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Abstract 

This paper is a reader-friendly introduction to Bayesian inference applied to psychological science. 

We begin by explaining the difference between frequentist and epistemic interpretations of 

probability that underpin respectively frequentist and Bayesian statistics. We use a concrete 

example – a student wondering whether s/he carries the virus statisticus malignum – to explain how 

both approaches are different one from another. We illustrate Bayesian inference with  intuitive 

examples, before introducing the mathematical framework. Different schools of thoughts and 

recommendations are discussed to illustrate how to use priors in Bayes Factor testing. We discuss 

how psychology could benefit from a greater reliance on Bayesian methods. Finally, we illustrate 

how to compute Bayes Factors analyses with real data and provide the R code.  

 

Key-words: Bayesian statistics, probability, Bayes Factor, statistical inference 
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There is Nothing Magical About Bayesian Statistics: 

An Introduction to Epistemic Probabilities in Data Analysis for Psychology Starters 

 

  For the past few years, matters such as the improvement of research practices, 

reproducibility of published findings and data analysis have been among the hottest topics in the 

mainstream psychological literature. In the ongoing debates, Bayesian statistics have often been 

advocated as a viable tool to supplement the existing practices (e.g., Benjamin et al., 2017; Johnson, 

2013; Lindsay, 2015; Wasserstein & Lazar, 2016). Bayesian statistics were introduced in 

psychology for the first time already decades ago (Edwards et al., 1963), yet it is only quite recently 

that they have inspired a wide interest across the academia. The recent proliferation of introductory 

texts (e.g., Etz & Vandekerckhove, 2018; Kruschke & Liddell, 2018a; Wagenmakers, Marsman et 

al., 2018) and special contributions highlighting the most recent developments (e.g., Hoijtink, & 

Chow, 2017; Mulder & Wagenmakers, 2016) testifies of a global trend toward an increase in 

interest in Bayesian methods across psychological science (van de Schoot et al., 2017). 

The present paper is intended for those who wish to begin their experience with Bayesian 

statistics and get a clear understanding of what they are about. By means of concrete examples and 

intuitive explanations, it offers a non-technical, reader-friendly introduction that guides the reader 

through the essential topics in the following, incremental way. We start with discussing the notion 

of probability (Section 1) from which the rationale of Bayesian inference derives (Section 2), and 

we illustrate it with several examples (Section 3). We then outline a formal presentation of Bayes’ 

Theorem (Section 4). After having discussed the issue of priors and current practical 

recommendations on how to specify them (Section 5), we discuss hypothesis testing with Bayes 

Factors (Section 6). The paper also seeks to provide some food for thought on how Bayesian 

statistics could improve analytical practices in psychology (Section 7). Finally, we present an 

example of Bayesian hypothesis testing based on real data from a social psychology research and 

include the corresponding R code (Section 8). For those who are already familiar with Bayesian 
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inference, this paper also offers a more in-depth introduction to Bayesian concepts and formulas, as 

well as an up-to-date literature review on the ongoing recommendations and practices.  

We also want to make clear what is not the purpose of this paper. Firstly, we do not intend 

to give an exhaustive account of Bayesian analyses. The article covers some approaches instead of 

others and we take care to mention complementary references whenever relevant. Secondly, we do 

not provide an extensive training on how to compute the analyses in  a statistical software. We 

mostly focus here on laying down the conceptual bases and we mention useful statistical programs 

and references to available manuals. That being said, we still show how to conduct an actual 

Bayesian analysis in the last section of the article.   

  Finally, we also wish to emphasize that the present paper does not have the vocation to 

criticize the classical, frequentist framework of p-values for the benefit of Bayesian statistics. 

Though some authors do espouse such an approach and advocate for a complete switch to Bayesian 

statistics (e.g., Kruschke & Liddell, 2018b; Wagenmakers, Marsman et al., 2018), here we focus on 

discovery rather than persuasion.1 With this respect, the present paper adopts an approach of 

comparative pedagogics: We first lay down the fundamentals of the classical, frequentist approach 

to data analysis so that readers can develop useful intuitions on how Bayesian inference differs from 

what psychologists are mostly used to with the p-values.  

1. Frequentist versus Epistemic Probabilities 

There are at least two ways to interpret what “probability” means. The key-step in 

understanding Bayesian statistics first requires making explicit their underlying epistemic2 

interpretation to probability, which is fundamentally different from the frequentist interpretation 

underpinning classical statistics. 

Frequentist probability 

The frequentist interpretation defines probability as a long-term frequency of occurrence of 

an event in a specific set of events (von Mises, 1957). Frequentist probabilities are said to be in the 

world. They refer to intrinsic characteristics of nature that can be assessed more or less accurately 
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via observation. For instance, let us assume that statisticus malignum is a rare virus that triggers a 

serious disease known as statisticophilia gravita. The symptoms of the disease, in its severest form, 

include compulsive reading of statistical textbooks and pathologic feelings of fruition when 

performing regression analyses in R. Let us further assume that some serious scholars estimated that 

in the population of psychology students across the globe, the virus is present in 1 out of 1000 

individuals. The frequentist probability of having the virus is then 1/1000 = .001. It can be obtained 

by computing the ratio between the number of actual occurrences of the event (i.e. carrying the 

virus) and the total number of possible occurrences of the event (i.e. being a psychology student), 

which in the long run would converge to .001. From the frequentist perspective, this probability is 

the frequency of carrying the virus in this specific reference class, namely the population of all 

psychology students. This means that if we randomly sample over and over again from this 

population, it would be expected that 1 out of 1000 students would have the virus, on average. 

Epistemic Probability 

The epistemic interpretation defines probability as a measure of degree of confidence 

(Jeffreys, 1961). Epistemic probabilities are said to be in the mind because they relate to states of 

knowledge and represent subjective degrees of belief. In other words, epistemic probabilities can be 

used to quantify the degree of uncertainty regarding the occurrence of an event or the truthfulness of 

a statement. Imagine yourself as a psychology student wondering whether you carry the virus 

statisticus malignum. Having read the epidemiological reports written by the serious scholars about 

the prevalence of the virus in your group of reference – that is, .001 – you feel relieved, at first. 

Then, you realize that you have always enjoyed your statistics classes and among various statistical 

software you came across, R is your favorite one. You believe that your odds of having the virus are 

somewhat greater than you could expect based on the epidemiological reports. You are still pretty 

confident that most likely you do not carry the virus. You actually believe that there is a 5% chance 

of you being infected. Notice that here, the 5% is nothing but a belief. It quantifies your degree of 

uncertainty about having the virus, which is conceptually different from some objective frequency 
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of virus contamination within a reference class (here, the population of psychology students; see 

also Dienes, 2008, 2011). For the sake of illustration, the epistemic probability of 5% in this 

example is also numerically different from the frequentist probability of .001 mentioned above. 

Note however that modeling epistemic probabilities is not inconsistent with using frequentist 

probabilities as a starting point: you could have perfectly assumed that there was a .1% chance of 

you being infected (in line with the epidemiological reports), had you felt it represented accurately 

your state of knowledge. Using epistemic probabilities is fundamental to Bayesian statistics and, as 

we will later see, some proponents of Bayesian methods in fact stipulate that epistemic probabilities 

should be tuned to frequentist probabilities, whenever the latter are known. 

2. Frequentist versus Bayesian Statistics 

This section extends the previous one and discusses how each of the two interpretations of 

probability is determinant for each school of inferential statistics. The aim here is to compare both 

schools of inference, so that hopefully readers can grasp some useful intuitions about what Bayesian 

inference is and how it differs from the standard, frequentist approach to statistical inference (see 

Table 1 for a summary). For a more detailed account, we invite readers to read Dienes (2008, 2011), 

Kruschke and Liddell (2018b), Wagenmakers (2007) and Wagenmakers et al. (2008). 

Frequentist Statistics 

The classical statistics that psychologists use when they perform ordinary t-tests, ANOVAs, 

regression analyses, etc. rely on the frequentist interpretation of probability. As explained above, for 

frequentist probabilities to be meaningful, a specific set of events (i.e. a reference class) must be 

pre-specified. When one performs a statistical test that yields the usual p-value, the reference class 

refers to the sampling distribution under H0. For instance, when one obtains a p-value = .025 based 

on some data, then it means that such a set of data occurs with a maximal frequency of .025 under 

H0 in the long-run. Stated otherwise, if H0 were true, such data would only appear with a frequency 

of .025 if we were to repeat the same study over and over again, all other things being equal. The 

classical approach to statistical inference relies on such statements about frequencies – or 
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frequentist probabilities – of some data given some hypothesis. Specifically, in the Neyman-Pearson 

(NP) approach, one first specifies two statistical hypotheses about the investigated effect (H0 and 

H1), a sample size, and α and β levels that indicate rejection regions for each hypothesis based on 

cost-benefit trade-offs, before conducting the study3 (Gigerenzer et al., 2004; Lakens et al., 2018). 

After conducting the study, one then calculates the p-value: the probability of observing some sets 

of data at least as extreme as the actual set of data obtained in the study if it was run over and over 

again assuming H0 were true4. If p < α (conventionally α = .05, but see Lakens et al., 2018), then 

one rejects H0 and accepts H1. Thus, the level of significance α can be used as the error rate control 

in making wrong decisions of rejecting H0. Specifically, α refers to the relative frequency of Type-I 

errors (i.e. accepting H1 while H0 is true) in the long run of using this procedure. Here, the p-value 

is used only to take a yes-no decision: either to accept or reject a hypothesis. Since the p-value 

pertains to some possible sets of data that would be – but were not – obtained in the long run, 

frequentist inference does not depend stricto sensu on the observed data from a study. Instead, the 

frequentist inference uses probabilities to simulate possible outcomes based on the observed data in 

order to draw a generalization beyond the observed data, upon which a decision to accept or to 

reject a hypothesis is made.  

We illustrate the frequentist logic of the NP approach with the following example. Again, 

imagine that you are the psychology student and that you want to assess whether you carry the virus 

statisticus malignum or not. You decide to consult with Dr. Nikolaevich Golmorokov, a highly 

regarded Russian scholar in research on the virus. Dr. Golmorokov is also a sharp-minded 

statisticologist: he specializes in detecting the virus and has developed a highly accurate test to 

detect the presence of this virus in psychology students. Dr. Golmorokov developed the test as 

follows. He considered two hypotheses: H0: “The student does not carry the virus” and H1: “The 

student does carry the virus”. He assumed accepting H0 while H1 is true (Type II error) to be the 

costliest error, because leaving the virus unnoticed could lead to the contamination of the general 

population of students. He thought however that accepting H1 while H0 is true (Type I error) is not 
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so problematic, because treating the virus does not involve any substantial costs for patients. Thus, 

he designed his test to ensure high statistical power set at .99 (β = .01), and with an error rate of α = 

.10. In his office, the doctor explains the calibration of the test: the latter will miss the presence of 

the virus on average in one among a hundred of students who really carry the virus (Type II error) 

and that among a hundred of students who do not carry the virus, his test will falsely yield its 

presence in ten individuals, on average (Type I error). Having performed the test, the doctor gives 

you the results. It is positive, which indicates that you carry the virus. Without any time to waste, 

the doctor gives you the cure. He takes some red pill out of his pocket, asks you to swallow it, then 

accepts your payment of 99 CHF for the treatment, and finally sets you free to go, supposedly 

cured. 

Notice that in the example above, it was completely irrelevant whether the doctor believed 

or not if the student carried the virus. He only acted accordingly with the test result. The idea is that 

with α and β probability levels under control, the doctor can monitor the long-term frequency of 

wrong decisions. This example is meant to illustrate that the underlying frequentist approach to 

statistical inference answers the question “What should I do?”. The aim is to guide one’s behavior 

in dichotomous decision-making in rejection and acceptance of hypotheses while controlling the 

error rates committed by the repetition of this procedure in the long run. Consequently, everything 

that might alter this error rate in the long run – such as multiple comparisons, sampling intentions, 

post-hoc testing – must be taken into account if one seeks to keep α at the desired, fixed level 

(Wagenmakers, 2007; Wagenmakers et al., 2008). Notice that taking a decision means only to act 

accordingly, with no consequence whatsoever on believing whether the decision is right or wrong 

(Dienes, 2011). 

Bayesian Statistics 

 In contrast, Bayesian statistics rely on the epistemic interpretation of probability. In essence, 

epistemic probability is about quantifying uncertainty, and Bayesian statistics are about using 

uncertainty for inference. In this approach, one starts by formulating an initial belief about a 
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hypothesis of interest. This initial belief translates one’s uncertainty about the truthfulness of a 

hypothesis and is called the prior. Later sections will further describe Bayesian priors and discuss 

their choice in greater depth. At this stage, it suffices to say that the prior reflects one’s subjective 

state of knowledge – more or less precise – about some effect of interest that is available before 

conducting the study and collecting the data. As we will illustrate with the example below, the aim 

of Bayesian statistics is to use data in order to update the prior in the posterior. In other words, 

Bayesian statistics basically use data to update beliefs about the phenomenon of interest.  

For the last time, think yourself again as the psychology student wondering whether you 

carry the virus statisticus malignum. Even though the test by Dr. Golmorokov turned out to be 

positive, you would like to get an idea of the probability that you carry the virus. As you recall, your 

initial belief was that there was a 5% chance of you carrying the virus. You assign to the hypothesis 

𝐻: “I carry the virus” a prior 𝑝(𝐻) = .05, and this is your initial belief of this hypothesis being true. 

 However, you cannot ignore the fact that you consulted with Dr. Golmorokov and his test 

indicated that you carry the virus. You decide to use the knowledge of this data D (i.e. the positive 

test result) to learn something more about your chances of having the virus. In other words, you 

intend to use D in order to update your prior. You recall that the calibration of the test was as 

follows: (1) if you carry the virus, there is a 99% chance of the test being positive; (2) if you do not 

carry the virus, there is only a 10% chance of the test being positive. With this information in mind, 

you use Bayesian inference (which is illustrated more formally in Section 4), to calculate your 

probability of carrying the virus, given the fact that your result was positive. Abracadabra: you now 

know that there is a 0.3425606 probability of you carrying the virus, given that the test result was 

positive. Somewhat confused, you realize that you might have intuitively overestimated the 

probability of you carrying the virus because you tended to neglect how low your prior was in the 

first place (𝑝(𝐻) = .05) and relied only on the result given by the test. With this in mind, you now 

understand that, although the test diagnosed you as positive, there is still around a one-in-three 

chance of you actually having the virus5. 
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Notice that the probability 0.3425606 is the new epistemic probability of the hypothesis 𝐻 

that you actually carry the virus. This probability has been obtained based on the prior probability 

of the hypothesis 𝑝(𝐻) = .05, which has been then updated by the knowledge of data D. This is a 

conditional probability –  𝑝(𝐻|𝐷) = 0.3425606 – because now it refers to the probability of 𝐻 being 

true given the fact that the test result was positive (see also Appendix A and Section 4 for the 

detailed calculation). This probability is typically referred to as the posterior, since it is established 

a posteriori to knowing the data. Getting from prior to posterior probabilities of hypotheses by the 

means of data is the very kind of statistical inference one seeks to  perform within the Bayesian 

framework. 

The example described above aimed to illustrate that Bayesian statistics answer the question 

“How should I adjust my beliefs?”. The aim of Bayesian inference is adjusting one’s confidence – 

or uncertainty – in statistical hypotheses. Importantly, the rules of probability used in Bayesian 

inference that will be explained later imply that once the prior is set and data are known, there is 

only one way in which these two pieces of information combine together to get the posterior 

probability of a hypothesis. Importantly, this implies that Bayesian inference requires no 

adjustments for factors such as multiple testing, sampling intentions or post-hoc testing (Dienes, 

2011, 2016; Kruschke, 2014; Rouder, 2014). This is because, contrary to frequentist statistics, there 

is no reason to address the question of “what would happen in the long run if…”. Therefore, the 

posterior information remains unchanged regardless of , for example, how many other tests 

involving different hypotheses/priors were – or could have been – conducted, or regardless of how 

data was obtained (e.g., sequentially or not). However, this is also the reason why using Bayesian 

inference in decision making for research purposes will not allow controlling for the amount of 

wrong decisions made in the long run. The notion of long-term error rate is irrelevant in Bayesian 

statistics (Dienes, 2016) and therefore cannot be controlled for. This does not mean, however, that 

one cannot strategically use frequentist long-term error rates resulting from using Bayesian 
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inference in decisions to accept or reject hypotheses (Dienes, 2016; Schönbrodt & Wagenmakers, 

2017). 

 

[Insert Table 1 near here] 

 

3. Some Intuitive Examples of Bayesian Analyses 

 Before we get to the formal introduction to Bayesian statistics, we first present some easy 

but conceptually meaningful examples of Bayesian analyses. These are meant to help  

readers develop further intuitions about their underlying mechanics (see also van de Schoot et al., 

2014). Unlike in the previous section where the underlying parameter of interest was dichotomous 

(i.e. carrying or not carrying the virus), here we consider a more typical scenario where the 

parameter of interest is continuous. In the following examples, we illustrate how different priors can 

combine with the same data to result in different posteriors.   

Imagine a group of three undergraduate students who, as part of their research project, are 

interested in the link between the statisticophilia gravita disease and the introversion personality 

trait. They want to estimate the mean level of introversion in the population of psychology students 

diagnosed with the disease. They run the study together: they ask participants diagnosed with the 

disease to fill in a short questionnaire measuring introversion. In statistical terms, their parameter of 

interest – which we refer to as μ – is the mean score of introversion in this population, with μ = 0 

denoting the scale midpoint. They try to estimate the value of μ. Though they ran the study together, 

each of the three students had formulated a different prior before conducting the study and thus 

analyzed the data separately. Figure 1 displays their analyses (see Appendix B, for calculations). 

The data are portrayed by the likelihood function. The likelihood gives the conditional probability 

of obtaining the data given each considered value of μ. Figure 1 shows that the value of μ 

maximizing the probability of observing this set of data is μ = 4.5. 
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[Insert Figure 1 near here] 

 

Student 1 assumed μ to be positive: he hypothesized that psychology students with the 

disease would be highly introverted and would take more joy in socializing with statistical manuals 

rather than with their fellow students. Figure 1A illustrates his relatively informed prior. It uses a 

bell-shaped curve typical to a normal distribution centered on μ = 2. This means that the parameter 

is believed to be most likely positive, with values close to the mean being the most plausible a 

priori. Once the prior is updated in the posterior, the most probable parameter value given the data 

is μ = 3.4. Note that because a range of μ values were both probable under the prior and supported 

by the data, the belief in the truthfulness of these parameter values has strengthened in the posterior 

distribution of μ. Figure 1A shows that the Bayesian analysis maximized the posterior probability of 

those μ values that were congruent both with the specified prior and the likelihood function.   

Unlike Student 1, Student 2 did not hold any strong expectations regarding μ values before 

the study. Often researchers dispose of only little – if any – knowledge about the effect before 

running a study, and therefore cannot favour a specific hypothesis. From the Bayesian perspective, 

this also refers to a kind of knowledge to be integrated into the analysis. In such instances, weakly 

informed, vague or uninformed priors can be used. Figure 1B illustrates the choice of such a prior: it 

is an almost flat-shaped normal distribution centered on μ = 0 with a substantially greater variance 

than the prior used by Student 1. The prior from Figure 1B has considerably less precision than the 

prior from Figure 1A, meaning that the uncertainty of Student 2 is much higher than that of Student 

1. The prior’s precision is the inverse of its variance and illustrates the strength of the belief: the 

stronger the belief, the higher the precision and the lower the variance. With such a weakly 

informed prior as the one depicted in Figure 1B, the posterior is almost exclusively determined by 

the data. While the prior favored parameter values close to μ = 0 to a minor extent, the posterior 

now favors values centered on μ = 4.1. Once again, the intuitive nature of information integration 

under uncertainty is captured with Bayesian statistics: when there is only a glimpse of prior 
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knowledge available about a phenomenon, the resulting posterior is essentially determined by the 

likelihood function (that is, empirically). 

Finally, Student 3 assumed μ to be most likely null. Since the student held a very strong 

assumption about the value of this parameter, he used a highly informed prior (see Figure 1C). With 

such a strong allocation of prior probability, the data has only little impact on the posterior. In 

realistic situations, a prior that strong would have little reason to be used. If choosing such a highly 

informed prior was acceptable in a scientific community, using scarce research resources to conduct 

a study would be hardly justified. Otherwise, a prior that subjective could be simply deemed of 

limited interest. This example is merely presented for illustrative purposes to show another property 

of Bayesian analyses: with a strong prior allocation of probability in a hypothesis, much data is 

needed to exert a genuine impact and change the belief. 

These examples are meant to outline some basic principles of Bayesian inference. The take-

home message is that the posterior probability of a hypothesis is a coherent trade-off between the 

prior and the data, weighted by their respective precision. Bayesian inference is intuitively rational 

(Kruschke, 2014): strongly informed priors require much novel data to be changed, which is more 

easily achieved with weakly informed priors. We encourage readers to check Kristoffer 

Magnusson’s interactive app (http://rpsychologist.com/d3/bayes/) that illustrates the principles 

described here. 

For this pedagogical purpose, the choice of the prior was systematically arbitrary. It is only 

but a legitimate question to ask how one should proceed in real-life situations when choosing a 

prior. Specifying priors is certainly the most challenging, conceptually difficult and also frequently 

criticized part of Bayesian statistics. In Section 5, we introduce different schools of thoughts on 

how to choose the prior and on discussing what role it should play in data analysis. 

4. The Bayesian Approach to Statistical Inference 

Bayesian statistics rely on the assumption that it is possible to assign degrees of epistemic 

probability to scientific hypotheses (Dienes, 2008, 2011). Unlike in classical, frequentist statistics 
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where we assume hypotheses about statistical parameter values to be either true or false (e.g., “H0: μ 

= 0” is false and “H1: μ ≠ 0” is true), here we consider that hypotheses can be described as being 

more or less plausible or credible possibilities (Kruschke, 2014). Each possible hypothesis can be 

assigned to a certain level of epistemic probability that reflects the degree of confidence or belief 

one puts in the truthfulness of the given hypothesis. Bayesian statistics are all about updating this 

prior allocation of uncertainty across considered hypotheses by the means of data into a posterior 

allocation of uncertainty (Dienes, 2011; Kruschke, 2014; Lee & Wagenmakers, 2014).  

The way the prior relates with the posterior is given by Bayes’ Theorem (Bayes & Price, 

1763; Laplace, 1814; see Appendix C, for derivation), which states that, for a hypothesis 𝐻 and a 

set of data D:  

                                                           𝑝(𝐻|𝐷) =  
𝑝(𝐷|𝐻) ×  𝑝(𝐻)

𝑝(𝐷)
.                                                      (1)  

 
This formula indicates how the prior probability of a hypothesis must be updated after getting to 

know data in order to get the posterior probability of the hypothesis being true. Specifically, the 

posterior probability of the hypothesis being true given data 𝑝(𝐻|𝐷) is given by likelihood 𝑝(𝐷|𝐻) 

times prior 𝑝(𝐻), divided by the probability of data 𝑝(𝐷) referred to as evidence, which is the 

literal transcription of Eq. (1). 

The likelihood 𝑝(𝐷|𝐻) refers to the conditional probability of the observed data, given the 

hypothesis. It is a mathematical function that indicates under which parameter values specified by 

the hypothesis the data are most likely to occur. All of the relevant information for the inference and 

the support that is provided by the data for a given hypothesis is captured by the likelihood function 

(Birnbaum, 1962, as cited in Dienes, 2011). Importantly, a hypothesis with the highest likelihood 

value is not necessarily the one with the highest probability of being true given the data: the 

likelihood 𝑝(𝐷|𝐻) should not be confused with the posterior probability 𝑝(𝐻|𝐷). The latter 

depends both on the likelihood and the prior. 
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 To illustrate the use of Bayes’ Theorem, we return to the  example of the psychology student 

assessing the chances of carrying the virus given that the test result was positive (see Figure 2). We 

assumed the prior for H1: “I carry the virus” such that 𝑝(𝐻1 ) = .05. Based on the information 

available on the test calibration, we use the rule of marginalization (see Appendix D) to calculate 

the probability of the evidence 𝑝(𝐷) necessary for calculations. Then, by applying Bayes’ Theorem, 

we determine that the probability of carrying the virus, given that the test was positive, is 0.3425606 

(see Figure 2). 

 

[Insert Figure 2 near here] 

 

Notice that in order to obtain the posterior 𝑝(𝐻1 |𝐷), we needed to calculate the probability 

of data 𝑝(𝐷). For real life situations involving continuous and multiple parameters, this element of 

the equation will be impossible to calculate.6 Moreover, performing Bayesian analyses will consist 

most of the time in comparing posterior probabilities of several hypotheses, rather than computing 

the exact value of a posterior for a given statistical hypothesis (as we did here merely for 

pedagogical purposes). Because all of these comparisons will rely on the same data, the value of 

𝑝(𝐷) stays unchanged: it is only a normalizing constant that can be safely omitted from analyses.7 

To sum up, the rationale of Bayesian statistics is quite straightforward: you start with an 

initial belief about a hypothesis on the effect at hand and use the data from your study to update this 

belief. Remarkably, this reasoning may seem quite natural as it mirrors some aspects of human 

reasoning in situations of uncertainty (Ajzen & Fishbein, 1975). Imagine you drive a car on a road 

you know well and find yourself unexpectedly in a traffic jam. You obviously do not know for sure 

why there is unusual traffic (uncertainty), yet you suspect that a car accident seems quite likely to 

have occurred (prior). Suddenly, you hear an alarm siren and see an upcoming ambulance (data). 

Because you know that ambulances are especially likely to appear when car accidents happen and 

you rarely see them otherwise (likelihood), the fact that you saw an ambulance has just strengthened 
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your prior belief that the traffic comes from a car accident (posterior). From the Bayesian 

perspective, updating personal beliefs in scientific hypotheses in the light of data is precisely the 

point of scientific inference (Dienes, 2008). The Bayesian framework can be relevant in research 

methodology because these “personal” prior beliefs may actually refer to previously accumulated 

scientific knowledge or reflect theoretically driven predictions about studied effects. The next 

section elaborates on this point. 

5. Specifying Bayesian Priors: On Some Intricacies of Subjectivity in Statistics 

A natural question that arises when discovering Bayesian statistics is: “How do I choose my 

prior?”. Specifying priors is undoubtedly one of the most challenging parts of Bayesian statistics, 

and might seem difficult at first glance. There are no unanimously shared rules on how to choose 

one’s prior. At least two schools of thoughts can be distinguished in this regard, namely subjective 

and objective Bayesian statistics (Berger, 2000, 2006; Goldstein, 2006; Sprenger, 2018). We 

espouse this distinction here because of its heuristic and pedagogical value, though we invite 

readers to keep in mind that it does not fully embody the complexity of disagreements and nuances 

between different Bayesian stances (e.g., Bandyopadhyay & Brittan, 2010; Berger, 2000, 2006; 

Gelman, 2008; 2011; Gelman & Shalizi, 2013; Goldstein, 2006; Williamson, 2010). After laying 

down the basic presumptions of each of the two schools, we will address the issue of subjectivity in 

Bayesian statistics. The section will end up with an articulation of the strengths of both objective 

and subjective approaches. 

Subjective Bayesian Statistics 

The subjective school uses priors to reflect personal beliefs about the studied phenomenon, 

and this subjectivity has a key role in data interpretation. Priors serve a descriptive function to 

model one’s initial assumptions about the problem, and Bayes’ Theorem is used to adjust these in 

the light of evidence (Goldstein, 2006). Subjective priors can be based on purely personal 

judgments and intuition (e.g., Howard et al., 2000). In this tradition, priors can also be calibrated 

based on frequentist probabilities if the latter are known (see Williamson, 2010), as we already 
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mentioned earlier. Priors can be also subjective in the sense that they are informed in a scientifically 

relevant way. Firstly, priors can be constructed with reference to past research that addressed 

similar questions, drawing from individual studies, literature reviews or meta-analyses. “Today’s 

posterior is tomorrow’s prior” (Lindley, 2000, p. 301). The rationale of subjective Bayesian 

statistics is consistent with the cumulative nature of science, where new research is always 

introduced with reference to past research. Such available knowledge can be accounted for in the 

Bayesian framework (Kruschke, 2014). Secondly, subjective priors can also represent predictions 

one makes from a theory (Dienes, 2008, 2011, 2014, 2016, 2019; Dienes & Mclatchie, 2018). Here, 

a prior is said to be “subjective” in the sense that it is a rational translation of a  theoretical 

prediction that is only possible via an informed scientific judgment. Dienes (2011, 2014, 2019; 

Dienes & Mclatchie, 2018) provided some useful guidelines on how to derive such theory-based 

priors, using uniform, normal and semi-normal distributions. Notice that for both these approaches, 

subjectively informed priors are not “capricious and idiosyncratic and covert, but instead […] based 

on publicly agreed facts or theories […] [and] must be admissible by a skeptical scientific 

audience” (Kruschke, 2014, pp. 114–115).  

Objective Bayesian Statistics 

It is considered in objective Bayesian statistics that priors should reflect as little assumptions 

as possible so as to limit their influence in data interpretation and remain as uncontroversial as 

possible (Berger, 2006). Instead of committing to beliefs or informed judgments, the objective 

approach to Bayesian inference often involves using pre-determined rules of thumbs when 

formulating priors that can be used in common situations. Objective Bayesian analyses thus refer to 

a set of conventional and default procedures to be used whenever subjectivity is not integrated into 

the analyses (Berger, 2006). In parameter estimation, it involves using vague priors that diffuse 

prior probability density over a wide range of parameter values. These priors exert virtually no 

impact on the posterior, which is essentially determined by data (Kruschke, 2014; Kruschke & 

Liddell, 2018a, 2018b; Figure 1B shows an example). In hypothesis testing, commonly used 



AN INTRODUCTION TO BAYESIAN STATISTICS  18 
 

objective priors are known as default priors. These classes of priors are meant to be either non-

informative in the sense that they limit the assumptions about the range of effect sizes (e.g., Rouder 

et al., 2009), or weakly-informed in the sense that some initial assumptions are necessary but still 

compatible with a large range of effect sizes and thus represent only diffuse prior knowledge (e.g., 

Rouder & Morey, 2012). A popular default prior is the JZS prior formulated by Rouder and 

colleagues (2009). It uses a Cauchy distribution8 centered on 0, which favors effect sizes closest to 

0, but still allocates reasonable amounts of prior probability to stronger effect sizes in each 

direction. This prior also uses a scale factor parameter r that specifies the range of expected effect 

sizes to be observed in data. The default value is set on r = .707, which means that 50% of expected 

standardized effect sizes falls within the [-.707, .707] interval. Recent research in Bayesian statistics 

has been marked by substantial efforts in the formulation of such priors that can serve as defaults in 

commonly used designs such as t-tests (Rouder et al., 2009; Wetzels et al., 2009), ANOVAs 

(Rouder et al., 2012; Wetzels et al., 2012), correlations (Wetzels & Wagenmakers, 2012) or 

multiple regressions (Liang et al., 2008; Rouder & Morey, 2012). The developments of such priors 

greatly mitigated the concerns raised by the use of priors based on idiosyncratic assumptions and 

made the Bayesian methods accessible for a variety of complex models. One may ask, however, 

what is the point of performing Bayesian analyses and struggle with epistemic probabilities if the 

goal is to limit their influence in data interpretation. Arguably, such methods offer an interesting 

trade-off: They allow making statements about probabilities of hypotheses and provide statistical 

evidence, while still mostly capitalizing on data. Finally, default priors are less time- and effort-

consuming to use, more widely accessible to a non-expert audience, easier to communicate, and 

may represent more compelling evidence to other researchers than subjectively informed priors 

(Berger, 2006; Wagenmakers, Marsman et al., 2018). 

A Brief Commentary on Subjectivity in Statistics 

We suspect that some of the readers raised in the frequentist tradition may find the objective 

approach to Bayesian analyses more appealing than the subjective one, supposedly because the 
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former falls closer to the standard of objectivity inherent to science. This issue points right at the 

heart of a major criticism of Bayesian statistics that has fueled a long-standing debate in the history 

of epistemology of science, namely its subjectivity (Gelman, 2008). In particular, it is often argued 

that Bayesian statistics – and especially the subjective approach we discussed above – lack 

concordant objectivity (e.g., Sprenger, 2018; Wagenmakers, Marsman et al., 2018). The objection 

essentially unfolds as follows: scientists using different priors to analyze their data may reach 

diverging conclusions while using the same dataset. Obviously, discussing the issue of subjectivity 

and objectivity in data analysis in depth is complex and falls outside the scope of the present paper 

(see Gelman & Hennig, 2017, for a recent account). Still, it is worth mentioning two arguments to 

address this recurrent criticism. Firstly, we will argue that both frequentist and Bayesian approaches 

actually involve some degrees of subjectivity – each of a different kind – to lay down a general 

argument that the notion of “objectivity” in data analysis is more of an illusion than a reality. 

Secondly, we will argue that subjectivity is a vital component in Bayesian methods without which a 

proper progress in psychological sciences could hardly take place. Before we begin, we emphasize 

that we do not wish to give a false impression that these are definite answers to the problem. This 

complex issue has no unique solution over which statisticians and philosophers alike would come to 

an agreement. Instead, approaching it ultimately leads to endorsing a particular epistemological 

tradition on how to do science. 

Bayesian school of inference has a well-established reputation of being a controversial 

approach to statistics, partly because of their subjectivity (e.g., Gelman, 2008, 2011; Sprenger, 

2018; Wagenmakers, Marsman, et al., 2018). The objection is generally grounded in a conviction 

that statistical analyses should be objective in order to warrant the objectivity of scientific 

conclusions and should be based on data and nothing else. Such a perception goes hand in hand 

with a belief that objectivity in data analysis is attainable through the frequentist approach with the 

p-values (e.g., Berger & Berry, 1988; Gelman, 2011), paired with an instinct to escape from 

subjectivity at any cost. After all, p-values can be obtained straightforwardly based on observed 
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data and the statistical model assuming the null hypothesis, irrespective of anyone’s idiosyncratic 

judgments and beliefs about the research question at hand. However, several authors have 

thoroughly illustrated that even the p-values are not exempt from subjective choices, such as 

researcher’s sampling and testing intentions (Berger & Berry, 1988, Dienes, 2008; Kruschke, 2014; 

Kruschke & Liddell, 2018b; Wagenmakers, 2007; Wagenmakers et al., 2008; Sprenger, 2018). For 

instance, assume that a particular data set of 100 participants yields a significant effect, say a p  

.03. Most likely, you implicitly assumed that the data set was collected with the following sampling 

and testing intentions: “1) collect 100 participants, then 2) compute the p-value”. However, the 

same data set could have been obtained with different sampling and testing intentions, such as “1) 

collect 50 participants, then 2) compute the p-value and if not significant, then 3) collect 50 other 

participants, then 4) compute the p-value. The latter scenario corresponds to a sequential analysis 

and would require dividing the α threshold by the total number of performed tests, in which case the 

p  .03 would no longer remain statistically significant at α/2 = .05/2 = .025. As a matter of fact, the 

same data set could have been obtained with a whole variety of different sampling and testing 

intentions that may eventually lead to opposite conclusions (see Dienes, 2008, Chapter 3; Kruschke 

& Liddell, 2018b; Wagenmakers, 2007, for a more detailed account of the issue; also see 

Wagenmakers et al., 2008, Section 2.3, for a humorous illustration). In the same example, the 

significance of the p-value may also be contingent on whether the test was one- or two-tailed, or 

whether it was predicted before or after the data was collected (e.g., Dienes, 2008; Sprenger, 2018). 

Such a dependency on subjective sampling and testing intentions thus leaves the door open for 

situations in which a single data set leads to different statistical conclusions, which is precisely the 

main criticism against Bayesian inference. Now, we hasten to emphasize that the word “subjective” 

must not be regarded as ungrounded; rather, it refers to an informed judgment that must be justified 

in the light of other available options. Making informed judgments in frequentist statistics is part of 

the routine and there is nothing unusual about it. When one uses the p-values, one is expected to 

conduct power analyses that require committing to an appropriate effect size, which must be 
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justified. Indeed, the choice of a suitable alternative to the null hypothesis in power analyses also 

requires to make an informed judgment. Finally, the choice of α thresholds in frequentist inference 

is also left to the researchers’ discretion. Researchers can use custom α thresholds in their work 

based on subjective cost-benefit considerations and are expected to justify their α (Lakens et al., 

2018). Let alone, the usual α threshold fixed at .05 used in most of psychology journals is arbitrary 

and can be more or less stringent depending on the discipline. Likewise, Bayesian inference can 

also involve thresholds – as we are about to discover in the next section – that are no less arbitrary 

and can vary across journals and scientific communities, without a straightforward theoretical 

justification.  

We insist that the point made here is not meant to undermine the validity of frequentist 

inference. Our point is that both Bayesian and frequentist approaches involve various degrees of 

subjectivity. While the latter is bound up with the choices such as the researcher’s intentions to 

collect and test data or effect size specification in power analyses, the former is bound up with the 

choice of priors. This leads us to the more general statement put forward by many acknowledged 

authors, that objectivity in data analysis is illusory (Berger & Berry, 1988; Gelman & Hennig, 

2017). The seemingly virtuous attitude of “letting the data speak” is simply incompatible with the 

wide variety of subjective choices that one needs to make in data analysis (Morey et al., 2016; 

Steegen et al., 2016; Silberzahn et al., 2018), such as model specification and building, 

measurement methods, data processing and construction (i.e. “cleaning”) or yet outlier 

management. Accordingly, Gelman and Hennig (2017) argued that the potentially misleading terms 

of “objective” and “subjective” should be abandoned and replaced by more meaningful attributes 

such as “transparent”, “consensual” or “context-dependent”. Suma sumarum, subjectivity – as long 

as it is understood as scientifically informed and publicly disclosed judgments rather than personal 

or idiosyncratic opinions – can be argued to be widely present across statistical practices and in 

science in general.  
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We now turn to our second argument: subjectivity may be regarded as a desirable feature 

and actually one of the strengths of Bayesian statistics. As we outlined earlier, there are good 

reasons to appreciate the pragmatical advantages of using the “objective” default priors. Default 

priors are particularly praised for their lack of subjective informativeness, minimal and neutral 

assumptions and for their wide adaptability as a default strategy to address various research 

questions (e.g., Berger, 2000). One of the reasons for their popularity is that they are designed to 

allow inferences to capitalize on data. However, learning from data is not equal to testing theory-

driven predictions, which is vital to the development of empirical sciences (e.g., Chalmers, 1982; 

Dienes, 2008). To bare on scientific progress, priors must reflect predictions that are theoretically 

meaningful. Theory-driven priors cannot be narrowed to mere default models since the latter will 

not yield substantive theoretical predictions (e.g., Dienes, 2014, 2019; Dienes & Mclatchie, 2018) 

nor can they simply summarize previously accumulated evidence (Krefeld-Schwalb et al., 2018). 

However, as Dienes (2016) points it out, formulating theory-driven priors is not a self-evident 

process: a theory will usually yield not one but several models that operationalize it. Firstly, 

because most psychological theories are not expressed with formal models but are stated in ordinary 

language (e.g., Fiske, 2004), which does not prompt unequivocal numerical predictions (Meehl, 

1967). Secondly, because a thought must be given to auxiliary assumptions under which we assume 

the theory to work (Earp & Trafimow, 2015; Świątkowski & Dompnier, 2017). All in all, 

translating a theory into specific priors requires ascertaining what the theory actually predicts but 

also many other aspects, such as quality and relevance of past research related to the theory at hand, 

reflecting upon the range of plausible effect sizes, the auxiliary assumptions, etc. All of these 

involve a great deal of informed scientific judgments in the process. This leads us to the core of our 

argument: the subjectivity inherent to the Bayesian framework is transparent and can be 

constructively discussed and debated within a research community (Dienes, 2019; Kruschke, 2014; 

Morey et al., 2016, Sprenger, 2018). For example, Sprenger (2018) argued that the subjective 

approach to Bayesian inference fosters constructive criticism and illustrated it in the case of psi 
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research. All controversy put aside, conflicting parties could work on their disagreements because 

they held different assumptions that were transparently translated into different priors. In this sense, 

the inherent subjectivity of Bayesian inference can be considered as its strength as it encourages to 

outline the assumptions laying behind the scientific debate as precisely and transparently as 

possible. 

Beyond Objective and Subjective: Specifying Informed Priors 

The arguments discussed above lead us to the take-home message of this subsection: the 

distinction between “subjective” and “objective” Bayesian statistics may be somewhat spurious 

with respect to scientific inference (Dienes, 2014; Morey, 2017). On the one hand, scientifically 

meaningful priors should be formulated in full transparency, in a way that can be defended against a 

skeptical research audience and that invites for constructive criticism (e.g., Kruschke, 2014; 

Sprenger, 2018). On the other hand, they should convey theoretically meaningful and concomitant 

predictions about hypothesized effects (e.g., Dienes, 2014, 2016, 2019; Morey et al., 2016). It 

seems to us that current recommendations broadly available in the psychological literature align 

well with these two constraints. For instance, those authors who advocate for defaults priors clearly 

underscore the importance of customizing such priors depending on the researchers’ background 

knowledge and research peculiarities (e.g., Morey, 2017; Rouder et al., 2009; Rouder et al., 2016; 

Wagenmakers, Marsman et al., 2018). Likewise, Dienes (2014) also stressed that his approach to 

Bayesian inference cannot be reduced to either of the two approaches – subjective or objective – 

which he put in an insightful way: 

 

“The approach is objective in that [it involves] rules of thumb that can act as 

(contextually relevant) defaults, where the probability distributions are specified in simple 

objective ways by reference to data or logical or mathematical relations inherent in the 

design. No example relied on anyone saying, “according to my intuition the mean should be 

two because that’s how I feel” (cf. Howard et al., 2000, for such priors). But the approach is 
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subjective in that […] only scientific judgment can determine the  right representation of the 

theory’s predictions given the theory and existing background knowledge; and that scientific 

judgment entails that all defaults are defeasible – because science is subject to the frame 

problem” (p.13) 

 

A first practical consequence that follows is that default priors scaled at arbitrary parameter 

values should not be used mechanistically in every possible situation, irrespective of the research 

context. Such an attitude would be unwarranted for sound inference (see Gigerenzer, 2004, for 

“statistical rituals”), neither is it actually advised by the tenants of default priors. Arguably, the 

degree to which researchers can appeal to their judgments in constructing their priors should depend 

on their advancement in their research program when studying a particular effect. This point holds 

to the fact that researchers accumulate knowledge as they conduct successive studies within a 

broader research program, and hence do not possess the same knowledge at its beginning than at 

more advanced stages of it. Therefore, an interesting possibility could be to start with a default prior 

at the beginning of a research and tune it up as the research advances. 

  As such, using the default JZS prior as a starting point to formulate one’s priors may seem 

appealing (see Dienes, 2014, 2019 and Dienes & Mclatchie, 2018, for alternative priors and useful 

strategies to construct them for hypothesis testing). First, the default JZS prior uses a Cauchy 

distribution and is centered on 0, so it assumes effect sizes close to 0 as the most plausible a priori. 

It is a conservative assumption for an alternative hypothesis that describes one’s expectations about 

the world when H0 is false. Also, recall that the default JZS is scaled at r = .707, so that 50% of the 

expected effect sizes falls within the [-.707, .707] range. Importantly, note that this default effect 

size range is arbitrary: it has no straightforward justification (Morey, 2017). While it may be well-

suited in those psychology subfields that are interested in substantial effect sizes, it is less so in 

domains that have interest in smaller effects, such as social psychology. With this respect, Morey 

(2017) urged for customizing the JZS prior instead of relying on the r = .707 default value. Ideally, 
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the JZS prior’s scale factor parameter should be adjusted to match the expected range of effect sizes 

typical to one’s research field, or otherwise to a theoretically justified range. For instance, 

considering the mean effect size in social psychological research of .21 in terms of correlation 

coefficient (Richard et al., 2003), equivalent to .43 in terms of Cohen’s d, researchers from this field 

may want to adjust the JZS prior’s r scale to .43 for standardized mean difference when performing 

a t-test (see also Williams et al., 2017). This would be a default starting point when no relevant 

knowledge is available, and no predictions can be made. With clear hypotheses in mind and at more 

advanced stages of research programs, a finer tailoring of the JZS prior becomes desirable. Strong 

hypotheses will usually specify the direction of an effect, and so such directional hypotheses can be 

tested with semi-Cauchy prior distributions (Morey, 2017; Morey & Rouder, 2011). With enough 

expert knowledge at hand, it is also possible to center Cauchy prior distributions around more 

theoretically meaningful mean parameter values than the null (see Gronau et al., 2019, for the 

informed Bayesian t-test). After all, if the theory at hand is not utterly wrong, a non-zero parameter 

value is more likely to be true. Keep in mind that such customizations of default priors warrant 

adequate justifications. Finally, it is also recommended to use several priors – ranging from the 

default to the very informed – to assess whether conclusions vary substantially across different 

choices in prior specification (i.e. robustness checks; see Dienes, 2019 and Wagenmakers, Love et 

al., 2018). 

Now that we reviewed some ways of choosing priors, we turn to discussing practical 

methods of the analyses. The next section introduces Bayesian hypothesis testing, discussing both 

theoretical underpinnings and practical ways of computation. 

6. Bayesian Hypothesis Testing: The Bayes Factor 

 Bayesian hypothesis testing involves computing Bayes Factors (Dienes, 2011, 2016; 

Jeffreys, 1961; Kass & Raftery, 1995; Kruschke, 2011; Lee & Wagenmakers, 2014; Morey  et al., 

2016; Mulder & Wagenmakers, 2016; Rouder et al., 2009), which is the equivalent of frequentist 
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hypothesis testing. The Bayes Factor (BF) tests two hypotheses by comparing how much data are 

likely to have occurred under each (see Equation 3). It derives from Bayes’ Theorem as follows:  

 

                                                           
𝑝(𝐻1|𝐷)

𝑝(𝐻0|𝐷)
=  𝐵𝐹10  × 

𝑝(𝐻1)

𝑝(𝐻0)
,                                                      (2)  

 

     𝑤ℎ𝑒𝑟𝑒 𝐵𝐹10 =  
𝑝(𝐷|𝐻1)

𝑝(𝐷|𝐻0)
                                                           (3)  

 

 
Equation (2) reads “Posterior odds equals Bayes Factor times Prior odds”. Prior odds 

indicate to what extent one favors one hypothesis over another before getting data. Posterior odds 

are an updated version of prior odds: they indicate how much more probable is hypothesis H1 than 

H0, given data at hand. Eq. (2) makes it clear that the BF gives the amount by which prior beliefs 

about hypotheses must be adjusted once data are known, to get the ratio of posterior probabilities of 

these hypotheses. Interpreting the BF value is very straightforward: for instance, a BF10 = 8 means 

that the observed data are 8 times more likely to have occurred under H1 (e.g., experimental 

hypothesis) than under H0 (e.g., null hypothesis). A BF10 = 1/5 is equivalent to BF01 = 5, meaning 

that data is 5 times better predicted by H0 than H1. For more computational details on how the BF is 

calculated, see Appendix E. 

 Importantly, note that the notion of “prior” has two distinct and independent meanings in 

Bayesian hypothesis testing (see Figure 3; see also Stefan & Schönbrodt, 2017). The first meaning 

refers to prior probability of a hypothesis, which simply quantifies the degree to which one believes 

the hypothesis to be true before seeing any data. A prior in this meaning, for instance the 𝑝(𝐻1) in 

Eq. (2), is used to calculate prior odds. The second meaning refers to prior probability of a model 

parameter 𝑝𝐻(𝜃): it is the distribution of probability over the range of values of a parameter 𝜃 as 

specified by the hypothesis 𝐻. In this sense, a prior can be understood as a model (Dienes, 2016, 

2019; Dienes & Mclatchie, 2018): it gives a statistical operationalization of what is actually 

predicted by a hypothesis and is used to calculate the evidence that data provide for the hypothesis 
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(Appendix E shows exactly how the prior intervenes in the computation of the likelihood term 

𝑝(𝐷|𝐻) ). The prior in this meaning is, for instance, the Cauchy distribution in the default JZS we 

discussed earlier. With its scale parameter set at r = .707, this prior distributes the probability of the 

parameter of interest – the standardized effect size  – so that one half of the expected effect sizes 

falls within the [-.707, .707] interval and the other half falls outside (see Rouder et al., 2009). In 

essence, the two meanings of “prior” refer to two independent questions in data analysis (Dienes, 

2014, 2016): the first meaning relates to the question “how much does one believe in a hypothesis 

before seeing the data”, while the second relates to the question “what does the hypothesis actually 

predict”. 

 

[Insert Figure 3 near here] 

 

 Furthermore, notice that in order to come up with posterior odds that indicate how probable 

is one hypothesis compared to another given data, one must necessarily commit to a ratio of prior 

odds and multiply it by the BF value. Although setting prior odds is entirely up to one’s personal 

beliefs (Dienes, 2008), it is suggested to conveniently set this ratio at 1 (e.g., Rouder et al., 2009), 

so that both hypotheses are equally probable before data are collected. Thus, with prior odds set at 

1, a BF10 = 8 is equivalent with saying that H1 is 8 times more likely than H0, given the data at hand. 

Although some proponents of the objective approach to Bayesian statistics would advocate for this 

practice, it still may be regarded as questionable. Specifically, setting the same prior probability to a 

point-hypothesis (e.g., the null hypothesis) and to an interval-hypothesis (e.g., the alternative) may 

be dubious. Keep in mind however that the BF can be interpreted on its own without any reference 

to prior odds. One can quantify the degree to which data support one hypothesis over another 

without having to state how much one believed in these hypotheses before seeing the data, as we 

discussed it in the paragraph above. The only prior information that must be specified then is the 

prior probability 𝑝𝐻(𝜃) that is necessary to compute the BF. Therefore, the BF can be interpreted as 
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a likelihood ratio that gives a measure of strength of evidence without having to specify the prior 

odds (see Dienes, 2014, 2016). 

The BF is advocated as being a conceptually simple, theoretically sound and coherent 

measure of evidence (Dienes, 2014, 2016; Lodewyckx et al., 2011; Morey et al., 2016). The BF 

compares the predictive accuracy of two competing hypotheses to explain data, hence it is a direct 

expression of relative strength of evidence for one hypothesis over another (Lodewyckx et al., 2011; 

Morey et al., 2016). The BF is a continuous measure of evidence from which three possible 

conclusions follow: (1) there is evidence for the alternative (H1) relative to the null (H0) when BF10 

> 1; (2) there is evidence for the null (H0) relative to the alternative (H1) when BF10 < 1; the data is 

insensitive to discriminate between the two hypotheses when BF10 ~ 1 (Dienes, 2014). According to 

a commonly used convention (see Table 2), the BF value must favor at least 3 times more one 

hypothesis over another for the evidence to be said “decisive”. For instance, a BF10 = 5 would be 

regarded as “substantial” evidence in favor of (H1) compared to (H0) according to this convention, 

whereas the evidence of BF10 = 2 would be merely regarded as “anecdotal”. Importantly however, 

some authors have raised concerns that such a categorization of continuous BF values into disc rete 

and arbitrary labels is neither useful nor desirable (Morey, 2015, 2017). Morey (2015) argued for 

instance that labels such as “anecdotal” or “substantial” to interpret BF values may inspire different 

interpretations across researchers, and “impose an  arbitrary, unjustified homogeneity on judgments 

of evidential strength”. On top of that, relying too heavily on these cutoffs entails the same risk as 

academia already experiences with the p < .05 threshold. For instance, a BF = 2.9 could be deemed 

insufficient to give grounds to publication, whereas a BF = 3.1 could be deemed high enough, 

though their evidential weights are quantitatively similar. 

 

[Insert Table 2 near here] 
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Since the BF tests two hypotheses simultaneously one against another, it is a symmetrical 

measure of evidence (Dienes, 2014, 2016; Dienes & Mclatchie, 2018). The BF can provide support 

either in favor of H1 against H0, or in favor of H0 against H1 (or indicate data insensitivity as 

mentioned above). When H1 is true, BF10 will converge to plus infinity as the sample size increases, 

and it will converge to 0 when H0 is true (Morey & Rouder, 2011). What follows is that the BF can 

be used to corroborate the null hypothesis (e.g., Dienes, 2014, 2016; Gallistel, 2009; Rouder et al., 

2009). Some authors raised concerns however that taken literally, the null hypothesis is always false 

(e.g., Cohen, 1994; Meehl, 1978), limiting the interest of providing evidence for such a point-null 

hypothesis. The BF can also provide evidence for interval null hypotheses, asserting approximate 

rather than exact invariances (Morey & Rouder, 2011). In any case, remember that the BF is a 

relative measure of evidence: it supports a hypothesis only relative to another. In other words, the 

BF cannot prove a hypothesis to be true in an absolute sense, but only indicate that this hypothesis 

accounts for data better than a competing one. For instance, imagine that your data indicate a very 

small correlation, say r = .03. With a reasonable sample size, a BF comparing the probability of 

such data under a model assuming the effect to be non-zero relative to a model assuming the effect 

to be zero would most likely yield support for the latter, say BF01 = 50. It is important to notice that 

such a BF value does not mean the null hypothesis is true, but rather that the data are more likely to 

occur under the null compared to a supposedly reasonably specified alternative (see also Rouder et 

al., 2009, Figure 5). 

For simple designs such as mean comparisons and when priors follow a (semi)normal 

distribution, BFs can be calculated analytically with online calculators (e.g., 

https://medstats.github.io/bayesfactor.html; also see Dienes, 2014). In more complex designs such 

as ANOVAs and multiple regression, computing BFs involve substantially greater computational 

difficulties, but they can be efficiently estimated by Savage-Dickey ratio using MCMC iterative 

methods (see Morey et al., 2011 and Wetzels et al., 2009, for more details). Among statistical 

programs computing BFs (Mulder & Wagenmakers, 2016), JASP (jasp-stats.org; JASP Team, 
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2016) and several R packages, including the BayesFactor (Morey & Rouder, 2015) or bayesmeta 

(Röver, 2020) may seem the most appealing for psychologists in daily needs, both multiplatform 

and freely available. JASP is a user-friendly software providing both frequentist and Bayesian 

features for most common models in psychology (e.g., ANOVA, linear regression, repeated 

measures). R users may use the BayesFactor package, covering mostly the same applications and 

allowing extra-flexibility typical for the software or bayesmeta for meta-analyses. Both JASP and 

BayesFactor perform omnibus and covariate tests (see Rouder & Morey, 2012). Importantly, 

remember that both JASP and BayesFactor are tuned to use the default JZS prior with default scales 

(e.g., r = .707 for the t-test). Though one can obtain BF values without having to explicitly specify 

the JZS r scale in JASP or BayesFactor, it is however of utmost importance not to rely on such 

default r scale values automatically, but rather to use priors that are meaningful with respect to the 

research context (see Section 5 and Rouder et al., 2009 for heuristics on how to specify the JZS 

scale). For detailed explanations on how to use JASP or BayesFactor package to compute BFs, we 

encourage readers to read the manuals (Morey & Rouder, 2015; Wagenmakers, Marsman et al., 

2018; Wagenmakers, Love et al., 2018). For some examples on how to report BF analyses, see 

Chatard et al. (2017) and Rouder and Morey (2012). 

 Some limitations of the BF must be mentioned. Remember that the BF measures the 

strength of evidence for one hypothesis with reference to another, thus the evidence is relational. 

Incautious hypothesis testing may yield an apparent support for a hypothesis (e.g., BF10 = 100), 

which in reality conceals the fact that both hypotheses are not well supported by data, only one 

more strongly than the other (e.g., BF10 = 0.0001 / 0.000001 = 100). Importantly, BFs are also 

limited with respect to their sensitivity to prior specification (e.g., Kruschke, 2014; Liu & Aitkin, 

2008; Rouder & Morey, 2012). Even BFs based on non-informative or weakly informative default 

priors do not fully address the concern about subjectivity, as BFs’ values may strongly depend on 

the choice of priors, even with large sample sizes. Robustness checks should therefore be regularly 

performed by checking whether the BF value changes substantially if alternative priors are used. 



AN INTRODUCTION TO BAYESIAN STATISTICS  31 
 

Lastly, computing BFs for covariate testing in multiple regressions may be limited when predictors 

are highly correlated (Rouder & Morey, 2012), just as in frequentist statistics. 

 At this point, readers should have enough understanding of the BF to bring us to the closing 

point. We turn back to the conceptual discussion on priors to emphasize the practical consequences 

of customizing the JZS prior. Here we present a series of simulations that illustrate how the choice 

of priors can impact the accuracy of decisions based on a particular BF analysis. We consider a 

common setup involving an independent two-sample Student t-test. For each simulation, we 

specified the following: the magnitude of population effect size, the scale factor parameter of the 

prior (i.e. JZS’ r) and the sample size. Effect sizes varied from 0 to 1 by steps of .10 in terms of 

Cohen’s d. We used two JZS priors: 1) a JZS prior scaled at r = .707, assuming a median effect size 

of .707 in absolute value used by the default in the software 2) a JZS prior scaled at r = .43, 

assuming a median effect size of .43 in absolute value and corresponding to the mean effect size in 

social psychology. For the sake of simplicity, we refer to the former as the “default prior” and to the 

latter as the “informed prior”. Finally, the simulations used several sample sizes, ranging from n=25 

to n=100. 

 Each simulation unfolded as follows. First, we drew a random sample of size n from two 

normally distributed populations, each parameterized according to the desired effect size. We then 

computed a BF10 with a Bayesian two-samples t-test on that data, using one of the two priors as the 

alternative to test against H0. If BF10 < 1/3, we decided to accept H0; If 1/3 ≤ BF10 < 3, we 

considered the test as inconclusive; if BF10 > 3, we decided to reject H0. Table 3 summarizes the 

results of repeating this procedure for an arbitrary high number of times. For comparative purposes 

and in line with our pedagogical approach, we also displayed statistical power proper to each 

scenario. The R code used to run the simulation is available online (https://osf.io/8x6kg). 

 

[Insert Table 3 near here] 

 



AN INTRODUCTION TO BAYESIAN STATISTICS  32 
 

 What we are most interested in here is the accuracy reached with small effect sizes 

depending on the prior. In domains like social psychology, small effect sizes are more usual than 

large effect sizes. The default prior assumed a medium/large median effect size. It was 

unreasonably large with respect to usual expectations of a social psychologist. Contrariwise, the 

informed prior assumed small effects to be more likely and it was meant to be more suitable. Note 

that overall, both priors performed roughly equally well for rejecting accurately H0 for non-zero 

effects. However, stronger expectations for medium/large effect sizes under the default prior came 

at a cost in accuracy with respect to making wrong decisions. For instance, for effects ranging from 

.20 to .40 Cohen’s d, the rate of wrong decisions to accept H0 oscillated between 48% to 16% for n 

= 50, when using the default prior. In this case, the informed prior performed much better: for the 

same range of effect sizes and sample size, the rate of wrong decisions to accept H0 was comprised 

between 17% and 4%. Now, where does this difference come from? Remember that a prior is an 

allocation of probability over the range of the possible values of a parameter. When the default prior 

assumes that that the median expected effect size is d = .707, it allocates 50% of its probability mass 

to effect sizes comprised between [-.707, .707]; the informed prior, on the other hand, allocates 50% 

of probability mass to effect sizes comprised between [-.43, .43]. In other words, the default prior 

spreads the probability mass to a greater extent for more extreme values and to a lesser extent for 

smaller values than the informed prior. If small effects are especially likely to be observed, then the 

corresponding likelihood will be more compatible with probability mass allocation under a 

narrower prior than under a wider prior. A narrower (informed) prior will be thus more competitive 

against the null hypothesis than a wider (default) prior. Consequently, BF values obtained with the 

former will be higher than those obtained with the latter. This in turn explains why the decisions 

based on the informed prior more often led to data insensitivity compared with the default prior. 

 Finally, notice the difference in accuracy obtained with this procedure when H0 was true. In 

this case, decisions based on the default prior led to higher accuracy relatively to the informed prior. 

For instance, with a small sample size (n = 25), using the informed prior literally never led to 
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correctly accepting the null hypothesis, whereas this rate was around 47% under the same 

conditions when the default prior was used. This illustrates another trade-off in prior customization: 

narrower priors will constitute more severe tests against the null hypothesis than wider priors. 

Stated differently, a narrower prior will be more competitive to account for random variations 

around the null than will be a wider prior.  

7. Bayes in Psychology: What Could Change? 

 In this section, we review how a greater reliance on Bayesian statistics could have non-

trivial consequences on virtually each step of the process of scientific inquiry, from theory 

construction to publication and replication. Rather than providing an exhaustive account of each 

increment, this section aims at highlighting some important consequences of using Bayesian 

inference. We thus encourage readers to check the references we mention below for further 

readings.  

Theory Development 

Formulating the Alternative Hypothesis. 

Arguably, among substantial consequences of a wider use of Bayesian statistics could be 

stronger theorizing in our field. Given that one must necessarily commit to a certain prior when 

performing Bayesian analyses, a thought must be given to what one actually expects (i.e. predicts) 

to find in data. In other words, Bayesian statistics force to explicitly state one’s hypotheses with 

respect to studied effects (see Dienes, 2016). Common criticisms toward NHST users object that the 

latter never commit to any alternative hypothesis and the only one being actually tested is H0, which 

often leads to rejecting it with only weak evidence (Rouder et al., 2016; Wetzels et al., 2011).  As 

we mentioned earlier, this is partly because most psychological theories are not mathematically 

precise enough to allow specifying an a priori alternative hypothesis as expected in the NP 

approach (Meehl, 1967). We hope to have illustrated throughout the paper that the Bayesian 

framework provides flexible ways in which priors can be formulated to reflect researcher’s 

expectations and hypotheses. On their road from exploration of effects to corroboration of theories, 
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the strength and the precision of researchers’ expectations and hypotheses vary substantially. To 

begin with, a possible application of Bayesian statistics could be in exploratory research. In this 

case, one ignores the exact number of statistical tests to be performed, hence testing intentions are 

not known a priori (De Groot, 2014). Relying on frequentist statistics may be dubious, both because 

no specific alternative hypothesis is specified, and because one does not control error rates. Here, a 

p < .05 hardly means what it is intended to mean, and chances are high that it might be a false 

positive especially when extensive multiple testing is applied, which is typical to exploration. 

Bayesian analyses seem more adequate because they preserve their meaning regardless of testing 

intentions. Moreover, researchers can use defaults priors (such as the JZS) and customize them so 

that they match the range of effect sizes of interest for exploration. On the other hand, closer to the 

“confirmatory” end of the spectrum, more subjective or informed versions of priors can be used. As 

researchers’ get experience with each study they conduct, their default priors can be flexibly shaped 

into more specific predictions, just as we discussed in Section 5. Building priors can be also based 

on the available literature (e.g., Dienes, 2019). This should be done with extra caution because of 

possible context dependency that could constitute some “hidden assumptions” of a theory (see 

Świątkowski & Dompnier, 2017). Stated differently, past research related to some effect of interest 

may exist, but it may turn out to be misleading, especially if it is produced within a specific culture 

or context.  

Theorizing and Assessing Invariances. 

Researchers can use Bayesian methods to corroborate H0 (Dienes, 2016; Gallistel, 2009; 

Rouder et al., 2009), which is not possible with conventional null hypothesis significance testing. 

Although one does not need to use Bayesian statistics per se to corroborate the null hypothesis (see 

Lakens, 2017, for frequentist equivalence testing), it is reasonable to expect that with the increased 

popularity of Bayesian statistics, an increased number of researchers would become less “aversive” 

against corroborating the null hypothesis. Establishing invariances can represent theoretical 

interests (e.g., Gallistel, 2009; Morey et al., 2018). Moreover, researchers often want to ensure that 
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variables such as sex or age exert no influence on dependent variables, or that such variables do not 

interact with experimental treatments. In such cases, corroborating H0 can be properly addressed 

with BFs instead of incorrectly with non-significant p-values. 

Methodology 

Sequential Analyses. 

Arguably, using Sequential Bayes Factors analyses (SBF; Schönbrodt & Wagenmakers, 

2017; Schönbrodt et al., 2017) could represent a major change for psychologists in the way they 

conduct their studies. Since Bayesian inference does not depend on sampling and testing intentions 

(i.e., multiple testing, collecting more data after initial testing; early data collection stopping), they 

allow a greater flexibility in research design than traditional methods. Here, one can monitor 

evidence throughout the process of data collection and stop it whenever it is deemed compelling 

enough. One can also collect more data once the planned sample size has been reached if the 

evidence is not informative enough. Both of these situations do not require to make any 

adjustments, as they would if one were to use frequentist statistics. Thus, SBF can be appealing 

because genuine a priori power analyses cannot always be performed, or they also may rely or 

inaccurate, overestimated effect sizes. SBF therefore guarantees that researchers do not end up with 

“non-significant” studies, and eventually be able to provide support either for H0 or for H1. 

Remember however that Bayesian statistics do not control for long term error rates. Using SBF for 

decisions to stop or continue data collection and testing should be performed very carefully if one 

still wishes to control error rates, which is possible with simulations (see Dienes, 2016 and 

Schönbrodt & Wagenmakers, 2017).  

Data analysis 

Intellectual Hygiene. 

According to some authors, many researchers are interested in knowing the probabilities of 

their hypotheses being true (e.g., Cohen, 1994; Gigerenzer et al., 2004). In this regard, Bayesian 

statistics seem naturally appealing, because they actually give what researchers look for when they 
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interpret p-values as a measure of falsehood of H0. Hence using Bayesian analyses would be a 

matter of intellectual hygiene. However, we also think that if the Bayesian framework were to 

become widely recognized in the field next to traditional methods, researchers would be more prone 

to acknowledge the important difference between the two conditional probabilities that are often 

conflated (e.g., Badenes-Ribera et al., 2016), namely the probability of some data given some 

hypothesis (e.g., a p-value) and the probability of some hypothesis given some data (e.g., a 

posterior). This would contribute to better statistical knowledge and education. 

Measuring Statistical Evidence. 

 As we hope to have explained it in Section 2, Bayesian statistics answer a radically 

different kind of statistical question than frequentist statistics. Instead of using p-values to know 

what decision about hypothesis acceptance or rejection to make based on some data, Bayesian 

statistics and specifically BFs can be used to assess the degree to which some data support one 

hypothesis over another. This approach allows to measure statistical evidence data provide for a 

hypothesis, because we can measure the degree to which a conviction in a hypothesis must be 

changed relative to another based on the data. This approach allows assessing the evidential value 

of data for a theory because the data are interpreted in a strict relationship with the theory (Dienes, 

2016; Morey et al., 2016). In practice, using BFs for decision making to accept hypotheses can 

sometimes lead to different conclusions than one would get using traditional statistics (see Dienes, 

2011; Johnson, 2013; Wetzels et al., 2011).  

No More “p > .05” Ambiguity. 

 Non-significant p-values are part of psychologists’ daily routine, yet they are hard to 

interpret. They occur for two reasons: (1) either because H0 is true; (2) or because data present too 

much variance and are insensitive to discriminate between H0 and H1. The p-value does not allow 

differentiating between these two situations, whereas the BF does. When BF10 is close to 1 this 

point toward data insensitivity, and when it is close to 0, it gives support for H0 over H1 (Dienes, 

2014). Remember that when H0 is true, the p-value does not converge to any specific value as the 
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sample size increases, whereas the BF10 converges to 0 (Morey & Rouder, 2011). Irrespective of 

one’s preferences for frequentist or Bayesian statistics, Dienes (2014; 2017) suggests computing 

BFs for non-significant p-values in order to disambiguate their meaning.  

Publication 

More Balanced Literature. 

 Dienes (2016) argued that since Bayesian statistics can provide evidence in favor of the null 

hypothesis over an alternative, there is no reason not to publish such evidence to track when data 

goes against a theory. This could likely contribute to a more balanced record of published literature 

between the “positive” and “negative” findings, hence possibly reducing the publication bias issue. 

Reduced QRPs. 

Let there be no illusion about it: as with every tool, it is possible to engage in questionable 

research practices (QRPs) with Bayesian statistics (e.g., using observed data to shape priors a 

posteriori; post-hoc covariate inclusion in a model to reach evidence, etc.). However, according to 

Dienes (2016), a wider reliance on Bayesian analyses could contribute to reducing the problem of 

QRPs. Since Bayesian statistics do not depend on factors such as sampling intentions (e.g., optional 

stopping, collecting more data after initial testing…) and multiple comparisons, these are ruled out 

from possible options to “hack” data. 

Replication 

Assessing Replication Research. 

Imagine you conduct a replication study of an effect with statistical power set at .95 , and 

you get a p = .21. Did you replicate or not? For the reasons mentioned above, a non-significant p-

value is hard to interpret in such cases, despite high statistical power (Dienes, 2016). As Dienes 

stated: “[…] knowing power alone is not enough; once the data are in, the obtained evidence needs 

to be assessed for how sensitively H0 is distinguished from H1” (2016, p. 80). In such cases, one 

could again rely on BF’s capacity to make the three-way distinction to assess whether data support 

H1, H0 or are just insensitive to make the difference. This view on data could provide a more 
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informative view on replication studies than a simple “replicated/not-replicated” dichotomy (see 

also Etz, & Vandekerckhove, 2016). 

8. Bayes Factors in Practice: A Commented Example with R Code 

This paper would not have been complete without a practical illustration. In the last section, 

we draw from a published research in social psychology to illustrate how to conduct an actual 

Bayesian analysis with Bayes Factors. We use the data from Chatard et al.’s (2017) research and 

show how to compute Bayes Factors using the BayesFactor R package. The annotated R code 

needed to reproduce the analyses is also available through the OSF website (https://osf.io/8x6kg). 

Chatard and colleagues' research (Chatard et al., 2017) addresses the question of 

automaticity in social comparison. The authors provide evidence that subliminal exposure (20 ms) 

to pictures of ultra-thin women is sufficient to increase body appearance anxiety. In the first part of 

their second experiment involving a within-subject design, female participants were subliminally 

exposed (vs. not exposed) to pictures of thin women while doing an unrelated task. Right after, they 

had to say how anxious they felt "right now" about their body and their weight. This constituted the 

main dependent variable of the experiment (coded “AnxietyPrime” and “AnxietyControl” in the R 

script). Then, participants were exposed a second time to a similar task and they were asked to 

guess whether a subliminal image was embedded in the task or not. The comparison between the 

"hits" (i.e. the picture was present and they saw it) and the "false alarms" (i.e. the picture was absent 

but they said it was present) served to check whether the exposure to the picture was indeed outside 

awareness. These two variables are coded as “Hits” and “FalseAlarms” in the R script. The authors 

tested two hypotheses.  

First, Chatard et al. sought to test whether the presentation of stimuli was outside 

participant’s consciousness. To this end, the authors compared participants’ false alarms with hits 

and predicted that the latter should not be higher than the former. A frequentist paired-samples t-test 

yielded a t(50) =  –0.43, p = .66, indicating that the two were not statistically significantly different. 
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Using the formula below, we computed a Bayesian paired-sample t-test that pits the null hypothesis 

against a default alternative hypothesis assuming a Cauchy prior scaled at r = .707: 

 

1 / ttestBF (Hits, FalseAlarms, paired = TRUE ,rscale  = .707) 

 

This analysis yielded a BF01 = 5.99 and means that the data were almost 6 times more likely under 

the null hypothesis than under a default alternative hypothesis. However, Chatard et al. used a more 

informed version of the Cauchy prior. They were specifically interested in testing an alternative 

directional hypothesis assuming that participants would have greater Hits than False Alarms. They 

thus used a semi-Cauchy prior scaled at the default value. We obtain the corresponding analysis 

with the following formula, by adding the “nullInterval” argument to the script and specifying that 

the Cauchy must be constrained to the positive side of the distribution:  

 

1 / ttestBF (Hits, FalseAlarms, paired = TRUE, nullInterval = c(0,+Inf), rscale  = .707)  

 

This analysis yielded a BF01 = 8.92 and means that their data were roughly 9 times more likely to 

occur under the null hypothesis than under the alternative hypothesis. It provides support to the 

claim that participants could not detect the presence of stimuli above chance level. Finally, Chatard 

et al. complemented their analyses with a robustness check to ensure that the same conclusion 

would follow if a narrower prior was used. Specifically, they further customized the JZS prior and 

used a one-side Cauchy scaled at r = .20:  

 

1 / ttestBF (Hits, FalseAlarms, paired = TRUE, nullInterval = c(0,+Inf), rscale  = .20)  
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The robustness check yields a BF01 = 3.03 that is consistent with the analyses obtained above. 

Using conventional cut-offs for decision-making (Jeffreys, 1961) would lead to accept the null 

hypothesis in spite of the alternatives for every prior that was used.  

Turning to the main analyses, Chatard et al. tested their experimental hypothesis assuming 

that participants would feel greater anxiety after being exposed to pictures with ultra-thin women 

(i.e. AnxietyPrime) than in the control condition (i.e. AnxietyControl). A frequentist paired-samples 

t-test, t(50) =  3.36, p = .001, indicated that the two variables were statistically significantly 

different. To start the Bayesian analysis, we can begin by computing a Bayesian paired-sample t-

test that tests an alternative hypothesis assuming a default Cauchy prior scaled at r = .43 against the 

null hypothesis: 

 

ttestBF (AnxietyPrime, AnxietyControl, paired = TRUE, rscale = .43)  

 

The output of this analysis is a BF10 = 22.59. If we used the default r = .707 scale, the 

corresponding analysis would yield a value of BF10 = 19.98. Yet again, to the extent that Chatard et 

al.’s experimental hypothesis assumed a specific direction of their effect, it is more relevant to 

custom the prior and use a semi-Cauchy distribution as displayed below:  

 

ttestBF (AnxietyPrime, AnxietyControl, paired=TRUE, nullInterval = c(0,+Inf), rscale = .707) 

 

With this formula, we obtain a BF10 = 39.93 in line with Chatard et al.’s results. We could also run 

additional robustness checks to see to what extent the results are sensible to prior specification. 

Scaling the JZS prior to semi-Cauchy distributions scaled at r = .43 and at r = .20 yielded BF10 = 

45.12 and BF10 = 38.07, respectively. Overall, the data provide substantial support to their 

hypothesis that a subliminal exposure to the thin ideal increases body appearance anxiety.  
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Conclusion 

The primary purpose of this article was to get across to the reader the understanding what 

Bayesian statistics are and how they can be applied in a relevant way for psychological research. 

We hope to have achieved this goal and to have demonstrated that there is really nothing magical 

about Bayesian statistics. They simply rely on a different interpretation of probability and answer 

different kinds of questions than those addressed in frequentist statistics. We further hope that the 

present content will successfully challenge some frequent controversies and clichés surrounding the 

use of Bayesian statistics, such that they would be too complex, subjective, or only to be used to 

publish “null” findings. We believe the provided examples illustrated how interpreting Bayesian 

statistics is straightforward and intuitive. Importantly, modern statistical programs have also made 

Bayesian statistics easy to compute. Furthermore, though the subjectivist approach to understand 

probability distributions as states of beliefs can be indeed debatable (Gelman, 2008), we have 

discussed several ways in which current recommendations for specifying Bayesian priors – such as 

the use of default JZS priors – mitigate usual concerns about how researcher’s subjectivity is 

involved in the analysis. Finally, we also hope that the article illustrated relevant ways of making 

psychological research benefit from using Bayesian statistics, beyond the sole possibility to 

corroborate the null hypothesis.  

Finally, it is also important to stress that our intention here was not to provide a universal 

tool for statistical inference (see Gigerenzer & Marewski, 2015). We believe that both frequentist 

and Bayesian statistics have their utility in psychological science and should be viewed as 

complementary, rather than mutually exclusive statistical tools (e.g., Bayarri & Berger, 2004; 

Krefeld-Schwalb et al., 2018; Witte & Zenker, 2017). With this respect, the APA guidelines state 

that “Researchers in the field of psychology use numerous approaches to the analysis of data, and 

no one approach is uniformly preferred as long as the method is appropriate to the research 

questions being asked and the nature of the data collected” (APA, 2010, p.33).  
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Footnotes 

1 None of the authors advocates for an exclusive use of frequentist or Bayesian statistics. 

Both advocate for sound statistical practices. 

2 Elsewhere in the psychological literature, epistemic probabilities are also referred to as 

subjective probabilities (e.g., Dienes, 2011) 

3 Though partially inspired by the NP approach, current practices for justifying scientific 

claims in psychology rely almost exclusively on the null hypothesis significance testing (NHST). 

Here, one rejects the statistical hypothesis of nonexistence of the effect under investigation (H0), if 

the probability of observing under this hypothesis one’s set of data or a more extreme set of data 

(the p-value) is smaller than the conventional threshold of .05. Despite the undisputed popularity in 

academia, this procedure has no straightforward theoretical justification (Gigerenzer, 2004; 

Gigerenzer et al., 2004). NHST in its most common use consists both in rejecting and accepting 

statistical hypotheses on the one hand, and providing evidence against the null hypothesis on the 

other. This reflects a hybrid logic of competing statistical theories of Neyman and Pearson (1933) 

and Fisher (1956), respectively (see Gigerenzer et al., 2004). A commonly endorsed practice in 

NHST, inspired by Fisher’s work, consists in computing p-values to reflect the falsehood of H0, 

where lower p-values indicate stronger evidence against H0 and allow being more confident that it 

is false, than higher p-values (see Wagenmakers et al., 2008, for why this is a less than an ideal way 

to quantify evidence against H0). This is a quasi-Bayesian approach to NHST (Gigerenzer, 1993) 

that conflicts with a strict frequentist approach to inference, because the level of significance serves, 

in practice, the same role as epistemic probabilities. This is not warranted within the framework that 

considers statistical hypotheses only as true or false, hence mentions like probable or improbable 

do not apply. 

4 Assuming the data are being collected with the same sampling intentions as the original 

study (see Wagenmakers et al., 2008). 
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5 It may seem counterintuitive that with a 99% chance of obtaining a positive test result 

when one does really carry the virus, the fact that the test was positive only makes the probability of 

carrying the virus still relatively as low as less than 35%. This is due to a relatively low prior 

probability for carrying the virus, namely 5% (see Bayes' Theorem application in Section 4). 

6 In many realistic applications, the exact value of 𝑝(𝐷) can be impossible to calculate due 

to computational difficulties (see Kruschke, 2014). This explains why Bayesian methods have been 

historically only seldom used. Scholars have known this approach to inference for centuries, yet 

only a limited subset of relatively simple models were mathematically solvable under Bayesian 

analyses (Kruschke, 2014). Without knowing 𝑝(𝐷), deriving the exact posterior probability 

distribution 𝑝(𝐻|𝐷) directly from Bayes’ Theorem is not possible. This is not a problem anymore, 

since recent developments in computational techniques known as Markov Chains Monte Carlo 

(MCMC; Gamerman & Lopes, 2006; Kruschke, 2014; Lunn et al., 2012; Rouder & Lu, 2005) 

extended the applicability of Bayesian statistics to a whole range of useful models for daily 

applications. Their usefulness relies on the fact that they allow to approximate posterior probability 

distributions without having to calculate 𝑝(𝐷). 

7 A simpler version of Bayes’ Theorem states that the posterior is proportional to likelihood 

times prior. 

8 A Cauchy distribution is a Student t distribution with 1 degree of freedom. 
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Appendices 

Appendix A. Definition of conditional probability 

For two events a and b, with p(b) > 0,  

𝑝(𝑎|𝑏) =  
𝑝(𝑎, 𝑏)

𝑝(𝑏)
 

The probability that will a happen given that b has occurred, is the probability of a 

and b happening together (i.e. joint probability), divided by the probability of b. 
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Appendix B. Formulas for calculating posterior normal distributions.  

The normal posterior distributions for Figures 1A, 1B and 1C can be conveniently 

computed with the following formulas for normal distributions (from Dienes, 2008, 

p.94), based on information about prior distributions and the likelihood provided 

below. 

 

Mean of prior = M0 

Mean of likelihood function = Md 

Standard-deviation of prior = SD0 

Standard-deviation of likelihood (standard-error of sample) = SE 

Precision or prior = c0 = 1/SD0
2 

Precision of likelihood = cd = 1/SE2 

Posterior precision = c1 = c0 + cd 

Posterior mean = M1 = (c0/c1) * M0 + (cd/c1) * Md 

Posterior standard-deviation = SD1 = square root(1/c1) 

 

For all figures: Mean of likelihood = 4.5, Standard-deviation of likelihood = 2.3 

Figure 1A: Mean of prior = 2, standard-deviation of prior = 2.7 

Figure 1B: Mean of prior = 0, standard-deviation of prior = 7 

Figure 1C: Mean of prior = 0, standard-deviation of prior = 1.08 



AN INTRODUCTION TO BAYESIAN STATISTICS

  59 
 
Appendix C. Deriving the Bayes’ Theorem  

For two events a and b, we know that :  

𝑝(𝑎|𝑏) =  
𝑝(𝑎,𝑏)

𝑝(𝑏)
 → 𝑝(𝑎|𝑏)𝑝(𝑏) =  𝑝(𝑎, 𝑏) , for 𝑝(𝑏) > 0 

and alternatively,  

𝑝(𝑏|𝑎) =  
𝑝(𝑏,𝑎)

𝑝(𝑎)
 → 𝑝(𝑏|𝑎)𝑝(𝑎) =  𝑝(𝑏, 𝑎) , for 𝑝(𝑎)  > 0 

Since 𝑝(𝑎, 𝑏) = 𝑝(𝑏, 𝑎),  

𝑝(𝑎|𝑏)𝑝(𝑏) = 𝑝 (𝑏|𝑎)𝑝(𝑎)   

By dividing the last equation by 𝑝(𝑏), we get Bayes’ Theorem: 

𝒑(𝒂|𝒃) =
𝒑 (𝒃|𝒂)𝒑(𝒂)

𝒑(𝒃)
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Appendix D. Rule of marginalization  

For a set of data 𝐷 and a parameter 𝜃 we can deduce from axioms of probability that:  

𝑝(𝐷, 𝜃) =  𝑝(𝐷|𝜃)𝑝(𝜃) 

which means that the joint probability of 𝐷 and θ – 𝑝(𝐷, 𝜃) – equals the conditional 

probability of 𝐷 given θ – 𝑝(𝐷|𝐻)– times the probability of θ, 𝑝(𝜃). 

 

Then: 

- For a set of data D and a discrete-valued parameter θ, we know that:  

𝑝(𝐷) =  ∑ 𝑝(𝐷, 𝜃∗) =  ∑ 𝑝(𝐷|𝜃∗)𝑝(𝜃∗ )

𝜃∗𝜃∗

 

where θ* means that θ takes all possible values. This equation means that the 

probability of data can be expressed as function of (i.e. marginalized) the discrete 

values of θ. Specifically, the probability of data – 𝑝(𝐷) – is the sum for all values of θ 

of the products of the conditional probability of 𝐷 given θ – 𝑝(𝐷|𝐻) – and the 

probability of  θ, 𝑝(𝜃) .  

 

- For a set of data D and a continuous-valued parameter θ, we know that  

𝑝(𝐷) =  ∫ 𝑝(𝐷, 𝜃∗)𝑑𝜃∗ = ∫ 𝑝(𝐷|𝜃∗)𝑝(𝜃∗)𝑑𝜃∗  

where θ* means that θ takes all possible values. This equation means that the 

probability of data can be expressed as function of the continuous values of θ. 

Specifically, the probability of data – 𝑝(𝐷) – is the continuous sum (i.e. the integral ∫ 

) for all values of θ of the products of the conditional probability of 𝐷 given θ – 
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𝑝(𝐷|𝐻) – and the probability of  θ, 𝑝(𝜃). The symbol 𝑑𝜃∗ simply means that the 

integration (the summing) is being performed over the parameter θ. 
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Appendix E. Bayes Factor as a ratio of two marginal likelihoods. 

To get further insights on how the BF is calculated, it is necessary to consider what is 

actually predicted by each of the two tested hypotheses (see also Morey & Rouder, 2011, Rouder et 

al., 2009 and Stefan & Schönbrodt, 2017). Specifically, it is important to understand that each 

hypothesis can be given a concrete, statistical specification of what it actually predicts. In other 

words, a hypothesis can be operationalized by a model, which comprises a set of statistical 

parameters that appropriately describe the effect of interest. A model must specify the probability of 

observing some particular data given the model’s structure and parameter values – 𝑓𝐻 (𝐷|𝜃
𝐻

) – 

along with prior probabilities of these parameter values 𝑝𝐻(𝜃) (Kruschke, 2014). For instance, the 

hypothesis used by Student 1 assuming a non-null mean score on introversion scale in the 

population of students with the disease can be modeled with two parameters, μ and σ2, using a 

normal distribution to describe the data such that: y ~ N(μ,σ2), where y refers to individual scores on 

the scale. Also, Student 1 used a normal prior on the parameter μ, such that μ ~ N(δμ , σ2
μ), and used 

arbitrary values for these priors, such that δμ = 2 and σ2
μ = 2.72 . Since the prior 𝑝𝐻(𝜃) intervenes in 

the calculation of the likelihood 𝑝(𝐷|𝐻), the specification of this prior will have an important 

consequence on the likelihood value, and thus on the BF value. Thus, a proper specification of prior 

probability on parameter values 𝑝𝐻(𝜃) is essential for a BF analysis to be meaningful. This property 

is apparent if we use the rule of marginalization (see Appendix D), to re-express a Bayes Factor in 

the following way:   

                       𝐵𝐹10 =  
𝑝(𝐷|𝐻1)

𝑝(𝐷|𝐻0)
=

∫ 𝑓𝐻1(𝐷|𝜃1 )𝑝𝐻1
(𝜃1 )𝑑𝜃1

 

𝜃1∈𝛩𝐻1

∫ 𝑓𝐻0(𝐷|𝜃0)𝑝𝐻0
(𝜃0)𝑑𝜃0

 

𝜃0∈𝛩𝐻0

.                               (4) 

Equation (4) shows that the BF can be expressed as a ratio of marginal likelihoods 𝑝(𝐷|𝐻1 ) and 

𝑝(𝐷|𝐻0), which simply indicate how much the observed data 𝐷 are likely to occur under each 

hypothesis, 𝐻1 and 𝐻0, respectively. Eq. (4) further shows how these marginal likelihoods are 

obtained (Morey et al., 2011; Rouder et al., 2009; Wetzels et al., 2009). The term “marginal 

likelihood” implies specifically that the likelihoods 𝑓𝐻(𝐷|𝜃𝐻) will be averaged across all possible 
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values of θ (hence the integral ∫ to sum across the parameter space Θ) according to the density 

function 𝑓𝐻 of the data specified by the hypothesis H, weighted by their respective prior probability 

𝑝𝐻(𝜃) specified by the hypothesis H. For instance, the literal transcription of the right part of Eq. 

(4) for H1 could be then: “Across all values of parameters θ from the set of parameters defined by 

H1, compute the continuous sum of the conditional probabilities of the data given the value of θ 

according to the density function 𝑓𝐻  that are weighed by the prior probability accorded to the value 

of θ”. In sum, a marginal likelihood refers to the probability of some data given some hypothesis, 

and can be understood as the continuous average of likelihoods over all constituent point 

parameters, where priors serve as weights (Rouder et al., 2009). Importantly, Eq. (4) shows that the 

choice of prior 𝑝𝐻(𝜃) is determinant for the computation of marginal likelihood 𝑝(𝐷|𝐻). The fact 

that the likelihoods 𝑓𝐻 (𝐷|𝜃) are weighted by priors 𝑝𝐻(𝜃) across all parameter values procures 

desirable properties to BF (see Lodewyckx et al., 2011; Rouder et al., 2009; Wetzels et al., 2009, for 

more details). First, it ensures that BF operates according to the principle of parsimony in 

hypothesis testing (Jefferys & Berger, 1992; Myung & Pitt, 1997; Wetzels et al., 2009): when two 

statistical models specified by each hypothesis fit the data equally well, the simpler model is 

favored over the more complex one. This is because for the 𝑝(𝐷|𝐻) to be high, the hypothesis H 

must both be able to predict accurately the observed data and not predict another, different set of 

data. Crucially then, an unreasonably high allocation of prior probability to large values of θ will 

tend to lower the value of 𝑝(𝐷|𝐻), thus decreasing the degree to which the observed data D 

supports the hypothesis 𝐻 (Rouder et al., 2009).
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Tables

Table 1.  

Summary of some important differences between frequentist (Neyman-Pearson approach) and 

Bayesian statistics. 

 Frequentists statistics Bayesian statistics 

What is the aim in inference? 

Decision-making about 

accepting/rejecting 

statistical hypotheses 

Adjusting one’s confidence 

in statistical hypotheses 

What is the question answered? “What should I do?” 
“How should I adjust my 

beliefs?” 

Do condition on the actual data?  No Yes 

Do provide with evidence? No Yes 

Do control error rates? Yes No 

Sensitive to multiple testing? Yes No 

Sensitive to sampling rules? Yes No 

Sensitive to the time of prediction? Yes No 
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Table 2.  

Jeffrey’s (1961; Wagenmakers, Wetzels, Borsboom, & van der Maas, 2011) 

classification to interpret the values of Bayes Factor.  

 

Bayes Factor, BF10 Interpretation 

 > 100 Extreme evidence for H1* 

30 – 100 Very strong evidence for H1* 

10 – 30 Strong evidence for H1* 

3 – 10 Substantial evidence for H1* 

1 – 3 Anecdotal evidence for H1* 

 1  No evidence 

1/3 – 1 Anecdotal evidence for H0** 

1/10 – 1/3 Substantial evidence for H0** 

1/30 – 1/10 Strong evidence for H0** 

1/100 – 1/30 Very strong evidence for H0** 

 < 1/100 Extreme evidence for H0** 

Note. “*”: in comparison with H0; “**”: in comparison 

with H1. 
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Table 3.  

Summary of decision rates (percentages) for accepting and rejecting H0 and 

declaring data inconclusiveness based on simulated Bayes Factors values using a 

default (r = .707) and informed (r = .43) JZS prior through a Bayesian independent- 

    samples t-test. True population effect size (Cohen's d) 

    0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1 

   Power 0,05 0,06 0,11 0,18 0,28 0,41 0,55 0,68 0,79 0,88 0,93 

N  = 25/cell 

Default prior  

(r = .707) 

Accept H0  
0,47 0,45 0,39 0,29 0,20 0,12 0,07 0,03 0,01 0,01 0,00 

Inconclusive 0,52 0,52 0,57 0,62 0,65 0,62 0,56 0,45 0,33 0,21 0,14 

Reject H0 0,02 0,03 0,05 0,09 0,15 0,27 0,38 0,52 0,65 0,78 0,86 

 
 

           

Informed 

prior 
(r=.43) 

Accept H0 
0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 

Inconclusive 0,98 0,97 0,95 0,90 0,84 0,73 0,61 0,48 0,33 0,23 0,13 

Reject H0 0,02 0,03 0,05 0,10 0,16 0,27 0,39 0,52 0,67 0,77 0,87 

   
 

           

   Power 0,05 0,08 0,17 0,32 0,51 0,70 0,84 0,93 0,98 0,99 1,00 

N  = 50/cell 

Default prior  

(r = .707) 

Accept H0  0,69 0,63 0,48 0,31 0,16 0,07 0,02 0,01 0,00 0,00 0,00 

Inconclusive 0,29 0,34 0,44 0,51 0,52 0,41 0,27 0,15 0,06 0,02 0,00 

Reject H0 0,02 0,03 0,08 0,17 0,32 0,52 0,70 0,85 0,94 0,98 0,99 
 

 
           

Informed 

prior 
(r=.43) 

Accept H0  0,27 0,24 0,17 0,09 0,04 0,01 0,00 0,00 0,00 0,00 0,00 

Inconclusive 0,71 0,73 0,75 0,72 0,61 0,45 0,28 0,14 0,06 0,02 0,00 

Reject H0 0,02 0,04 0,09 0,19 0,35 0,54 0,72 0,86 0,94 0,98 1,00 
   

 
           

   
Power 0,05 0,09 0,23 0,45 0,68 0,86 0,95 0,99 1,00 1,00 1,00 

N = 75/cell 

Default prior  
(r = .707) 

Accept H0  0,76 0,68 0,47 0,25 0,10 0,03 0,01 0,00 0,00 0,00 0,00 

Inconclusive 0,23 0,29 0,42 0,49 0,41 0,25 0,12 0,04 0,01 0,00 0,00 

Reject H0 0,01 0,03 0,10 0,26 0,48 0,71 0,88 0,96 0,99 1,00 1,00 
 

 
           

Informed 
prior 

(r=.43) 

Accept H0  0,52 0,44 0,28 0,12 0,04 0,01 0,00 0,00 0,00 0,00 0,00 

Inconclusive 0,46 0,52 0,60 0,59 0,44 0,25 0,10 0,03 0,01 0,00 0,00 

Reject H0 0,02 0,04 0,12 0,29 0,52 0,75 0,90 0,97 0,99 1,00 1,00 

    
           

  
 

Power 0,05 0,11 0,29 0,56 0,80 0,94 0,99 1,00 1,00 1,00 1,00 

N = 100/cell 

Default prior  

(r = .707) 

Accept H0  0,80 0,69 0,44 0,20 0,06 0,01 0,00 0,00 0,00 0,00 0,00 

Inconclusive 0,19 0,27 0,42 0,45 0,32 0,15 0,04 0,01 0,00 0,00 0,00 

Reject H0 0,01 0,04 0,14 0,34 0,62 0,84 0,96 0,99 1,00 1,00 1,00 
 

 
           

Informed 
prior 

(r=.43) 

Accept H0  0,62 0,51 0,28 0,10 0,02 0,00 0,00 0,00 0,00 0,00 0,00 

Inconclusive 0,37 0,44 0,56 0,52 0,31 0,13 0,04 0,01 0,00 0,00 0,00 

Reject H0 0,02 0,05 0,16 0,38 0,66 0,86 0,96 0,99 1,00 1,00 1,00 

  Note. Each scenario was simulated 5000 times. Power levels correspond to a two-tailed test for alpha = .05 
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Figures 

Figure 1.  
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Figure 2. 
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Figure 3.  
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Figure captions 

Figure 1. Three Bayesian analyses based on each student’s prior. 

Figure 2. Conditional probabilities for the test result given the presence of the virus 

and application of Bayes’ Theorem. 

Figure 3. The two meanings of the prior in Bayes Factor hypothesis testing. 


