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Optimal percolation in correlated multilayer networks with overlap
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Multilayer networks have been found to be prone to abrupt cascading failures under random and targeted
attacks, but most of the targeting algorithms proposed so far have been mainly tested on uncorrelated systems.
Here we show that the size of the critical percolation set of a multilayer network is substantially affected by
the presence of interlayer degree correlations and edge overlap. We provide extensive numerical evidence which
confirms that the state-of-the-art optimal percolation strategies consistently fail to identify minimal percolation
sets in synthetic and real-world correlated multilayer networks, thus overestimating their robustness. We propose
two targeting algorithms, based on the local estimation of path disruptions away from a given node, and a family
of Pareto-efficient strategies that take into account both intralayer and interlayer heuristics and can be easily
extended to multiplex networks with an arbitrary number of layers. We show that these strategies consistently
outperform existing attacking algorithms, on both synthetic and real-world multiplex networks, and provide some
interesting insights into the interplay of correlations and overlap in determining the hyperfragility of real-world
multilayer networks. Overall, the results presented in the paper suggest that we are still far from having fully
identified the salient ingredients determining the robustness of multiplex networks to targeted attacks.
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I. INTRODUCTION

Network percolation theory has been shaken recently by
the discovery that interdependencies and feedback loops be-
tween interacting networks change the character of the perco-
lation transition and make it explosive [1–3]. These results
have acquired even more relevance in the past few years,
due to the increasing experimental evidence about real-world
systems whose structures are naturally represented as multi-
plex [4,5] or multilayer networks [6]. Random percolation in
multiplex networks is nowadays quite well understood [7–11]
and the wide spectrum of possible percolation transitions,
from abrupt to continuous ones [12–14], has been successfully
related to some of the structural properties of these networks,
such as the presence of interlayer degree correlations and edge
overlap [10,15–18]. However, quite often targeted attacks can
potentially drive a system to collapse by knocking down a
much smaller fraction of nodes than required by random at-
tacks [19–22]. Hence, optimal percolation, which is the prob-
lem of finding the minimal fraction of nodes whose removal
would irreversibly fragment the system, has been extensively
studied both in single-layer networks [23] and more recently
in multilayer networks as well [24]. One of the reasons behind
this renovated interest for optimal percolation is the fact that
targeted attacks also play a central role in optimal strategies
for influence maximization in opinion dynamics [25,26] and
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for effective immunization in spreading processes [27–29].
The fact that most of the single-layer optimal attack strategies
[29–32] cannot be easily extended to the multilayer case has
resulted in an interesting and quite active line of research
[24,33]. Although correlations and overlap are indeed a salient
aspect of all real-world multiplex networks [6,15,16,34], the
few strategies for optimal multiplex percolation proposed so
far have been mainly tested on synthetic uncorrelated multi-
layer networks, thus neglecting interlayer degree correlations
and edge overlap.

In this work we fill this gap by studying the problem of
optimal percolation in multilayer networks with nontrivial in-
terlayer degree correlations and non-negligible edge overlap.
We find that the robustness of systems under targeted attacks
is deeply affected by the presence of both interlayer degree
correlations and edge overlap. In particular, all the current al-
gorithms for optimal percolation systematically overestimate
the size q of the minimal set of nodes to knock down in order
to destroy the mutually connected giant component. Here we
introduce two classes of algorithms based, respectively, on
a generalization to duplex networks of the collective influ-
ence algorithm [30] and on the concept of Pareto efficiency
[35,36], which allows us to combine layer-based and gen-
uinely multilayer node properties. We show through extensive
numerical simulations that all these algorithms provide con-
sistently smaller critical sets in synthetic correlated multilayer
networks and outperform other state-of-the-art algorithms in
real-world systems.

II. TARGETED ATTACK STRATEGIES

Let us consider a multiplex network M with N nodes
and two layers. The undirected and unweighted edges on
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each layer are encoded in the adjacency matrices A[α]
i j , α =

1, 2, whose generic element A[α]
i j = 1 if and only if nodes i

and j are the end points of an edge at layer α and is zero
otherwise. Two nodes of M belong to the same mutually
connected component (MCC) if there exists at least one path
on each layer that connects them and traverses only nodes
belonging to the same MCC. The parameter of interest in
percolation analysis is the relative size of the largest mutually
connected component (LMCC), which is the largest maximal
subgraph consisting of mutually connected nodes [1,6]. Note
that the LMCC is a generalization of the giant connected
component for single-layer graphs. The optimal percolation
problem consists in finding the smallest set of nodes which,
if removed, would reduce the size of the LMCC to O(N1/2).
We call this set a critical set or an attack set and we denote its
relative size by q.

Optimal percolation is naturally a many-body problem.
Indeed, interactions among nodes at all distances play an
important role in the determination of the damage caused by
the removal of a subset of nodes, which makes the problem
NP-hard [25]. Although there are currently no studies about
the computational complexity of optimal multiplex percola-
tion, it is reasonable to assume that this problem is not easier
than its classical single-layer counterpart, especially because
the computation of the LMCC is based on the existence of
paths connecting each pair of nodes on two graphs at the
same time, hence the necessity to use heuristic algorithms
to find approximate solutions. In most of the cases, heuristic
algorithms proceed by assigning a score to each node, based
on some structural indicator [23,37,38], and then iteratively
removing nodes in decreasing order of their score. As con-
firmed by recent studies [24,33], single-layer attack strategies
cannot be easily generalized to the case of multiplex networks,
mainly because it is not immediate to combine node scores on
different layers to obtain a meaningful ranking. The authors
of Refs. [24,33] proposed several ways of integrating scores
based on popular single-layer strategies, namely, (i) rankings
based on the sum or product of the degrees in the two layers
[high-degree adaptive (HDA)] [24], (ii) a generalization of
the collective influence propagation algorithm [39], and (iii) a
generalization of the so-called CoreHD algorithm (CoreHD)
[31].

To give an idea of how hard it is to directly adapt a
single-layer percolation strategy to a multilayer setup, let us
consider the CoreHD algorithm, which is one of the most
effective strategies to destroy the giant connected component
of a single-layer graph. The algorithm proceeds by itera-
tively removing the nodes with the highest degrees from
the 2-core of the graph (i.e., by effectively decycling the
network). However, this idea cannot be directly applied to
duplex networks, since the 2-core of a multiplex graph is not
uniquely defined. As a consequence, there are several existing
multiplex extensions of the CoreHD strategy, but none of
them provides satisfactory results on duplex networks [33].
By contrast, the recently proposed effective multiplex degree
(EMD) strategy [33] consistently improves over all the other
existing methods. Indeed, the heuristic used by EMD takes
into account multilayer adjacency at different distances and
effectively exploits the degree heterogeneity between different
layers.

A. Duplex collective influence

An efficient heuristic for optimal single-layer percolation
was introduced in Ref. [30] by Morone and Makse. The
authors mapped optimal percolation onto the minimization
of energy of a many-body system, in which the interactions
among units are expressed in terms of the nonbacktracking
matrix of the graph, and proposed an efficient and scalable
algorithm, called collective influence (CI), to identify the
minimal set of influential nodes to remove. The CI algorithm
iteratively removes nodes according to the highest values of
CI scores, defined as

CI�(i) = (ki − 1)
∑

j∈∂B(i,�)

(k j − 1), (1)

where ki is the degree of node i, while ∂B(i, �) represents
the frontier of the ball of radius � containing all the nodes
at distance smaller than or equal to � from node i. This means
that a node i is assigned a larger CI score if the set of nodes at
distance � from i has a large number of links. By removing
a node with a large CI score, we are potentially removing
a node that mediates a large number of walks. Remarkably,
the attack strategy based on CI can be implemented by an
algorithm with time complexity O(N log N ), which is attained
by using a max heap to keep and update the CI scores of nodes
[39]. Some variations of the CI heuristic have managed to
obtain relatively better performance (i.e., smaller attack sets)
by including more structural information about the relevance
of a given node for percolation [39] and at the cost of an
increased time complexity. There has also been an attempt
to extend the collective influence algorithm to the case of
duplex networks by combining the bare CI scores of the nodes
at the two layers [33], but the results are not competitive
with other existing algorithms. The main reason is that the
bare combination of the layer-based scores does not take into
account the role played by edge overlap and interlayer degree
correlations in triggering a cascade of node removals.

We introduce here two generalizations of collective in-
fluence for duplex networks, which automatically take into
account both interlayer degree correlations and edge overlap.
The heuristics are based on two simple ideas: the first one is
that nodes with high degrees and high edge overlap are more
likely responsible for mediating many interdependent paths;
the second one is that the removal of a given node i has a large
impact on the size of the MCC if it triggers a larger cascade of
node removals away from i. We define the duplex collective
influence (DCI) as

DCI(i) = k[1]
i k[2]

i − kint
i

kaggr
i

⎡
⎣∑

j

a[1]
i j

(
k[2]

j − 1
) + a[2]

i j

(
k[1]

j − 1
)⎤⎦,

(2)

where kint
i is the degree of node i in the intersection graph

(i.e., the graph containing only the links which appear in
both layers) and kaggr

i is the degree of node i in the binary
aggregated graph (i.e., the union graph obtained by collapsing
the two layers into one [40]). The DCI score of a given
node i is indeed obtained as the product of two terms. The
first contribution is due to the product of the degrees of
node i at the two layers and to the local edge overlap of
node i. It is easy to show that this term increases when kint

i
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increases, meaning that nodes with a high edge overlap and
high degrees at the two layers will in general be ranked higher
(see Appendix A for additional details). The term in square
brackets instead takes into account potential cascades away
from node i triggered by the removal of i. In particular, the
term is larger if the neighbors of i on layer 1 have a high
degree on layer 2 and vice versa. In this case, the removal of
i (and of all its edges on both layers) will disrupt all the paths
between the neighbors of i on layer 2 which are mediated by
i, hence potentially disrupting the connected component to
which i belongs at layer 2. This might in turn trigger further
node removals in the neighborhoods of those nodes and let
the cascade propagate away from node i. In the limiting case
of a duplex network consisting of two identical layers (which
is indeed equivalent to a single-layer network with respect
to percolation), DCI yields the same node ranking as that
induced by CI on the aggregated network when we set � = 1
in Eq. (1) (see Appendix A for details).

It is important to note that when nodes are iteratively
removed from a duplex, the term k[1]

i k[2]
i in Eq. (2) might

become equal to zero, e.g., due to the removal of nodes around
i which have left node i isolated in one of the two layers.
However, node i might still have a relatively large degree on
the other layer and its removal might trigger larger cascades
away from i than a node which is still connected on both layers
but has a small degree on each of them. This happens more
frequently in duplex networks with heterogeneous degree
distributions. To account for this inconvenience, we define a
modified DCI score as

DCIz(i) =
(
k[1]

i + 1
)(

k[2]
i + 1

) − 3kint
i − 1

kaggr
i

×
⎡
⎣∑

j

a[1]
i j

(
k[2]

j − 1
) + a[2]

i j

(
k[1]

j − 1
)⎤⎦, (3)

which is obtained by replacing k[α]
i with k[α]

i + 1 in Eq. (2) and
enforcing that DCIz induces the same node ranking as CI with
� = 1 in the limiting case of duplex networks made of two
identical layers (see Appendix A for details). The subscript z
indicates that we are correcting for nodes with zero degree on
at least one of the two layers.

We use DCI and DCIz in an adaptive algorithm that it-
eratively removes nodes from the duplex according to their
score recomputed on the remaining subgraph. This process
is iterated until the size of the LMCC becomes nonextensive
[i.e., O(N1/2)]. The time complexity of the direct implemen-
tation of this algorithm by means of simple data structures is
O(N2 log N ), but a more efficient algorithm which uses a max
heap to keep the list of scores sorted will have time complexity
O(N1.2) (see Appendix B for details).

B. Pareto efficiency for multiobjective optimization

A second class of attack strategies is based on the hypoth-
esis that it should be possible to obtain smaller attack sets
by combining layer-specific and genuinely multilayer infor-
mation. We use here the concept of Pareto efficiency [35,36],
which was originally devised to concurrently optimize multi-
ple cost functions. The idea is illustrated in Fig. 1. We consider

FIG. 1. Graphical representation of Pareto efficiency for two
generic structural node descriptors r1 and r2. Each node of the
multiplex is mapped onto a point in the (r1, r2) plane. The points
for which no improvement can be achieved in one objective function
without hindering the others are called Pareto efficient (blue circle
and red diamond) and constitute a Pareto front. The Pareto-efficient
points are iteratively ranked according to their Euclidean distance
from the ideal point (green star), i.e., the point that maximizes all
the objective functions. In this case, the node associated with the red
diamond is ranked first.

a set of m node descriptors (also called objective functions),
which we deem relevant for multilayer percolation, so that
each node i is associated with the vector of ranks induced
by each of the m scores ri = [ri

1, ri
2, . . . , ri

m] and is mapped
onto a point of an m-dimensional space C. Assuming that
optimal attack sets consist of nodes that are maximizing all
the structural descriptors at the same time, we can employ
the concept of dominance strict partial order [36] to identify
Pareto-efficient nodes in the space C. A point is considered
Pareto efficient if no single score associated with node i can
be improved without hindering the other scores associated
with node i. In general, for a given set of points there is more
than one Pareto-efficient point, which constitutes the so-called
Pareto front for that set (see Fig. 1).

At first glance, the Pareto-efficiency approach might ap-
pear similar to the hybrid methods presented in Ref. [41];
however, there are a few fundamental differences. In particu-
lar, the Pareto-efficiency approach (i) is agnostic with respect
to the functions to be maximized (i.e., it is parameter-free),
(ii) has a simple physical interpretation (i.e., multiobjective
optimization arises naturally whenever a system is subject to
at least two concurrent sets of constraints), and (iii) is known
to have several advantages over scalarization methods [36,42].

Although multiobjective optimization is a quite appealing
concept, the main drawback is that it proposes a set of
equally viable “optimal” solutions at each iteration and such
a set normally contains multiple solutions. This is indeed
far from ideal, since comparing the performance of differ-
ent cost functions (obtained from different ways of ranking
nodes on the basis of their structural properties) can become
somehow complicated. A common way to select only one
of the Pareto-optimal solutions from a Pareto front, when
no additional information is available about how preferable
a certain solution is, consists in selecting the solution closest
to the ideal point [35], i.e., the (possibly nonexistent) point

033122-3



ANDREA SANTORO AND VINCENZO NICOSIA PHYSICAL REVIEW RESEARCH 2, 033122 (2020)

FIG. 2. (a) Relative size S of the LMCC of a multiplex network when a fraction q of nodes is removed by different targeted attack strategies.
The multiplex consists of two Erdős-Rényi layers with N = 104 nodes, average degree 〈k〉 = 5, no interlayer degree correlations (ρ ≈ 0), and
no edge overlap (o ≈ 0). In this case, EMD provides a much smaller attack set than HDA, but the Pareto-efficient (k-core, EMD) strategy
produces a smaller critical set. (b) If the two layers have maximally disassortative interlayer degree correlations (ρ = −1) but still no edge
overlap (o ≈ 0), HDA performs sensibly worse than in the uncorrelated case, while the Pareto-efficient (k-core, EMD) strategy finds a smaller
attack set and again outperforms EMD. (c) If the duplex has a substantial edge overlap (o = 0.4) and no correlations (ρ ≈ 0), the critical set
is much larger than in the other two cases. The presence of edge overlap favors HDA, but the smallest attack set is still found by the (k-core,
EMD) Pareto-efficient algorithm, immediately followed by DCI and DCIz. For comparison, we also report in each plot the results obtained by
simulated annealing (black diamond). All the curves are averaged over 20 realizations.

that simultaneously maximizes all the cost functions (see
Fig. 1). Alternative ways to select Pareto-optimal solutions
exist in the literature [36,42,43]; however, no consensus on
the best approach has been reached yet. We adopted the ideal
point method for the results shown in the following. In other
words, for each Pareto strategy, we constructed the critical
sets by iteratively removing the Pareto-efficient point having
minimal Euclidean distance from the ideal point (potential
ties are broken by selecting one of the points uniformly at
random). We then recompute the set of Pareto-efficient points
and iterate until the LMCC becomes nonextensive. Details
about the time complexity of Pareto-efficient strategies are
reported in Appendix B.

III. COMPARISON OF TARGETED ATTACK STRATEGIES

Here we compare the two state-of-the-art algorithms for
optimal multiplex percolation proposed so far, namely, HDA
[24] and EMD [33], with a variety of multiplex targeted
attack strategies from three classes, namely, (i) alternative
genuinely multiplex strategies, (ii) Pareto-efficient strategies
based on the combination of the scores of single-layer targeted
attack strategies on the two layers, and (iii) Pareto-efficient
strategies obtained by combining single-layer descriptors with
one genuinely multiplex algorithm. In the following we will
discuss in detail the performance obtained by six strategies,
namely, HDA, EMD, DCI, DCIz, and the two Pareto-efficient
strategies obtained by combining the k-core ranking on the
two layers with the ranking induced by EMD, which we
call k-core and EMD, and the score assigned on each layer
by believe propagation decimation and the ranking induced
by DCIz. Note that when considering HDA, we iteratively
remove nodes from the duplex that have the highest product of
the degrees in the two layers, as done in [24]. As a reference,
we also report the results obtained by simulated annealing
(SA) as described in Ref. [13], which is able to find very small
targeted attack sets at the expense of heavier computations.

The results obtained with all the other methods we tested are
reported in Appendix C.

In Fig. 2(a) we report the percolation diagrams of duplex
networks with uncorrelated Erdős-Rényi layers. Note that the
duplex network in Fig. 2(a) is consistent with that used in
Ref. [33], where the authors showed that the critical set found
by EMD is usually much smaller than that found using HDA.
Interestingly, the combination of EMD and k-core provides
a smaller critical set than either EMD or HDA alone. This
is because by targeting nodes which have high EMD scores
and at the same time belong to the inner k-core on each layer,
we have a higher probability of simultaneously damaging the
LMCC of the multiplex and the giant connected component
on each layer. Even more interesting results are reported in
Fig. 2(b) for a duplex with maximally disassortative interlayer
degree correlations (and no edge overlap) and in Fig. 2(c) for
a duplex with high edge overlap. It is evident from the figures
that the relative performance of each targeting algorithm de-
pends quite substantially on the structure of the multiplex and
in particular on the presence of interlayer degree correlation
and edge overlap. For instance, EMD still outperforms HDA
by a large margin when the multiplex has no edge overlap and
disassortative degree-degree correlations [Fig. 2(b)], while
EMD is the worst-performing strategy when edge overlap is
not negligible. In general, the algorithms based on Pareto-
efficiency perform better than either EMD and HDA, while
both DCI and DCIz find relatively smaller critical sets in
the case of networks with non-negligible overlap. This is
a confirmation of our intuition that heuristics that perform
better in one specific condition (e.g., where the two layers
are uncorrelated and edge overlap is negligible) do not always
achieve the same performance under other conditions.

A. Dependence on edge overlap

The edge overlap of a two-layer multiplex measures the
fraction of edges that are present on both layers [6,16,40]. It
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can be measured as

os =
∑N

i, j oi j

2
∑N

i, j �(oi j )
, (4)

where oi j = ∑2
α=1 A[α]

i j and �(·) is the Heaviside step func-
tion. In particular, os = 1/2 when the two layers do not share
any edge in common [44]. By contrast, the maximum value
os = 1 is obtained when the two layers are identical. For the
sake of convenience, we consider the linear transformation
o = 2(os − 1/2) that maps the edge overlap os into the inter-
val [0, 1]. In general, real-world multiplex networks exhibit
relatively large values of edge overlap [16,40], indicating the
presence of nontrivial correlations between the two layers.
Nevertheless, targeted attack strategies have been compared
mainly (if not exclusively) on duplex networks with Erdős-
Rényi layers having a negligible edge overlap.

We investigated the impact of edge overlap on the perfor-
mance of different targeted attack strategies by considering a
class of synthetic duplex networks with tunable edge overlap
o. In particular, we employed an approach similar to the one
presented in [45]. That is, starting from two identical layers
(o = 1 and maximal interlayer degree correlation ρ = 1), we
iteratively rewire the edges of one of the two layers to reduce
the edge overlap until we get to o = 0 while maintaining
untouched the degree sequence of each layer (see Appendix D
for details). In Fig. 3(a) we plot the relative size of the critical
set q obtained by each of the six algorithms as a function of
the edge overlap in a duplex with Erdős-Rényi layers. We
notice that in general q is an increasing function of o. This
fact is somehow expected, since the existence of an extensive
MCC imposes more stringent constraints on the graph than
the existence of a giant connected component in a single-
layer graph. Indeed, a duplex with o = 1 is indistinguishable
from the single-layer graph obtained by combining the two
(identical) layers; hence the optimal attack set in that case
corresponds to that of each layer.

However, each attack strategy behaves slightly differently
as o increases. For instance, for o > 0.3 the critical set found
by EMD is always larger than that obtained by all the other
strategies. In the limit of o = 1, however, the EMD and
HDA heuristics coincide, since the EMD weight of each
node i becomes proportional to the degree ki. By contrast,
DCI, DCIz, and the two Pareto-efficient strategies perform
relatively poorly in networks with small overlap, but they
generally outperform both EMD and HDA as the amount
of overlap increases. This is because targeted methods that
indirectly disrupt a large number of interdependent paths are
more likely to trigger cascades in the system. Note that some
Pareto-efficient strategies already outperform the results of
the simulated annealing achievable in a reasonable comput-
ing time (same implementation as the one presented in [33]
with temperature steps equal to 10−7). A similar qualitative
behavior is observed when considering duplex systems having
a heterogeneous degree distribution on each layer [Fig. 3(b)],
although the typical values of q are overall smaller. This indi-
cates that the heterogeneity of the degree distribution of each
layer has some impact on the efficiency of each attack strategy,
but the presence of edge overlap effectively determines the
relative performance of different strategies. Interestingly, for

FIG. 3. Size of the critical attack set q as a function of edge
overlap for different attack strategies in duplex networks with N =
104 nodes, 〈k〉 = 5, and whose layers have (a) Erdős-Rényi or
(b) scale-free degree distributions (γ = 2.6). The plots are obtained
by starting from two identical layers (o = 1 and ρ = 1) and then
iteratively rewiring the edges of one of the two layers to reduce the
edge overlap until we get to o = 0 [45]. Again, strategies based on
Pareto efficiency yield the best results. Results are averaged over 20
realizations. Error bars are smaller than the marker size.

both the topologies, the best (smallest) critical set is always
obtained by one of the methods proposed in this paper, that is,
methods that combine layer-based and genuinely multilayer
node properties through Pareto efficiency, with DCI and DCIz

following closely when o > 0.4 (see Appendix C for the
corresponding figure with a comparison of all the targeted
attack strategies considered).

B. Role of interlayer degree correlations

Interlayer degree correlations are known to have a sub-
stantial role in determining the robustness of many real-world
systems [34] and are responsible for consistent shifts in the
position of the random percolation threshold [12,46]. Several
studies have found that maximally disassortative interlayer
degree correlations improve the robustness of multiplex sys-
tems to both random [15,34] and targeted attacks based on
the selection of nodes with the largest degrees [15]. However,
most of those studies have only considered the case of duplex
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FIG. 4. Size of the critical set q as a function of the interlayer degree correlations coefficient ρ [16] for duplex networks with N = 104

nodes, whose layers are (a)–(c) Erdős-Rényi graphs with 〈k〉 = 5 and (d)–(f) scale-free networks with γ = 2.6. For each topology, we report
three different overlap conditions: (a) and (d) no edge overlap, (b) and (e) low edge overlap, and (c) and (f) moderate edge overlap. The
concurrent presence of interlayer degree correlations and edge overlap strongly affects the robustness of a system against targeted attacks.
This is particularly evident when considering duplex networks with heterogeneous degree distributions on each layer [(d)–(f)]. When the
edge overlap is non-negligible, duplex networks with maximally negative degree correlations are extremely robust under targeted attacks with
respect to their maximally positive counterparts. Conversely, when the overlap is negligible, disassortatively correlated duplex networks are
more fragile. Overall, DCI, DCIz, and the Pareto-efficient strategies that simultaneously combine single- and multiple-layer attacks consistently
detect smaller critical sets. The results obtained by simulated annealing are reported for comparison. Results are averaged over 20 realizations.
Error bars are smaller than the marker size.

systems with identical degree distributions on the layers and
either maximally positive or maximally negative interlayer
degree correlations. Here we use the procedure explained in
Ref. [16] to tune interlayer degree correlations between the
maximally disassortative case (also called maximally nega-
tive) and the maximally assortative one (maximally positive).
In order to isolate the effect of interlayer degree correlations,
we study the performance of the six targeted attack strategies
as a function of the interlayer degree correlation coefficient ρ

[16], imposing that each realization of the multiplex has o ≈
0. To simultaneously account for the joint effect of overlap and
interlayer degree correlations, we also consider the sequences
of multiplex networks obtained by increasing ρ while keeping
the edge overlap fixed at a given value. To obtain those
sequences, we first increase the value of interlayer degree
correlation [16] and then we set the desired value of edge
overlap through biased edge rewiring [44,45] (see Appendix D
for a more detailed description of the method).

In Fig. 4 we plot the size of the critical set q identified
by the six targeted attack strategies as a function of the
interlayer degree correlations ρ and for different values of
edge overlap o. We report the results obtained on duplex
networks with Erdős-Rényi layers [Figs. 4(a)–4(c)] and with
scale-free layers [Figs. 4(d)–4(f)]. Interestingly, in all the
scenarios considered the state-of-the-art EMD and HDA are
outperformed by one or more of the heuristics proposed in this
paper. In particular, the smallest critical set is often obtained
by the (k-core, EMD) Pareto-efficient strategy. However,

depending on the interplay between edge overlap and inter-
layer degree correlations, profound differences among the
six methods emerge. For instance, when considering a du-
plex with Erdős-Rényi layers and negligible edge overlap
[Fig. 4(a)], the discrepancy between the overall best strategy
(k-core, EMD) and the worst one (HDA) is maximal when
ρ � −1. In particular, the critical set found by the k-core,
EMD strategy when ρ � −1 is around 19% (smaller than
the one found for ρ � 1, i.e., around 23%), while HDA finds
a much larger critical set (28%), which is even larger than
the one it finds for ρ � 1 (25%). As a consequence, the
presumed increased robustness of multiplex networks with
disassortatively correlated degrees is probably just an artifact
of the algorithm used to determine the critical set [15]. By
looking at the size of the critical set found by simulated
annealing in Fig. 4(a), it seems clear that negatively correlated
multiplex systems without overlap are generally hyperfragile
compared to positively correlated ones. However, some of the
attack strategies considered, including HDA and especially in
uncorrelated systems, provide a diametrically opposite picture
and suggest that in the absence of edge overlap positively cor-
related degree sequences are more fragile. The results shown
in Figs. 4(b) and 4(c) shed light on the interplay between edge
overlap and interlayer correlations. In both cases, the sizes
of the critical sets found by the six algorithms are higher
than those shown in Fig. 4(a) (i.e., when the edge overlap
is negligible). In particular, the (sub)optimal critical set q
found by simulated annealing reveals that both edge overlap
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-

FIG. 5. Rankings of the six targeted attack strategies presented
in Fig. 4 for different values of edge overlap and different network
topology, namely, (a)–(c) Erdős-Rényi and (d)–(f) scale-free, as a
function of four values of interlayer degree correlations. Interest-
ingly, the (k-core, EMD) Pareto-efficient strategy has a considerably
better performance in most of the conditions considered. By contrast,
the EMD strategy appears to have a good performance only in duplex
networks with negligible or small overlap.

and interlayer degree correlations contribute to determine the
robustness of a duplex system.

Similar conclusions can be drawn by examining duplex
networks with a scale-free degree distribution [see Figs. 4(d)–
4(f)]. Also in this case both edge overlap and interlayer degree
correlations have a substantial impact on the performance of
each algorithm. However, the difference between maximally
negative and maximally positive correlated duplex networks
becomes more relevant when edge overlap increases, mainly
due to the fact that degree heterogeneity on each layer has
a stronger impact on the percolation of the MCC. It is inter-
esting to notice here that, since the relative performance of
the algorithms considered clearly depends on both interlayer
degree correlations and edge overlap, there is no algorithm
that clearly outperforms all the others. This is made evident
in Fig. 5, where we highlight the behavior of the ranking
of the six heuristics based on increasing size of the critical
set q (i.e., the algorithm ranked first is the one providing
the smallest critical set). Although the (k-core, EMD) Pareto-
efficient strategy seems to perform consistently well across
the board, being ranked first or second more often that the
other five strategies, there are several combinations of layer
structure, edge overlap, and interlayer degree correlations for
which other algorithms perform much better. An overview
of the critical sets found by all the attack strategies we
have considered as a function of overlap and correlations is
reported in Appendix C.

IV. OPTIMAL PERCOLATION IN REAL-WORLD
MULTIPLEX NETWORKS

One of the main aims behind the study of targeted at-
tacks is to try to find efficient ways to mitigate the fragility
of real-world infrastructures, which are normally character-
ized by layer heterogeneity, non-negligible edge overlap, and

FIG. 6. (a) Relative performance of the six targeted attack strate-
gies for real-world duplex networks. Notice that strategies that
perform well in synthetic duplex networks are not the best ones when
it comes to real-world systems. (b) Overall pair performance rate,
defined as the relative number of times either of a pair of algorithms
identifies the smallest critical set. In this case, the combination of
DCI and DCIz with other strategies results in the best performance
rates. However, the fact that the highest value of pair performance
is 58% suggests that we are still far from having fully understood
the robustness of real-world systems to targeted attacks. Results are
averaged over ten realizations.

interlayer degree correlations. For this reason, we tested the
targeted attack strategies presented in this paper in 26 real-
world multiplex networks [47]. The size of the critical set
found by each of the algorithms is reported in Table I. The sys-
tems considered in the table range in size from a few dozens to
thousands of nodes, with different values of edge overlap and
interlayer degree correlations. Since many of those multiplex
networks have more than two layers, for each system we
consider the duplex subnetworks corresponding to the pairs of
layers yielding the largest MCC, as already done, for instance,
in the main text of Ref. [34]. Unsurprisingly, there is no single
strategy that works better than all the others in all the cases.
What is surprising instead is that those strategies yielding the
best performance when considering synthetic duplex systems,
e.g., the (k-core, EMD) Pareto-efficient algorithm, do not
perform as well in real-world systems. By contrast, DCI
and DCIz quite often find the smallest critical set. This can
be easily visualized in Fig. 6(a), where we plot the relative
amount of times (i.e., performance rate) that a certain strategy
identifies the smallest critical set in all the 26 real-world
duplex networks considered. The best-performing strategy
here is DCI, with a rate of 42%, followed by DCIz (35%)
and EMD (31%). We also considered the pair performance,
which is defined as the relative number of times that at least
one of two algorithms identifies the smallest critical set. The
results are reported in Fig. 6(b). Remarkably, combinations
of targeted attacks including DCI and DCIz yield the best
pair performance rate, where the DCI-EMD pair is able to
find the smallest critical set in 58% of the cases. Overall,
these results warn against the quest to find a single targeted
attack strategy that performs well whatever the multiplex
network it is applied to. In particular, the generalization to
real-world networks of targeting strategies that perform well
in specific classes of synthetic graphs can result in the gross
overestimation of the robustness of a system.
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V. CONCLUSION

Optimal multiplex percolation is characterized by a variety
of subtleties and we are probably far from understanding
it completely. The massive comparison of many different
attack strategies that we presented here has revealed that the
performance of all the state-of-the-art attack strategies on un-
correlated multiplex networks does not guarantee their ability
to identify sufficiently small critical sets in networks having
non-negligible edge overlap and nontrivial interlayer degree
correlations. In particular, extensive simulations on synthetic
networks have shown that both edge overlap and interlayer
degree correlations play an important role in determining the
robustness of a system and that their combination can be effec-
tively exploited to modulate the robustness of a system against
targeted attacks. One of the main ingredients to identify
critical nodes using only local information seems to be their
potential to disrupt many paths among their second neighbors,
since this would indirectly contribute to the disruption of the
LMCC. The duplex collective influence algorithm presented
here is based on this assumption and indeed shows a better
performance than all the existing state-of-the-art algorithms,
especially in duplex networks with non-negligible edge
overlap. It seems clear to us that further improvements might
possibly be obtained by considering extensions of DCI that
take into account the impact on farther-away neighborhoods.
Another important ingredient seems to be the possibility to
combine structural descriptors on each of the two layers with
more genuinely multiplex information. In this respect, the
family of Pareto-efficient strategies that we presented here
represents a quite promising approach. We find it remarkable
that these strategies consistently outperform all the existing
algorithms in both synthetic and real-world duplex networks.

One of the main motivations behind studying percolation
is to improve our ability to assess the robustness and to
mitigate the fragility of real-world networks, i.e., of concrete
systems presenting non-negligible edge overlap and nontrivial
interlayer degree correlations. The most surprising results in-
deed came from the analysis of real-world multiplex systems
and provide a clear warning against hasty generalizations.
On the one hand, the heuristics that are good at finding
small critical sets in uncorrelated multiplex networks often
perform rather poorly in real-world systems, thus tending to
overestimate their robustness. On the other hand, the vari-
ability in performance shown by almost all the algorithms
we have considered confirms that a fair assessment of the
robustness of a multilayer system must be based on the usage
and comparison of multiple attack strategies. We believe that
these results constitute a solid springboard for a more in-depth
investigation of optimal percolation in multilayer systems.

Implementations of the 20 targeted attack strategies used
in this paper, and of the algorithm to tune overlap and inter-
layer degree correlations in synthetic duplex systems, are
available [48].

ACKNOWLEDGMENTS

V.N. acknowledges support from the EPSRC Grant No.
EP/S027920/1. A.S. acknowledges support from The Alan

Turing Institute under the EPSRC Grant No. EP/ N510129/1.
This work made use of the MidPLUS cluster, through EPSRC
Grant No. EP/K000128/1.

APPENDIX A: ADDITIONAL DETAILS ON DCI and DCIz

1. Dependence of duplex collective influence
score on edge overlap

Here we study the character of the DCI score of a node
i as a function of kint

i , which is the degree of node i in the
intersection graph, obtained by considering all and only the
links that exist on both layers. Notice that kint

i is intimately
connected to the edge overlap around node i. Indeed, the
fraction of edges attached to node i that exist in both layers
can be expressed as oi = kint

i /kaggr
i . Since we have kaggr

i =
k[1]

i + k[2]
i − kint

i , the DCI score of node i can be rewritten as

DCI(i)= k[1]
i k[2]

i − kint
i

k[1]
i + k[2]

i −kint
i

⎡
⎣∑

j

a[1]
i j

(
k[2]

j −1
) + a[2]

i j

(
k[1]

j −1
)⎤⎦.

The term inside the large square brackets does not depend on
kint

i , so we can just focus on the ratio outside, which can be
conveniently rewritten as

a − kint
i

b − kint
i

, (A1)

where we have set a = k[1]
i k[2]

i and b = k[1]
i + k[2]

i . Note that
kint

i ∈ [0, min(k[1]
i , k[2]

i )] and in particular kint
i = 0 if the neigh-

borhoods of node i at the two layers are disjoint, while kint
i =

min(k[1]
i , k[2]

i ) if the intersection between those two neighbor-
hoods is maximal, where the case k[1]

i = k[2]
i corresponds to

identical neighborhoods on the two layers. It is easy to show
that Eq. (A1) is an increasing function of kint

i for a > b, which
holds whenever min(k[1]

i , k[2]
i ) > 1. This means that, all other

things being equal, a node having degree larger than one on
both layers will have a larger DCI score if it has a larger edge
overlap. Similar reasoning holds for DCIz.

2. DCI in multiplex networks with identical layers

It is easy to show that in a duplex network with iden-
tical layers the ranking of nodes induced by the DCI
score defined in Eq. (2) coincides with that induced
by the CI score on the corresponding aggregated graph
when � = 1. In fact, if the two layers are identical, we
have a[1]

i j = a[2]
i j = ai j ∀ i, j = 1, . . . , N and also k[1]

i = k[2]
i =

kint
i = kaggr

i = ki ∀ i = 1, . . . , N , so we get DCI(i) = 2(ki −
1)

∑
j ai j (k j − 1) = 2CI�=1(i), which means that the two

rankings are identical.

APPENDIX B: TIME COMPLEXITY

1. Time complexity of DCI and DCIz

The adaptive targeted strategies based on DCI and DCIz

require us to recompute the DCI scores of all the remaining
nodes after each node is removed. An implementation with
simple data structures (basically, the list of neighbors of each
node) guarantees a worst-case time complexity O(N2 log N ),
where N is the number of nodes of the graph. Indeed, the
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FIG. 7. Percolation diagram for the 20 different attack strategies examined in this paper, for the same duplex networks reported in
(a) Fig. 2(a) and (b) Fig. 2(c). Notice that Pareto-efficient strategies combining only single-layer metrics do not perform well in the two
cases reported. By contrast, methods which effectively combine single- and multiple-layer information yield the best performance. Labels are
sorted in ascending order of size of the critical set from (a). We highlighted in bold the six strategies presented in Fig. 2. Results are averaged
over 20 realizations.

initial DCI (or DCIz) score of all the nodes can be computed in
O(K ) (where K is the total number of edges of the multiplex)
and sorted in O(N log N ). The removal of the ith node from
the network will modify the DCI scores of all its neighbors on
the two layers, which are at most N − i − 1. Since we need
to keep the list of DCI scores ordered, the usage of simple
structures requires us to sort again the scores, which has time
complexity O(N log N ) at each step. As a consequence, updat-
ing DCI scores throughout the percolation procedure has time
complexity O(N2 log N ). A direct computation and update of
the size of the LMCC would run in N3, but its efficiency
can be improved to O(N1.2) by using the algorithm explained
in Refs. [49,50]. So overall the DCI (DCIz) algorithm for
DCI and DCIz has time complexity O(N2 log N ). However,
the usage of a max heap to store and update the list of
DCI scores would guarantee a worst-case time complexity of
O(N1.2 + K log N ), which is dominated by O(N1.2) in sparse
graphs.

2. Time complexity of Pareto-efficient strategies

The time complexity of Pareto-efficient strategies can be
expressed as O(F + S), where O(S) is the time complexity
of computing and updating the scores used for multiobjective
optimization, while O(F ) is the time complexity of comput-
ing and updating the Pareto front throughout the percola-
tion procedure. Identifying the Pareto front at each step has
time complexity O(N log N ) when the number of objective
functions m is at most m = 3, which is the case for all the
Pareto-efficient strategies considered in the present paper. If
the number of functions to optimize is m > 3, then the time
complexity becomes O(N (log N )m−2) [51]. As a consequence,
O(F ) = O(N2 log N ) in the worst case. The time complexity
of computing and updating the scores depends on the details
of the functions used, but all the functions we used in this
paper are dominated by O(N2 log N ).

APPENDIX C: ADDITIONAL RESULTS ON
SYNTHETIC NETWORKS

In this Appendix we report the results obtained by the
multiplex targeted strategies constructed by considering all
Pareto-efficient combinations of different of single- and
multiple-layer methods. In Fig. 7 we show the percolation

FIG. 8. Size of the critical attack set q as a function of edge
overlap for the 20 different attack strategies in the same duplex
networks as in Fig. 3. Labels are sorted in ascending order of size
of the critical set from (a) when o = 1 (i.e., it is analogous to the
single-layer percolation). Results are averaged over 20 realizations.
Error bars are smaller than the marker size.
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FIG. 9. Size of the critical set q found by each of the 20 attack strategies as a function of the interlayer degree correlations coefficient
for the same duplex networks as in Fig. 4. Notice that also in this case the attack strategies which combine only single-layer metrics perform
quite poorly compared to the other Pareto-efficient methods. Labels are sorted in ascending order of q when considering ρ = −1 of (a). We
highlighted in bold the methods presented in Fig. 4. Results are averaged over 20 realizations. Error bars are smaller than the marker size.

diagrams (including also the results already presented in
Fig. 2) in duplex networks with no overlap [Fig. 2(a)] and
with high overlap [Fig. 2(b)]. It is clear that the strategies that
incorporate multilayer information (i.e., HDA, EMD, DCI,
and DCIz), as well as a Pareto-efficient strategy that takes one
of them into account, perform consistently better than those
based exclusively on single-layer metrics [i.e., (CI�=2, CI�=2),
(CoreHD, CoreHD), and (BPD, BPD)]. This is because, as
noted in Refs. [24,33,46], the presence of interdependencies in
the multiplex structure deeply affects the overall robustness of
duplex networks against random and targeted attacks and this
information is not present in either of the layers considered
separately.

In Fig. 8 we report the size of the critical attack set q as
a function of structural edge overlap. As expected, the best
performing targeted strategies for o = 1 are those based on
BPD, which is the best-performing strategy on single-layer
graphs [23,31]. It is interesting to notice that some Pareto-
efficient strategies outperform simulated annealing for large
values of overlap (same implementation as the one presented
in [33] with temperature steps equal to 10−7).

Finally, in Fig. 9 we show the size of the critical set found
by each of the 20 strategies for different combinations of
interlayer degree correlations and edge overlap (same con-
ditions presented in Fig. 4). It is clear that Pareto-efficient
strategies combining multiple- and single-layer information
perform better than the others also in this case and especially
much better than methods relying only on single-layer met-
rics. This is even more evident when the duplex has o ≈ 0
while the gap becomes smaller as the overlap increases, as
expected.

APPENDIX D: TUNING INTERLAYER DEGREE
CORRELATION AND EDGE OVERLAP

The algorithm to tune interlayer degree correlations and
edge overlap in a duplex network used in the paper is based on
biased edge rewirings. The procedure works along the same
lines of the two procedures to separately tune edge overlap
and interlayer degree correlations originally considered in
Refs. [16,44,45]. More precisely, to decrease edge overlap
we start from two (possibly different) layers, we iteratively
select at random two edges on a randomly chosen layer, and
we rewire at random the end points of the two links only if
such rewiring results in a reduction of the edge overlap. The
procedure is iterated until we reach the desired value of edge
overlap o�. In this way, the degree sequence on each layer is
preserved throughout the process. Notice that the actual range
of edge overlap attainable with this method actually depends
on the degree sequences at the two layers.

Increases in edge overlap are obtained with a similar
procedure, where a rewiring is accepted only if it results
in the increase of edge overlap of at least one of the two
edges involved in the rewiring. As a consequence, also this
procedure does not modify the degree sequence of each layer.
In general, the actual range of edge overlap obtained by this
procedure depends on the actual degree sequences of the two
layers. For instance, a value of o = 1 is attainable only if the
degree sequences of the two layers are identical. Since the
maximum value omax of edge overlap for a generic pair of
layers is not known a priori, in our simulations we compute
an approximation of omax by iteratively increasing the overlap
of the system until no further increase is attainable (i.e., the
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termination criterion is such that the edge overlap does not
increase after 5 × 107 random rewirings).

The procedure for tuning the interlayer degree correlation
ρ is identical to the one presented in [16,52]. Briefly, starting
from a generic duplex network, we consider R to be the N × N
matrix that accounts for the coupling between the nodes of
the two layers. Here the generic entry ri j = 1 if node i in
layer α corresponds to node j in layer β. Since we are dealing
with a duplex network, there is a one-to-one correspondence
between the nodes in the two layers, so we have to impose∑

j ri j = 1 ∀ i. The main idea is that the coupling R can be
realized in many ways, and among all these possibilities we
choose one that corresponds to a given level of interlayer
degree correlation ρ�. We define the cost function F (R) =
|ρ − ρ�| and we iteratively modify the structure of the matrix
assignment in order to minimize F (R). The minimization pro-
cedure is obtained by using a simulated annealing algorithm.
In particular, starting from a certain matrix assignment R, we

rewire at random two edges of such a matrix in order to obtain
a new assignment R′. We then accept the new assignment with
probability

p =
{

1 if F (R′) < F (R)

e− F (R′ )−F (R)
β otherwise,

where β has the role of an inverse temperature. The algorithm
stops when F (R) < ε, where ε is a threshold set by the user.
In our simulations, we consider β = 10−7 and ε = 0.005. The
two algorithms to tune edge overlap and interlayer degree
correlations can be combined to obtain a duplex network with
prescribed values of o and ρ. We start by tuning the value of
interlayer degree correlation ρ and we then iteratively increase
edge overlap o through biased edge rewiring. Notice that the
combination of these two procedures (in this order) does not
alter the original degree distribution on each layer of the
duplex network.
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