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Abstract: This paper examines the impact of the parameters of the distribution of the time at which1

a bank’s client defaults on their obligated payments, on the Lundberg adjustment coefficient, the2

upper and lower bounds of the ruin probability. We study the corresponding ruin probability on the3

assumption of (i) a phase-type distribution for the time at which default occurs and (ii) an embedding4

of the stochastic cash flow or the reserves of the bank to the Sparre Andersen model. The exact5

analytical expression for the ruin probability is not tractable under these assumptions so, Cramér6

Lundberg bounds types are obtained for the ruin probabilities with concomitant explicit equations7

for the calculation of the adjustment coefficient. To add some numerical flavour to our results, we8

provide some numerical illustrations.9

Keywords: Stochastic cash flow; Sparre Andersen model; Ruin probability; Phase-type distribution;10

Erlang distribution; Coxian distribution; Moment generating function.11

1. Introduction12

Credit risk affects the banking sector and may lead to global economic stagnation (Nkusu [1]).13

This was demonstrated convincingly by the 2007 subprime mortgage crisis whereby mortgages to14

clients who were likely to default were repackaged by lenders into mortgage-backed securities and15

sold to investors in exchange for regular income payments (Longstaff [2]). When the housing bubble16

burst, the inevitable default occurred and a domino effect was set in motion (see Mohan [3]). For an17

empirical investigation of the strong evidence of this domino effect of the collapse of the financial18

markets to the global economy see Longstaff [2]. This crisis led banks to improve their credit risk19

control by moving from a rules-based systems to a principles-based system. The latter tends to provide20

a better reflection of a financial institution’s true risk situation by employing various risk measures to21

reduce the number of potential client defaults.22

In the financial literature, there are many models and approaches that have been adopted to measure23

risks. Prominent among them are ruin theory models. Originally developed for the insurance industry,24

the ruin probability is used to study the stochastic processes that represent the time evolution of the25

surplus and serve as the main risk measure to quantify the solvency of the company. After the global26

crisis (2007-2008), European Union regulatory board established new principles called the Basel II27

(respectively solvency II for insurance sector) accords to strengthen the previous solvency system28

(Basel I respectively solvency I) in terms of risk management principles. Under solvency II, insurance29

companies are required to fulfill certain capital adequacy rations in order for them to sell any contracts.30

Maintenance of the Solvency Capital Requirement (SCR) coverage ratio enables the financial institution31

to stay above a certain threshold with a large enough probability. Although internal and standard32

models exist to determine this ratio, they are complex and time consuming. An alternative way to33
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handle this problem is to use the ruin probability to study the capital requirement in numerous adverse34

scenarios without varying the probability of these scenarios as the ruin formula is explicitly known35

under some specific assumptions. Thus the ruin probability is considered as an important type of36

risk measure. Quaigrain [4] showed that one can apply this risk measure more broadly in finance.37

For example, risk measures can be used to address the adequacy of the assets, as shown in Cody [5]38

where the ruin probability has been used to analyse the cash flow scenarios of reasonable and plausible39

deviations from expectation with bounding worst scenarios. Further, it can also be used to analyze the40

liquidity requirement for financial futures investments. Kolb et al. [6], showed that the ruin probability41

increases with the length of the hedging horizon and varies with the maturity of the contract being42

trade. Finally, by embedding the stochastic cash flow of the customer to the Sparre Andersen model,43

Cramér Lundberg bounds for the ruin probability can be derived.44

The mathematical fundamentals of ruin theory were originally addressed by Lundberg [7,8]. In his45

papers he established the upper bound of ruin probability through the classical compound Poisson46

risk model. Later, Cramér [9,10] extended Lundberg’s work when he derived the probability of the47

surplus being negative.48

The ruin probability of the insurance cash flow process and its related functionals has been the subject49

of several studies, especially within the renewal context. The reader is referred to Andersen [11], Gerber50

[12], Grandell [13], Bühlmann [14] and references therein. In particular Andersen [11] established51

renewal process by extending the compound Poisson model by allowing the inter-arrival times to52

have any arbitrary distribution. Dickson (Dickson [15]) extended Lundberg and Cramér’s work and53

derived an upper bound for the ruin probability in the classical compound Poisson model where the54

moment generating function of the claim amounts exists. Although an explicit formula for the ruin55

probability is hard to obtain in many scenarios it exists under some specific assumption such as an56

exponential distribution for the claim amount in the classical renewal process or an Erlang inter-arrival57

with Pareto claim distribution (see Burnecki et al. [16], Ramsay [17], Wei and Yang [18]). In the case58

where explicit formula does not exist, the ruin probability can be approximated or bounded using59

Cramér Lundberg types bounds.60

Since the exact claim distribution is crucial for the accuracy of the model while using ruin probability61

as risk measure, it must be chosen with care so that it can fit the real data. In the literature many62

distributions are suggested to model the claim distribution. Examples are exponential, gamma, Erlang,63

Weibull, Pareto , to name a few. It is well known that any positive distribution can be approximated64

by a phase-type distribution. This type of distribution can be used to model the claim amount. An65

introduction to this type of distribution can be found in Buchholz et al. [19] and references therein. The66

originator of the phase-type distribution in stochastic modelling is Neut who introduced this concept67

in queue modelling (Neuts [20]). Further to that, Bladt [21] introduced phase-type distribution in risk68

theory and derived some quantities such as the ruin probability where the claim amount was assumed69

to follow a phase-type distribution. Asmussen and Rolski [22] assumes a phase-type distribution for70

the claim amount and studied the ruin probability via numerical computation. Under phase-type71

claim distribution and Poisson inter-arrival process assumptions, Asmussen and Bladt [23] showed72

that the ruin probability can be seen as the solution of a finite set of differential equations. Asmussen73

et al. [24] considered the problem of finding American put and Russian option price with the stock74

price modeled as an exponential Lévy process. They showed in their paper that explicit expression for75

the price exists in the dense class of Lévy processes with phase–type jumps. Moreover, they derived76

an explicit solution of the price in the phase–type case via martingale stopping and Wiener-Hopf77

factorization. Egami and Yamazaki [25] studied the scale function of the spectrally negative phase-type78

Lévy process. Motivated by the fact that the class of phase-type distributions is dense in the class of79

all positive-valued distributions, they proposed phase-type (PH)-fitting approach by using the scale80

function for the class of spectrally negative Lévy process. Recently, Yamazaki [26] showed that one can81

approximate Gerber-Shiu function in a closed form by fitting the underlying process by phase-type82
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Lévy processes.83

This paper is built on the work of Quaigrain [4] to derive a Cramér Lundberg types bounds for the84

ruin probability. Its key assumption is that the default loans arrival process follows a phase-type85

distribution. This is motivated by the fact that at any time the applicant liquidity status can be86

represented by a Markov chain process consisting of a set of states (more liquidity, medium, poor,87

etc. . . ). Each state is assumed to have communication and transient properties except for the default88

state. The default state is therefore considered as the absorbing state hence modeled via a phase-type89

distribution, as we are only interested in the default deals state.90

The paper is structured as follows. In section (2), we discuss some proprieties of the phase-type91

distribution. This is followed by section (3) which outlines the model and its assumptions. The main92

results of the paper are found in section (4). Numerical illustrations are provided regarding the Cramér93

Lundberg type bounds for the ruin probability in section (5). Section (6) and section (7) rounds off the94

paper with some discussions and concludes.95

2. Preliminaries96

A phase-type (PH) distribution is define as the distribution of a hitting time in a finite-state,97

time-homogeneous Markov chain. It was introduced by Neuts (Neuts [27]) as a powerful tools for98

modeling and understanding complex problems in stochastic modeling. The parametrization of a99

phase-type distribution is set as follows: Let
(
Yt
)

t≥0 be a continuous-time, time-homogeneous Markov100

chain on the state space {1, 2, · · · , n, n + 1} for which the set of states {1, 2, · · · , n} is transient and101

the state n + 1 is an absorbing state. The initial distribution of
(
Yt
)

t≥0 is given by π = (π1 · · ·πn)T
102

where πi = P[Y0 = i] for i = 1, · · · , n. The intensity matrix of
(
Yt
)

t≥0 is103

Q =

(
Λ q
0 0

)
,

where Λ is an n× n non-singular matrix which satisfies together with q the following equation

Λ1 + q = 0, with 1 = (1 1 · · · 1)T , (1)

and the transition probability matrix is given by

P(t) = exp(Λt), where exp(Λt) =
∞

∑
m=0

(Λt)m

m!
.

The following gives some characteristics and proprieties of a phase-type distribution.104

Definition 1. From Bladt [21], the time until absorption

χ = {t ≥ 0 | Yt = n + 1}

is said to have a phase-type distribution (χ ∼ PH(π, Λ)).105

Lemma 1. The cumulative distribution function and the density of χ are given by:106

Fχ(t) = 1− πT exp(Λt)1,

fχ(t) = πT exp(Λt)q.
(2)

Proof. See Bladt [21]107
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Using integration and derivation rules, we can compute the moment generating function of a108

phase-type distribution. The rules are expressed as follows:109 ∫
exp(Λs)ds = Λ−1 exp(Λs) = exp(Λs)Λ−1,

d
ds

exp(Λs) = Λ exp(Λs) = exp(Λs)Λ.
(3)

Lemma 2. Under the assumption of definition (1), the moment generating function of χ is given by:

Mχ(s) = πT (−sI −Λ)T q, (4)

where I is the identity matrix.110

Proof. The result follows from equation (3).111

3. Model setting and assumptions112

We use the same model as in Quaigrain [4]. The bank’s balance process, U(t) generated by all
deals that have arrived between 0 and t is given by:

U(t) = u +
Nt

∑
k=1

{(
Lk
Tk

+ Lk × r
)

T
′
k − Lk

}
t ≥ 0, (5)

where113

• u is the initial reserve or capital.114

•
{

Nt
}

t≥0 is a counting process on [0, + ∞): Nt is the number of deals which occurred by time t.115

• Lk represents the size of the loan deal k.116

• Dk represents the time at which default deal k happens and Tk is the time to maturity.117

• T
′
k = min(Dk, Tk) is the effective time that the client k remains in the system.118

• The client amortizes at
Lk
Tk

and pays a risk premium Lk × r per time unit.119

The model is linked to Sparre Anderson model in the sense that the inter-arrival times of deals are120

assumed to have any arbitrary positive distribution.121

Assumption 1. Hereafter we assume the following:122

1. There is no collateral on the loan taken by the bank, which means in case of default all future cash flows123

between the client and the bank are removed.124

2. The time at which default deal happens (Dk)k>0 are independent and identically distributed.125

3. Dk follows a phase-type distribution
(

Dk
d≡ D ∼ PH(π, Λ)

)
.126

4. Lk and Tk are constant and identical for all clients (Lk ≡ L, and Tk ≡ T).127

5. The counting process Nt and the defaults arrival process Dk are independent.128

Remark 1. Assumption (1) is made for mathematical manageability as banks may have collateral on the loan or129

the loan size may not be the same for all clients. Therefore, some of these assumptions may be violated in the real130

world scenario.131

Under assumption (1), the equation (5) can be scaled and rewritten as follows:

U(t) = u +
Nt

∑
k=1

(
min(M, D

′
k)− L

)
= u +

Nt

∑
k=1

(
T̃k − L

)
, (6)

where M =

(
L
T
+ L× r

)
× T , D

′
k =

(
L
T
+ L× r

)
× Dk and T̃k = min(M, D

′
k).132
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Remark 2. Under assumption (1) and after scaling the balance process we have:133

• The total amount received by bank is greater than the loan size
((

L
T
+ L× r

)
× T = L + L× T × r > L

)
.134

•
(

D
′

k

)
k>0

are independent and identically distributed and follow a phase-type distribution.135

Assumption 2. To avoid the occurrence of ruin with probability 1, we assume that E[T̃] > L.136

Lemma 3. Under the scaling assumption, D
′
k

d≡ D
′ ∼ PH(π, Λ̃), where Λ̃ =

(
L
T
+ L× r

)−1

×Λ.137

Proof.

Pr(D
′
> x) = Pr

((
L
T
+ L× r

)
× D > x

)
= Pr

[
D >

(
L
T
+ L× r

)−1

× x
]

.

From Lemma (1), we have:
Pr(D

′
> x) = πT exp(Λ̃× x)1, (7)

where Λ̃ =

(
L
T
+ L× r

)−1

×Λ.138

Moreover,139

f
′
D(x) = −πT d

dx

(
exp(Λ̃x)

)
1

= πT exp(Λ̃x)q̃,
(8)

where Λ̃1 + q̃ = 0.140

4. General results141

We investigate in this section the ruin probability of each client since knowing this expression142

could help risk manager while analyzing credit application. We first analyze the trivial scenario. (To143

avoid the case ruin occurs with probability 1, the expectation of the effective time of the client being in144

the system must be finite).145

In the following proposition, we derive the expectation of the effective time of the client being in the146

system.147

Proposition 1. Consider the model given by equation (6). Assume that D follows a phase type distribution

(D ∼ PH(π, Λ)), then the expectation of T̃k
d≡ T̃ is given by:

E(T̃) = πT
(

exp(Λ̃M)− I
)

Λ̃−11, (9)

where I is the identity matrix of order n.148
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Proof. From the expression of T̃, we have149

E(T̃) = E[min(M, D
′
)]

= E
[

D
′
1{D′<M}

]
+E

[
M | D

′
> M

]
× Pr(D

′
> M)

=
d
ds

Mcond(s)
∣∣∣∣
s=0

+E
[
M | D

′
> M

]
× Pr(D

′
> M),

where150

Mcond(s) = E
[

esD
′
1{D′<M}

]
=

∫ M

0
esxdFD′ (s)

=
∫ M

0
πTesx exp(Λ̃x)q̃dx

= πT
( ∫ M

0
exp

(
(Λ̃ + sI)x

))
q̃dx

= πT
[(

sI + Λ̃
)−1 exp

(
(Λ̃ + sI)x

)
q
]M

0

= πT
[(

sI + Λ̃
)−1
(

exp
(
(Λ̃ + sI)M

)
− I
)]

q̃.

Moreover,151

d
ds

Mcond(s) = πT d
ds

{[(
sI + Λ̃

)−1
(

exp
[
(Λ̃ + sI)M

]
− I
)]}

q̃

= πT
{
−
(
sI + Λ̃

)−2
[

exp
[
(Λ̃ + sI)M

]
− I
]
+ M exp

[
(Λ̃ + sI)M

](
sI + Λ̃

)−1
}

q̃,

hence,152

E
[

D
′
1{D′<M}

]
= πT

{
− Λ̃−2

[
exp

(
Λ̃M

)
− I
]
+ M

(
exp

(
Λ̃M

))
Λ̃−1

}
q̃

= πT
[(

Λ̃−1 −MI
)

exp
(
Λ̃M

)
− Λ̃−1

]
1.

The result follows since, from equation (7), we have:153

Pr(D
′
> M) = πT exp(Λ̃M)1 and

E
[
M | D

′
> M

]
= M.

154

As the goal of this study is to derive the applicant’s ruin probability, in the following we give the155

equation for the adjustment Lundberg coefficient.156

4.1. Lundberg adjustment coefficient157

The adjustment coefficient is the number γ appearing in the famous Lundberg upper bound, this
coefficient is defined as the smallest strictly positive solution (if it exists) of the equation

E
[

e−s(Tk−Xk)

]
= 1,
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where Tk is the claim inter-occurrence time and Xk represents the claim size : in a compound Poisson158

risk process with initial capital u ≥ 0, and surplus process given by U(t) = u +
N(t)

∑
k=1

(
Tk − Xk

)
,159

the ruin probability, ψ(u), is bounded by e−γu , when the explicit expression of the ruin probability is160

difficult to obtain. By changing the safety loading or the distribution of the individual claims that are161

involved in its definition, the value of γ and with it the ruin probability can be adjusted.162

Theorem 1. Under the assumption of a phase-type distribution for the time to default, the adjustment coefficient
γ if it exists, for the ruin probability of the model defined in section (3), is the unique positive root of the equation
given below

πT
{[

(Λ̃− sI)−1
(

I − exp
(
(Λ̃− sI)M

))
Λ̃
]
+ exp

[
(Λ̃− sI)M

]}
1× esL = 1. (10)

Remark 3. γ = 0 is a trivial solution of equation (10).163

Proof. Let Y = L − T̃, then the adjustment coefficient γ is the unique positive solution of of the164

equation MY(s) = 1.165

MY(s) = ML(s)× L̂T̃(s)

= E
[

e−sT̃
]
×E

[
esL
]

= E
[
E
(

e−s min(D
′
,M)
∣∣D′)]× esL,

since L is constant.166

Using integration rules, (equation (3)), we have167

E
[

e−sT̃
]

= E
[
E
(

e−s min(D
′
,M)
∣∣D′)]

= πT
( ∫ M

0
exp

[
(Λ̃− sI)x

]
dx
)

q̃ + πT exp
[
(Λ̃− sI)M

]
1

= πT
[
(Λ̃− sI)−1 exp

(
(Λ̃− sI)x

)]M

0
q̃ + πT exp

[
(Λ̃− sI)M

]
1

= πT
[
(Λ̃− sI)−1

(
exp

(
(Λ̃− sI)M

)
− I
)]

q̃ + πT exp
[
(Λ̃− sI)M

]
1

= πT
[
(Λ̃− sI)−1

(
I − exp

(
(Λ̃− sI)M

))
Λ̃
]

1 + πT exp
[
(Λ̃− sI)M

]
1

= πT
{[

(Λ̃− sI)−1
(

I − exp
(
(Λ̃− sI)M

))
Λ̃
]
+ exp

[
(Λ̃− sI)M

]}
1,

which proves the statement.168
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In the following, Erlang distribution is considered as a special case.169

Erlang distribution can be seen as a special phase-type distribution where170

Λ =



−λ λ 0 . . . . . . 0

0 −λ λ . . .
. . . 0

...
. . . . . . . . . . . .

...
...

. . . . . . . . . . . .
...

...
. . . . . . . . . . . . λ

0 · · · · · · · · · · · · −λ


, q =



0
...
...
...
0
λ


and π =



1
0
...
...
...
0


. (11)

From equation (7), if D follows a phase-type distribution with parameters given by equation (11), then171

D
′

also follows a phase-type distribution with parameters given below172

Λ̃ =



−λ̃ λ̃ 0 . . . . . . 0

0 −λ̃ λ̃
. . . . . . 0

...
. . . . . . . . . . . .

...
...

. . . . . . . . . . . .
...

...
. . . . . . . . . . . . λ

0 · · · · · · · · · · · · −λ̃


, q̃ =



0
...
...
...
0
λ̃


and π =



1
0
...
...
...
0


, (12)

where λ̃ = λ

(
L
T
+ L× r

)−1

.173

Corollary 1. Assume that D follows Erlang(n) distribution with parameter λ , then the adjustment coefficient
is the unique positive root of the equation given below

{(
λ̃

λ̃ + s

)n

− e−(λ̃+s)M
n

∑
k=1

[(
λ̃

λ̃ + s

)k
(λ̃M)n−k

(n− k)!

]
+ e−(λ̃+s)M

n−1

∑
k=0

[(
λ̃M

)k

k!

]}
esL = 1 (13)

Proof. Before we give the proof, preliminary result in matrix decomposition is needed.174

Lemma 4. (Dunford decomposition theorem )
All matrix A ∈ Mn(K) with split characteristic polynomial can be written in the form

A = D + N, (14)

whereMn(K) is the set of square matrices of order n (K = R or C), D is diagonalizable and N is nilpotent.175

Proof of the corollary.
Using the proof of Theorem (1), the adjustment coefficient γ is the solution of{

πT
[
(Λ̃− sI)−1

(
exp

(
(Λ̃− sI)M

)
− I
)]

q̃ + πT exp
[
(Λ̃− sI)M

]
1
}

esL = 1.

The matrix
(
Λ̃− sI

)
M is triangular then has a split characteristic polynomials. By Lemma (4) we have(

Λ̃− sI
)

M = D + N,
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where176

D =



−(λ̃ + s)M 0 · · · · · · · · · 0

0 −(λ̃ + s)M
. . .

. . .
. . . 0

...
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . . 0
0 · · · · · · · · · · · · −(λ̃ + s)M


and N =



0 λ̃M 0 . . . . . . 0
...

. . . λ̃M
. . .

. . .
...

...
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . . 0
...

. . . . . .
. . . λ̃M

0 · · · · · · · · · · · · 0


.

Moreover,177

Nk =



0 · · · · · · (λ̃M)k−1 · · · 0

0 · · · · · · . . .
. . .

...
...

. . . . . .
. . . (λ̃M)k−1

... · · · . . . . . . . . .
...

0 · · · . . . . . . . . . 0
0 · · · · · · · · · · · · 0


and Nn =



0 · · · 0 0 · · · 0

0 0 0 . . .
. . .

...
...

. . . . . . . . . 0
...

. . . · · · · · · . . .
...

0
. . . . . . . . . . . .

...
0 · · · · · · · · · · · · 0


,

where at the i-th row for i = 1, · · · , n− 1 only the (k+i)-th (with k + i ≤ n ) column is not null for the178

matrix Nk.179

Therefore the exponential of
(
Λ̃− sI

)
M is given by180

e(Λ̃−sI)M = e−(λ̃+s)M
n−1

∑
k=0

Nk

k!
= e−(λ̃+s)M



1
(

λ̃M
)1

1! . . . . . . · · ·
(

λ̃M
)n−1

(n−1)!

0 1
. . .

. . .
. . .

...
...

. . .
. . .

. . .
...

0
. . .

. . .
. . .

. . . (λ̃M)1

1!
0 · · · · · · · · · · · · 1


,

hence181

πT exp
[
(Λ̃− sI)M

]
1 = exp

[
− (λ̃ + s)M

] n−1

∑
k=0

(
λ̃M

)k

k!
. (15)

Moreover182

(
Λ̃− sI

)−1 =
(
− λ̃− s

)−n



(
− λ̃− s

)n−1
(−λ̃)

(
− λ̃− s

)n−2 . . . . . . · · ·
(
− λ̃

)n−1

0
(
− λ̃− s

)n−1 . . .
. . .

. . .
...

...
. . .

. . .
. . .

...
...

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . . (−λ̃)
(
− λ̃− s

)n−2

0 · · · · · · · · · · · ·
(
− λ̃− s

)n−1


,
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therefore183

πT(Λ̃− sI
)−1 = −


(
λ̃ + s

)−1

λ̃
(
λ̃ + s

)−2

...
λ̃n−1(λ̃ + s

)−n


T

and
(

e(Λ̃−sI)M − I
)

q̃ =



λ̃ exp
[
− (λ̃ + s)M

] (λ̃M
)n−1

(n− 1)!
...

λ̃ exp
[
− (λ̃ + s)M

] (λ̃M
)1

1!
λ̃

(
exp

[
− (λ̃ + s)M

]
− 1
)


,

furthermore, we have184

πT(Λ̃− sI
)−1 ×

(
exp

[
(Λ̃− sI)M

]
− I
)

q̃ =

(
λ̃

λ̃ + s

)n

− e−(λ̃+s)M
n

∑
k=1

[(
λ̃

λ̃ + s

)k
(λ̃M)n−k

(n− k)!

]
. (16)

The result follows by combining (15) & (16).185

Corollary 2. If D follows a Coxian distribution, then the adjustment coefficient γ is the unique positive solution
of the equation{ n

∑
k=1

k

∏
j=1

λ̃j−1

λ̃j + µ̃j + s

[
µ̃k − e−(λ̃k+µ̃k+s)M

(
µ̃k +

n−1

∑
l=k

µ̃l+1 Ml−k+1

(l − k + 1)!

l

∏
j=k

λ̃j

)]
+ e−(λ̃1+µ̃1+s)M

n−1

∑
k=1

Mk

k!

k

∏
l=1

λ̃l

}
esL = 1,

(17)
where, λ̃n = 0, λ̃0 = 1, ∑

j
k=i = 0 if i > j and ∏k

l = 1 if l > k.186

Proof. From Theorem (1), the adjustment coefficient γ is the solution of{
πT
[
(Λ̃− sI)−1

(
exp

(
(Λ̃− sI)M

)
− I
)]

q̃ + πT exp
[
(Λ̃− sI)M

]
1
}

esL = 1.

The matrix Λ̃ and the initial probability π for a Coxian distribution are given by187

188

Λ̃ =



−(λ̃1 + µ̃1) λ̃1 · · · · · · · · · 0

0 −(λ̃2 + µ̃2) λ̃2 0
. . . 0

...
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . . λ̃n−1
0 · · · · · · · · · · · · −(λ̃n + µ̃n)


, π =



1
0
...
...
...
0


and q̃ =



µ̃1
µ̃2
...
...
...

µ̃n


, (18)

where λ̃n = 0.
Moreover,

(Λ̃− sI)−1 = (−1)n
n

∏
k=1

(
λ̃k + µ̃k + s

)−1 A,

where,

A =



0 i f i > j

(−1)n−1 ∏
k 6=i

(λ̃k + µ̃k + s) i f i = j

(−1)n−1
j−1

∏
k=i

λ̃k ∏
k/∈[i,j]

(λ̃k + µ̃k + s) i f i < j

.
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As (Λ̃− sI)M can be split into a diagonal and a nilpotent matrices, the exponential of (Λ̃− sI)M is
given by



e−(λ̃1+µ̃1+s)M 0 · · · · · · · · · 0

0 e−(λ̃2+µ̃2+s)M 0 0
. . . 0

...
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . . 0
0 · · · · · · · · · · · · e−λ̃n+µ̃n+s)M


×



1 λ̃1 M λ̃1λ̃2 M
2! · · · · · · ∏n−1

k=1 λ̃k M
(n−1)!

0 1 λ̃2 M
. . .

. . . ∏n−1
k=2 λ̃k M
(n−2)!

...
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . . λ̃n−1 M
0 · · · · · · · · · 0 1


,

therefore,

πT exp
[
(Λ̃− sI)M

]
1 = e−(λ̃1+µ̃1+s)M

n−1

∑
k=0

1
k!

k

∏
l=1

λ̃k M. (19)

Moreover, the calculation of B = πT ×
(
λ̃− sI

)−1
(

exp
[
(λ̃− sI)M

]
− I
)
× q̃ gives

B =
n

∑
k=1

µ̃k

k

∏
j=1

λ̃j−1

λ̃j + µ̃j + s
−

n

∑
k=1

e−(λ̃k+µ̃k+s)M
(

µ̃k +
n−1

∑
l=k

µ̃l+1Ml−k+1

(l − k + 1)!

l

∏
j=k

λ̃j

) k

∏
j=1

λ̃j−1

λ̃j + µ̃j + s
, (20)

combining (19) with (20) yields the result.189

Remark 4. 1. For hyper-exponential or mixed exponential distribution Λ, q and π are given by

Λ =



−λ 0 . . . . . . . . . 0

0 −λ 0 . . .
. . . 0

...
. . . . . . . . . . . .

...
...

. . . . . . . . . . . .
...

...
. . . . . . . . . . . . 0

0 · · · · · · · · · 0 −λ


, q =



λ
...
...
...
...
λ


and π =



α1
...
...
...
...

αn


, (21)

where ∑n
i=1 αi = 1.190

2. For hyper-exponential distribution of D, the adjustment coefficient γ is the unique positive solution of the
equation { n

∑
k=1

αk

[
λ̃k

λ̃k

(
1− exp

[
− (λ̃k + s)M

])
+ exp

[
− (λ̃k + s)M

]]}
esL = 1. (22)

Corollary 3. Under our assumption, the adjustment coefficient exists.191

Proof. The proof comes from the following Lemma in the book of Rolski (Rolski et al. [28]).192

Lemma 5. Consider Y = L− T̃. The adjustment coefficient γ exists if one can find s∞ ∈ R∪ {∞} such that193

ML(s) < ∞ for s < s∞ and lims↑s∞ ML(s) = ∞.194

The result of Corollary (3) follows from Lemma (5) as L is constant.195

4.2. Cramér Lundberg types bounds for the ruin probability196

It is generally difficult to determine the exact expression of the ruin formula, therefore, a lower197

and upper bounds of the ruin probability are requested. In this subsection, Cramér Lundberg types198
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bounds for the ruin probability are derived. The bounds understudy are the one given by Roski (Rolski199

et al. [28], Theorem 6.5.4, Chapter 6; pages 255-256).200

Theorem 2. Consider the model given by equation (5). Assume further that Assumption (2) holds, then the
ruin probability is bounded as follows:

b−e−γu ≤ ψ(u) ≤ b+e−γu, (23)

where γ is the adjustment coefficient, u is the initial capital and201

b− = inf
x∈[0, L)

eγx(1− πT exp
[
Λ̃(L− x)

]
1
)

πT
{(

γI − Λ̃
)−1
[

exp(Lγ)I − exp(γx) exp
[
Λ̃(L− x)

]]}
q̃

,

b+ = sup
x∈[0, L)

eγx(1− πT exp
[
Λ̃(L− x)

]
1
)

πT
{(

γI − Λ̃
)−1
[

exp(Lγ)I − exp(γx) exp
[
Λ̃(L− x)

]]}
q̃

.

(24)

Proof. From Theorem 6.5.4
(
of Rolski et al. [28]

)
, the lower and upper bounds of the ruin probability202

are given by203

b− = inf
x∈[0, x′ )

eγxFY(x)∫ +∞
x eγydFY(y)

,

b+ = sup
x∈[0, x′ )

eγxFY(x)∫ +∞
x eγydFY(y)

,

where x
′
= sup

y

{
FY(y) < 1

}
.204

Distribution of Y205

Pr[Y < y] = Pr[L−min(D
′
, M) < y]

= Pr[min(D
′
, M) > L− y]

=


1 i f L− y < 0

Pr[D
′
> L− y] i f L− y < M

0 i f L− y > M

=


1 i f L− y < 0

πT exp
[
Λ̃(L− y)

]
1 i f L− y < M

0 i f L− y > M

,

hence,206

FY(y) =


1 i f L− y < 0

πT exp
[
Λ̃(L− y)

]
1 i f L− y < M

0 i f L− y > M

,

FY(y) =


0 i f L− y < 0

1− πT exp
[
Λ̃(L− y)

]
1 i f L− y < M

1 i f L− y > M

.
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Moreover, dFY(y) = πT exp
[
Λ̃(L− y)

]
q̃ provide that L− y < M.207

Furthermore,208 ∫ +∞

x
eγydFY(y) =

∫ L

x
πT exp(γy) exp

[
Λ̃(L− y)

]
q̃dy

= πT exp
(
Λ̃L
){ ∫ L

x
exp

[
y(γI − Λ̃)

]
dy
}

q̃

= πT exp
(
Λ̃L
)[(

γI − Λ̃
)−1 exp

[
y(γI − Λ̃)

]]L

x
q̃

= πT exp
(
Λ̃L
)[(

γI − Λ̃
)−1
(

exp
[
L(γI − Λ̃)

]
− exp

[
x(γI − Λ̃)

])]
q̃

= πT
[(

γI − Λ̃
)−1
(

exp(Lγ)I − exp(γx) exp
[
Λ̃(L− x)

])]
q̃. (25)

Moreover

eγxFY(x) = eγx
(

1− πT exp
[
Λ̃(L− x)

]
1
)

. (26)

The result follows by combining (25) and (26).209

Corollary 4. Consider the model defined in equation (5) and assume that Assumption (2) holds then, b− and210

b+ exist.211

Proof. The proof is straightforward, as the inf and sup of a continuous function in a bounded interval212

exist.213

Corollary 5. Consider the model defined in equation (5) with Erlang (n) distribution of parameter λ for the214

time to default D. Assume that assumption (2) holds then, b− and b+ can be expressed as follows215

b− = inf
x∈[0, L)

exp(γx)
(

1− exp
(
− λ̃(L− x)

) n−1

∑
k=1

(
λ̃(L− x)

)k

k!

)
(

λ̃

λ̃ + γ

)n

exp(Lγ)− exp
[
− λ̃L + (λ̃ + γ)x

] n

∑
k=1

(
λ̃

λ̃ + γ

)k (λ̃(L− x)
)n−k

(n− k)!

,

b+ = sup
x∈[0, L)

exp(γx)
(

1− exp
(
− λ̃(L− x)

) n−1

∑
k=1

(
λ̃(L− x)

)k

k!

)
(

λ̃

λ̃ + γ

)n

exp(Lγ)− exp
[
− λ̃L + (λ̃ + γ)x

] n

∑
k=1

(
λ̃

λ̃ + γ

)k (λ̃(L− x)
)n−k

(n− k)!

.

(27)

Proof. For Erlang(n) distribution, Λ̃(L− x) is given by216

Λ̃(L− x) =



−λ̃(L− x) λ̃(L− x) 0 0 . . . 0
0 −λ̃(L− x) λ̃(L− x) 0 · · · 0
...

. . . . . . . . . . . .
...

...
. . . . . . . . . . . .

...
...

. . . . . . . . . . . . λ̃(L− x)
0 · · · · · · · · · · · · λ̃(L− x)


.
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By Lemma (4), Λ̃(L− x) can be decomposed as follows

Λ̃(L− x) = D + N,

where217

D =



−λ̃(L− x) 0 0 0 . . . 0
0 −λ̃(L− x) 0 0 · · · 0
...

. . . . . . . . . . . .
...

...
. . . . . . . . . . . .

...
...

. . . . . . . . . . . . 0
0 · · · · · · · · · · · · λ̃(L− x)


and

N =



0 λ̃(L− x) 0 0 . . . 0
0 0 λ̃(L− x) 0 · · · 0
...

. . . . . . . . . . . .
...

...
. . . . . . . . . . . .

...
...

. . . . . . . . . . . . λ̃(L− x)
0 · · · · · · · · · · · · 0


.

Furthermore, N is nilpotent with order n and Nk is given by218

Nk =



0 · · ·
(
λ̃(L− x)

)k 0 . . . 0

0
. . . . . .

(
λ̃(L− x)

)k . . .
...

...
. . . . . . . . . . . . 0

...
. . . . . . . . . . . .

(
λ̃(L− x)

)k

...
. . . . . . . . . . . . 0

0 · · · · · · · · · · · · 0


,

where at the i-th row for i = 1, · · · , n− 1 only the (k+i)-th (with k + i ≤ n ) column is not null for the219

matrix Nk.220

Hence, the exponential of Λ̃(L− x) is given by221

exp[Λ̃(L− x)] = exp[λ̃(L− x)]



1
(

λ̃(L−x)
)1

1! · · · · · · . . .
(

λ̃(L−x)
)n−1

(n−1)!

0 1
(

λ̃(L−x)
)1

1!
. . . . . .

(
λ̃(L−x)

)n−2

(n−2)!
...

. . . . . . . . . . . .
...

...
. . . . . . . . . . . .

...
...

. . . . . . . . . . . .
(

λ̃(L−x)
)1

1!
0 · · · · · · · · · · · · 1


,

therefore,

1− πT exp
[
Λ̃(L− x)

]
1 = 1− exp

[
λ̃(L− x)

] n−1

∑
k=0

(
λ̃(L− x)

)k

k!
. (28)
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Moreover,222

(
γI − Λ̃

)−1
=

(
γ + λ̃

)−n



(
γ + λ̃

)n−1
λ̃
(
γ + λ̃

)n−2 . . . . . . · · · λ̃n−1

0
(
γ + λ̃

)n−1 . . . . . . . . .
...

...
. . . . . . . . . . . .

...
...

. . . . . . . . .
...

...
. . . . . . . . . . . . λ̃

(
γ + λ̃

)n−2

0 · · · · · · · · · 0
(
γ + λ̃

)n−1


,

hence,223

πT(γI − Λ̃
)−1

=



(
γ + λ̃

)−1

λ̃
(
γ + λ̃

)−2

...

...
λ̃n−1(γ + λ̃

)−n



T

, (29)

and,224

(
eLγ I − eγx exp[Λ̃(L− x)]

)
q̃ =



−λ̃

(
λ̃(L−x)

)n−1

(n−1)! exp
[
− λ̃L + (γ + λ̃)x

]
−λ̃

(
λ̃(L−x)

)n−2

(n−2)! exp
[
− λ̃L + (γ + λ̃)x

]
...
...

λ̃

(
exp(Lγ)− exp

[
− λ̃L + (γ + λ̃)x

])


, (30)

hence multiplying equation (29) by (30) gives

(
λ̃

λ̃ + γ

)n

exp(Lγ)− exp
[
− λ̃L + (λ̃ + γ)x

] n

∑
k=1

(
λ̃

λ̃ + γ

)k (λ̃(L− x)
)n−k

(n− k)!
. (31)

The result follows by combining (28) with (31).225

Corollary 6. Consider the model defined in equation (5) with a Coxian distribution defined by (17) for the time226

to default D. Assume that Assumption (2) holds then, b− and b+ can be expressed as follows227

b− = inf
x∈[0, L)

eγx
(

1− exp
[
− (λ̃1 + µ̃1)(L− x)

] n−1

∑
k=0

(
L− x

)k

k!

k

∏
l=1

λ̃k

)
n

∑
k=1

k

∏
l=1

λ̃l−1

γ + λ̃l + µ̃l

{
µ̃keγL − eγx−(λ̃k+µ̃k)(L−x)

(
µ̃k +

n−1

∑
l=k

µ̃l+1
(

L− x
)l−k+1

(l − k + 1)

l

∏
j=k

λ̃j

)} ,

b+ = sup
x∈[0, L)

eγx
(

1− exp
[
− (λ̃1 + µ̃1)(L− x)

] n−1

∑
k=0

(
L− x

)k

k!

k

∏
l=1

λ̃k

)
n

∑
k=1

k

∏
l=1

λ̃l−1

γ + λ̃l + µ̃l

{
µ̃keγL − eγx−(λ̃k+µ̃k)(L−x)

(
µ̃k +

n−1

∑
l=k

µ̃l+1
(

L− x
)l−k+1

(l − k + 1)

l

∏
j=k

λ̃j

)} .

(32)
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Proof. Using the same technique as in Corollary (2), we have

(γI − Λ̃)−1 =
n

∏
k=1

(
λ̃k + µ̃k + s

)−1 A,

where,

A =



0 i f i > j

∏
k 6=i

(γ + λ̃k + µ̃k) i f i = j

j−1

∏
k=i

λ̃k ∏
k/∈[i,j]

(γ + λ̃k + µ̃k) i f i < j

.

As Λ̃(L− x) can be split into a diagonal (D) and a nilpotent (N) matrices, the exponential of Λ̃(L− x)
is given by the product of exp(D) and exp(N) where

exp(D) =



e−(λ̃1+µ̃1)(L−x) 0 · · · · · · · · · 0

0 e−(λ̃2+µ̃2)(L−x) 0 0
. . . 0

...
. . . . . . . . . . . .

...
...

. . . . . . . . . . . .
...

...
. . . . . . . . . . . . 0

0 · · · · · · · · · 0 e−(λ̃n+µ̃n)(L−x)


and,

exp(N) =



1 λ̃1(L− x) λ̃1λ̃2(L−x)
2! · · · · · · ∏n−1

k=1 λ̃k(L−x)
(n−1)!

0 1 λ̃2(L− x)
. . . . . . ∏n−1

k=2 λ̃k(L−x)
(n−2)!

...
. . . . . . . . . . . .

...
...

. . . . . . . . . . . .
...

...
. . . . . . . . . . . . λ̃n−1(L− x)

0 · · · · · · · · · 0 1


,

therefore,

πTeΛ̃(L−x)1 = e−(λ̃1+µ̃1)(L−x)
n−1

∑
k=0

(
L− x

)k

k!

k

∏
l=1

λ̃k. (33)

Moreover, computing B =

(
eLγ I − eγx exp[Λ̃(L− x)]

)
q̃ yields,

B = eγL
n

∑
k=1

µ̃k

k

∏
l=1

λ̃l−1

γ + λ̃l + µ̃l
−

n

∑
k=1

eγx−(λ̃k+µ̃k)(L−x)
(

µ̃k +
n−1

∑
l=k

µ̃l+1
(

L− x
)l−k+1

(l − k + 1)

l

∏
j=k

λ̃j

) k

∏
l=1

λ̃l−1

γ + λ̃l + µ̃l
. (34)

The result follows by combining (33) and (34).228
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Remark 5. Consider the model defined in equation (5) with hyper-exponential distribution for the time to229

default D. Assume that Assumption (2) holds then, b− and b+ are given by230

b− = inf
x∈[0, L)

eγx
(

1−
n

∑
k=1

αk exp
[
− λ̃k(L− x)

])
n

∑
k=1

λ̃kαk

γ + λ̃k

[
exp

(
γL)− exp(γx− λ̃k(L− x)

)] ,

b+ = sup
x∈[0, L)

eγx
(

1−
n

∑
k=1

αk exp
[
− λ̃k(L− x)

])
n

∑
k=1

λ̃kαk

γ + λ̃k

[
exp(γL)− exp

(
γx− λ̃k(L− x)

)] .

(35)

231

5. Numerical illustrations232

The exponential distribution is used in finance to model the probability of the next default for a233

portfolio of financial assets. Its memoryless property permits explicit solution of conditional probability234

and tractable results. Phase-type distribution extends these frameworks, leading to a very flexible class235

of distributions that can describe more complex models in stochastic modeling. It is computationally236

tractable due to the underlying Markov structure which simplifies the analysis and allows for a237

probabilistic interpretation. Phase-type distributions in continuous times are dense in the class of all238

positive-valued distribution, which means that they can be approximated by any positive distribution,239

making them extremely useful as real-word modeling tools.240

In this section numerical illustrations (simulations) are provided to support the adjustment coefficient,241

the lower and upper bounds of the ruin probability formulas under specific phase-type distributions242

for the default arrival process. Matlab software is used and graphical solution as well as explicit values243 (
Tables [1- 4]

)
are provided.244

The following distributions are considered for the default arrival process (D).245

• Erlang(n) distribution with parameters given in equation (12).246

• Coxian (n) distribution with parameters given in equation (18).247

• Hyper-exponential(n) with parameters defined in equation (21).248

Figure (1) and Table (1) show the values of the adjustment coefficient for Coxian and hyper-exponential
distributions where T = 1.2, L = 1600, r = 0.01 and n = 8, λ for hyper-exponential
(respectively Coxian), the second parameter µ for Coxian distribution and the initial distribution
of hyper-exponential are:

λ1

λ2

λ3

λ4

λ5

λ6

λ7

λ8


=



0.00000002
0.000000022
0.000000015
0.00000003

0.000005
0.0000008
0.00000065
0.00000045


,



λ1

λ2

λ3

λ4

λ5

λ6

λ7

λ8


=



0.000002
0.0000022
0.0000015
0.000003
0.0005

0.00008
0.000065
0.000045


,



µ1

µ2

µ3

µ4

µ5

µ6

µ7

µ8


=



0.02
0.022
0.015
0.03
0.05
0.012
0.025
0.075


, π =



0.02
0.03
0.25
0.2
0.3
0.1

0.04
0.06


249
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Figure 1. Graphical solution for the adjustment coefficient.

Distribution Mix-Exponential Coxian
γ 0.0087 0.0085

Table 1. Adjustment for hyper-exponential and Coxian distribution

Table (1) shows that the adjustment coefficient is much higher for hyper-exponential than Coxian250

distribution with the above assumptions regarding their parameters.251

For Erlang distribution, increase the interest rate leads to the increase of adjustment coefficient while252

the inverse is observed for the time to maturity and the loan size.253
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Cramér-Lunberg Adjustment Coefficient
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f(s) = 1 function

Figure 2. Graphical solution for the adjustment coefficient.

Distribution Erlang with r=0.01 Erlang with r=0.02 Erlang with r= 0.03
γ 0.0085 0.0089 0.0091

Table 2. Adjustment for Erlang, distribution, where L=2500, T=3 and λ = 0.5

Distribution Erlang with T=2.5 Erlang with T=2.75 Erlang with T=3
γ 0.0093 0.0089 0.0085

Table 3. Adjustment for Erlang, distribution, where L=2500, r=0.02 and λ = 0.5

Distribution Erlang with L=2500 Erlang with L=3000 Erlang with L=3500
γ 0.0089 0.0074 0.0063

Table 4. Adjustment for Erlang, distribution, where T=3, r=0.02 and λ = 0.5

For the corresponding adjustment coefficient derived from Erlang distribution for the time254

to default, the lower and upper constant bounds for the ruin probability are given in the following table255

256

Adjustment coefficient (γ) Lower bound constant b− Upper bound constant b+
0.0063 0.0002 0.36309
0.0074 0.0002 0.6039
0.0085 0.0003 0.9140
0.0089 0.0002 0.9142
0.0091 0.0001 0.9235
0.0093 0.0001 0.9565

Table 5. The lower and upper bounds constant for the ruin probability
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Table (5) shows that the increase of the adjustment coefficient (γ) leads to the increase of the257

upper constant bound for the ruin probability.258

6. Discussion259

Under the Erlang distribution assumption for the default arrival process with parameter λ = 0.5,260

and where L = 2500, T = 3, the numerical simulation shows
(
Table (2)

)
that the increase of the261

risk premium rate leads to the increase of the adjustment coefficient which in turn decreases the ruin262

probability. Conversely, when λ = 0.5, the increase of the loan size or the time to maturity leads to263

the decrease of the adjustment coefficient which increases the ruin probability
(

Table [3 - 4]
)
. These264

results suggest that for risky clients, one may use a higher risk premium rate to reduce the risk of265

default. Table (1) shows that the choice of the distribution of the default arrival process influences the266

adjustment coefficient since the main parameter of the Coxian distribution is 100 times the parameter267

of the hyper-exponential (these coefficients are arbitrary chosen) distribution and the adjustment268

coefficient change by −2 ∗ 10−4. This proves that the exact distribution of the default arrival process is269

crucial for the accuracy of the bounds.270

7. Conclusion271

In this paper we investigate the ruin probability in the banking sector by embedding the surplus
process within the Sparre Andersen model. A general expression for the adjustment coefficient as well
as the lower and upper bounds of the ruin probability are derived when the loan size is constant and
the time to default follows a phase-type distribution. Special case of phase-type distributions (Erlang,
Coxian and hyper-exponential) have also been investigated. Numerical results in Table (3) and (4)
show on the one hand that the increase of the time to maturity or the loan seize leads to the decrease of
the coefficient and Table(2) shows the inverse impact for the interest rate. On the other hand, Table (5)
shows that the increase of the adjustment coefficient implies the increase of the upper constant bound
for the ruin probability. In theory, the results of this paper can be applied to a bank. Unfortunately,
due to variety of reasons, acquiring the appropriate data is a challenge within the African banking
environment.
Further research still remains to be done on this subject, as: (i) on the Gerber-Shiu function which
depends not only on the ruin time but also the value immediately before and after the ruin, (ii) one
may consider the regime switching model to account for the risk level of the client; as a riskier client
would likely pay a higher premium than a normal client. A typical model that can account for this
scenario could be:

U(t) = u +
Nt

∑
k=1

{(
Lk
Tk

+ Lk × rεi

)
T
′
k − Lk

}
t ≥ 0,

where

εi =

{
1 with probability p for risky client

0 with probability 1− p for normal client,

and rε1 is the risk rate applied for the risky client and rε0 is risk rate applied for normal client.272
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