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ABSTRACT

We assess the performance of the Taruya, Nishimichi and Saito (TNS) model for the halo redshift
space power spectrum, focusing on utilising mildly non-linear scales to constrain the growth rate of
structure f . Using simulations with volume and number density typical of forthcoming Stage IV
galaxy surveys, we determine ranges of validity for the model at redshifts z = 0.5 and z = 1. We
proceed to perform a Bayesian MCMC analysis utilising the monopole, quadrupole, and hexadecapole
spectra, followed by an exploratory Fisher matrix analysis. As previously noted in other forecasts as
well as in real data analyses, we find that including the hexadecapole can significantly improve the
constraints. However, a restricted range of scales is required for the hexadecapole in order for the
growth parameter estimation to remain unbiased, limiting the improvement. We consistently quantify
these effects by employing the multipole expansion formalism in both our Fisher and MCMC forecasts.

1. INTRODUCTION

Forthcoming large-scale structure (LSS) surveys such as EUCLID1 (Laureijs et al. 2011), WFIRST2, and the Dark
Energy Spectroscopic Instrument (DESI)3, are promising to deliver exquisite cosmological measurements and test the
laws of gravity with unprecedented precision. The standard cosmological model, ΛCDM, has been shown to provide
an excellent fit to the data from a suite of CMB and LSS surveys (Ade et al. 2016; Anderson et al. 2013; Song et al.
2015; Beutler et al. 2017), assuming that General Relativity is the correct description of gravity across all scales.
A plethora of modified gravity models have been proposed, motivated by the possibility of explaining the late time
accelerated expansion of the Universe without the need of a cosmological constant (see Clifton et al. 2012, for a
comprehensive review). Future LSS measurements with Stage IV spectroscopic galaxy surveys are aiming to measure
the logarithmic growth rate of structure f , which strongly depends on cosmology and gravity (Guzzo et al. 2008).
This will be achieved by probing the redshift space distortion (RSD) signature with the galaxy power spectrum or
correlation function (Blake et al. 2011; Reid et al. 2012; Macaulay et al. 2013; Beutler et al. 2014; Gil-Maŕın et al.
2016a; Simpson et al. 2016).

The volume and number of galaxies probed by Stage IV surveys are very large, meaning that these surveys will
not be limited by statistical uncertainties, but rather by our ability to deal with systematic effects and theoretical
uncertainties. The latter include non-linear effects on the redshift space galaxy clustering. In the case of RSD mea-
surements, these have to be understood and modelled properly so that we can confidently utilise the data from mildly
non-linear scales to improve the constraints on f .

A way to attack this challenge is by using perturbation theory based models (Bernardeau et al. 2002; Kaiser 1987;
Scoccimarro 2004) that can be easily extended to include non-standard theories of gravity and dark energy (see Bose
and Koyama 2016, 2017; Bose et al. 2018a,b, for example). These can be combined with phenomenological ingredients
to model non-linear physics (Taruya et al. 2010; Senatore and Zaldarriaga 2014; de la Bella et al. 2017). Additionally,
a model for the galaxy bias is required to relate the dark matter and galaxy distributions .

An important factor, which is the main focus of this paper, is our ability to use these prescriptions to model non-linear
structure formation in an unbiased manner, and how this affects the growth of structure parameter estimation with
Stage IV surveys.

dida.markovic@port.ac.uk
benjamin.bose@unige.ch
a.pourtsidou@qmul.ac.uk
1 www.euclid-ec.org
2 https://wfirst.gsfc.nasa.gov/
3 www.desi.lbl.gov

ar
X

iv
:1

90
4.

11
44

8v
2 

 [
as

tr
o-

ph
.C

O
] 

 5
 N

ov
 2

01
9

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Queen Mary Research Online

https://core.ac.uk/display/328892617?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:dida.markovic@port.ac.uk
mailto:benjamin.bose@unige.ch
mailto:a.pourtsidou@qmul.ac.uk
www.euclid-ec.org
https://wfirst.gsfc.nasa.gov/
www.desi.lbl.gov


2

For this purpose, we consider the commonly used TNS model (Taruya et al. 2010). This model can reproduce
the broadband power spectrum including RSD from simulations at linear and mildly non-linear scales (Nishimichi and
Taruya 2011; Taruya et al. 2013; Ishikawa et al. 2014; Zheng and Song 2016; Gil-Maŕın et al. 2016a,b; Bose et al.
2017; Bose and Koyama 2016). The model is combined with the generalised bias prescription of McDonald and Roy
(2009). This is very similar to what has been used in part of the BOSS survey data analysis (Beutler et al. 2017).
We use a set of COLA simulations (Tassev et al. 2013; Howlett et al. 2015; Valogiannis and Bean 2017; Winther
et al. 2017) to determine a range of validity for the models at redshifts z = 0.5 and 1. We then perform a Bayesian
MCMC analysis with the goal of assessing the constraining power of Stage IV-like surveys while also confirming the
validity of the models across the range of scales we determined previously. Our focus is getting unbiased constraints
on f using information from the first three multipoles: the monopole (P0), quadrupole (P2), and hexadecapole (P4)
of the power spectrum. We then move on to an exploratory Fisher matrix forecast analysis using the full anisotropic
power spectrum, P (k, µ), in addition to the multipole expansion formalism. Our final estimates for the unbiased
measurements on f are determined consistently from the MCMC and Fisher multipole expansion forecasts analyses.

This paper is organised as follows: In section 2 we present the TNS-based biased tracer RSD model we assem-
ble, and the fits to simulations to determine the fiducial nuisance parameters and model range of validity. In
section 3 we perform a Bayesian MCMC analysis and present results, followed by a Fisher matrix analysis in sec-
tion 4. We then present a comparison between Fisher and MCMC using the multipole expansion formalism. In
section 5 we summarise our findings and conclude. Our Fisher matrix codes have been made publicly available at
https://github.com/Alkistis/GC-Fish-nonlinear.

2. TNS MODEL DESCRIPTION AND COMPARISON TO SIMULATIONS

2.1. Model description

The TNS model (Taruya et al. 2010) is based on standard Eulerian perturbation theory (SPT), which assumes that
the background space-time is homogeneous and isotropic, and that we work within the Newtonian regime at mildly
non-linear scales. These scales are far within the horizon but with δ, θ � 1, where δ and θ are the density and velocity
perturbations respectively. We also assume that gravity is described by general relativity. The explicit model is given
by

P S
(TNS)(k, µ) =DFoG(µ2k2σ2

v)
[
Pg,δδ(k, b1, b2, N) + 2µ2Pg,δθ(k, b1, b2) + µ4Pθθ(k)

+ b31A(k, µ) + b41B(k, µ) + b21C(k, µ)
]
, (1)

where f is the logarithmic growth rate, µ is the cosine of the angle between k and the line of sight and Pg are the
1-loop galaxy power spectra with the bias model of McDonald and Roy (2009) implicitly included 4, while the A, B
and C terms are non-linear perturbative corrections arising from the transformation to redshift space. The terms in
brackets are all constructed within SPT5, while the prefactor, DFoG, is phenomenological. Here we choose a Lorentzian
form (Gil-Marin et al. 2012; Percival and White 2009; Taruya et al. 2010; Peacock and Dodds 1994)

DLor
FoG(k2µ2σ2

v) =
1

1 + (k2µ2σ2
v)/2

, (2)

where σv is a redshift-dependent free parameter and represents the velocity dispersion of perturbations at cluster
scales. We again refer the reader to Beutler et al. (2017); Taruya et al. (2010) for the formulas for the perturbative
components of the model, along with the explicit dependency on the independent free bias parameters {b1, b2, N}. As
was done in Beutler et al. (2017), we ignore all other bias terms under the local Lagrangian assumption (Sheth et al.
2013; Chan et al. 2012; Saito et al. 2014; Baldauf et al. 2012).

We emphasise again that this model is very similar that used in the recent BOSS analysis (Beutler et al. 2017).
We choose it to make use of its thorough validation with simulations and mock catalogues. It is also worth noting that
it has shown robustness when considering alternative theories of gravity (for example Bose and Koyama 2016). How-
ever, we stress that there are key differences in our model. We choose a Lorentzian rather than a Gaussian damping
factor in Equation 2 6, we include the C(k, µ) term in Equation 1 and use SPT rather than RegPT (Taruya et al. 2012),
the latter being the biggest difference. SPT is known to suffer from divergences in the loop expansion at low redshifts
(see Carlson et al. 2009, for example), which the re-normalisation scheme of the RegPT approach addresses. Despite
this, SPT clearly does well for z ≥ 1 (Carlson et al. 2009; Osato et al. 2018). Our work finds that it also works well
for z = 0.5 given our derived goodness of fit to the data. This was also suggested in other works (Carlson et al. 2009;
Vlah et al. 2015; Bose and Koyama 2017). Further, in Bose et al. (2019a) the authors also show that SPT provides a
better fit to the redshift space halo multipoles at both z = 0.5 and z = 1 than when using the RegPT prescription.
Given these findings, it would be very interesting to repeat the BOSS data analysis with this variant of the TNS model.

4 We assume the local Lagrangian assumption and hence only first and second order bias are considered: b1 and b2 as well as a stochasticity
term N .

5 We refer the reader to Beutler et al. (2017) and Taruya et al. (2010) for explicit expressions for the galaxy spectra and correction terms.
6 This functional form was shown to give a significantly better fit to COLA multipoles in Bose et al. (2019a).

https://github.com/Alkistis/GC-Fish-nonlinear
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The full set of nuisance parameters in this model is therefore {σv, b1, b2, N}. In our MCMC and Fisher matrix
analyses we will vary these nuisance parameters along with the cosmological parameter of interest, the growth of
structure f . Our chosen set of parameters is restricted. Perhaps most importantly, we do not include variations of
the background “shape” parameters or the Alcock-Paczynski effect. There are two reasons for this. Firstly, our goal
is to demonstrate the trade-off between our constraining power on f and the bias on its estimation as a function of
the k-ranges used from the monopole, quadrupole, and hexadecapole spectra. We then wish to provide a consistent
comparison between Fisher matrix and MCMC forecasts. This can be achieved without an extensive set of parameters.
Secondly, varying extra parameters in the MCMC is computationally expensive, since all the model components have
to be calculated for every sample. Using a restricted set mitigates this problem. However, optimising our code for
speed is under development and we hope to present an analysis with all parameters of interest in future work. We
also note that while it is customary to present constraints on (fσ8)(z), and indeed the BOSS analysis uses this
parametrisation, other analyses have opted to present constraints on f alone, e.g. Blake et al. (2011). The reason for
this choice in a real data analysis is to test if the Planck best-fit model also predicts the observed growth of structure
by the galaxy survey.

Finally, we note that great progress has been made since the TNS model was first proposed, in particular in re-
lation to the relationship between bias and redshift space distortions (see Desjacques et al. (2018a) for a review).
Despite this, the TNS model with this minimal bias model remains one of the simplest and most economical phe-
nomenological models. For example, a fully consistent treatment of the halo power spectrum in redshift space discussed
requires many more free parameters (Desjacques et al. 2018b).

2.2. Comparison to Simulations

This section is dedicated to determining a rough range of validity for Equation 1 as well as fiducial values for the
nuisance parameters. To do this, we make use of a set of four Parallel COmoving Lagrangian Acceleration (PICOLA)
simulations (Howlett et al. 2015; Winther et al. 2017) of box length 1024 Mpc/h with 10243 dark matter particles and
a starting redshift zini = 49. These are all run within the same ΛCDM cosmology taken from WMAP9 (Hinshaw et al.
2013): Ωm = 0.281, Ωb = 0.046, h = 0.697, ns = 0.971 and σ8(z = 0) = 0.844.

Halo catalogues from these simulations are constructed using the Friends-of-Friends algorithm with a linking length
of 0.2-times the mean particle separation. The halo spectra are measured at redshifts of z = 0.5 and z = 1 and use all
halos above a mass of Mmin = 4 × 1012M�. This corresponds to a number density of nh = 1 × 10−3 h3/Mpc3 which
is similar to that estimated for Stage IV surveys galaxy number density around the redshifts considered (Amendola
et al. 2018).

As is commonly done in real data analyses, the power spectrum is decomposed into its multipoles. The PICOLA
multipoles are measured using the distant-observer approximation 7 and averaged over three line-of-sight directions.
We further average over the four PICOLA simulations. We note here that (PI)COLA is an approximate method and
should be validated against full N-body to ensure any comparisons to the measurements are meaningful. In Izard
et al. (2016) comparisons of COLA with full N-body measurements are made, and sufficient agreement is found in the
halo monopole and quadrupole. Furthermore, in Bose et al. (2019b), comparisons of COLA with full N-body are made
for the halo monopole, quadrupole and hexadecapole using the same COLA code and simulation specifications used
in this work. The authors find the COLA approach to be sufficiently accurate at the scales and redshifts considered here.

On the theoretical side, the multipoles are expressed as

P S
` (k) =

2`+ 1

2

∫ 1

−1
dµP S(k, µ)P`(µ), (3)

where P`(µ) denote the Legendre polynomials and P S(k, µ) is given by Equation 1. For our fitting analysis, we
utilise only the monopole (` = 0) and quadrupole (` = 2) since they include most of the clustering information. The
hexadecapole is later considered in section 3, where we perform an MCMC analysis on the PICOLA data.

Our maximum scale in k (the model’s range of validity) will be denoted as kmax. To determine this we follow
the following procedure:

1. We fix all cosmological parameters including the growth rate f and perform a least χ2 fit to the PICOLA data
by varying the model nuisance parameters8. In our χ2 analysis we use all data bins from kmin = 0.006h/Mpc to
kmax, with kmax being varied in the range 0.125h/Mpc ≤ kmax ≤ 0.3h/Mpc.

2. We take the 95% (2σ) confidence intervals (2∆χ2
red) on a χ2 distribution with Ndof degrees of freedom. Since

Ndof is large in our analysis the errors are approximately symmetric.

7 That is, we assume the observer is located at a distance much greater then the box size (r � 1024 Mpc/h), so we treat all the lines
of sight as parallel to the chosen Cartesian axes of the simulation box. Next, we use an appropriate velocity component (vx, vy or vz) to
disturb the position of a matter particle.

8 This is done through a brute force search of parameter space using the code MG-Copter (Bose and Koyama 2016).
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3. The criterion we use to calculate the final kmax for the rest of the analysis is the maximum k-value which gives[
χ2
red(kmax) − 2∆χ2

red(kmax)
]
≤ 1.

Roughly, this gives an indication of which range of scales the model is reliable at without biasing cosmological parameter
estimates at the required 2σ level9. The reduced χ2 statistic is given by

χ2
red(kmax) =

1

Ndof

kmax∑
k=kmin

∑
`,`′=0,2

[
P S
`,data(k)− P S

`,model(k)
]

Cov−1`,`′(k)
[
P S
`′,data(k)− P S

`′,model(k)
]
, (4)

where Cov`,`′ is the Gaussian covariance matrix between the different multipoles and kmin = 0.006h/Mpc. The
number of degrees of freedom Ndof is given by Ndof = 2×Nbins −Nparams, where Nbins is the number of k−bins used
in the summation and Nparams is the number of free parameters in the theoretical model. Here, Nparams = 4 for the
TNS model of Equation 1. Finally, the bin-width we use is ∆k = 0.006h/Mpc.

We use linear theory for the covariance matrix between the multipoles (see Appendix C of Taruya et al. 2010,
for details). This has been shown to reproduce N-body results up to k ≤ 0.3h/Mpc at z = 1. A linear covariance
also seems to work well at z = 0.5 up to k ≤ 0.2h/Mpc at z = 0.5, as shown very recently in Sugiyama et al. (2019).
We note that for analysing real data from Stage IV surveys validated analytical approximations will likely be used
alongside numerical covariances constructed using mocks. In the covariance matrix we assume a number density of
nh = 1× 10−3 h3/Mpc3 and a survey volume10 of Vs = 4 Gpc3/h3.

In Figure 1 we show the minimized χ2
red(kmax) for z = 0.5 and z = 1 for the TNS model, with the associated

2σ error bars. We determine kmax = 0.227h/Mpc and kmax = 0.276h/Mpc at z = 0.5 and z = 1 respectively. The
larger kmax at z = 1 is expected due to less non-linear structure formation at higher redshifts. We summarise the
best fit nuisance parameters and details of the fit in Table 1. We also plot the best fit TNS multipoles against the
PICOLA data in Figure 2. In the bottom panels of Figure 2 we show the residuals, that is the difference in theoretical
prediction to simulation measurement divided by the errors coming from the covariance matrix. Linear theory (Kaiser
1987) is also shown in green as a reference, where we use b1 as measured from the simulations and the fiducial value
of f .

TABLE 1
Number of bins, kmax[h/Mpc], and fiducial parameters found by a least χ2 fit to the PICOLA data.

z Nbins kmax b1 b2 N σv
0.5 36 0.227 1.506 0.091 −272 8.99

1 44 0.276 1.897 −0.318 504 8.09

3. MCMC ANALYSIS

In this section we perform Bayesian MCMC analyses at redshifts z = 0.5 and 1. We model our log-likelihood using
Equation 4, and vary the growth rate f and nuisance parameters of the TNS model outlined in section 2.

Our approach has two purposes. The first is to check how biased the f estimates can be at our derived kmax

chosen in Table 1. The second is to provide estimates for the f constraints using our version of the TNS model and
Stage IV-like specifications, and assess the improvement when adding the hexadecapole.

Our results at z = 0.5 are shown in the top panel of Figure 3. We first utilise the monopole and quadrupole
spectra (P0,P2) only at the range of scales determined in section 2. The Figure shows the TNS model’s recovery of f
at kmax = 0.227h/Mpc (red contours). We can see that the fiducial value is safely recovered with a 2σ criterion (same
as in section 2), and we have also checked that using a higher kmax the estimates become more biased.

We then add the hexadecapole, P4. We find that the estimates of the growth rate f is biased if we take the
hexadecapole up to the same kmax found in Table 1. That is because the TNS model is not flexible enough to
account for the hexadecapole at this range of scales. This has also been seen in the BOSS data analysis in Beutler
et al. (2017). However, motivated by Figure 2, we can consider the hexadecapole up to a more conservative value,
kmax,4 = 0.129h/Mpc, without biasing the f estimate (blue contours). This is again similar to what has been done in
the BOSS data analysis in Beutler et al. (2017). Our MCMC estimates for the fractional error on f(z = 0.5) with this
process are 3.6% using the monopole and quadrupole, and 3.2% when adding the hexadecapole with the restricted
range of scales. We will refer to this case as P0 + P2 + P4|restricted throughout the paper.

Our results at z = 1 are shown in the bottom panel of Figure 3. We follow a similar procedure as before, with

9 This procedure is validated in section 3.
10 This volume corresponds to a survey with sky area Asky ' 16, 000 (14, 000) deg2 and bin width ∆z = 0.2 (0.1) around z = 0.5 (1).
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theory assuming a survey volume of V = 4 Gpc3/h3 and a number density of nh = 1 × 10−3 h3/Mpc3. The best fitting TNS model is
shown as blue curves. The lower panels show the residuals with the data. The dashed lines indicate the 2σ region around the data. We
have also plotted linear theory marked in green for reference.

kmax = 0.276h/Mpc for the monopole and quadrupole, and kmax,4 = 0.05h/Mpc for the hexadecapole in order for the
f estimate to remain unbiased at our required 2σ level. We have checked that a higher kmax,4 biases estimates of f .
This kmax,4 is lower than the one used at z = 0.5 which may seem counterintuitive. We can explain this in terms of the
model’s flexibility. At kmax = 0.276h/Mpc the model is already being severely tested and therefore it cannot account
for P4 to any higher kmax,4 without becoming biased. Our MCMC estimates for the marginalised fractional error on
f(z = 1) with this process are 3% using the monopole and quadrupole, and 2.6% when adding the hexadecapole with
the restricted range of scales, P0 + P2 + P4|restricted.
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The thin grey dashed lines show the mean MCMC estimates for all parameters.

Before moving on to the Fisher matrix analysis, it is useful to perform another set of MCMC analyses to get a sense
of the tradeoff between bias and constraining power in f depending on kmax. At redshift z = 0.5, in addition to the
P0 + P2 + P4|restricted presented above we perform two additional MCMC analyses using the full P (k, µ) (equivalent
to P0 + P2 + P4 with equal kmax for monopole, quadrupole, and hexadecapole). We first set kmax = 0.227h/Mpc,
followed by a more conservative kmax = 0.129h/Mpc. The results are shown in Figure 4. For the full P (k, µ) with
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of kmax, as detailed in the main text. The thick black dashed-dot line indicates the fiducial value of f in the PICOLA simulations. The
plot demonstrates the tradeoff between bias and constraining power in f depending on the choice of kmax.

kmax = 0.227h/Mpc (red dashed line) we find f = 0.520± 0.013, a heavily biased estimate compared to the true value
of f = 0.733 in the PICOLA simulations (thick black dashed-dot line). For the more conservative full P (k, µ) with
kmax = 0.129h/Mpc (green dotted line) we see that the true f is within the 1σ contour, f = 0.698 ± 0.037. For the
P0 + P2 + P4|restricted case, the estimate is unbiased at the 2σ level, f = 0.782± 0.025.

4. FISHER MATRIX ANALYSIS

In this section we are going to perform an exploratory Fisher matrix analysis to forecast constraints on f using the
TNS model. Since we wish to compare the Fisher results with the ones from our MCMC analysis, we will use the
Fisher matrix formalism written in terms of multipoles. This allows us to choose different ranges for the monopole,
quadrupole, and hexadecapole spectra, to mimic the procedure followed in our MCMC analysis in the previous section.
We will also perform a comparison between this method with the most commonly used full anisotropic power spectrum
method. This allows us to quickly assess how the requirement for unbiased f estimates limits the improvement with re-
spect to the case where the hexadecapole is added assuming the same kmax as in the monopole and quadrupole analysis.

Fisher matrix formalism using multipole expansion:

Here we summarise the multipole expansion formalism for Fisher forecasts. We refer the reader to Taruya et al.
(2011) for a comprehensive description. The authors of Taruya et al. (2011) use the TNS model equiped with a linear
deterministic bias, noting that this assumption is idealistic and a more accurate prescription is essential for realistic
forecasts. They then perform a Fisher matrix analysis to investigate the relative contributions of the different multi-
poles (P0, P2 and P4) if taken at the same kmax, and compare with the full P (k, µ) formalism. Hence, an important
distinction between the forecasts performed in this work and that of Taruya et al. (2011) is (i) our implementation of
a non-linear bias prescription that corresponds to a more accurate theoretical template that could readily be applied
to the data (ii) the use of different kmax for the different multipoles to ensure unbiased forecasts and (iii) an MCMC
analysis alongside the Fisher matrix analysis to consolidate our findings.

In terms of multipoles, the Fisher matrix for a set of parameters {p} is given by (Fisher 1935; Tegmark 1997;
Seo and Eisenstein 2007; Taruya et al. 2011)

Fij =
Vs

4π2

∑
`,`′

∫ kmax

kmin

dkk2
∂P S

` (k)

∂pi

[
C̃ov

``′

(k)

]−1
∂P S

` (k)

∂pj
, (5)

with C̃ov
``′

being the reduced covariance matrix:

C̃ov
``′

(k) =
(2`+ 1) (2`′ + 1)

2
×
∫ 1

−1
dµPS

` (µ)PS
`′(µ)

[
P (k, µ) +

1

n

]2
. (6)
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Fig. 5.— Fisher matrix forecasts for the TNS model of Equation 1 at z = 0.5 and 1. The full P (k, µ) case is equivalent to taking P0,
P2 and P4 to the same kmax. We also show P0 + P2 only, as well as the P0 + P2 + P4|restricted case. Note that we have used the MCMC
means as the fiducial Fisher matrix parameter values, to allow for a direct comparison with the MCMC.

Note that in our analysis, we promote kmax → kmax,` in Equation 5, in order to be able to study the P0+P2+P4|restricted
case. Also, since we want to mimic our assumptions in the MCMC analysis, we use linear covariance, which means
that P (k, µ) in the brackets of Equation 6 is given by the linear formula (Kaiser 1987).

Fisher matrix formalism using the full (2D) anisotropic power spectrum:

Considering the full power spectrum signal in redshift space, the Fisher matrix becomes (Tegmark 1997; Seo and
Eisenstein 2007)

F
(2D)
ij =

Vs
4π2

∫ 1

−1
dµ

∫ kmax

kmin

dkk2
∂P (k, µ)S

∂pi

{
P (k, µ) +

1

n

}−2
∂P (k, µ)S

∂pj
. (7)

Using the Fisher matrix formalism, the forecasted errors on parameter pi, marginalised over all other parameters, are
given by the square root of the diagonal of the inverse of the Fisher matrix as

∆pi =
√

(F−1)ii . (8)

We are now ready to present our Fisher matrix analysis results. In Figure 5 we compare the full P (k, µ) Fisher
matrix results11 with the results using only P0 and P2 up to the kmax determined in Table 1, and the ones found
when adding the hexadecapole with the restricted range of scales in order for the f estimates to remain unbiased
(P0 + P2 + P4|restricted).

In both redshifts, z = 0.5 and z = 1, it is clear that the full P (k, µ) treatment gives much better constraints on
f . More specifically, using the full P (k, µ) formalism we find a 2.4% constraint on f compared to 3.8% in the
P0 + P2 + P4|restricted case at z = 0.5. At z = 1, we find 1.4% compared to 2.9% in the P0 + P2 + P4|restricted case, a
factor of ∼ 2 difference.

4.1. Comparison between Fisher matrix and MCMC analysis

We will now present the comparison between Fisher matrix and MCMC results, in the unbiased, P0+P2+P4|restricted
case. For this purpose we will focus on comparing the (f, σv) contours, since σv is the most correlated nuisance pa-
rameter with the cosmological parameter of interest f . We include the full range of comparison plots in Appendix A.

The results are shown in Figure 6. At z = 0.5, we find remarkable agreement between Fisher and MCMC, demonstrat-
ing that the multipole expansion formalism method is both reliable and robust. At z = 1, we have plotted two Fisher
ellipses: the dotted one, denoted by Fisher|deg, corresponds to the Fisher matrix results presented in Figure 5. We see

11 We have checked that this is equivalent to using the multipole expansion formalism taking P0, P2, and P4 up to the same kmax
(Taruya et al. 2011). This is expected since higher order multipoles carry little information (Hand et al. 2017).
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Fig. 6.— Fisher and MCMC comparison for the P0 +P2 +P4|restricted case. We also show the full P (k, µ) Fisher ellipses, but note these
correspond to biased f estimates (see Figure 4). As described in the main text, the Fisher|deg contour (dotted line) at z = 1 corresponds
to the Fisher matrix shown in the bottom panel of Figure 5, with a near perfect degeneracy between the (b2, N) nuisance parameters. The
Fisher contour (solid line) is the result after imposing a conservative prior on N that breaks the degeneracy just enough to mitigate the
instability it induces. We emphasise that in both cases the final marginalised f constraints remain stable and in very good agreement with
the MCMC.

that the area of the (f, σv) ellipse is larger than the MCMC one. Inspecting Figure 5 at z = 1, we see that there is
a near-perfect degeneracy between the (b2, N) parameters12. We can quantify this using the correlation coefficient r
given by

r(pi, pj) =
(F−1)ij√

(F−1)ii(F−1)jj
. (9)

This characterises parameter degeneracies: r = 0 means pi and pj are uncorrelated, while r = ±1 means they are
completely (anti)correlated. In the case we are concerned with at z = 1, we find r(b2, N) = −0.999. This signals a
possible instability in the Fisher matrix that might be responsible for the disagreement with the MCMC. To investigate
this, we impose a conservative ∼ 50% prior on the N parameter and rerun the Fisher matrix analysis. This breaks
the degeneracy just enough to mitigate the instability, and gives the excellent agreement shown with the solid black
line. However, we emphasise that despite this instability, the marginalised constraint on f is in both cases (with and
without the prior correction) in very good agreement with the MCMC. This is because it is the (f, σv) degeneracy that
affects mostly the final, marginalised error on f . The careful reader will notice that there are some differences between
the Fisher and MCMC results, especially regarding the improvement when including the hexadecapole at z = 0.5.
This seems to give only marginal gains in the constraining power when considering the Fisher matrix, disagreeing
with the improvement shown by the MCMC forecast. Given that the MCMC contours are not perfect Gaussian
ellipses we would not expect perfect agreement with the Fisher ellipses. The disagreement is worse at z = 0.5 and the
MCMC contours there also look less “Gaussian” than the ones at z = 1, so this is not very surprising. We note that
similar subtleties have been seen before in Fisher and MCMC comparison studies, and we refer the interested reader
to Wolz et al. (2012); Hawken et al. (2012). The final, marginalised f constraints from all methods we have used are
summarised in Table 2.

5. SUMMARY AND CONCLUSIONS

In this paper we have assessed the performance of the commonly used TNS model in the context of Stage IV galaxy
surveys, considering the multipoles of the redshift space halo power spectrum as our observable. We considered two
redshifts, z = 0.5 and z = 1, and made use of PICOLA simulations to perform maximum likelihood, MCMC, and
Fisher matrix analyses. Here we summarise our main results and conclude.

We first determined the TNS model’s ranges of validity using the monopole and quadrupole power spectra, which
contain most of the cosmological information. We note that while this approach is appropriate for the purposes and
limitations of this work, in an actual data analysis the bias on f needs to be evaluated directly as a function of kmax.
In Bose et al. (2019b), this point is investigated thoroughly by running a large number of MCMC analyses. In the
MCMC analysis that followed, we varied the model’s four nuisance parameters and the logarithmic growth rate, f .

12 A contributing factor to this could be the loop integral involving b22, that asymptotes to a constant at low k (Desjacques et al. 2018a).
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TABLE 2
Marginalised percent errors (at 1σ) on f from the MCMC and Fisher analyses at z = 0.5 and z = 1. We utilise the

monopole and quadrupole up to the kmax given in Table 1, and the hexadecapole up to a conservative (restricted) kmax,4,
as detailed in the main text. For comparison we show the results for the full P (k, µ) Fisher matrix case, and warn that

this falsely small error corresponds to biased f estimates.

Analysis z = 0.5 z = 1

MCMC: P0 + P2 3.6% 3.0%

Fisher: P0 + P2 3.9% 3.1%

MCMC: P0 + P2 + P4|restricted 3.2% 2.6%

Fisher: P0 + P2 + P4|restricted 3.8% 2.9%

Fisher: Full P (k, µ), biased 2.4% 1.4%

The analysis using the kmax from Table 1 shows a significant degeneracy between f and σv that has also been found
previously (Zheng et al. 2017; Bose et al. 2017). The improvement on the TNS constraints at z = 1 is mainly due to
the much higher kmax at z = 1 compared to that at z = 0.5.

To investigate the possible improvement by adding information from the hexadecapole, we performed two distinct
MCMC analyses at z = 0.5 and 1. One excludes the hexadecapole using the range of validity found in section 2,
and one includes it. It has been shown that adding the hexadecapole up to the same kmax as the monopole and
quadrupole biases the estimation of f (see also Figure 4). We followed what was done in the BOSS analysis in Beutler
et al. (2017), and restricted its range to a maximum kmax,4 = 0.129h/Mpc for z = 0.5 and kmax,4 = 0.05h/Mpc
for z = 1, so that the estimation of f remains unbiased at the required 2σ level. Our results are summarised in Table 2.

The addition of the hexadecapole with a restricted kmax improves the f constraints, but at a much lower level
than using the full P (k, µ) method, which is equivalent to taking P0, P2 and P4 up to the same kmax and leads to
biased estimates of f .

Finally, we performed a comprehensive Fisher matrix analysis to quickly explore the parameter space and test
whether we can reproduce our MCMC analysis results. Using the multipole expansion formalism for the Fisher matrix
we reached very good agreement with the MCMC, as shown in Table 2. We also compared the P0 + P2 + P4|restricted
case with the full P (k, µ) case, showing that the former gives much more conservative error estimates (as well as
avoiding bias in the estimate of f itself).

It is useful to try and assess how our forecasted constraints on the growth rate, given the kmax cuts, compare to
current requirements for Stage IV surveys. We will refer to the Euclid-like forecasts for the growth rate f presented
in Amendola et al. (2018) (see Table 4). At z = 1 with the same survey volume as we use, they find a fractional error
on f of 1.4% in their pessimistic scenario, which has assumed a number density 16% lower than ours. Their adopted
model is linear Kaiser multiplied by the BAO smearing function proposed in (Eisenstein et al. 2007). They use the
full P (k, µ) with a kmax ∼ 0.2 h/Mpc. Their set of redshift dependent parameters includes the growth rate f(z), the
linear bias b(z), the residual shot noise Ps, the angular diameter distance DA(z), and the Hubble rate H(z), but the
latter two are not marginalised over. Instead, they are projected onto the set of parameters they depend on, which
helps with the information on the background (shape) parameters they also vary. Since the models, parameter sets,
forecasting method, and kmax choices are different, it is very difficult to compare directly, but note that we find the
same fractional error of 1.4% using the full P (k, µ), and a factor of 2 larger error using the hexadecapole cut needed
to keep f(z) unbiased at the 2σ level.

In summary, our study reinforces the need for accurate modelling of the non-linear redshift space power spectrum
in light of upcoming Stage IV galaxy surveys. It also shows how reliable forecasts can be obtained if the forecast
procedure closely follows what is being done in real data analyses. To our knowledge, a forecasting galaxy clustering
analysis for Stage-IV surveys using an accurate theoretical template that can be readily applied to data, and the
multipole expansion formalism with different, realistic kmax limits informed by simulations, has not been performed
in the literature. In addition, we stress that even if a fit to simulations is not available, one should still perform
conservative forecasts using the multipole expansion formalism with different ranges for the different multipoles.

That being said, the model considered here is partly phenomenological, and ideally one would want a fully per-
turbative model that consistently models bias and redshift space distortions, and under which one can obtain a handle
on the modelling uncertainties in very general cosmological settings. Several studies have been performed in this
direction recently (see, for example, Desjacques et al. 2018b,a; Ivanov and Sibiryakov 2018; Ding et al. 2018; Hand
et al. 2017). In the next paper of this series (Bose et al. 2019a) we also push in this direction and perform an extensive
investigation using other proposed models like the Effective Theory of Large Scale Structure (see, for example, Perko
et al. 2016; de la Bella et al. 2018; Lewandowski et al. 2018), and compare their performance to the TNS model.
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APPENDIX

FISHER AND MCMC COMPARISON FOR THE P0 + P2 + P4|RESTRICTED CASE
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shape in some of the MCMC contours, the final marginalised constraints on the cosmological parameter of interest f are in agreement.
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