy out-
put without use of any extra hardwares to obtain prediction
information. In addition, CWR should be unchanged by Hs

as non-dimensional with constant damping, but CWR is not
quite same with different Hs due to control and torque limit.

D. Simulation Set 4: Design of prediction horizon np and con-
trol performance with different choices of ASMO parameters

In this subsection, the choice of prediction horizon and
different choices of parameters are tested to show how they
influence the control performance.
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1) Design of prediction horizon np: Prediction horizon
length is a key design parameter, which influences both
control performance and computational load. It is discussed in
Simulation Set 1 that insufficient length of prediction horizon
np degrades the control performance. Thus np should be set
as a large value as possible. However, it is also obvious from
Fig. 12 that the gain Kd decreases to 0 as the prediction
horizon becomes longer. Since Kd is fixed and independent
of sea states, the incoming wave beyond 9 s (1000 step) does
not significantly contribute to energy improvements. Hence,
in practical applications of M4 device, whose sampling time
is set to be 0.009 s in this paper, the prediction horizon is
suggested to be np = 1000 for all sea states. For its application
to other WECs, the prediction horizon needs to be tuned to
find the best trade-off between the control performance and
computational load.

2) Choices and tunings of ASMO parameters: The pro-
posed method contains several ASMO parameters k1, µ0, α,
µ2 and k2 in the observer. As discussed in Remark 2, k1, µ0

and α determines the length of warming-up period and does
not affect the performance of the controller which starts to
work thereafter. Therefore, in this subsection, we test control
performance with different choices of parameters µ2 and k2.
One sea state (Hs = 0.04 m and TP = 1.8 s) is chosen as an
example. To seek extreme value of the prediction error bound,
wide ranges of k2 and µ2 are tested and the corresponding
error bounds are calculated by Lemma 1. The results are shown
in Fig. 13, in which the minimal error bound is found to be
1.0668 with k2 = 9.9 and µ2 = 3.5. Hence, as calculated by
(20), the minimal compensation gain is 1.038. The comparison

among control performance with different tuning of parameters
is shown in Fig. 14. It can be seen that although the best
choice k2 = 9.9 and µ2 = 3.5 leading to the smallest error
bound gives the best control performance, different parameter
tuning does not significantly affect the control performance.
Therefore, the proposed method is robust against the parameter
tuning.

Fig. 13. Error bounds to be used by the compensator
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Fig. 14. Control performance with different choice of parameters

V. CONCLUSIONS

A non-causal linear optimal control with adaptive sliding
mode observer strategy is proposed in this paper for energy
maximization of WECs. Its main benefit is its enhanced
robustness against the inevitable wave force prediction errors
introduced by wave prediction techniques. An ASMO was
applied to estimate the wave excitation force. With historical
estimations, an improved AR method is used to predict in-
coming wave excitation force. A compensator is designed to
deal with the prediction error. An attenuator type multi-float
multi-motion WEC called M4 is adopted as a case study and
the corresponding simulation results shows the effectiveness
of the proposed control strategy. The control performance is
not significantly affected by different parameters tuning of
ASMO. The proposed control scheme can be straightforwardly
extended to much wider WEC applications.
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