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A B S T R A C T   

In this paper a two stage method is proposed to effectively predict heart disease. The first stage involves training 
an improved sparse autoencoder (SAE), an unsupervised neural network, to learn the best representation of the 
training data. The second stage involves using an artificial neural network (ANN) to predict the health status 
based on the learned records. The SAE was optimized so as to train an efficient model. The experimental result 
shows that the proposed method improves the performance of the ANN classifier, and is more robust as compared 
to other methods and similar scholarly works.   

1. Introduction 

Heart disease (HD) has been classified to be among the most deadly 
human diseases, and its diagnosis and treatment are quite complex. 
Predicting heart disease is challenging but necessary since the mortality 
rate can be greatly reduced if the disease is detected early and preven-
tive measures taken [1]. Therefore, accurate prediction of patient’s 
heart disease risk is very important to reduce their associated risks of 
severe heart conditions [2]. To achieve this and save human lives there 
is need to efficiently process raw heart data for proper classification. In 
order to improve the performance of HD models, several researchers 
have used machine learning algorithms to build various models and they 
have achieved some success, for example in Ref. [1], the authors pro-
posed a method to improve the prediction accuracy by detecting the 
important features and performing classification using a hybrid random 
forest. They achieved an accuracy of up to 88.47%, sensitivity of 92.8%, 
specificity of 88.6, and precision of 87.5%. 

In [2], the authors proposed a framework to predict heart disease, 
where they performed feature reduction which had an impact on the 
performance of various classifiers they experimented on, with the sup-
port vector machine having accuracy of 88%. Similarly, in Ref. [3] a 
method is proposed that generates decision rules in order to effectively 
classify heart disease risk level, and the experimental result showed that 
their method achieved an accuracy of 86.7%. However, to further 
improve on the progress made so far, other methods need to be utilized. 
Deep learning has been successfully applied in several areas, especially 

in image and visual analysis, and in recent times, deep autoencoders 
have achieved superior performance in some unsupervised machine 
learning tasks. It is a possible solution to the challenge of heart disease 
prediction due to its exceptional performance in learning good feature 
representations in complex and large datasets. 

An autoencoder basically comprises of two functions, an encoder 
that maps the original d-dimensional input data to an intermediate or 
hidden representation, and a decoder that maps the hidden represen-
tation back to a d-dimensional vector which is expected to be as close as 
possible to the original input of the encoder The process is called 
reconstruction, whereas the difference between the decoder output and 
encoder input is called the reconstruction error [4]. Research has shown 
that the classification performance can be improved when representa-
tions are learnt in a way that encourages sparsity. In sparse autoen-
coders, the training criterion includes a sparsity penalty on the code 
layer. 

In this paper we present an efficient and reliable sparse autoencoder 
(SAE) approach to perform unsupervised feature leaning and prediction 
of heart disease. We focus on developing a SAE model to learn effective 
features from the HD dataset and then perform classification using the 
learned features. The model is optimized using the adaptive moment 
estimation (Adam) algorithm to achieve dynamic adjustment of 
different parameters, and a batch normalization technique is applied to 
avoid overfitting and to improve the performance, speed, and stability of 
the model. The optimized setting also ensures reconstruction error is 
significantly minimized. The effectiveness of the proposed method is 
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verified by comparing with a standalone ANN, well-performing algo-
rithms such as k-nearest neighbor (KNN), classification and regression 
tree (CART), Logistic regression (LR), linear discriminant analysis 
(LDA), and other scholarly works. The result shows that our proposed 
approach obtains superior classification performance. 

2. Related works 

This section discusses some previous works that studied and applied 
sparse autoencoders. In recent time autoencoders have found significant 
applications in various unsupervised learning tasks in several applica-
tion areas. In Ref. [5] a method was proposed that combined SVM and 
sparse autoencoder. The rational there was that the classical SVM has 
limitations on large scale applications; hence, the need to use a sparse 
autoencoder to improve the performance. The authors used multiple 
layers of sparse autoencoder to perform feature learning and used the 
SVM for classification, thereby improving the performance of the SVM in 
handling large scale datasets. 

In a similar research, the authors in Ref. [6] proposed a method to 
perform feature learning using sparse autoencoders to improve the 
performance of the regression model on real-valued time series data. The 
architecture consists of different layers of sparse autoencoders. The aim 
of the research was to enhance vehicular traffic flow forecasting. And in 
a bid to increase the accuracy of the sparse autoencoder, they proposed a 
cascaded model which leverages on the combination of low and high 
level features, and a stochastic gradient descent algorithm was 
employed as the regression method. Another research was conducted to 
carry out anomaly detection by learning anomaly scores [7]. The idea in 
this research was that since the reconstruction error of background data 
is small while that of anomaly data is relatively higher, the recon-
struction error can be used as an anomaly score. Therefore, they pro-
posed a sparse autoencoder based anomaly detection method which uses 
a dual concentric window. 

In [8], a sparse representation based classification method was 
proposed using a transductive deep learning based formulation. The 
network comprises of a fully connected layer and a convolutional 
autoencoder. The fully connected layer is placed between the encoder 
and decoder, and its function is to find the sparse representation, 
whereas the autoencoder network learns effective deep features for 
classification. When the estimated sparse codes are used for classifica-
tion of some datasets, the proposed method showed improved 
performance. 

In [9] the authors proposed a method to add a distance constraint to 
stacked sparse autoencoders (SSAEs) in order to form a novel distance 
constraint SSAE network. The distance constraint enhances the 
uniqueness between target pixels and various background pixels in the 
feature space. Hence, by utilizing the discriminative features learned 
from the distance constrained SSAE, a simple detector with radial basis 
function kernel is obtained for background suppression. Tests conducted 
on two hyperspectral image show that the deep spectral features learned 
from the distance constraint SSAE are more distinct and perform better 
than many detectors. 

In [10] an approach was proposed to derive a formulation that 
effectively determines the sparse hyper-parameter in sparse autoen-
coders, in addition to deriving the relationship between the average 
activation of hidden units and sparse hyper-parameter. The authors 
conducted two experiments and they obtained good performance. In 
Ref. [11] a new method shows where a sparse autoencoder is used for 
automatic modulation classification. The network was trained using a 
non-negativity constraint algorithm. Experimental results showed that 
the autoencoder with the non-negativity constraint enhances the spar-
sity and minimizes the reconstruction error as compared to the tradi-
tional sparse autoencoder. 

3. Proposed methodology 

In this section, we describe the methodology used in implementing 
the proposed sparse autoencoder. An autoencoder is a type of unsu-
pervised neural network architecture that replicates its input at the 
output. It basically consists of an encoder and a decoder. AEs aim to 
learn low-level representations of the input data which are then 
deformed back to project the original data. The encoder maps the input 
to a new representation. This new representation is then decoded at the 
output to reconstruct the input x’ according to Equations (1) and (2), 
where x is the input and z the new representation. 

Z¼ hðWxþ bÞ (1)  

X’ ¼ gðW’zþ b’Þ (2) 

In the above formulation, h is the activation function for the hidden 
layer neurons and g is for the output layer neurons, W and W’ are weight 
matrices, and b and b’ are the encoder and decoder bias vectors, 
respectively. In this paper, the sigmoid activation function is utilized, 
which is shown in Equation (3) instead of the others such as Relu, Tanh 
etc. 

h¼ g ¼
1

1þ e� x (3) 

The reconstruction error function E between the input x and recon-
structed input x’ uses the mean squared error (MSE) function shown in 
Equation (4). 

E¼
1
N
XN

i¼1
xi þ x’2

i (4)  

N represents the number of input samples. However, in this research a 
sparse autoencoder is utilized to obtain an effective low-level repre-
sentation of the input data under sparse constraints. Hence, sparsity is 
introduced by including regularization to the cost function. Let bpi be the 
average activation of neurons in the hidden layer. 

bpi ¼
1
n
Xn

j¼1
zi
�
xj
�

(5) 

From Equation (5) I, n, and j represents the ith neuron, total number 
of training samples, and jth training sample respectively. The average 
activation bpi approaches p that is a constant close to zero. Hence, the 
Kullback-Leibler (KL) divergence is used to add the regularizer to the 
cost function. The KL divergence is introduced to achieve sparsity. 

Ωsparsity ¼
Xd

i¼1
p log

�
p
bpi

�

þ ð1 � pÞlog
�

1 � p
1 � bpi

�

(6) 

From Equation (6) d stands for the total number of neurons in a layer, 
whereas p is the sparsity proportion, which is the needed activation 
value. Therefore, the SAE error function now comprises of the mean 
square error and the regularization terms. Furthermore, in order to 
control the weights and prevent overfitting, L2 regularization (L2R) is 
introduced in the cost function. 

Ωweights ¼
1
2
XL

I

XN

j

XK

i

 

wðIÞji

!

(7)  

L and K represent the number of hidden layers and number of features in 
a sample, respectively [12]. We went further to include the weight 
attenuation units as seen in Equation (8). After adding the various reg-
ularization terms, i.e. Equations (6) and (7) into Equation (4) which is 
the reconstruction error, our cost function becomes: 

E¼
1
N
XN

n¼1

XK

k¼1
ðxkn � bxknÞ

2
þ λ*Ωweights þ β* Ωsparsity (8) 
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There are three optimization parameters here: λ which is the coef-
ficient for L2R and it prevents overfitting, the second parameter is β the 
sparsity regularization parameter, and it sets the sparsity penalty term. 
Lastly, p the sparsity proportion controls the needed sparsity level. The 
optimization parameter values for λ, β, and p are 0.0001, 0.01, and 0.5 
respectively. 

Furthermore, in our quest to train a robust SAE, the Adam algorithm 
[13] is used instead of the classical stochastic gradient descent or other 
variants. The Adam optimization algorithm avails us the opportunity to 
use a different learning rate for various parameters and to realize dy-
namic adjustment of various parameters by obtaining the gradient 
first-order moment estimate mt and second-order moment estimate vt 
shown in Equations (9)–(11). 

mt ¼ β1mt� 1 þ ð1 � β1Þ:gt (9)  

vt ¼ β2vt� 1 þ ð1 � β2Þ: g2
t (10)  

gt←rθJtðθt� 1Þ (11)  

Where β1 and β2 are the first-order exponential damping decrement and 
second-order exponential damping decrement respectively. Whereas gt 
is the gradient of the parameters at timestep t in the cost function E 
above. Computer bias-corrected for mt and vt: 

m‘
t ¼

mt

1 � βt
1

(12)  

v‘
t ¼

vt

1 � βt
2

(13) 

Update parameters: 

θtþ1 ¼ θt �
γ
ffiffiffiffi
v‘

t

p
þ ξ

m‘
t (14)  

γ represents the update step size. ξ takes a small constant in order to stop 
the denominator from becoming zero. The procedure for the proposed 
sparse autoencoder is shown in Algorithm 1. 

4. Dataset and performance indices 

The HD dataset is obtained from the Kaggle website [14]. The dataset 
was obtained after a cardiovascular study on residents of Framingham, 
Massachusetts. The reason for using the Kaggle Framingham heart 
dataset is because it has a higher number of instances (4238) compared 
to the Cleveland, Hungarian, and Long Beach heart datasets which have 
303, 294, and 200 instances respectively. The dataset includes patient 

information and it aims at predicting their 10-year risk of future coro-
nary heart disease (CHD). It consists of 4238 samples and 16 features. 
Every feature is a possible risk factor, and they include behavioral, de-
mographic, and medical risk factors. The dataset contains missing at-
tributes. After dropping rows with missing attributes, 3656 records were 
left; among which 3099 were negative and 557 positive. We utilized 
70-30% train-test data partitioning approach. 

To effectively assess the performance of our method, some metrics 
including accuracy, precision, sensitivity, and F1 score were used. The 
various performance metrics are defined as follows: 

classification accuracy¼
TPþ TN

TPþ TNþ FPþ FN
(15)  

Sensitivity
�

recall ¼ TP
TPþ FN

(16)  

Precision¼ TP
TPþ FP

(17)  

F1¼
2*Precision*Sensitivy
Precisionþ Sensitivity

(18)  

TN and TP stands for true negative and true positive, and they are the 
number of negative and positive patients that are classified correctly. 
Whereas FP and FN represents false positive and false negative and they 
represent the number of positive and negative patients that was wrongly 
predicted. 

5. Experimental setup 

5.1. The approach 

The proposed approach involves two steps. Firstly, the dataset is 
preprocessed to make it suitable for building our model. After pre-
processing, the dataset is then split into train and test sets. The SAE was 
trained using the negative instances in the train set. The rationale here is 
that if the model can learn accurate representation of these negative 
samples, when presented with unseen samples either positive or nega-
tive it should easily identify them. Our interest is to obtain the latent 
representation of the input learned by the SAE model and use it to train 
the ANN. Hence, once the SAE model is trained, the encoding part is 
used to create another network. This network is used to transform the 
train and test sets, including both positive and negative samples. This 
simply transforms the dataset to a low-dimensional representation 
dataset. The second stage is to train the ANN classifier using the 
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transformed train set and then make predictions on the test set. The 
proposed method prevents any possible data leakage and overfitting. 

5.2. Model parameters 

The experiment was conducted using a computer that has the 
following specification: Intel Core i5-6300U, 2.40 GHz, and 16 GB RAM. 
Python was utilized as the programming language. While there is no rule 
of thumb to obtain the number of hidden layers and neurons in various 
layers of an autoencoder network, it is important for us to obtain a good 
network structure according to our experimental settings for optimal 
performance. From several experiments carried out, the experimental 
parameters in Table 1 provide optimal performance. 

In our SAE network the layers (100, 75, 50, and 25) in encoder and 
decoder are symmetric around the bottleneck. The Adam optimization 
algorithm takes the default parameter as proposed by Kingma and Ba 
[13]. Also the batch normalization technique proposed by Joffe and 
Szegedy [15] was applied to improve the performance, speed, and sta-
bility of the SAE model. The reason for using a batch size of 32 is due to 
the fact that smaller batch sizes allow the model to converge faster. 

6. Results and discussion 

In order to demonstrate the effectiveness and performance of the 
features learned by our proposed sparse autoencoder, first we trained an 
ANN using the raw data and secondly using the learned features as 
shown in Table 2. 

The result shows that the low-dimensional features learned by our 
sparse autoencoder improves the classification performance of the ANN, 
since the proposed method performs better than the ANN, which is a 
demonstration of the fact that the sparse autoencoder is capable of 
retaining the information in the input data while obtaining optimal low 
dimensional features. The model performs well on the test data, which is 
a major pointer to its efficiency since the model has not previously seen 
the data. We also carried out comparative experiments using five base 
classifiers including KNN, CART, Logistic regression, Naïve Bayes, and 
LDA. The experimental results are summarized in Table 3. From this 
table, it is evident that the proposed method outperforms the other 
algorithms. 

Furthermore, the proposed approach is compared with some recent 
scholarly works as shown in Table 4, and it shows better performance 
than those reported in the literature. Lastly, as a means to further show 
how effective the proposed method performs, we conducted further 
experiments using the cervical cancer risk factors dataset [16], as shown 
in Table 5. 

From the results obtained so far, it can be seen that the proposed 
method shows significant improvement compared to the other methods 
in terms of classification performance. And it is clear that the proposed 
sparse autoencoder improves the accuracy of the ANN compared to a 
case where the ANN alone was used to make predictions. The results also 
show that improved performance can be achieved not only by improving 
the structure of the neural network or performing hyper-parameter 
tuning of algorithms, but also by improving the preprocessing stage of 

the classification process. 

7. Conclusion 

In this research, an improved sparse autoencoder based ANN is 
proposed to aid the prediction of heart disease. The sparse autoencoder 
was used to learn the best representation of the data while the ANN used 
to make predictions based on the learned records. The SAE was opti-
mized using Adam algorithm and batch normalization applied. The ac-
curacy of the model on test data was 90%. Compared to some traditional 
machine learning approaches and ANN, our proposed method showed 
improved performance. 
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ANN 
90 89 91 90  

Table 3 
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