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Abstract

The aim of this dissertation is to identify the construction of models that preserve (in
both directions) the truth of hybrid formulas and therefore serve to characterize the ex-
pressivity of many-valued hybrid logic based on the framework of Hansen, Bolander
and Brauner. We show that generated submodels and bounded morphisms preserve
the truth of hybrid formulas in both directions. We also show that bisimilarity im-
plies hybrid equivalence in general, however, the converse is not true in general. The
converse is true for a weaker notion of a bisimulation for a special set of models, the
image-finite models.

The second significant contribution of this project is to develop the correspondence
theory for many-valued hybrid logic. We show that the algorithm ALBA(first devel-
oped by Conradie and Palmigiano) can be extended to the many-valued hybrid setting.
We call this extension MV-Hybrid ALBA. As a result, we successfully identify a syn-
tactically defined class of hybrid formulas for a many-valued hybrid language, namely
inductive formulas, whose members always have a local first-order frame correspon-
dents. This inductive class generalizes the Sahlqvist class. An appropriate duality is
obtained between frames in the chosen many-valued hybrid framework and a class of
algebras having certain properties in order to extend ALBA to the many-valued hybrid
setting.
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Introduction

A property is preserved by a certain relation or an operation, if whenever two struc-
tures are linked by the relation or operation, then the second structure has the prop-
erty if the first one has it. We speak of invariance if the property is preserved in both
directions. Modal logicians are interested in knowing when two structures are indis-
tinguishable by modal languages. That is, when do these structures satisfy exactly the
same modal formulas. One of the aims of this dissertation is to identify constructions
of models of a many-valued hybrid language that will preserve (in both directions)
the truth of hybrid formulas and thus serve to characterize the expressivity of many-
valued hybrid logic. The concept of validity abstracts away from the effects of particu-
lar valuations allows modal languages to get to grips with frame structure. Viewed as
tools for defining frames, every modal formula corresponds to a second-order formula.
Sometimes this second-order formula has a first-order equivalent. The second aim of
this dissertation is to extend the ALBA algorithm to many-valued hybrid logic and use
this algorithm to identify a class of hybrid formulas that always have a first-order cor-
respondent and thus develop the correspondence theory for many-valued hybrid logic.

For 2-valued modal logic, the model constructions of generated submodels, disjoint unions
and bounded morphisms preserve the truth of formulas in both directions (see Black-
burn, De Rijke and Venema [3]). These model constructions are all special cases of
bisimulation and it was proved that bisimilarity implies modal equivalence (when two
models satisfy the same set of modal formulas) but modal equivalence does not im-
ply bisimilarity in general. Modal equivalence implies bisimilarity for a special set of
models, called the image-finite models (see [3, Theorem 2.24]). Although modal equiv-
alence does not imply bisimilarity, it does imply bisimilarity somewhere else, namely
in the ultrafilter extensions of the models concerned (see [3, Theorem 2.62]). It is also
shown in [3] that validity is preserved under the formation of disjoint unions, generated
submodels and bounded morphisms, and anti-preserved under ultrafilter extensions.
The properties of the four frame constructions (disjoint unions, generated submodels,
bounded morphisms, and ultrafilter extensions) we have discussed together consti-
tute necessary and sufficient conditions for a class of frames to be modally definable.
This is essentially the Goldblatt–Thomason Theorem (see [3, Theorem 3.19]). In [27],
Sahlqvist defined a class of modal formulas that always have a first-order frame cor-
respondent and this class is now referred to as the Sahlqvist class. For formulas of the
Sahlqvist class, the corresponding first-order formulas on frames are effectively com-
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putable from the modal formula you begin with. The Sahlqvist class was generalized
by Goranko and Vakarelov [20] to a bigger class which is referred to as the inductive
class of formulas.

Hybrid logic is an extension of modal logic. These languages are syntactically simple,
and moreover, they turn out to be a useful tool for describing and reasoning about re-
lational structures. Modal semantics are based on states. We evaluate formulas inside
the models, at some state, and use the modalities to scan accessible states. However,
modal syntax does not allow us to refer to states themselves. It does not let us reason
about states themselves. The inability to reason about states themselves could limit
us in many applications. Hybrid logic allows us to access more information about the
states we are standing in by the use of nominals. Hybrid languages have a long his-
tory: nominals were used as far back as the sixties in the work of Prior [26] and Bull
[8]. Nominals were reinvented on several occasions (see [2, 1, 4, 5, 6]). Nominals are
propositional variables with a special property, namely, nominals are only true at ex-
actly one state in any model. For this reason, nominals are used as names for states.
This simple idea gives rise to richer logics. As in modal logic, truth of hybrid formulas
is invariant under generated submodels and bounded morphisms, but disjoint unions
do not preserve the truth of hybrid formulas because of the introduction of nominals
(see the thesis by Ten Cate [29]). It is this property of being true at exactly one state that
causes truth of hybrid formulas to not be preserved under disjoint unions. It was also
shown in [29] that bisimilarity implies hybrid equivalence but hybrid equivalence only
implies bisimilarity under certain conditions, namely, image-finiteness. As in modal
logic, hybrid equivalence implies bisimilarity in the ultrafilter extension of models.

Sahlqvist theory in modal logic was generalized to hybrid logic in [29] and later Con-
radie and Robinson [13] also extended Sahlqvist theory to hybrid logic via an algorith-
mic approach. The algorithm in question was first developed by Conradie and Palmi-
giano [10] and makes use of Ackermann’s Lemma to eliminate propositional variables.
This algorithm is referred to as ALBA where the acronym ALBA stands for “Acker-
mann’s Lemma Based Algorithm”.

In classical modal logics, the truth of formulas at a state can only take two values,
true or false. But there is no reason why this has to be the case. A truth-value space
could be an infinite set of elements. Each formula can be evaluated at a state to equal
an element of the infinite set. This is essentially the many-valued setting. Many-valued
modal logics have been considered before in [30, 28, 25, 24, 23]. These papers focused
on retaining the general notion of possible state semantics, while allowing formulas
to have values in a many-valued space, at each possible state. Fitting [18] extended
this basic idea by allowing the accessibility relation between possible states itself to be
many-valued.

The model constructions of generated submodels, bounded morphisms and disjoint
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unions were explored for many-valued modal logic by Eleftheriou and Koutras [16]
with a complete Heyting algebra as a truth-value space. In many-valued setting, in-
variance becomes t-invariance and modal equivalence becomes modal t-equivalence,
where t is a nonzero element of the truth-value space. It was shown in [16] that t-
invariance results hold for generated submodels, bounded morphisms and disjoint
unions. Results about bisimulations for many-valued modal logic were considered
by Eleftheriou, Koutras and Nomikos [17]. It was shown that t-bisimilarity implies
modal t-equivalence. For the converse, however, with a t-image-finite class of models,
a weaker definition of a bisimulation was introduced. A weak bisimulation is a func-
tion which maps every nonzero element of τ (τ is a complete Heyting algebra) to a set
of pairs of states from the two models. The function must satisfy the properties given
in Section 3.2 of [17].

The correspondence theory for many-valued modal logic was first explored by Britz
[7]. The truth-value space considered in that work is a perfect Heyting algebra. The
dissertation focused on generalizing the Sahlqvist theory via an algorithmic approach.
In [7], the generalization of ALBA successfully identified a syntactic class of modal for-
mulas (still called the inductive class which contained the Sahlqvist class) that always
have a local first-order frame correspondent. Furthermore, an interesting fact was dis-
covered: the restricted Sahlqvist class, which is subclass of the Sahlqvist class, not only
have local first-order frame correspondents but the corresponding local first-order for-
mulas are syntactically identical to the corresponding first-order formulas that modal
formulas have in the 2-valued case (see [7, Theorem 4.28]).

Recently, Hansen, Bolander and Brauner introduced many-valued hybrid logic [21].
The basic idea was to combine 2-valued hybrid logic and many-valued modal logic to
obtain a many-valued hybrid logic. The accessibility relation between states was also
many-valued as in [18]. There is also a function called the nominal interpreter. The func-
tion maps each nominal to a unique state. This was designed to match the semantics
of nominals in the 2-valued hybrid case. In [21], a tableau system that is sound and
complete with respect to the semantics was also defined.

The new work of this dissertation aims to extend the t-invariance results from [16]
and [17] to many-valued hybrid logic using a perfect Heyting algebra τ (see Definition
2.1.19) as the truth-value space. We will build on the invariance results for 2-valued
hybrid logic in [29] and the t-invariance results for many-valued modal logic in [16]
to obtain the t-invariance results for generated submodels and bounded morphisms in
many-valued hybrid logic. As in 2-valued hybrid logic, we do not have t-invariance
results for disjoint unions. For bisimulations, we will build on the invariance results
for 2-valued hybrid logic in [29] and t-invariance results for many-valued modal logic
in [17] and we will have that t-bisimilarity implies hybrid t-equivalence. For the con-
verse, with a t-image-finite class of models, we also introduced a weaker notion of a
bisimulation as in [17] (see Definition 3.4.4) to obtain the results.
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The dissertation also seeks to extend the generalized ALBA algorithm to many-valued
hybrid logic by combining algorithms presented in [13] for 2-valued hybrid logic and
the algorithm in [7] for many-valued modal logic. The ALBA algorithms in [13] and
[7] use the fact that modality � is a left adjoint of the modality � and modality � is a
right adjoint of the modality ♦. The reason for requiring adjoint operators is that the
proofs of soundness of ALBA rules is based on the adjunction and residuation proper-
ties of the connectives as interpreted on complex algebras. For our purposes, we need
to define the left and right adjoint of our satisfaction operator @. The operators @[ and
@# are defined as the right and left adjoints of @, respectively, (see Definition 2.2.10
and Proposition 2.2.12). With these adjoints in our language, we are able to formulate
a version of ALBA for our many-valued hybrid logic and refer to that as MV-Hybrid
ALBA. We use our MV-Hybrid ALBA to identify an inductive class of formulas that
always have a local first-order frame correspondent.

This dissertation is laid out as follows: We will first introduce 2-valued hybrid logic
together with 2-valued first-order logic and give a brief description of the correspon-
dence theory between these two logics in Chapter 1. We then review correspondence
theory (based on a hybrid version of ALBA) between classical hybrid logic and classi-
cal first-order logic. Our description is based on [10]. In Chapter 2, we will introduce
many-valued hybrid logic together with its extended many-valued hybrid language.
Furthermore, we will also introduce the algebraic structures that will be our truth-value
space for many-valued hybrid logic and the extended many-valued hybrid language.
We will then give a brief introduction of the duality between frames and Heyting alge-
bras and define what exactly is the complex algebra of a frame. This is needed for the
proof of the correctness of MV-Hybrid ALBA. Specifically, we will need a result that
says a hybrid formula is true in a frame under a valuation if and only if it is true in the
corresponding complex algebra under an assignment (see Proposition 2.3.6).

In Chapter 3, we will explore the expressivity of many-valued hybrid logic. We will
show that we have t-invariance results for the following model constructions: gener-
ated submodels, bounded morphisms and bisimulations in many-valued hybrid logic
by building on results from [29] and [16]. For the t-invariance under bisimulations,
we will build on results from [29] and [17]. In Chapter 4, we will consider the cor-
respondence theory between many-valued hybrid logic and many-valued first-order
logic. We will first introduce the many-valued first-order language and the many-
valued second-order language. We will then extend the ALBA algorithm to many-
valued hybrid logic by building on results from algorithms in [13] and [7]. We will
identify a syntactic class of hybrid formulas that always have a local first-order frame
correspondent.
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Chapter 1

Hybrid Logic

Hybrid logic is an extension of modal logic. Modal logic is an extension of the propo-
sitional logic with sentential operators (called modalities or modal operators). These lan-
guages are syntactically simple, and moreover, they turn out to be a useful tool for
describing and reasoning about relational structures. A relational structure is a tuple
consisting of a non-empty set of points and relations between them. These relational
structures are widely used in mathematics and computer science.

States are the cornerstone of modal semantics, we evaluate formulas inside the mod-
els, at some state, and use the modalities to scan accessible states. However, modal
syntax offers no grip on the states themselves. It does not let us reason about states
themselves. The inability to reason about state themselves could be a limit to many ap-
plications. Hybrid logic allows us to access more information about the states we are
standing in by the use nominals. Hybrid languages have a long history: nominals were
used as far back as the sixties in [26, 8]. Nominals were reinvented at several occasions.

Nominals are the propositional variables with a special property, namely, nominals are
only true exactly at one state in any model. For this reason, nominals are used as names
for states. This simple idea gives rise to richer logics. We now give a brief introduction
to hybrid logic based on [3] and [29].

1.1 Syntax and Semantics of Hybrid Logic

Let Φ = {p, q, r, . . . } be a nonempty set of propositional variables and let Ω = {i, j, k, . . . }
be a nonempty set disjoint from Φ. The elements are of Ω are called the nominals. We
define the hybrid language L over the set Φ ∪Ω as follows:

φ = p | i | 0 | ¬φ | φ ∨ ψ | ♦φ | @iφ

where p ∈ Φ, i ∈ Ω and for any nominal i, the symbol @i is called a satisfaction operator.

The other logical connectives are defined as one would naturally expect:
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• φ ∧ ψ = ¬(¬φ ∨ ¬ψ)

• φ→ ψ = ¬φ ∨ ψ

We also have a dual operator box � for our diamond ♦ operator and it is defined as
�φ = ¬♦¬φ. Note that 0 is a falsum in our language and the opposite of that would
be the tautology and it is defined as 1 = ¬0.

Remark 1.1.1. We chose to use the symbols 0 and 1 instead of the natural symbols ⊥
and >, respectively, because when we introduce the algebraic structures, which will
be used as truth-value space for our many-valued hybrid logic the usual choice of top
and bottom are 0 and 1, respectively.

Definition 1.1.2. A frame of L is a pair F = (W, R) such that W 6= ∅ and R is a binary
relation on W.

Definition 1.1.3. A model of L is a pair M = (F, V) such that F is a frame and V is a
function assigning to each propositional variable p a subset V(p) and assigning to each
nominal i a singleton V(i). Formally, V is map : Φ ∪Ω → P(W), where P(W) denote
the power set of W.

The function V is called a valuation. A valuation assigns to each propositional variable
p a subset of W and to each nominal i a singleton subset of W since a nominal is only
true at a unique state. That is, a valuation makes propositional variable and nominals
true at states. For example, if we have W = {a, b, c}, V(p) = {a, b} specifies that p
is true at a and b, but not at c. Also, it is impossible to have a valuation such that
V(i) = {a, b}. A valuation V : Form→ P(W) can be extended in the following way so
we can talk about the truth of every possible formula in our language L.

Definition 1.1.4. Suppose w is a state in a model M = (W, R, V). Then we inductively
define the notion of a formula φ being true (or satisfied) in M at w (notation: M, w  φ)
as follows:

1. M, w  p iff w ∈ V(p).

2. M, w  i iff w ∈ V(i).

3. M, w  0 never the case.

4. M, w  ¬φ iff M, w 3 φ.

5. M, w  φ ∨ ψ iff M, w  φ or M, w  ψ.

6. M, w  ♦φ iff there exists u ∈W such that Rwu and M, u  φ.

7. M, w  @iφ iff there exists u ∈W such that u ∈ V(i) and M, u  φ.
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From the semantics of the other connectives, it follows that:

1. M, w  1 is always the case.

2. M, w  φ→ ψ iff M, w 1 φ or M, w  ψ.

3. M, w  �φ iff for all u ∈W such that Rwu, we have M, u  φ.

Definition 1.1.5. A formula φ is true in M (notation: M  φ) if M, w  φ for all w ∈W.

Definition 1.1.6. Let F = (W, R) be a frame. A formula φ is valid at a state w in F
(notation: F, w  φ) if (F, V), w  φ for all valuations V on F. A formula φ is valid in F
(notation: F  φ) if it is valid at every state in F.

As hybrid language is one of the extensions of modal logic, hybrid language can also
be extended in a similar fashion. One of the extensions we can have is the hybrid tense
logic which adds two backward looking modal operators � and �. The interpretation
of hybrid tense logic define events taking place in a series of times so that each state
w ∈ W represents a certain point in time. The intended interpretation of the modal
operators of temporal hybrid logic is:

1. ♦φ is interpreted as “φ will be true at some future time”

2. �φ is interpreted as “φ will be always be true in the future”

3. �φ is interpreted as “φ was true at some past time”

4. �φ is interpreted as “φ has always been true in the past”

We will extend our language L by adding these two backward looking modalities for
the purpose of hybrid ALBA to be introduced later. For many-valued hybrid ALBA,
which will also be introduced later, dual operators for @ operator will also be needed
on the extended language as the operator @ can be viewed as both ♦ and � operators
in the many-valued setting. The extended language L+ is defined inductively as

φ = p | i | 0 | ¬φ | φ ∨ ψ | ♦φ | @iφ | �φ | �φ

We find it convenient to define the following:

Definition 1.1.7. Given formulas φ, φ1, . . . , φn and ψ, ψ1, . . . , ψn from L+, a quasi-inequality
is an expression of the form (φ1 ≤ ψ1& . . . &φn ≤ ψn) ⇒ (φn ≤ ψn). Each expression
φi ≤ ψi will be referred to as an inequality.

The semantics of L+ is defined by adding the following clauses to those in Definition
1.1.4.

1. M, w  �φ iff there exists u such that Ruw and M, u  φ.

2. M, w  �φ iff M, u  φ for all u such that Ruw.
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3. M, w  φ ≤ ψ if and only if M, w  φ implies that M, w  ψ. (Note that the
semantics of φ ≤ ψ are the same as the semantics of φ→ ψ)

4. M, w  (φ1 ≤ ψ1& . . . &φn ≤ ψn) ⇒ (φn ≤ ψn) if and only if M, w  φi ≤ ψi for
all 1 ≤ i ≤ n implies that M, w  φ ≤ ψ.

1.2 First-Order Logic

In this section, we will introduce the first-order language that we will denote by LFO.
This language is intended to be the correspondence language for our hybrid language
L. The content in this section is based on [22]. The description of the language LFO is
divided into two steps: symbols and formulas.

1. Symbols for LFO: The symbols of LFOare divided into two groups:

(a) Logical symbols:

i. A set of individual variables VAR, which will be denoted by x1, x2, . . .
ii. Logical connectives ¬ and ∨

iii. The quantifier ∃
iv. Equality symbol =

(b) Nonlogical Symbols:

i. Constant symbols 0 and 1
ii. Unary predicate symbols P1, P2, . . .

iii. Constant symbol ci for each nominal i
iv. A binary relation symbol R

2. Formulas of LFO: We first define the terms of LFO. The only terms of LFO are
the individual variables and constant symbols. With this in our disposal, the
formulas of LFO are defined inductively as follows, and this set will be denoted
by FORM:

(a) F1: If s and t are terms, then (s = t) and Pn(s) are formulas.

(b) F2: If α and β are formulas, so are α ∨ β and ¬α.

(c) F3: If α is a formula and xn is an individual variable, then ∃xnα is formula.

(d) F4: Every formula is obtained by a finite number of applications of F1, F2, F3.

We also have the dual operator ∀ of ∃ such that if α is a formula and xn is an individual
variable, then ∀xnα is a formula. The connectives ∧ and→ are not part of our language
LFO, but as in hybrid language L, we can be define the semantics of these connectives
as

1. α ∧ β = ¬(¬α ∨ ¬β).
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2. α→ β = ¬α ∨ β.

We now introduce the notion of an interpretation and models in the language LFO.
Mathematically, an interpretation has the same structure as frame F of hybrid logic L.

Definition 1.2.1. An interpretation I of LFO is a structure consisting of:

1. A non-empty set W I , called the domain of I.

2. For each unary predicate symbol Pn of LFO, a unary predicate PI
n on W I .

3. For the binary relation symbol R of LFO, a binary relation RI on W I .

The set W I is also referred to as the universe of the interpretation. The variables
x1, x2, . . . range over W I .

We now define the notion of a formula being true in an interpretation.

Definition 1.2.2. Let I be an interpretation of LFO. An assignment in I is a function v
from the set of individual variables into the domain of I, that is,

v : VAR→W I

We can extend v so that it assigns an element W I to each term of LFO, that is, v :
TERM → W I . We can further extend v so that it assigns a truth value true or false to
each formula A of the language LFO, that is, v : FORM → {0, 1}. Note that we still
denote the extended assignment as v.

Definition 1.2.3. Two assignments v and v′ on I are xn-variants (notation : v′ ∼xn v)
if v(xk) = v′(xk) for all k 6= n. Thus, xn-variants v and v′ agree everywhere except
possibly at xn, where they may or may not differ.

Definition 1.2.4. We extend the assignment v to formulas of LFO as follows. We denote
the extended assignment by v : FORM→ {0, 1}

1. v(0) = 0

2. v(s = t) =

{
1 if v(s) = v(t)
0 otherwise

3. v(R(st)) =

{
1 if RI (v(s), v(t))
0 otherwise

4. v (Pn (s)) = 1 iff PI
n (v(s)) = 1

5. v (α ∨ β) = v (α) ∨ v (β)

6. v (∃xnα) =
∨{v′ (α) | v′ ∼xn v}
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The assignment v can also evaluate the following formulas:

1. v(1) = 1

2. v (α ∧ β) = v (α) ∧ v (β)

3. v (α→ β) = v (α)→ v (β)

4. v (∀xnα) =
∧{v′ (α) | v′ ∼xn v}

Remark 1.2.5. Note that we used the same notation v for the extended assignment to
all formulas in the logic LFO and we will stick to this notation throughout.

Definition 1.2.6. A formula α of LFO is true in an interpretation I (notation : I � α) if
v(α) = 1 under all assignments v in I. We also say that α is false in an interpretation I
if no assignment satisfies α.

The first-order language LFO is a correspondent language of L. We extend the language
LFO with the necessary formulas to acquire the extended first-order language LFO+

which will be a suitable correspondent language for L+.

1.3 The standard translation

The section essentially covers the link between hybrid logic L and first-order logic
LFO. The link that connects these logics is called the standard translation. The standard
translation ”translates” a hybrid formula to a corresponding first-order formula. Since
a model in L and an interpretation in LFO are mathematically equivalent, we have
that a hybrid formula is true in a model if and only if the standard translation of that
formula is true in a corresponding first-order interpretation (see Lemma 1.3.4).

Definition 1.3.1. Given a model M = (W, R, V) for L, the corresponding first-order
interpretation for LFO consists of:

1. A non-empty set W

2. Unary predicate Pn for each propositional variable pn, where Pn = V(pn) for each
w ∈W

3. The binary relation R on W

We will also denote the first-order interpretation of a model M by M.

Definition 1.3.2. Let x be a first-order individual variable. The standard translation
STx taking hybrid formulas of L to formulas LFO is defined by the following:

1. STx (pn) = Pn(x)

2. STx (i) = ci
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3. STx (0) = 0

4. STx(¬φ) = ¬STx(φ)

5. STx (φ ∨ ψ) = STx (φ) ∨ STx (ψ)

6. STx (♦ψ) = ∃y
(

Rxy ∧ STy (ψ)
)

7. STx (@iψ) = ∃y
(
y = ci ∧ STy (ψ)

)
where y is a fresh variable, that is, a variable that has not been used so far in the trans-
lation, pn ∈ Φ and i ∈ Ω. We can also define the standard translations of the following
formulas:

1. STx(1) = 1

2. STx (φ ∧ ψ) = STx (φ) ∧ STx (ψ)

3. STx (φ→ ψ) = STx (φ)→ STx (ψ)

4. STx (�ψ) = ∀y
(

Rxy→ STy (ψ)
)

Example 1.3.3. We translate the formula φ = @i p→ � (p ∧ i).

STx (@i p→ � (p ∧ i)) = STx (@i p)→ STx (� (p ∧ i))
= ∃y

(
y = ci ∧ STy (p)

)
→ ∀z (Rxz→ STz (p ∧ i))

= ∃y (y = ci ∧ P(y))→ ∀z (Rxz→ (P(z) ∧ ci))

Lemma 1.3.4. Let M = (W, R, V) be a model for L, w ∈ W and φ a hybrid formula.
Then

1. M, w  φ iff M � STx(φ)[x := w]

2. M  φ iff M � ∀xSTx(φ)[x := w]

The next results say that validity in a frame implies truth in the corresponding second-
order structure, and vice versa. The second-order formulas are obtained by quantifying
over predicate variables, and not just individual variables.

Lemma 1.3.5. Let F = (W, R) be a frame for L, w ∈W and φ a formula of L. Then:

F, w  φ iff F � ∀P (STx(φ)) [x := w]

where P is the vector of all predicate variables occurring in STx(φ)

The last part of this section will assert that the same results hold for the standard trans-
lation taking hybrid formulas from L+ into LFO+.

Definition 1.3.6. Let x be a first-order individual variable. The standard translation
STx taking hybrid formulas of L+ to formulas of LFO+ deals with additional clauses as
follows:

1. STx(�ψ) = ∃y(Ryx ∧ STy(ψ)).

2. STx(�ψ) = ∀y(Ryx → STy(ψ)).

11



1.4 Correspondence Theory between Hybrid Logic and
First-Order Logic

Frame definability is a second-order notion. Henceforth, the second-order correspon-
dent of any hybrid formula can be straightforwardly computed using the second-order
translation. This section aims to explain why many hybrid formulas define first-order
conditions on frames.

1.4.1 First-Order Correspondence

Definition 1.4.1. Let φ be a hybrid formula in L and α (x) a formula in the correspond-
ing first-order language LFO (x is supposed to be the only free variable of α). Then we
say that φ and α (x) are local frame correspondents of each other if the following holds,
for any frame F and any state w of F:

F, w  φ iff F � α[w]

Definition 1.4.2. Let φ be a hybrid formula in L and α (x) a formula in the correspond-
ing first-order language LFO (x is supposed to be the only free variable of α). Then we
say that φ and α (x) are global frame correspondents of each other if the following holds,
for any frame F and for all states of F:

F  φ iff F � α

Example 1.4.3. We show that the hybrid formula φ = @i p → @i♦p globally corre-
sponds to the first-order property reflexivity (Rxx).

Suppose that F is a reflexive frame. Let w ∈ W be a state in F and V be any valuation
on F such that (F, V), w  @i p. Then there exists a state u ∈ W such that (F, V), u  p
and u ∈ V(i). Since F is reflexive, we have that (F, V), u  ♦p. Hence, by the definition
of the @i operator, we have that (F, V), w  @i♦p.

We prove the other implication by arguing contrapositively. Suppose that we have
a frame F that is not reflexive. Then we have a point w ∈ F such that ¬Rww. Let V be
a valuation such that V(p) = {w} and V(i) = {w}. Hence it follows that F, w  ♦p.
Hence we have that F, w  @i♦p.

1.4.2 Inductive Formulas

The algorithm ALBA was first introduced in [10] for distributive modal logic and later
introduced for non-distributive modal logic in [11]. The work was later extended to
hybrid logic in [13]. The aim of the algorithm is to eliminate all propositional vari-
ables from a given hybrid formula or inequality through application of rules. If this is
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successful, the standard translation is applied to the set of quasi-inequality produced
which gives out the first-order frame correspondent for the given formula or inequality.

This whole section introduces a new syntactically defined class of inequalities in L.
This class expands the Sahlqvist class in [3, 27] and inductive formulas introduced in
[20]. This newly introduced class generalizes the nominalized Sahlqvist-van Benthem
formulas in [10]. One of the purpose of this dissertation is to prove that the formulas
in this class have first-order local frame correspondents.

Definition 1.4.4. To any formulas φ ∈ L we assign two signed generation trees, +φ and
−φ, each beginning at the root with the main connective signed, respectively, + and
− and then branching out into n-ary connectives. Each leaf is either a propositional
variable, a nominal or a truth constant. The nodes are signed as follows:

• the root node of +φ is signed + and the root node of −φ is signed −;

• if a node is labelled with ∨,∧,♦,�, its children inherit its sign;

• if a node is labelled with ¬, its child is assigned the opposite sign;

• if a node is labelled with→, the right child inherits its sign, while the left child is
assigned the opposite sign;

• if a node is labelled with @ (corresponding to a subformula @iα), the right child
(corresponding to α) inherits its sign, while the left child (corresponding to i) is
assigned the sign ±.

In a generation tree of a formula, certain types of nodes will be regarded as Skeleton
and others will be regarded as PIA. This classification is given in table 1.1:

Skeleton PIA
∆-adjoints SRA

Primary Secondary
+∨ +∧
−∧ −∨

+ � ∧ ¬
− ♦ ∨ ¬

SLR SRR
+ ♦ ¬ @
− � ¬ @ →

+ ∨ @ →
− ∧ @

Table 1.1: Skeleton and PIA nodes
We will further classify them as ∆-adjoints, SLR, SRA and SRR, according to the speci-
fication in table 1.1.
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Remark 1.4.5. The acronym PIA stands for “positive antecedent implies atom” and is
due to Van Benthem [31]. They were introduced because they admit minimal valua-
tions definable in a first-order language. The abbreviations SLR, SRA and SRR stand
for syntactically left residual, right adjoint and right residual, respectively. These nodes are
classified according to the order-theoretic properties of their interpretations.

We now have a look at how generation trees of hybrid formulas are constructed.

Example 1.4.6. We find the positive generation trees of @i p ∨♦ (♦q→ p) and
@i (((p ∧@i¬p) ∧ q)→ ♦q)

+∨

+@

±i +p

+♦

+→

−♦

−q

+p

+@

±i +→

−∧

−∧

−p −@

±i −¬

+p

−q

+♦

+q

Figure 1.1: left-hand side is a positive generation tree of @i p ∨ ♦ (♦q→ p) and right-
hand side is positive generation tree of @i (((p ∧@i¬p) ∧ q)→ ♦q)

We now find the negative generation trees of @i p→ �¬q ∧ i and i→ � (♦i→ i)
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− →

+@

±i +p

−∧

−�

−¬

+q

−i

− →

+i −�

− →

+♦

+i

+i

Figure 1.2: left-hand side is a negative generation tree of @i p → �¬q ∧ i and right-
hand side is negative generation tree of i→ � (♦i→ i)

Definition 1.4.7. A node in a signed generation tree is said to be positive if it is signed
“+”, negative if it is signed “−” and bi-polar if it is signed “±”.

The notion of the positivity and negativity of propositional variables can be equiv-
alently defined as follows:

Remark 1.4.8. A formula φ is positive (negative) in a propositional variable p if every
occurrence of p in a leaf of the generation tree +φ is signed +(−). A formula φ is
positive (negative) in a nominal i if every occurrence of i in a leaf of the generation tree
+φ is signed + or ± (− or ±).

Note that the only nodes signed “±” are those corresponding to the nominal “sub-
script” argument of the @ operator.

Example 1.4.9. The positive generation tree of the formula φ = @i p ∨ ♦ (♦q→ p) in
Example 1.4.6 implies that the formula φ is positive in the propositional variable p and
it is negative in the propositional variable q. Moreover, φ can be seen as being positive
on the nominal i and can also be seen as being negative on the nominal i since the
every occurrence of i in a leaf of a positive generation tree of φ is signed ±.

Definition 1.4.10. An order type n ∈ N is an n-tuple ε ∈ {1, δ}n. Given an order type
ε =

(
εp1, . . . , εpn

)
, its opposite order type, εδ, defined by εδ

pi = 1 iff εpi = δ for every
1 ≤ i ≤ n.

An order type is used to keep track of designated polarities of each variable in a for-
mula.

Definition 1.4.11. For any formula φ (p1, . . . , pn), any order type ε =
(
εp1, . . . , εpn

)
,

and any 1 ≤ i ≤ n, an ε-critical node in a signed generation tree of φ is a (leaf) node
labelled with +pi if εi = 1, or −pi if εi = δ. An ε-critical branch in the tree is a branch
terminating in an ε-critical node.
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Definition 1.4.12. ([13, Defintion 2.1]) Let φ (p1, . . . , pn) be a formula in the proposi-
tional variables p1, . . . , pn, let ε be an order type on {1, . . . , n} and <Γ a strict partial
order on p1, . . . , pn. A branch in a signed generation tree ∗φ, ∗ ∈ {+,−}, ending in
a propositional variable is an (ε, Γ)-conforming branch if, apart from the leaf, it is the
concatenation of two paths P1 and P3, one which may possibly be of length 0, such that
P1 consists only of skeleton modes, and moreover it satisfies the following conditions:

1. For every SRR node in P1 of the form γ
⊙

β or β
⊙

γ, where β is the side where
the branches lies, εδ (γ) ≺*φ (that is, γ contains no variables to be solved for)
In particular:

(a) if γ
⊙

β is + (γ ∨ β) or + (β→ γ), then εδ(+γ);

(b) if γ
⊙

β is + (γ→ β) or − (γ ∧ β), then εδ(−γ) (equivalently, ε(+γ));

(c) if γ
⊙

β is @iβ, then condition is met.

2. For every SRR node in P1 of the form γ
⊙

β or β
⊙

γ, where β is the side where
branch lies, pj <Γ pi for every pj occurring in γ, where pi is the propositional
variable labelling the leaf of the branch.

The following definitions are found in [13, Definition 2.2] grouped together as one
definition.

Definition 1.4.13. A signed generation tree ∗φ, ∗ ∈ {+,−}, is said to be {ε, Γ}-inductive
if every ε-critical branch in it is (ε, Γ)-conforming.

Definition 1.4.14. A formula φ is (ε, Γ)-inductive if −φ is (ε, Γ)-inductive. A formula φ
is inductive if it is (ε, Γ)-inductive for some ε and Γ.

Definition 1.4.15. An inequality φ ≤ ψ is (ε, Γ)-inductive if both generation trees +φ
and−ψ are (ε, Γ)-inductive. The inequality φ ≤ ψ is inductive if it is (ε, Γ)-inductive for
some ε and Γ.

1.4.3 Hybrid-ALBA

In this section we present the hybrid ALBA algorithm which was introduced in [13].
Our aim will be to extend this algorithm to many-valued hybrid ALBA and prove the
correctness of the algorithm in the many-valued hybrid setting (this will be done in
section 4.2). The algorithm has four phases and each has certain rules used in it. Here
are the phases:

• Phase 1: Preprocessing

The aim of this phase is to equivalently break up an inequality φ ≤ ψ, given
as an input, into smaller inequalities through the application of the rules (∨-Adj)
and (∧-Adj) to be given in the phase 3. To make it easier, consider the positive
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generation tree of φ and the negative generation tree of ψ, and surface positive
occurrence of ∨ and negative occurrence of ∧ by applying the following standard
equivalences:

α ∧ (β ∨ γ) ≡ (α ∧ β) ∨ (α ∧ γ) α ∨ (β ∧ γ) ≡ (α ∨ β) ∧ (α ∨ γ)

¬ (α ∨ β) ≡ ¬α ∧ ¬β ¬ (α ∧ β) ≡ ¬α ∨ ¬β

♦ (α ∨ β) ≡ ♦α ∨♦β � (α ∧ β) ≡ �α ∧�β

@i (α ∨ β) ≡ @iα ∨@iβ @i (α ∧ β) ≡ @iα ∧@iβ

Let Preprocess (φ ≤ ψ) = {φi ≤ ψi | i ∈ I} be the finite set of inequalities obtained
after exhaustive application of the above equivalences.

• Phase 2: First approximation

Each inequality produced in Phase 1 is turned into a quasi-inequality by apply-
ing the following first approximation rule. The algorithm now proceeds separately
on each of the quasi-inequalities obtained.

First-approximation. Let Preprocess (φ ≤ ψ) = {φi ≤ ψi | i ∈ I} be the set of
inequalities obtained in Phase 1. Then the following first-approximation rule is
applied to each φi ≤ ψi only once:

φi ≤ ψi

m0 ≤ φi&ψi ≤ ¬n0 ⇒ m0 ≤ ¬n0
(First-approximation)

where m0 and n0 are special reserved nominals which do not occur in any inequal-
ity received in input.

The First-approximation yield the systems of inequalities

{m0 ≤ φi&ψi ≤ n0} for each inequality in Preprocess (φ ≤ ψ). Each such a system
is called an initial system.

• Phase 3: Reduction and Elimination
This Phase focuses on eliminating all the propositional variables from the
quasi-inequalities resulting in Phase 2 through the application of the Ackermann
rules (RH-Ack) and (LH-Ack), or their special case (RH-Ack-0) and (LH-Ack-0).
To bring the quasi-inequality into the shape to which one of these rules is appli-
cable, the approximation, residuation and adjunction rules are used. If all proposi-
tional variables occurrences have been eliminated, we denote the resulting set of
pure quasi-inequalities by pure (φ, ψ). If some propositional variable could not
be eliminated, then the algorithm fails.

Adjunction rules:
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α ≤ β ∧ γ

α ≤ β & α ≤ γ
(∧-Adj)

α ∨ β ≤ γ

α ≤ γ & β ≤ γ
(∨-Adj)

α ≤ �β

�α ≤ β
(�-Adj)

♦α ≤ β

α ≤ �β
(♦-Adj)

α ≤ ¬β

β ≤ ¬α
(¬-R-Adj)

¬α ≤ β

¬β ≤ α
(¬-L-Adj)

The rules (∧-Adj) and (∨-Adj) are justified by the fact that ∧ is a right adjoint
and ∨ is a left adjoint of the diagonal map ∆ : L → AxA given by ∆(a) = (a, a)
and the rules (�-Adj) and (♦-Adj) are justified by the fact that � is the right ad-
joint of � and ♦ is the left adjoint of �. The last two rules follow from the fact
that ¬ is its own adjoint.

Residuation rules:

α ∧ β ≤ γ

α ≤ β→ γ
(∧-Res)

α ≤ β ∨ γ

α ∧ ¬β ≤ γ
(∨-Res)

α ≤ β→ γ

α ∧ β ≤ γ
(→ -Res)

α ≤ @iβ

α ≤ 0Oi ≤ β
(@-R-Res)

@iα ≤ β

1 ≤ βOα ≤ ¬i
(@-L-Res)

The residuation rules are based on the residuation properties of the interpreta-
tions of the connectives.

Approximation rules:

�α ≤ ¬i

∃j
(
�¬j ≤ ¬i & α ≤ ¬j

) (�-approx)
i ≤ ♦α

∃j
(

i ≤ ♦j & j ≤ α
) (♦-approx)

i ≤ @jα

j ≤ α
(@-R-Approx) @jα ≤ ¬i

α ≤ ¬j
(@-L-Approx)
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where the nominal j introduced in (�-Approx) and (♦-Approx) is fresh, that is,
j has not yet occurred thus far in the computation.

The approximation rules follows from the fact that in a complete and atomic hy-
brid algebra each element is the join of atoms below it and the meet of co-atoms
above it.

Ackermann rules: Once the application of the adjunction, residuation and ap-
proximation rules has turned the system to the desired shape, the Ackermann
rules are applied to the whole system to eliminate all the propositional variables.
Here the Ackermann rules:

&n
i=1 αi ≤ p & &m

j=1 β j(p) ≤ γj(p)

&m
j=1 β j (

∨n
i=1 αi) ≤ γj (

∨n
i=1 αi)

(RH-Ack) (1.1)

&n
i=1 p ≤ αi & &m

j=1 γj(p) ≤ β j(p)

&m
j=1 γj (

∧n
i=1 αi) ≤ β j (

∧n
i=1 αi)

(LH-Ack) (1.2)

where

1. the αi are p-free;

2. the β j are positive in p; and

3. the γj are negative in p.

If n = 0,
∨n

i=0 αi ≡ 0 and
∧n

i=0 αi ≡ 1, then we have the following special cases
(RH-Ack) and (LH-Ack);

&m
j=1 β j(p) ≤ γj(p)

&m
j=1 β j(0) ≤ γj(0)

(RH-Ack-0)

&m
j=1 γj(p) ≤ β j(p)

&m
j=1 γj(1) ≤ β j(1)

(LH-Ack-0)

• Phase 4: Translation and Output
Assuming that it was possible to rewrite an initial system in a form to which
one of the Ackermann rules is applicable, else hybrid-ALBA reports failure and
terminates, we denote the set of pure quasi-inequalities obtained in Phase 3 by
pure (φ ≤ ψ). Let ALBA(φ ≤ ψ) be the set of quasi-inequalities:

& (pure (φi ≤ ψi))⇒ m0 ≤ ¬n0

for each φi ≤ ψi ∈ Preprocess(φ ≤ ψ). All the members of ALBA(φ ≤ ψ) are
propositional variable free, therefore applying the standard translation to each
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member of ALBA(φ ≤ ψ) will result in a set of first-order correspondents, that
is, one for each member of the set of quasi-inequalities. Let

ALBAFO (φ ≤ ψ) =
∧

1≤i≤n

∀yi∀ym0 [∀xSTx (pure (φi ≤ ψi))⇒ ∀xSTx (m0 ≤ n0)]

The standard translation is applied to every member of pure (φ ≤ ψ) and univer-
sally quantified overall variables yi corresponding to occurring nominal i, but
with ym0 corresponding to m0 left free. The conjunction of the first -order formu-
las obtained in this way is a local first-order correspondent of φ ≤ ψ.

Correctness of hybrid-ALBA

Sahlqvist theory consists of two parts: correspondence and preservation. This disser-
tation, however, focuses on the correspondence. This is the idea that will be lifted to
many-valued hybrid case. In particular, we want to show that whenever hybrid-ALBA
succeeds in eliminating all propositional variables from an inequality, the first-order
formula returned is locally equivalent on frames to the inequality. The proof of the
following theorem proceeds on complex algebras and for the basic modal logic, proof
of the analogous theorem is found on [10], [11] and [12]. The hybrid version is given in
[13]. One of the aims of this dissertation is to extend such a theorem to many-valued
hybrid logic.

Theorem 1.4.16. If hybrid-ALBA succeeds in reducing an inequality φ ≤ ψ and gives
out ALBA(φ ≤ ψ), then

F  φ ≤ ψ iff F (m0 = {w}) � φ ≤ ψ iff F � ALBAFO (φ ≤ ψ) [m0 = w]

Proof. The proof is complete when the following chain on equivalences is proven. We
will only give the sketch of the proof. The full detailed proof is found in [10]. The
strings of equivalences are as follows:

F � φ ≤ ψ iff F (m0 = {w}) � Preprocess (φ ≤ ψ) (1.3)
iff F (m0 = {w}) � φi ≤ ψi (1.4)
iff F (m0 = {w}) � (m0 ≤ φi&ψi ≤ n0)⇒ (m0 ≤ n0) (1.5)
iff F (m0 = {w}) � pure (φi ≤ ψi)⇒ (m0 ≤ n0) (1.6)
iff F (m0 = {w}) � ALBA (φ ≤ ψ) (1.7)

iff F � ALBAFO (φ ≤ ψ) [i0 = w] (1.8)

where φi ≤ ψi ∈ Preprocess (φ ≤ ψ).
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Chapter 2

Many-Valued Hybrid Logic

Many-valued hybrid logic was introduced [21] and the accessibility relation between
states was also many-valued as in [18]. In [21], the tableau system that is sound and
complete with respect to the semantics was also defined. In this chapter, we will first
introduce lattices which will be our truth-value space. Secondly, we will introduce
our many-valued hybrid language which will be the language given in [21] and also
extend the language by adding variables and operators that will be needed for ALBA
algorithm to be given in a later stage of the dissertation. Lastly, we will give out the
duality between frames and Heyting algebras. This will lead to the introduction of com-
plex algebras. Complex algebras are of interest to us because the proof of the correctness
of ALBA runs on the complex algebras, and not frames themselves.

2.1 Lattices and Heyting Algebras

This section introduces algebraic structures that will play the role of a truth-value space
of the many-valued hybrid logic to be introduced later in the dissertation and complex
algebras, which will play a role in the proof of correctness of ALBA will be algebras
of this kind. These algebraic structures will have certain properties that will be very
useful to the theory to be developed later in the work. The books by Burris and Sankap-
panavar [9] and Davey and Priestly [14] are references for the definitions and results
in this section.

Definition 2.1.1. An algebra L = (L,∨,∧) consisting of a nonempty set L together with
two binary operations ∨ (join) and ∧ (meet) on L is a lattice if it satisfies the following
identities for any x, y, z ∈ L:

1. Commutative Laws:

• x ∨ y = y ∨ x

• x ∧ y = y ∧ x
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2. Associative Laws:

• x ∨ (y ∨ z) = (x ∨ y) ∨ z
• x ∧ (y ∧ z) = (x ∧ y) ∧ z

3. Idempotent Laws:

• x ∨ x = x
• x ∧ x = x

4. Absorption Laws:

• x = x ∨ (x ∧ y)
• x = x ∧ (x ∨ y)

Additionally, an algebra L = (L,∨,∧, 0, 1) with two binary operations and two nullary
operations 0 (bottom) and 1 (top) is called a bounded lattice if (L,∨,∧) is a lattice and and
for all x ∈ L,

1. x ∧ 0 = 0

2. x ∨ 1 = 1

We would like to introduce a second definition of a lattice. But first, we need the notion
of a partial order on a set.

Definition 2.1.2. A binary relation ≤ defined on a nonempty set P is a partial order on
the set P if the following conditions hold for all a, b, c ∈ P:

1. Reflexivity: a ≤ a

2. Antisymmetry: If a ≤ b and b ≤ a, then a = b

3. Transitivity: If a ≤ b and b ≤ c, then a ≤ c

If, in addition, for every a, b in P

4. a ≤ b or b ≤ a

then we say ≤ is a total order on P. A nonempty set with a partial order defined on it
is called a partially ordered set, or a poset, and if the relation is a total order then the pair
(P,≤) is called a totally ordered set, or a chain.

Definition 2.1.3. Given a partial order P, we can form a new order P∂ called the dual
of P by defining a ≤ b to hold in P∂ if and only if b ≤ a holds in P.

Definition 2.1.4. Let A be a subset of a poset P. An element p ∈ P is an upper bound for
A if a ≤ p for all a ∈ A. An element p ∈ P is the least upper bound or supremum (which
will be denoted as sup) of A if

1. p is an upper bound of A
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2. a ≤ b for every a in A implies p ≤ b (that is, p is the smallest among the upper
bounds of A)

An element l ∈ P is an lower bound for A if l ≤ a for all a ∈ A. An element l ∈ P is the
greatest lower bound or infimum (which will be denoted as in f ) of A if

1. l is a lower bound of A

2. b ≤ a for every a ∈ A implies b ≤ l (that is, l is the largest among the lower
bounds of A)

Definition 2.1.5. Let P be a partially ordered set and A ⊆ P.

1. A is a down-set if, whenever x ∈ A, y ∈ P and y ≤ x, we have y ∈ A.

2. Dually, A is an up-set if, whenever x ∈ A, y ∈ P and y ≥ x, we have y ∈ A.

We now look at the second approach to lattices.

Definition 2.1.6. A poset L is a lattice if, and only if, for every a, b ∈ L both sup{a, b}
and in f {a, b} exist in L.

The following statements are a useful way to show how one can move from one defi-
nition of lattice to the other and vice versa.

• If L is a lattice by the first definition, then defining a binary relation ≤ on L by
a ≤ b iff a = a ∧ b yields a partially ordered set.

• If L is a lattice by the second definition, then defining the operations ∨ and ∧ by
a ∨ b = sup{a, b} and a ∧ b = in f {a, b} yields a lattice since ∨ and ∧ satisfies the
commutative, associative, idempotent and absorption laws.

Definition 2.1.7. Let L be any lattice. Then a nonempty subset S ⊆ L is called a sublat-
tice if S is closed under meet and join.

Example 2.1.8. 1. Consider (I+,≤), where I+ is the set of positive integers and a ≤ b
iff b is a divisor of a. Then for any positive integer n, (In,≤) is a sublattice of I+

where In ⊆ I+.

2. Let L be a lattice. Then for any a ∈ L,

↑a = {x ∈ L | a ≤ x}

is a sublattice of L which is referred to as a principle up-set. Similarly,

↓a = {x ∈ L | x ≤ a}

is a sublattice of L which is referred to as a principle down-set.
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Remark 2.1.9. If L and L′ are two lattices such that L′ ⊆ L, then L′ need not be a
sublattice of L:
Let S be a group. Consider the following families out subsets of S:

• ℘(S) - powerset of S

• S(G) - the collection of all subgroups of S

Note that ℘(S) is a lattice with the operations defined by A ∧ B = A ∩ B and
A ∨ B = A ∪ B. Furthermore, S(G) also forms a lattice under the operations defined
by G1 ∧ G2 = G1 ∩ G2 and G1 ∨ G2 is the subgroup generated by G1 ∪ G2. Then clearly,
S(G) ⊆ ℘(S). But S(G) is not a sublattice of ℘(S) as it is not closed under unions, the
join operation of ℘(S).

Definition 2.1.10. A distributive lattice L is a lattice which satisfies either (and hence
both) of the following distributive laws for all x, y, z ∈ L:

1. D1: x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z)

2. D2: x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z)

Example 2.1.11. Below are the two examples of the bounded distributive lattices:

1

yx

z w

0

1

x

yz

0

Lemma 2.1.12. A lattice satisfies D1 iff it satisfies D2.

Proof. We show that D2 follows from D1. Suppose that D1 holds. Then applying it to
the right side of D2 and using absorption gives

(x ∨ y) ∧ (x ∨ z) = ((x ∨ y) ∧ x) ∨ ((x ∨ y) ∧ z)
= x ∨ ((x ∨ y) ∧ z)
= x ∨ ((x ∧ z) ∨ (y ∧ z))
= x ∨ (y ∧ z).

The converse can be shown by applying a dual version of the above argument.
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Note that distributive laws are dual to one another and so a lattice is distributive if and
only its dual lattice is distributive.

The two prototype non-distributive are the well-known lattices M3 and N5:

1

ba c

0

1

b
a

c

0

Figure 2.1: The lattices M3 (left) and N5 (right)

The following theorem gives us the characteristics that non-distributive lattices have.
See proof in [9, Theorem 3.6].

Theorem 2.1.13. A lattice is non-distributive if and only if it has M3 or N5 as a sublattice.

Definition 2.1.14. A poset P is complete if for every subset A of P both supA and in f A
exist in P. The elements supA and in f A will be denoted by

∨
A and

∧
A, respectively.

All complete posets are lattices, and a lattice L which is complete as a poset is a complete
lattice.

Infinite analogous of the distributive laws in a complete lattice are the following:

Definition 2.1.15. Given a complete lattice L and an index set I, for a, bi ∈ L, where
i ∈ I we have that

1. a ∧∨i∈I bi =
∨

i∈I (a ∧ bi) (join-infinite distributive law)

2. a ∨∧i∈I bi =
∧

i∈I (a ∨ bi) (meet-infinite distributive law)

The following types of elements play a special role in the representation theory of lat-
tices. The Fundamental Theorem of Arithmetic says that every natural number is a product
of prime numbers. Since prime numbers are just the product-irreducible natural numbers
(other than 1) an analogous result for lattices would state that every element is a meet
of meet-irreducible elements, or dually, a join of join-irreducible elements. Note that, this
will, however, not be true in general but will hold provided we impose an appropriate
conditions on the lattice.

Definition 2.1.16. Let L be a lattice.
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1. An element j ∈ L (j 6= 0) is join-irreducible if j is not the join of two smaller
elements, that is, if

j = a ∨ b then j = a or j = b

The set of join-irreducible elements of L is denoted by J(L). An element a is join-
prime if, for all b, c ∈ L, a ≤ b ∨ c implies that a ≤ b or a ≤ c.

2. Dually, an element m ∈ L (m 6= 1) is meet-irreducible if m is not the meet of two
larger elements, that is, if

m = a ∧ b then m = a or m = b

The set of meet-irreducible elements of L is denoted by M(L). An element a is
meet-prime if, for all b, c ∈ L, b ∧ c ≤ a implies that b ≤ a or c ≤ a.

Every join-prime element is also join-irreducible, and every meet-prime element is also
meet-irreducible. If L is a distributive lattice, then the converse also holds.

Remark 2.1.17. Note that in the lattice M3, elements a, b and c are join-irreducible ele-
ments but not are join-prime since a ≤ b ∨ c but a � b and a � c.

Note that infinitary versions of join-irreducible elements and meet-irreducible elements
will be important for the algebraic work in Chapter 4. Specifically, these elements will
play a huge role in proving the correctness of ALBA.

Definition 2.1.18. Let L be a complete lattice. An element a ∈ L is completely join-
irreducible if the following holds:

1. a 6= 0.

2. a =
∨

S implies a ∈ S for every S ⊆ L.

The set of completely join-irreducible elements of L is denoted by J∞(L). An element
a is completely join-prime if, for all S ⊆ L, a ≤ ∨ S implies that a ≤ s for some s ∈ S. An
element a ∈ L is completely meet-irreducible if the following holds:

1. a 6= 1.

2. a =
∧

S implies a ∈ S for every S ⊆ L.

The set of completely meet-irreducible elements of L is denoted by M∞(L). An element
a is completely meet-prime if, for all S ⊆ L,

∧
S ≤ a implies that s ≤ a for some s ∈ S.

The term perfect defined below was first used by Dunn, Gehrke and Palmigiano in [15,
Definition 2.9].

Definition 2.1.19. A lattice L is perfect if:

1. L is complete.
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2. For each a ∈ L, it is the case that a =
∨{a′ | a′ ∈ J∞(L) and a′ ≤ a}.

3. For each a ∈ L, it is the case that a =
∧{a′ | a′ ∈ M∞(L) and a ≤ a′}.

Example 2.1.20. 1. For any set X, the powerset of X is a perfect lattice where join
is given by set union and meet is given by set intersection. Then we have that
J∞(P(X)) = {{y} | y ∈ X} and M∞(P(X)) = {X\{y} | y ∈ X}.

2. Every finite lattice L is perfect. This is because L is complete and also the com-
pletely join-irreducible elements are simply the join-irreducible elements which
are join-dense in L and the completely meet-irreducible elements are simply the
meet-irreducible elements which are meet-dense in L.

3. Let L be a lattice of down-sets of a partially ordered set P. Then the completely
join-irreducible elements are the principle down-sets and they are join-dense. The
completely meet-irreducible elements are the complements of principal down-sets
and they are meet-dense.

Definition 2.1.21. A Heyting algebra is an algebra H = (H,∨,∧,⇒, 0, 1) with three
binary and two nullary operations which satisfies:

H1: (H,∨,∧) is a distributive lattice.

H2: x ∧ 0 = 0 and x ∨ 1 = 1

H3: x ⇒ x = 1

H4: (x ⇒ y) ∧ y = y and x ∧ (x ⇒ y) = x ∧ y

H5: x ⇒ (y ∧ z) = (x ⇒ y) ∧ (x ⇒ z) and (x ∨ y)⇒ z = (x ⇒ z) ∧ (y⇒ z)

The operation ⇒ is called the relative pseudo-complement operation on the lattice
(H,∨,∧) and is sometimes called the Heyting implication.

Lemma 2.1.22. The operation “ ⇒ ” is order-preserving (or monotonic) in the second
coordinate and order-reversing (or antitone) in the first coordinate.

Proof. We show that if y ≤ z then x ⇒ y ≤ x ⇒ z. So suppose that y ≤ z. This implies
that y ∧ z = y. So,

x ⇒ y = x ⇒ (y ∧ z) (by defintion)
= (x ⇒ y) ∧ (x ⇒ z) (by H5).

Therefore x ⇒ y ≤ x ⇒ z.

For the second part, we show that if x ≤ y then y ⇒ z ≤ x ⇒ z. So suppose that
x ≤ y. This implies that x ∨ y = y. So,

y⇒ z = (x ∨ y)⇒ z (by definition)
= (x ⇒ z) ∧ (y⇒ z) (by H5)

Therefore y⇒ z ≤ x ⇒ z.
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Lemma 2.1.23. If H = (H,∨,∧,⇒, 0, 1) is a Heyting algebra and a, b ∈ H then a ⇒ b
is the largest element c in H such that a ∧ c ≤ b.

Proof. We first show that a ∧ (a⇒ b) ≤ b. So:

a ∧ c = a ∧ (a⇒ b) (by defintion)
= a ∧ b (by H4)
≤ b

Secondly, suppose that there is d ∈ H such that a ∧ d ≤ b. We show that d ≤ (a⇒ b).
Since⇒ is monotone in the second coordinate we have that a⇒ (a ∧ d) ≤ a⇒ b. So,

a⇒ (a ∧ d) = (a⇒ a) ∧ (a⇒ d) (by H5)
= 1∧ (a⇒ d) (by H3)
= (a⇒ b)

Hence we have that d ≤ a ⇒ d ≤ a ⇒ b as required. Note that the fact that d ≤ a ⇒ d
follows from H4. Therefore a⇒ b is the largest element in H such that a∧ (a⇒ b) ≤ b;
that is,

a⇒ b =
∨
{c : a ∧ c ≤ b and c ∈ H}.

Example 2.1.24. The following is a perfect Heyting algebra and will be used often in
the examples in the text as truth-value space.

1. K =
(
{0, 1

2 , 1},∨,∧,⇒, 0, 1
)

is a perfect Heyting algebra.

1

1
2

0

Figure 2.2: The perfect Heyting algebra K =
(
{0, 1

2 , 1},∨,∧,⇒, 0, 1
)

The following lemma shows the properties of the Heyting algebra and these properties
will be used (with reference) throughout the proofs of many important theorems in this
dissertation.
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Lemma 2.1.25. Let H be a Heyting algebra and let D ⊆ H (D 6= ∅). Then the following
hold:

1. a⇒ (b⇒ c) = a ∧ ((a ∧ b)⇒ (a ∧ c)).

2. a ∧ (b⇒ c) = a ∧ ((a ∧ b)⇒ c).

3. a⇒ b = a⇒ (a ∧ b).

4.
∧

c∈D(c⇒ a) = (
∨

c∈D c)⇒ a.

5. c ≤ a⇒ b iff c ∧ a ≤ b.

6. c ∧ (a⇒ b) = c ∧ ((c ∧ a)⇒ (c ∧ b)).

7. if c is a join-irreducible element and c ≤ a ∨ b, then c ≤ a or c ≤ b.

The following lemma and its proof is found in the book by Galatos, Jipsen, Kowalski
and Ono [19, Lemma 1.4].

Lemma 2.1.26. 1. The distributive laws holds in every Heyting algebra. In fact, the
join-infinite distributive law holds for all existing infinite joins. More precisely, if∨

i∈I bi exists then
∨

i∈I (a ∧ bi) exists also and a ∧∨i∈I bi is equal to
∨

i∈I (a ∧ bi).

2. Conversely, for any complete lattice, if the join-infinite distributive law holds on
it, then residuals always exist and hence it is also a Heyting algebra. In particular,
every finite distributive lattice is a reduct of a Heyting algebra.

Definition 2.1.27. Given a nonempty set W and a Heyting algebra H, the power algebra
HW is the algebra (HW ,∧,∨,⇒, 0, 1) with HW = { f | f : W → H}, binary operations
∧,∨ and ⇒ and nullary operations 0 and 1 on HW defined pointwise on HW . For
example, if f , g ∈ HW and w ∈W then ( f ∧ g)(w) = f (w) ∧ g(w).

Note that 0 and 1 are the constant functions such that 0(w) = 0H and 1(w) = 1H for all
w ∈W.

Definition 2.1.28. Given HW with W = {w1, . . . , wn}, the ordered n-tuple (a1, . . . , an)
represents the function f ∈ HW such that f (wi) = ai for 1 ≤ i ≤ n.

Definition 2.1.29. A Heyting algebra H = (H,∧,∨,⇒, 0, 1) is said to be a perfect Heyt-
ing algebra if (H,∧,∨, 0, 1) is a perfect distributive lattice.

The following proposition is important to the proof of correctness of ALBA as it says
the power algebra inherits the perfectness of the Heyting algebra. The proof of this
proposition can be found in [7, Proposition 3.42].

Proposition 2.1.30. Let H = (H,∨,∧,⇒, 0, 1) be a perfect Heyting algebra. Then HW

is a perfect Heyting algebra.
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We now introduce the relevant preliminaries on adjoints and residuals, which play a
crucial role proving the correctness of ALBA which is one of the theorems we aim
to extend in this dissertation and hence obtain the correspondence theory for Many-
Valued Hybrid Logic. In this section, L = (L,∨,∧, 0, 1) and L′ = (L′,∨′,∧′, 0′, 1′)
are complete lattices. Given a lattice L = (L,∨,∧, 0, 1), the dual lattice (L,∧,∨, 1, 0) is
denoted as L∂.

Definition 2.1.31. The monotone maps f : L → L′ and g : L′ → L form an adjoint pair
(notation : f a g), if for every x ∈ L, y ∈ L′,

f (x) ≤ y iff x ≤ g(y)

Whenever f a g, we call f the left adjoint of g and g the right adjoint of f .

Remark 2.1.32. If a map has a left (or right) adjoint, then the adjoint is unique and can
be computed pointwise from the map itself and the order relation on the lattices. Hence,
having a left (or right) adjoint is an intrinsically order-theoretic property of maps.

The proof of the following Proposition is found in [19, Lemma 3.3] but it is adapted to
the case where f and g are maps between complete lattices.

Proposition 2.1.33. For monotone maps f : L→ L′ and g : L′ → L such that f a g, for
every x ∈ L, y ∈ L′,

1. f (x) =
∧{y ∈ L′ : x ≤ g(y)};

2. g(y) =
∨{x ∈ L : f (x) ≤ y}.

The proof of the following Proposition is found in [19, Lemma 3.6].

Proposition 2.1.34. 1. f is completely join-preserving iff it has a right adjoint;

2. f is completely meet-preserving iff it has a left adjoint.

Definition 2.1.35. The n-ary maps f : Ln → L and g : Ln → L form a residual pair in the
ith coordinate (notation : f ai g), if for all x1, x2, . . . xn ∈ L,

f (x1, x2, . . . , xi, . . . xn) ≤ y iff xi ≤ g(x1, x2, . . . , y, . . . xn)

Whenever f ai g, we call f the left residual of g in the ith coordinate and g the right
residual of f in the ith coordinate.

Note that Proposition 2.1.33 and Proposition 2.1.34 can easily be extended to the case
where f and g form a residual pair in the ith coordinate.

Proposition 2.1.36. For n-ary maps f : Ln → L and g : Ln → L such that f ai g, for
every x1, x2, . . . , xn, y ∈ L′,

1. f (x1, x2, . . . , xi, . . . , xn) =
∧{y ∈ L : xi ≤ g(x1, x2, . . . , y, . . . , xn)};
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2. g(x1, x2, . . . , y, . . . , xn) =
∨{xi ∈ L : f (x1, x2, . . . , xi . . . , xn) ≤ y}.

Proposition 2.1.37. For any n-ary map f : Ln → L,

1. f is completely join-preserving in the ith coordinate iff it has a right residual in
that same coordinate;

2. f is completely meet-preserving in the ith coordinate iff it has a left residual in
that same coordinate.

2.2 Many-Valued Hybrid Logic

We will build our language following the setting in the paper [21] where we would
define our models to have a specific function to evaluate nominals in the sense that
every nominal will be true only at a unique state. The reason for this is the fact that
we want our nominals in the many-valued setting to behave as in the classical case,
that is, we still want our nominals to be used as names for states. Our frames in this
setting will be mathematically equivalent to the interpretations of many-valued first-
order logic.

2.2.1 Syntax of Many-Valued Hybrid Logic

Let a countable infinite set Φ of propositional variables and a countable infinite set Ω
of nominals be given. Our truth space will be a perfect Heyting algebra τ.

Definition 2.2.1. The set of formulas in our language Lτ is given by the following
grammar:

φ = t | p | i | ψ ∧ γ | ψ ∨ γ | ψ→ γ | ♦ψ | �ψ | @iψ

where p ∈ Φ, i ∈ Ω and each t corresponds to a t ∈ τ, and @i is called a satisfaction
operator.

We will define ¬φ as ¬φ = φ→ 0.

2.2.2 Semantics for Many-Valued Hybrid Logic

Definition 2.2.2. A τ-frame in the language L is a tuple F = (W, R) where

1. W is a set of possible states;

2. R : W ×W → τ is the many-valued accessibility relation.

Definition 2.2.3. A τ-model in the language L is a tuple M = (W, R, n, V) where

1. W is a set of possible state;
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2. R : W ×W → τ is the accessibility relation;

3. n is a function interpreting the nominals; that is, n : Ω→W;

4. V, a valuation V : W ×Φ → τ assigns truth values to propositional variables at
each state.

The function n assigns to each state a nominal. The reason for such a function is that
the many-valued hybrid version gets to behave like the basic hybrid version by allow-
ing nominals to be true at exactly one state.

As in the basic hybrid case, we want to extend our valuation V to assign truth val-
ues to all formulas at each world. The set of formulas will be denoted as FORMτ.

Definition 2.2.4. Given a model M = (W, R, n, V), we can extend the valuation V to
all formulas in the following inductive way, where w ∈W:

1. V(w, t) = t for all t ∈ τ

2. V(w, i) =

{
1 if n(i) = w
0 otherwise

3. V(w, ψ ∧ γ) = V(w, ψ) ∧V(w, γ)

4. V(w, ψ ∨ γ) = V(w, ψ) ∨V(w, γ)

5. V(w, ψ→ γ) = V(w, ψ)⇒ V(w, γ)

6. V(w,♦ψ) =
∨

u∈W [Rwu ∧V(u, ψ)]

7. V(w,�ψ) =
∧

u∈W [Rwu⇒ V(u, ψ)]

8. V(w, @iψ) = V(n(i), ψ)

Remark 2.2.5. Note that we used the same notation V for the extended valuation which
assigns every formula a truth value at each state.

Definition 2.2.6. Let t ∈ τ. A formula φ is t-true in a model M = (W, R, n, V) at w ∈W
(M, w t φ) if V(w, φ) ≥ t. A formula φ is t-true in a model M = (W, R, n, V) (M t φ)
if M, w t φ for all w ∈W.

Definition 2.2.7. Let t ∈ τ. A formula φ is t-valid in a frame F = (W, R) at w ∈ W
(F, w t φ) if V(w, φ) ≥ t for all valuations V on F. A formula φ is t-valid in a frame
F = (W, R) (F t φ) if F, w t φ for all w ∈W.

Definition 2.2.8. Let t ∈ τ. A formula φ is t-valid at w ∈ W if V(w, t → φ) = 1 for all
valuations V on F.

The two definitions of t-validity are equivalent. Hence we have the following

Lemma 2.2.9. Let t ∈ τ, φ a formula, F = (W, R) a frame and w ∈W. Then

F, w t φ iff F, w 1 t→ φ.
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2.2.3 The Extended Many-Valued Hybrid Language

The language Lτ is extended to the language L+
τ by adding the modalities � and �,

the non-empty sets J-variables (notation: J-VAR) and M-variables (notation: M-VAR),
which will be crucial in our MV-hybrid ALBA algorithm to be introduced, and the
operators @# and @[, which will be the left and right adjoint of the operator @, respec-
tively. The reason for requiring adjoint operators is that the MV-hybrid ALBA algo-
rithm runs on the complex algebra of a τ-frame, and not the τ-frame itself henceforth
the algorithm uses algebraic rules such as residuation and taking adjoints. The sets
J-VAR and M-VAR will be used in the First Approximation rule for the MV-Hybrid
ALBA algorithm.

Formulas of L+
τ are defined inductively as follows:

φ = t | p | i | j | m | ψ ∧ γ | ψ ∨ γ | ψ→ γ | ♦ψ | �ψ | @iψ | �φ | �φ | @i
#φ | @[

i φ

where j ∈J-VAR, m ∈M-VAR, p ∈ Φ, i ∈ Ω and each t corresponds to a t ∈ τ.

The definition for the many-valued τ-frames over L+
τ remains unchanged.

Definition 2.2.10. The valuation V : FORM+
τ ×W → τ is an extension of

V : FORMτ ×W → τ with the following additional clauses:

1. V(w, j) ∈ J∞(τ) for exactly one w ∈W and V(u, j) = 0 for all u 6= w

2. V(w, m) ∈ M∞(τ) for exactly one w ∈W and V(u, m) = 1 for all u 6= w

3. V(w,�φ) =
∨{Ruw ∧τ V(w, φ) | u ∈W}

4. V(w,�φ) =
∧{Ruw⇒ V(w, φ) | u ∈W}

5. V(w, @#
i φ) =

{
1 if n(i) 6= w∧{V(u, φ) | u ∈W} if w = n(i)

6. V(w, @[
i φ) =

{
0 if n(i) 6= w∨{V(u, φ) | u ∈W} if w = n(i)

Remark 2.2.11. We will often write ∨ and ∧ for the operations on the Heyting algebra
τ instead of ∨τ and ∧τ. It will be clear from the context whether we are referring to the
algebra operations or the logical connectives on formulas.

The following proposition shows that we have indeed defined the left and the right
adjoint of the operator @.

Proposition 2.2.12. For any τ-frame F = (W, R) in the language L+
τ and any valuation

V on F, we have that

1. V(w, @iα) ≤ V(w, β) for all w ∈W iff V(w, α) ≤ V(w, @#
i β) for all w ∈W
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2. V(w, α) ≤ V(w, @iβ) for all w ∈W iff V(w, @[
i α) ≤ V(w, β) for all w ∈W

Proof. 1. Suppose that V(w, @iα) ≤ V(w, β) for all w ∈W. By definition,
V(w, @iα) = V(n(i), α) ≤ V(w, β) for all w ∈W.

• Case 1: w 6= n(i)
V(w, @#

i β) = 1 ≥ V(w, α)

• Case 2: w = n(i)

V(w, @#
i β) =

∧
{V(u, β) | u ∈W}

≥ V(n(i), α) (by assumption)
= V(w, α)

Conversely, suppose that V(w, α) ≤ V(w, @#
i β) for all ∈W. Then

V(w, @iα) = V(n(i), α)

≤ V(n(i), @#
i β) (by assumption)

=
∧
{V(u, β) | u ∈W}

≤ V(w, β)

2. Suppose that V(w, α) ≤ V(w, @iβ) for all w ∈W. Then, by definition,
V(w, α) ≤ V(n(i), β) = V(w, @iβ) for all w ∈W

• Case 1: w 6= n(i)
V(w, @[

i α) = 0 ≤ V(w, β)

• Case 2: w = n(i)

V(w, @[
i α) =

∨
{V(u, α) | u ∈W}

≤ V(n(i), β) (by assumption)
= V(w, β)

Conversely, suppose that V(w, @[
i α) ≤ V(w, β) for all w ∈W. Then

V(w, @iβ) = V(n(i), β)

≥ V(n(i), @[
i α) (by assumption)

=
∨
{V(u, α) | u ∈W}

≥ V(w, α)
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2.3 Algebraic Semantics and Duality Between Many-Valued
τ-frames and Complex Algebras

Until now we have been focusing on hybrid logic and its relational semantics in terms
of frames and models. As is so often the case, these relational structures stand in a close
connection to certain types of algebras and many constructions and phenomena in the
universe of relational structures have analogues in the universe of algebras. For exam-
ple, bounded morphisms, generated subframes and disjoint unions of relational struc-
tures correspond to subalgebras, homomorphisms and products, respectively. The two
mathematical universes are systematically related and duality theory studies these links.
The availability of a duality like this is very useful, as it means that results from one
branch of mathematics can be imported into another via duality. In this section we
present the duality between τ-frames and a class of perfect Heyting algebras, called
complex algebras. The duality to be presented will be an extension of the duality be-
tween τ-frames and a class of perfect Heyting algebras (called τ-valued modal alge-
bras) which was presented in [7]. Duality is important to us as it is crucial in the proof
of the correctness of ALBA [10]. The idea was to prove the correctness of ALBA on
complex algebras of frames, and then import those results back to frames via duality.
This idea was successfully extended to many-valued modal logic in [7] and we will
adapt the same idea to many-valued hybrid logic.

Definition 2.3.1. Given a τ-frame F = (W, R), the complex algebra F+ of F is defined
as

F+ = (τW ,♦R,�R, @, {t}t∈τ)

where

1. τW is a power algebra.

2. t : W → τ is a constant function such that t(w) = t for all w ∈W

3. The operators ♦R and �R are defined as

(♦R f )(x) =
∨
{Rxy ∧ f (y) | y ∈W}

(�R f )(x) =
∧
{Rxy→ f (y) | y ∈W}

at a state x ∈W

4. The operator @ (which a binary operator) is defined as

(@r f )(x) =
∨
{r(y) ∧ f (y) | y ∈W}

at a state x ∈W where
X = { f : W → τ | f (w) = 1 for exactly one w ∈W and f (u) = 0 for all u 6= w}
and r ∈ X.
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FACT: Note that item 4 from Definition 2.3.1 can also be stated as follows:

(@r f )(x) = f (yo) where r(yo) = 1 (2.1)

at a state x ∈W where
X = { f : W → τ | f (w) = 1 for exactly one w ∈W and f (u) = 0 for all u 6= w} and
r ∈ X.

Lemma 2.3.2. Given any complex algebra F+, ♦R is completely join-preserving, �R is
completely meet-preserving and @ is both completely join- and meet-preserving in the
second coordinate.

Proof. The proofs of ♦R and �R being completely join- and meet-preserving, respec-
tively, are found in [7, Lemma 3.39]. We will show that the @ operator is both com-
pletely join- and meet-preserving in the second coordinate. Let fi ∈ τW for i ∈ I and
let
X = { f : W → τ | f (w) = 1 for exactly one w ∈ W and f (u) = 0 for all u 6= w}. Then
for all r ∈ X, we have that,(

@r
∨

i

fi

)
(x) =

∨
{r(y) ∧

(∨
i

fi

)
(y) | y ∈W}

=
∨∨

i

{r(y) ∧ fi(y) | y ∈W} (By Distribution)

=
∨

i

∨
{r(y) ∧ fi(y) | y ∈W} ( by Lemma 2.1.26,1)

=
∨

i

(@r fi)(x)

Thus @ is completely join-preserving in the second coordinate. Secondly, we show that
@ is completely meet-preserving in the second coordinate. For this proof, we will use
the fact we stated in equation 2.1. We consider r ∈ X where r(y) = 1 as the other case
where r(y) = 0 is trivial true.(

@r
∧

i

fi

)
(x) =

∨
{r(y) ∧

(∧
i

fi

)
(y) | y ∈W}

=
∨
{
(∧

i

fi

)
(y) | y ∈W} (By equation 2.1)

=

(∧
i

fi

)
(y)

=
∧

i

fi(y)

=
∧

i

(@r fi)(x)

Thus @ is completely meet-preserving in the second coordinate.
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We now define an assignment on complex algebras.

Definition 2.3.3. Given any complex algebra F+ = (τW ,♦R,�R, @, {t}t∈τ), an assign-
ment on F+ is a map assigning to each propositional variable an element in τW , to each
nominal an element in X, to each element of J-VAR an element in J and to each element
of M-VAR an element in M where

1. X = { f : W → τ | f (w) = 1 for exactly one w ∈W and f (u) = 0 for all u 6= w}.

2. J = { f : W → τ | f (w) ∈ J∞(τ) for exactly one w ∈W and f (u) = 0 for all u 6= w}.

3. M = { f : W → τW | f (w) ∈ M∞(τ) for exactly one w ∈W and f (u) = 1 for all u 6= w}.

An assignment can be extended to all formulas in the usual inductive way. We now
define the notion of a perfect Heyting algebra with operators ♦,� and @.

Definition 2.3.4. An algebra (H,♦,�, @) is called a perfect Heyting algebra with oper-
ators ♦,� and @ if H is a perfect Heyting algebra, ♦ is completely join-preserving,� is
completely meet-preserving, and @ is both completely join-preserving and completely
meet-preserving in the second coordinate.

Proposition 2.3.5. Given a τ-frame F = (W, R), the complex algebra F+ is a perfect
Heyting algebra with operators.

We now prove a proposition that asserts that the truth of a hybrid formula is equal to a
truth-value in a frame if and only if an assignment on a complex algebra of that frame
maps the formula to that very same truth-value.

Proposition 2.3.6. Let W 6= ∅, let F = (W, R) be a τ-frame, let φ, ψ be hybrid formulas
in the language L+

τ and let F+ be the complex algebra of F. Then the following holds:

F  φ ≤ ψ iff F+ � φ ≤ ψ.

Proof. We first define an assignment in F+ with respect to the valuation and the func-
tion that interprets nominals in F. Let T = {t | t ∈ τ}. Given a valuation V and a
function n that interprets nominals in F, define an assignment v : Φ ∪ Ω ∪ J-VAR ∪
M-VAR∪ T → F+ by

1. v(p)(w) = V(w, p) for each p ∈ Φ.

2. v(i)(w) =

{
1 if n(i) = w
0 otherwise

for each i ∈ Ω.

3. v(j)(w) = V(w, j) for each j ∈ J-VAR.

4. v(m)(w) = V(w, m) for each m ∈ M-VAR.
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5. v(t)(w) = t for each t ∈ T.

We extend v to all formulas in the usual way. Via the usual induction on formulas
we have that v(φ)(w) = V(w, φ) for all φ. Now it suffices to show that F 1 φ ≤
ψ iff F+ 2 φ ≤ ψ. Suppose that F 1 φ ≤ ψ. Then for some w ∈ W and valuation
V, V(w, φ) � V(w, ψ). Then it follows that (v(φ))(w) � (v(ψ))(w). For the other
direction, suppose that we have an assignment v on a complex algebra F+ of a frame
F. Then we can define a valuation V and a function n on F in the following way:

1. V(w, p) = v(p)(w) for each p ∈ Φ.

2. n(i) = w where v(i)(w) 6= 0 for each i ∈ Ω.

3. V(w, j) = v(j)(w) for each j ∈ J-VAR.

4. V(w, m) = v(m)(w) for each m ∈ M-VAR.

5. V(w, t) = t for each t ∈ T.

We extend V to all formulas in the usual way. Via the usual induction on formulas
we have that V(w, φ) = v(φ)(w) for all φ. So, if F+ 2 φ ≤ ψ, then for some w ∈ W
and assignment v on F+, we have that v(φ)(w) � v(ψ)(w). Hence it follows that
V(w, φ) 6= V(w, ψ).
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Chapter 3

Expressivity of Many-Valued Hybrid
Logic

Logicians are always interested in the relations between different semantic structures,
and in operations that build new structures from old ones. In such research, one would
be particularly interested in structural properties that are preserved by such relations
and operations. Roughly speaking, a property is preserved by a certain relation or op-
eration if, whenever two structures are linked by the relation or operation, then the
second structure has the property if the first one has it. We speak of invariance if the
property is preserved in both directions.

In the next three sections we introduce three important ways of constructing new mod-
els from old ones. Two of these constructions will preserves truth of formulas in the
states while disjoint union construction does not is. We will show that truth is t-invariant
under generated submodels and bounded morphisms, but it is not t-invariant under disjoint
unions. Note that hybrid formulas are also not invariant under disjoint unions in the
2-valued hybrid language.

The theory developed in this section builds on [16]. However, [16] deals with a many-
valued modal language, so we extended definitions and theorems in [16] to the many-
valued hybrid setting in a natural way by simply accounting for nominals in models
of [16].

We first need to generalize the definition of states being equivalent to many-valued
setting.

Definition 3.0.1. Let M = (W, R, n, V) and M′ = (W ′, R′, n′, V′) be τ-models, w ∈ W
and w′ ∈ W ′ two states and t ∈ τ (t 6= 0). We say that w and w′ are t-equivalent if for
every formula φ

t ∧V(w, φ) = t ∧V′(w′, φ).
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3.1 Generated Submodels

Generated submodels are a useful way of making smaller models from bigger ones with-
out affecting the information contained in the original model. These models are ob-
tained by throwing away some states in the models without affecting the satisfaction of
formulas in the remaining states. Moreover, if M′ is a generated submodel of M, then
M′ must contain all states of M that are named by a nominal i.

The definition of a t-generated submodel for many-valued modal logic is given in [16,
Definition 3]. With the combination of the definition of a generated submodel for a
classical hybrid language give in [29], we were able to define a t-generated submodel
for many-valued hybrid logic as follows:

Definition 3.1.1. Let M = (W, R, n, V) and M′ = (W ′, R′, n′, V′) be two τ-models for
our language Lτ. Then M′ is a t-generated submodel of M (notation: M′�t M) if:

1. W ′ ⊆W;

2. for every w ∈W ′ and p ∈ Φ, t ∧V′(w, p) = t ∧V(w, p);

3. for every w ∈W ′ and i ∈ Ω, n′(i) = w if, and only if, n(i) = w;

4. for states w, u ∈W ′, t ∧ R′(w, u) = t ∧ R(w, u);

5. if w ∈W ′ and t ∧ R(w, u) 6= 0, then u ∈W ′.

Note that clause 3 tells us that all states named by a nominal i in M are contained in
M′. Clause 5 corresponds to the closure condition in classical hybrid logic.

The following theorem asserts that hybrid formulas are t-invariant under generated
submodels. This is also true for a many-valued modal logic (see [16, Theorem 4]) and
also true for the classical hybrid logic.

Theorem 3.1.2. For models M = (W, R, n, V) and M′ = (W ′, R′, n′, V′), let M′ �t M.
Then, for each formula φ and state w ∈W ′,

t ∧V(w, φ) = t ∧V′(w, φ).

Proof. We proceed by induction on φ. If φ = s ∈ τ, then t ∧ V(w, s) = t ∧ s and
t ∧ V′(w′, s) = t ∧ s. If φ = p, p ∈ Φ, then by definition, t ∧ V(w, p) = t ∧ V′(w, p). If
φ = i, i ∈ Ω, then we consider two cases:

1. Suppose n′(i) = w. Then by clause 3, n(i) = w so that t ∧ V′(w, i) = t ∧ 1 = t
and t ∧V(w, i) = t ∧ 1 = t.

2. Suppose n′(i) 6= w. Again by clause 3 we get that n(i) 6= w so that
t ∧V′(w, i) = t ∧ 0 = 0 and t ∧V(w, i) = t ∧ 0 = 0.
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Inductive Hypothesis: Assume that for every state w ∈ W ′ and formulas ψ and γ we
have

t ∧V(w, ψ) = t ∧V′(w, ψ)

and
t ∧V(w, γ) = t ∧V′(w, γ).

If φ = ψ ∧ γ, then

t ∧V(w, ψ ∧ γ) = t ∧ (V(w, ψ) ∧V(w, γ))

= (t ∧V(w, ψ)) ∧ (t ∧V(w, γ))

= (t ∧V′(w, ψ)) ∧ (t ∧V′(w, γ))

= t ∧ (V′(w, ψ) ∧V′(w, γ))

= t ∧V′(w, ψ ∧ γ).

If φ = ψ ∨ γ, then

t ∧V(w, ψ ∨ γ) = t ∧ (V(w, ψ) ∨V(w, γ))

= (t ∧V(w, ψ)) ∨ (t ∧V(w, γ))

= (t ∧V′(w, ψ)) ∨ (t ∧V′(w, γ))

= t ∧ (V′(w, ψ) ∨V′(w, γ))

= t ∧V′(w, ψ ∨ γ).

If φ = ψ→ γ, then

t ∧V(w, ψ→ γ) = t ∧ (V(w, ψ)⇒ V(w, γ))

= t ∧ ((t ∧V(w, ψ))⇒ (t ∧V(w, γ))) (by Lemma 2.1.25,6)

= t ∧ (((t ∧V′(w, ψ))⇒ (t ∧V′(w, γ)))

= t ∧ (V′(w, ψ)⇒ V′(w, γ))

= t ∧V′(w, ψ→ γ).
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If φ = �ψ, then

t ∧V(w,�ψ) = t ∧
∧

u∈W
[R (w, u)⇒ V (u, ψ)]

=
∧

u∈W
[t ∧ (R (w, u)⇒ V (u, ψ))]

=
∧

u∈W
[t ∧ (t ∧ R(w, u))⇒ (t ∧V(u, ψ))] (by Lemma 2.1.25,6)

=
∧

u∈W ′
[t ∧ (t ∧ R(w, u))⇒ (t ∧V(u, ψ))] (by Definition 3.1.1,1)

=
∧

u∈W ′

[
t ∧ (t ∧ R′(w, u))⇒ (t ∧V′(u, ψ))

]
=

∧
u∈W ′

[
t ∧ (R′(w, u)⇒ V′(u, ψ))

]
= t ∧

∧
u∈W ′

[
R′(w, u)⇒ V′(u, ψ)

]
= t ∧V′(w,�ψ).

If φ = ♦ψ, then

t ∧V(w,♦ψ) = t ∧
∨

u∈W
[R(w, u) ∧V(u, ψ)]

=
∨

u∈W
[t ∧ (R(w, u) ∧V(u, ψ))]

=
∨

u∈W
[(t ∧ R(w, u)) ∧ (t ∧V(u, ψ))]

=
∨

u∈W ′
[(t ∧ R(w, u)) ∧ (t ∧V(u, ψ))] (by Definition 3.1.1,1)

=
∨

u∈W ′
[(t ∧ R′(w, u)) ∧ (t ∧V′(u, ψ))]

=
∨

u∈W ′
[t ∧ (R′(w, u) ∧V′(u, ψ))]

= t ∧
∨

u∈W ′
[R′(w, u) ∧V′(u, ψ)] ( by Lemma 2.1.26,1)

= t ∧V′(w,♦ψ).

If φ = @iψ, then

t ∧V(w, @iψ) = t ∧V(n(i), ψ)

= t ∧V′(n′(i), ψ)

= t ∧V′(w, @iψ).
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3.2 Bounded Morphisms

We now introduce a function f from one model to the other that preserves the satisfac-
tion of the formulas in the states from the domain to the codomain. To ensure this in the
hybrid setting, the function f is designed in such a way that it maps states named by
a nominal i to states named by the same nominal i on the other model. The definition
of a t-bounded morphism for many-valued modal logic is given in [16, Definition 10].
We combined the definition of a bounded morphism for the classical hybrid language
[29] and the one for the many-valued modal logic to obtain the following definition for
a many-valued hybrid logic:

Definition 3.2.1. Let M = (W, R, n, V) and M′ = (W ′, R′, n′, V′) be two τ-models. A
t-bounded morphism from M to M′ is a function f : W → W ′ satisfying the following
conditions, where w, u ∈W, p ∈ Φ, and i ∈ Ω:

1. t ∧V(w, p) = t ∧V′( f (w), p);

2. f (n(i)) = n′(i);

3. t ∧ R(w, u) ≤ t ∧ R′( f (w), f (u));

4. for every w ∈ W and u′ ∈ W ′, if t ∧ R′( f (w), u′) 6= 0, then there exists u ∈ W
such that t ∧ R(w, u) = t ∧ R′( f (w), u′) and f (u) = u′.

If f is onto, we call M′ a t-bounded morphic image of M through f (notation:M�t M
′).

The clause 4 is the back condition which corresponds to the back condition of the
bounded morphism between two classical models.

We now consider an example of a bounded morphism between two τ-models.

Example 3.2.2. For this particular example, we use our truth-value space as the three-
element Heyting algebra given in Example 2.1.24,1. Suppose that we have two τ-
models M = (W, R, n, V) and
M′ = (W ′, R′, n′, V′) such that W = {w, u, v, s}, R(w, u) = 1, R(u, s) = R(u, v) = 1

2 and
the other possible relations between these states are equal to 0. Furthermore, for p ∈ Φ
we have V(w, p) = 1

2 , V(u, p) = V(s, p) = V(v, p) = 0 and n(i) = u where i ∈ Ω.
Also, W ′ = {w′, u′, v′}, R′(w′, u′) = 1, R′(u′, v′) = 1

2 and all other possible relations
between these states are equal to 0. Furthermore, for p ∈ Φ we have V′(w′, p) = 1,
V′(u′p) = V′(v′, p) = 0 and n′(i) = u′. Then, mapping the states from M to M′ as:

• f (w) = w′
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• f (u) = u′

• f (s) = v′

• f (v) = v′

w w′

u′

v′

u

vs

1

1
2

1
2

1

1
2

Figure 3.1: Two τ-models with a 1
2 -bounded morphism between them.

yields a 1
2 -bounded morphism between M and M′, but not a 1-bounded morphism. It

is easy to check that it is indeed a 1
2 -bounded morphism. We will show why it is not

a 1-bounded morphism between M and M′. Suppose, for the sake of a contradiction,
that f is a 1-bounded morphism between M and M′. Then it should be the case that
1∧V(w, p) = 1∧V′(w′, p). But 1∧V(w, p) = 1∧ 1

2 = 1
2 and 1∧V′(w′, p) = 1∧ 1 = 1,

hence, f cannot be a 1-bounded morphism between M and M′.

We now state and prove the theorem that says that hybrid formulas are t-invariant
under t-bounded morphism.

Theorem 3.2.3. Let M = (W, R, n, v) and M′ = (W ′, R′, n′, V′) be two τ-models and
f : W →W ′ a t-bounded morphism. Then, for each formula φ and state w of M,

t ∧V(w, φ) = t ∧V′( f (w), φ).

Proof. We proceed by induction on φ. If φ = s ∈ τ, then t ∧V(w, s) = t ∧ s and
t ∧V′( f (w), s) = t ∧ s. If φ = p, p ∈ Φ, then by definition,
t ∧V(w, p) = t ∧V′( f (w), p). If φ = i, i ∈ Ω, then we consider two cases:

1. Suppose n(i) = w. Then n′(i) = f (w) so that t ∧V(w, i) = t ∧ 1 = t and
t ∧V′( f (w), i) = t ∧ 1 = t.
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2. Suppose n(i) 6= w. Then n′(i) 6= f (w) so that t ∧V(w, i) = t ∧ 0 = 0 and
t ∧V′( f (w), i) = t ∧ 0 = 0.

Inductive Hypothesis: Assume that for every state w ∈ W and formulas ψ and γ we
have

t ∧V(w, ψ) = t ∧V′( f (w), ψ)

and
t ∧V(w, γ) = t ∧V′( f (w), γ).

The cases where φ = ψ∧ γ, ψ∨ γ, or ψ→ γ run the same as in the proof of t-generated
submodels, so we skip those.

Suppose φ = �ψ. We split our proof into two parts.

1. The first part is to show that t ∧V(w,�ψ) ≥ t ∧V′( f (w),�ψ). The details are as
follows:

t ∧V(w,�ψ) = t ∧
∧

u∈W
[R(w, u)⇒ V(u, ψ)]

=
∧

u∈W
[t ∧ (R(w, u)⇒ V(u, ψ))]

=
∧

u∈W
t ∧ [t ∧ R(w, u)⇒ t ∧V(u, ψ)] (By Lemma2.1.25, 6)

(3.1)

≥
∧

u∈W
t ∧ [(t ∧ R′( f (w), f (u))⇒ t ∧V′( f (u), ψ))] (3.2)

= t ∧
∧

u∈W
[R′( f (w), f (u))⇒ V′( f (u), ψ)] (By Lemma2.1.25, 6)

= t ∧
∧

u′∈W ′
[R′( f (w), u′)⇒ V′(u′, ψ)] (since f is onto)

= t ∧V′( f (w),�ψ).

From 3.1 to 3.2 we used the forth condition of f and then applied the inductive
hypothesis.

2. For the second inequality t ∧V′( f (w),�ψ) ≥ t ∧V(w,�ψ) we will use the back
condition and the Axiom of Choice. Here are the details:

We want to find a suitable function h : W ′ →W. Let

X = {u′ ∈W ′ : t ∧ R′( f (w), u′) 6= 0}.
By the back condition there exists u ∈ W such that t ∧ R′( f (w), u′) = t ∧ R(w, u)
and f (u) = u′ for each u′ ∈ X. Let

Y = {u ∈W : u′ ∈ X and t ∧ R(w, u) = t ∧ R′( f (w), u′) and f (u) = u′}.

45



We know by the back condition that Y is nonempty. Note that T = {〈u′, u〉 :
u′ ∈ X, u ∈ Y} is a relation with domT = X. By the Axiom of Choice, there is a
function h ⊆ T with domh = X. Note that h(u′) ∈ f−1[{u′}] ⊆ Y ⊆ W such that
t ∧ R′( f (w), u′) = t ∧ R(w, h(u′)). Now,

t ∧V′( f (w),�ψ) = t ∧
∧

u′∈W ′
[R′( f (w), u′)⇒ V′(u′, ψ)]

=
∧

u′∈W ′
[t ∧ (R′( f (w), u′)⇒ V′(u′, ψ))]

=
∧

u′∈W ′
[t ∧ (t ∧ R′( f (w), u′)⇒ (t ∧V′(u′, ψ)))] (By Lemma2.1.25, 6)

=
∧

u′∈W ′
t ∧ [(t ∧ R′( f (w), u′))⇒ (t ∧V′(u′, ψ))]

= t ∧
∧

u′∈W ′
[t ∧ R′( f (w), u′)⇒ t ∧V(u′, ψ)] (3.3)

= t ∧
∧

u′∈X

[t ∧ R′( f (w), u′)⇒ t ∧V′(u′, ψ)] (3.4)

= t ∧
∧

u′∈X

[t ∧ R(w, h(u′))⇒ t ∧V′(h(u′), ψ)] (3.5)

≥ t ∧
∧

u∈W
[t ∧ R(w, u)⇒ t ∧V(u, ψ)] (Since h[X] ⊆W)

=
∧

u∈W
[t ∧ ((t ∧ R(w, u))⇒ (t ∧V(u, ψ)))] (By Lemma2.1.25, 6)

= t ∧
∧

u∈W
[R(w, u)⇒ V(u, ψ)]

= t ∧ v(w,�ψ).

From 3.3 to 3.4 we used the fact that X ⊆W ′ but for any u′ ∈W ′\X such that
t ∧ R′( f (w), u′) = 0, we have that t ∧ R′( f (w), u′) ⇒ V′(u′, ψ) = 1. Hence such
a u′ does not contribute anything in the preceding meet. From 3.4 to 3.5 we used
the inductive hypothesis and the definition of h.

Let φ = ♦ψ. This is also broken down into two parts. Note that we use the same h
that we defined in the � case:
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1. The proof of the first inequality proceeds as follows:

t ∧V(w,♦ψ) = t ∧
∨

u∈W
[R(w, u) ∧V(u, ψ)]

=
∨

u∈W
[t ∧ (R(w, u) ∧V(u, ψ))]

=
∨

u∈W
[(t ∧ R(w, u)) ∧ (t ∧V(u, ψ))] (3.6)

≤
∨

u∈W
[t ∧ R′( f (w), f (u)) ∧ (t ∧V′( f (u), ψ))] (3.7)

=
∨

u′∈W ′
[t ∧ R′( f (w), u′) ∧ (t ∧V′(u′, ψ))] (Since f is onto)

= t ∧
∨

u′∈W ′
[R′( f (w), u′) ∧V′(u′, ψ)] ( by Lemma 2.1.26,8)

= t ∧V′( f (w),♦ψ)

From 3.6 to 3.7 we used the forth condition of f and then apply the inductive
hypothesis.

2. The second inequality proceeds as follows:

t ∧V′( f (w),♦ψ) = t ∧
∨

u′∈W ′
[R′( f (w), u′) ∧V′(u′, ψ)]

=
∨

u′∈W ′
[t ∧ R′( f (w), u′) ∧ (t ∧V′(u′, ψ))] (3.8)

=
∨

u′∈X

[t ∧ R′( f (w), u′) ∧ (t ∧V′(u′, ψ))] (3.9)

=
∨

u′∈X

[t ∧ R(w, h(u′)) ∧ t ∧V(h(u′), ψ)] (3.10)

=
∨

u∈Y
[t ∧ R(w, u) ∧ t ∧V(u, ψ)] (Since h[X] = Y)

≤
∨

u∈W
[t ∧ R(w, u) ∧ t ∧V(u, ψ)] (since Y ⊆W)

= t ∧
∨

u∈W
[R(w, u) ∧V(u, ψ)] ( by Lemma 2.1.26,8)

= t ∧V(w,♦ψ)

From (3.8) to (3.9) we used the fact that X ⊆ W ′ but for any u′ ∈ W ′\X such that
t ∧ R′( f (w), u′) = 0 we have that t ∧ R′( f (w), u′) ∧ t ∧V′(u′, ψ) = 0. Hence such
a u′ does not contribute anything in the preceding join. From (3.9) to (3.10) we
used the inductive hypothesis and the definition of h.
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If φ = @iψ. Then

t ∧V(w, @iψ) = t ∧V(n(i), ψ)

= t ∧V′(n′(i), ψ) (By inductive hypothesis)

= t ∧V′( f (w), @iψ).

3.3 Disjoint Unions

Disjoint unions are a useful way of making bigger models from smaller ones in such a
way that the bigger models preserves the atomic information of all the small models
in one place. This is only achieved in the modal language (both classical and many-
valued cases). The disjoint union model is obtained by combining together models
that have disjoint domains. It gathers together all the information in the smaller mod-
els unchanged. Consequently, the relation of states remains the same and the truth of
formulas at states remains the same in the disjoint union model. The following defini-
tion is for modal logic (specifically, many-valued modal logic) and was defined in [16,
Definition 6].

Definition 3.3.1. For an index set K, let Mk = (Wk, Rk, nk, Vk)(k ∈ K) be a collection
of disjoint (for every a, b ∈ K, Wa ∩Wb is empty) models. The t-disjoint union of this
collection, is the model

⊎
k Mk = (W, R, n, V), where

1. W is the union of the sets Wk;

2. for every w ∈Wk, u ∈Wj: t ∧ R(w, u) = t ∧ Rk(w, u) if k = j, else t ∧ R(w, u) = 0;

3. for every w ∈Wk and p ∈ Φ, t ∧V(w, p) = t ∧Vk(w, p);

Our aim is clearly to extend this definition of a disjoint union to our many-valued hy-
brid logic so that we can prove the invariance results of hybrid formulas under disjoint
unions. However, while doing so, we realized that the resulting structure of taking the
union of the sets of worlds is not model since there is no sensible way of defining a
nominal interpreter function that would make each nominal true in a unique state.

3.4 Notions of Bisimulation for Many-Valued Hybrid Logic

This section introduces strong t-bisimulations which are relations between two mod-
els. The related states carry the same atomic information, that is, for any two mod-
els M = (W, R, n, V) and M′ = (W ′, R′, n′, V′), and t ∈ τ (t 6= 0), we have that
V(w, p) = V′(w′, p) where w ∈ W and w′ ∈ W ′ are related states and p ∈ Φ. In
addition, whenever it is possible to make a transition in one model, it is possible to
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make a matching transition in the other model. Our end goal is to obtain the results
that say for t ∈ τ (t 6= 0), t-equivalence implies t-bisimulation and vice versa.

We will also introduce a weak t-bisimulation, which is a family of relations between
two models indexed by elements of τ subject to some constraints. The purpose of in-
troducing such weak t-bisimulations is to prove that t-equivalence of states implies
weak t-bisimulation. This is the main result of this section (see Theorem 3.4.11). This
implication fails to go through with the strong t-bisimulation.

The theory in this section is based on the paper [17]. The theory in [17] is based on
many-valued modal language. The definitions and theorems in [17] will be extended
by inclusion of nominals to make the setting hybrid.

Strong Bisimulation for MVHL

The definition of the strong t-bisimulation in [17] is an analogous to definition of the
classical modal bisimulation. However, we add an interpreter function for nominals to
the modal strong t-bisimulation to make it a hybrid strong t-bisimulation.

Definition 3.4.1. Given two τ-models M = (W, R, n, V) and M′ = (W ′, R′, n′, V′) and
a truth value t ∈ τ (t 6= 0), a non-empty relation B ⊆ W ×W ′ is a strong t-bisimulation
between M and M′ if for any pair (w, w′) ∈ B

1. t ∧V(w, p) = t ∧V′(w′, p) for every p ∈ Φ;

2. n(i) = w if, and only if, n′(i) = w′ for every i ∈ Ω;

3. for all i ∈ Ω, (n(i), n′(i)) ∈ B;

4. for every u ∈W such that t ∧ R(w, u) 6= 0, there exists u′ ∈W ′ such that
t ∧ R(w, u) = t ∧ R′(w′, u′) and (u, u′) ∈ B (forth condition);

5. for every u′ ∈W ′ such that = t ∧ R′(w′, u′) 6= 0, there exists u ∈W such that
t ∧ R(w, u) = t ∧ R′(w′, u′) and (u, u′) ∈ B (back condition).

Two states w and w′ are called strongly t-bisimilar (notation: w ←→t w′ or M, w ←→t
M′, w′) if there is a strong t-bisimulation B between M and M′ such that (w, w′) ∈ B.

Example 3.4.2. We now consider an example of a strong t-bisimulation between two
τ-models. Again we use the 3 element Heyting algebra from Example 2.1.24 as our
truth space:
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1

1
2

0

Now, our two τ-models are as follows:

1. M = ({w, u, v}, R, n, V) is such that n(i) = w, R(w, u) = R(w, v) = 1
2 and

R(w, w) = R(u, u) = R(v, v) = R(u, v) = R(v, u) = R(u, w) = R(v, w) = 0.
Suppose that Φ = {p} and we have that V(u, p) = V(v, p) = 1

2 and V(w, p) = 0.
That is,

w

u

v

1
2

1
2

2. M′ = ({w′, u′}, R′, n′, V′) is such that n′(i) = w′, R′(w′, u′) = 1
2 and R′(w′, w′) =

R′(u′, u′) = R′(u′, w′) = 0. Suppose that Φ = {p} and we have that V′(u′, p) = 1
and V′(w′, p) = 0. That is,

w′ u′
1
2

The following relation Z = {(w, w′), (u, u′), (v, u′)} is a 1
2 -bisimulation between these

two τ-models but it is not 1-bisimulation between the two models. It is easy to ver-
ify the Z is a 1

2 -bisimulation between M and M′. We will show why Z is not a 1-
bisimulation. Suppose that Z was a 1-bismulation. Then we must have that
1 ∧ V(w, p) = t ∧ V′(w′, p) for every p ∈ Φ and every (w, w′) ∈ Z. But we have that
1 ∧ V(u, p) = 1 ∧ 1

2 = 1
2 and 1 ∧ V′(u′, p) = 1 ∧ 1 = 1 which is a contradiction. The

argument is the same for v and u′. Hence, Z is not a 1-bisimulation between M and
M′.

We now state a basic theorem, which asserts that t-strong bisimulation implies
t-equivalence. This is given for the many-valued modal logic in [17, Theorem 3.3]
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without its proof. We will give the full details of the proof, with the extended hybrid
machinery.

Theorem 3.4.3. Let M = (W, R, n, V) and M′ = (W ′, R′, n′, V′) be τ-models, w ∈ W
and w′ ∈ W ′ two states and t ∈ τ(t 6= 0). If M, w ←→t M′, w′, then t ∧ V(w, φ) =
t ∧V′(w′, φ) for every formula φ.

Proof. We proceed by induction on φ. If φ = s, s ∈ τ, then t ∧V(w, s) = t ∧ s and
t ∧ V′(w′, s) = t ∧ s. If φ = p, p ∈ Φ, then by definition t ∧ V(w, p) = t ∧ V′(w′, p). If
φ = i, i ∈ Ω, then we consider two cases:

1. Suppose n(i) = w. Then by definition of the strong bisimulation n′(i) = w′. So,
t ∧V(w, i) = t ∧ 1 = t and t ∧V′(w′, i) = t ∧ 1 = t.

2. Suppose n(i) 6= w. Then by definition of the strong bisimulation n′(i) 6= w′. So
t ∧V(w, i) = t ∧ 0 = 0 and t ∧V′(w′, i) = t ∧ 0 = 0.

Inductive Hypothesis: Assume that for all states w ∈ W, w′ ∈ W ′, all t ∈ τ\{0} and
formulas ψ and γ, if w←→t w′ then

t ∧V(w, ψ) = t ∧V′(w′, ψ)

and
t ∧V(w, γ) = t ∧V′(w′, γ).

If φ = ψ ∧ γ, then

t ∧V(w, ψ ∧ γ) = t ∧ (V(w, ψ) ∧V(w, γ))

= (t ∧V(w, ψ)) ∧ (t ∧V(w, γ))

= (t ∧V′(w′, ψ)) ∧ (t ∧V′(w′, γ)) (By inductive hypothesis)

= t ∧ (V′(w′, ψ) ∧V′(w′, γ))

= t ∧V′(w′, ψ ∧ γ).

If φ = ψ ∨ γ, then

t ∧V(w, ψ ∨ γ) = t ∧ (V(w, ψ) ∨V(w, γ))

= (t ∧V(w, ψ)) ∨ (t ∧V(w, γ))

= (t ∧V′(w′, ψ)) ∨ (t ∧V′(w′, γ)) (By inductive hypothesis)

= t ∧ (V′(w′, ψ) ∨V′(w′, γ))

= t ∧V′(w′, ψ ∨ γ).
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If φ = ψ→ γ, then

t ∧V(w, ψ→ γ) = t ∧ (V(w, ψ)⇒ V(w, γ))

= t ∧ ((t ∧V(w, ψ))⇒ (t ∧V(w, γ))) (Lemma 2.1.25, 6)

= t ∧ ((t ∧V′(w′, ψ))⇒ (t ∧V′(w′, γ))) (By inductive hypothesis)

= t ∧ (V′(w′, ψ)⇒ V′(w′, γ)) (Lemma 2.1.25, 6)

= t ∧V′(w′, ψ→ γ).

Suppose φ = �ψ. Let Wt = {u ∈W : t ∧ R(w, u) 6= 0} and let
W ′t = {u′ ∈W ′ : R′(w′, u′) 6= 0}. Now

t ∧V(w,�ψ) = t ∧
∧

u∈W
[R(w, u)⇒ V(u, ψ)]

=
∧

u∈W
[t ∧ (R(w, u)⇒ V(u, ψ))]

=
∧

u∈W
t ∧ [(t ∧ R(w, u))⇒ (t ∧V(u, ψ))] (Lemma2.1.25, 6)

(3.11)

=
∧

u∈Wt

t ∧ [(t ∧ R(w, u))⇒ (t ∧V(u, ψ))] (3.12)

=
∧

u′∈W ′t

t ∧
[
(t ∧ R′(w′, u′))⇒ (t ∧V′(u′, ψ))

]
(3.13)

=
∧

u′∈W ′
t ∧
[
(t ∧ R′(w′, u′))⇒ (t ∧V′(u′, ψ))

]
(3.14)

=
∧

u′∈W ′

[
t ∧ (R′(w′, u′)⇒ V′(u′, ψ))

]
(Lemma2.1.25, 6)

= t ∧
∧

u′∈W ′

[
R′(w′, u′)⇒ V′(u′, ψ)

]
= t ∧V′(w′,�ψ).

From 3.11 to 3.12 we used the fact that for u ∈ W\Wt such that t ∧ R(w, u) = 0 we
have that t ∧ R(w, u) ⇒ t ∧V(u, ψ) = 1. Hence such a u does not contribute anything
in the preceding meet. From 3.12 to 3.13 we made use of the forth condition and the
back condition of the bisimulation to get equality, the inductive hypothesis and the
definition of W ′t . From 3.13 to 3.14 we used the same fact we used from 3.11 to 3.12 (in
the opposite direction).

Suppose that φ = ♦ψ. Note that we use the same Wt and W ′t that were defined in
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the box case.

t ∧V(w,♦ψ) = t ∧
∨

u∈W
[R(w, u) ∧V(w, u)]

=
∨

u∈W
[t ∧ (R(w, u) ∧V(w, u))]

=
∨

u∈W
[(t ∧ R(w, u)) ∧ (t ∧V(w, u))] (3.15)

=
∨

u∈Wt

[(t ∧ R(w, u)) ∧ (t ∧V(w, u))] (3.16)

=
∨

u′∈W ′t

[
(t ∧ R′(w′, u′)) ∧ (t ∧V′(w′, u′))

]
(3.17)

=
∨

u′∈W ′

[
(t ∧ R′(w′, u′)) ∧ (t ∧V′(w′, u′))

]
(3.18)

=
∨

u′∈W ′

[
t ∧ (R′(w′, u′) ∧V′(u′, ψ))

]
= t ∧

∨
u′∈W ′

[
R′(w′, u′) ∧V′(u′, ψ)

]
.

From 3.15 to 3.16 we used the fact that for u ∈ W\Wt such that t ∧ R(w, u) = 0 we
have that t ∧ R(w, u) ∧ t ∧ V(u, ψ) = 0. Hence such a u does not contribute anything
in the preceding join. From 3.16 to 3.17 we used the definition of W ′t , forth condition
and back condition of the bisimulation to get equality and the inductive hypothesis.
From 3.17 to 3.18 we used the same fact that we used to get from 3.15 to 3.16 but in the
opposite direction.

If φ = @iψ, then

t ∧V(w, @iψ) = t ∧V(n(i), ψ)

= t ∧V′(n′(i), ψ) (Since (n(i), n′(i)) ∈ B and by Inductive Hypothesis)

= t ∧V′(w′, @iψ).

We will not be able to prove this converse implication on strong t-bisimulations. Hence,
for that matter, we introduce the notion of a weak t-bisimulation. Furthermore, the
converse implication will be proved on a special set of models, namely the image-finite
models.

Weak Bisimulation for MVHL

Weak bisimulations were introduced in [17] for many-valued modal logic. We extend it
the same way we did with the strong t-bisimulation in the previous section to obtained
these bisimulations in the hybrid setting. We are still working with a perfect Heyting
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algebra τ as our truth-value space. Let J(τ) denote the set of join-irreducible elements
of τ. Define the function Dτ : τ\{0} → 2J(τ) by

Dτ(t) = {c ∈ J(τ) : c ≤ t}.

Definition 3.4.4. Given two τ-models M = (W, R, n, V) and M′ = (W ′, R′, n′, V′), a
function Z : τ\{0} → 2W×W ′ is a weak bisimulation between M and M′ if it satisfies the
following properties:

1. For every t1, t2 ∈ τ\{0}, Z(t1 ∨ t2) = Z(t1) ∩ Z(t2) (consistency).

2. For every join-irreducible element t ∈ J(τ) and any pair (w, w′) ∈ Z(t)

(a) t ∧V(w, p) = t ∧V′(w′, p) for every p ∈ Φ;

(b) for every u ∈W such that t∧ R(w, u) 6= 0 and for every c ∈ Dτ(t∧ R(w, u)),
there exists u′ ∈ W ′ such that c ≤ R′(w′, u′) and (u, u′) ∈ Z(c) (forth condi-
tion);

(c) for every u′ ∈W ′ such that t ∧ R′(w′, u′) 6= 0 and for every
c ∈ Dτ(t ∧ R′(w′, u′)), there exists u ∈W such that c ≤ R(w, u) and
(u, u′) ∈ Z(c) (back condition).

3. (a) If n(i) = v and n′(i) = v′ for every v ∈ W, v′ ∈ W ′, and i ∈ Ω, then
(v, v′) ∈ Z(t) for every t ∈ τ (t 6= 0).

(b) (n(i), n′(i)) ∈ Z(t) for every i ∈ Ω and every t ∈ τ (t 6= 0).

Two states w and w′ are called weakly t-bisimilar (notation: w !t w′ or M, w !t
M′, w′) if there is a weak bisimulation Z between M and M′ such that (w, w′) ∈ Z(t).

We now show that we have indeed defined a weaker notion of a bisimulation. The
following lemma shows that strong t-bisimulation implies weak t-bisimulation and
Example 3.4.6 will show, however, that the converse does not hold in general. The
following lemma is given in [17, Lemma 3.9] for many-valued modal logic. Here we
extend the lemma to the many-valued hybrid case.

Lemma 3.4.5. Let M = (W, R, n, V) and M′ = (W ′, R′, n′, V′) be two τ-models for
MVHL, w ∈ W and w′ ∈ W ′ two states and t ∈ τ (t 6= 0). Then M, w ←→t M′, w′

implies M, w!t M
′, w′.

Proof. Suppose that B is a strong t-bisimulation between M and M′ such that (w, w′) ∈
B. Define Z : τ\{0} → 2W×W ′ as follows:

Z(a) =

{
B if a ≤ t
∅ otherwise
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We show that Z is a weak bisimulation. For the consistency condition it suffices to
show that Z(a ∨ b) = B iff Z(a) ∩ Z(b) = B. That is,

Z(a ∨ b) = B iff a ∨ b ≤ t
iff a ≤ t and b ≤ t
iff Z(a) = B and Z(b) = B
iff Z(a) ∩ Z(b) = B.

For the following properties, suppose that (w, w′) ∈ Z(a) for some join-irreducible
element a ∈ τ\{0}. By definition of Z we have that a ≤ t and hence a ∧ t = a.

1. By definition of Z, (w, w′) also belongs to B. Hence by the clause 1 of a strong
bisimulation (Definition 3.4.1) we have that t ∧V(w, p) = t ∧V′(w′, p) for every
p ∈ Φ. Hence a ∧ (t ∧V(w, p)) = a ∧ (t ∧V′(w′, p)) which implies that
a ∧V(w, p) = a ∧V′(w′, p).

2. (Back condition) Suppose that a ∧ R′(w′, u′) 6= 0 for some u′ ∈ W ′ and consider
any c ∈ Dτ(a ∧ R′(w′, u′)). Since a ≤ t, we have that t ∧ R′(w′, u′) 6= 0. Therefore
by the back condition of B there exists u ∈W such that t∧R(w, u) = t∧R′(w′, u′)
and (u, u′) ∈ B. Also, c ≤ a ∧ R′(w′, u′) ≤ t ∧ R′(w′, u′) = t ∧ R(w, u) ≤ R(w, u).
Also c ≤ t implies that (u, u′) ∈ Z(c). Thus Z satisfies the back condition.

The forth condition is symmetric to the back condition so we will skip that.

The remaining two clauses do not necessarily depend on a being join-irreducible. The
following holds on every non-zero truth value of τ.

1. Suppose that n(i) = v and n′(i) = v′ for every v ∈ W, v′ ∈ W ′ and every i ∈
Ω. Then by clause 2 of the strong bisimulation (Definition 3.4.1) we have that
(v, v′) ∈ B. If a ≤ t, then (v, v′) ∈ Z(a). If a � t, then Z(a) = ∅ and we are done.

2. Suppose that n(i) = v and n′(i) = v′ for every v ∈ W, v′ ∈ W ′ and every i ∈
Ω. Then by clause 3 of the strong bisimulation (Definition 3.4.1) we have that
(v, v′) ∈ B. If a ≤ t, then (v, v′) ∈ Z(a). If a � t, then Z(a) = ∅ and we are done.

Hence Z is a weak t-bisimulation between M and M′.

The converse, however, is not true. The converse does hold if our truth space only
has two elements. Hence strong bisimulation and weak bisimulation coincide in the
classical case. The following example shows that a weak t-bisimulation will not always
be a strong t-bisimulation. Note that this example is found in [17] as a many-valued
modal example, so we make nominals true at some states to make it a many-valued
hybrid example and we will also see how nominals being true at certain states can
affect the function not being a weak bisimulation between models.
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Example 3.4.6. Let Φ = {p}, Ω = {i}, and let τ have at least three elements. Let c be
an element in τ that is different from 0 and 1. Let M = (W, R, n, V) be a model where
W = {w, u}, R(w, u) = c, R(u, w) = R(w, w) = R(u, u) = 0, V(w, p) = 0, V(u, p) = c,
and V(w, i) = 1, hence n(i) = w. Also, let M′ = (W ′, R′, n′, V′) be a model where
W ′ = {w′, u′}, R′(w′, u′) = c, R′(u′, w′) = R′(w′, w′) = R′(u′, u′) = 0, V′(w′, p) = 0,
V′(u′, p) = 1, and V′(w′, i) = 1, hence n′(i) = w′. Define

Z(a) =

{
{(w, w′), (u, u′)} if a ≤ c
{(w, w′)} otherwise

We first show that Z is a weak bisimulation between M and M′. We will prove this
for a ∈ τ with a ≤ c.

1. Consistency: Let t1, t2 ∈ τ\{0} with t1 ≤ c and t2 ≤ c. We want to show that
Z(t1 ∨ t2) = Z(t1) ∩ Z(t2). By definition of Z, Z(t1) ∩ Z(t2) = {(w, w′), (u, u′)}.
So it suffices to show that t1 ∨ t2 ≤ c. Since t1 ≤ c and t2 ≤ c, it follows from the
definition of join that t1 ∨ t2 ≤ c.

2. Clearly, a ∧V(w, p) = a ∧ 0 = 0 and a ∧V′(w′, p) = a ∧ 0 = 0. Also,
a ∧ V(u, p) = a ∧ c = a since a ≤ c and a ∧ V′(u′, p) = a ∧ 1 = a. If a � c, then
(u, u′) 6∈ Z(a) and we are done.

3. Clearly, (n(i), n′(i)) ∈ Z(a).

4. Forth and Back conditions follow from the fact R(w, u) = R′(w′, u′) = c.

Therefore Z is a weak bisimulation between M and M′. That is, M, w !1 M′, w′.
Suppose now, for the sake of a contradiction, that M, w ←→1 M′, w′ and let B be a
1-bisimulation such that (w, w′) ∈ B. The forth condition implies that (u, u′) ∈ B. But
now, 1∧V(u, p) = 1∧ c = c and 1∧V′(u′, p) = 1∧ 1 = 1. Hence
1 ∧ V(u, p) 6= 1 ∧ V′(u′, p). Therefore B violates the base condition, and so, we get
a contradiction. Consequently, w and w′ are weakly 1-bisimilar but not strongly 1-
bisimilar.

The following remark is based on the preceding example.

Remark 3.4.7. Note that if for some nominal i ∈ Ω, we let n(i) = u and n′(i) = u′,
then we no longer get a weak bisimulation between M and M′. This is because, by
definition, we must always have that (n(i), n′(i)) ∈ Z(a) for every i ∈ Ω but we can
see by definition of Z, if a � c, then Z(a) = {(w, w′)}.

Weak Bisimulation and truth invariance

As with the strong t-bisimulation, the weak t-bisimulation implies t-equivalence be-
tween related states. The proof is given for many-valued modal logic in [17, Theorem
3.11]. We will extend this by accounting for nominals to make it hybrid.
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Theorem 3.4.8. Let M = (W, R, n, V) and M′ = (W ′, R′, n′, V′) be models, w ∈ W
and w′ ∈ W ′ two states and t ∈ τ, (t 6= 0). If M, w !t M′, w′ then t ∧ V(w, φ) =
t ∧V′(w′, φ) for every formula φ.

Proof. The proof proceeds by induction on φ. We first show the theorem holds for the
case where t is join-irreducible. The base cases where φ = s or φ = p or φ = i, where
s ∈ τ, p ∈ Φ and i ∈ Ω run exactly as the proof of Theorem 3.4.3.

Inductive Hypothesis: Assume that for all states w ∈ W, w′ ∈ W ′, for all join-
irreducibles t and formulas ψ and γ, if w ∈ W and w′ ∈ W ′ are linked by Z(t) then we
have

t ∧V(w, ψ) = t ∧V′(w′, ψ)

and
t ∧V(w, γ) = t ∧V′(w′, γ).

The cases where φ = ψ ∧ γ, ψ ∨ γ or ψ → γ run exactly as in the proof of Theorem
3.4.3.

Suppose that φ = �ψ. The proof splits into two inequalities. Let
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Wt = {u ∈W : t ∧ R(w, u) 6= 0} and W ′t = {u′ ∈W ′ : t ∧ R′(w′, u′) 6= 0}. Then

t ∧V(w,�ψ) = t ∧
∧

u∈W
[R(w, u)⇒ V(u, ψ)]

= t ∧
∧

u∈W
[t ∧ (R(w, u)⇒ V(u, ψ))]

= t ∧
∧

u∈W
[t ∧ ((t ∧ R(w, u))⇒ V(u, ψ))] (By Lemma2.1.25,2)

= t ∧
∧

u∈W
[(t ∧ R(w, u))⇒ V(u, ψ)] (3.19)

= t ∧
∧

u∈Wt

[(t ∧ R(w, u))⇒ V(u, ψ)] (3.20)

= t ∧
∧

u∈Wt

( ∨
c∈Dτ(t∧R(w,u))

c)⇒ V(u, ψ)

 (Since τ is perfect

= t ∧
∧

u∈Wt

∧
c∈Dτ(t∧R(w,u))

(c⇒ V(u, ψ)) (By Definition ((2.1.21),H5))

= t ∧
∧

u∈Wt

∧
c∈Dτ(t∧R(w,u))

(c⇒ (c ∧V(u, ψ))) (By Lemma2.1.25,3)

(3.21)

= t ∧
∧

u′∈W ′t

∧
c∈Dτ(t∧R′(w′,u′))

(c⇒ (c ∧V′(u′, ψ))) (3.22)

= t ∧
∧

u′∈W ′t

∧
c∈Dτ(t∧R′(w′,u′))

(c⇒ V′(u′, ψ)) (By Lemma2.1.25,3)

= t ∧
∧

u′∈W ′t

( ∨
c∈Dτ(t∧R′(w′,u′))

c)⇒ V′(u′, ψ)

 (By Lemma2.1.25,4)

(3.23)

≥ t ∧
∧

u′∈W ′t

[
(R′(w′, u′)⇒ V′(u′, ψ))

]
(3.24)

= t ∧
∧

u′∈W ′

[
R′(w′, u′)⇒ V′(u′, ψ)

]
(3.25)

= t ∧V′(w′,�ψ).

From (3.19) to (3.20) we used the fact that for u ∈W\Wt, t ∧ R(w, u) = 0 and so
t ∧ R(w, u) ⇒ V(u, ψ) = 1, hence such a u does not contribute anything in the pre-
ceding meet. Line (3.22) follows from (3.21) by the definition of W ′t and for any pair
(u, c) in the (3.21), the forth condition gives a u′ ∈ W ′ such that c ≤ R′(w′, u′) and
(u, u′) ∈ Z(c). By Inductive Hypothesis, c∧V(u, ψ) = c∧V′(u′, ψ) and c ≤ t∧R(w, u)
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implies c ≤ t ∧ R′(w′, u′). From (3.23) to (3.24) we used the fact that∨
c∈Dτ(t∧R(w,u))

≤ t ∧ R(w, u) = t ∧ R′(w′, u′) ≤ R′(w′, u′)

and the fact that if a ≤ b then b ⇒ c ≤ a ⇒ c for every a, b, c ∈ τ. From (3.24) to
(3.25) we used the fact that for u′ ∈ W ′\W ′t , t ∧ R′(w′, u′) = 0 and so t ∧ R′(w′, u′) ⇒
V′(u′, ψ) = 1, hence such u′ does not contribute anything in the preceding meet.

The proof of the inequality t ∧ V′(w′,�ψ) ≤ t ∧ V(w,�ψ) is symmetrical to the
above one so we skip it.

Suppose that φ = ♦ψ. Then

t ∧V(w,♦ψ) = t ∧
∨

u∈W
[R(w, u) ∧V(u, ψ)]

= t ∧
∨

u∈W
[t ∧ (R(w, u) ∧V(u, ψ))]

= t ∧
∨

u∈W
[(t ∧ R(w, u)) ∧V(u, ψ)] (3.26)

= t ∧
∨

u∈Wt

[(t ∧ R(w, u)) ∧V(u, ψ)] (3.27)

= t ∧
∨

u∈Wt

( ∨
c∈Dτ(t∧R(w,u))

c) ∧V(u, ψ)

 (Since τ is perfect)

= t ∧
∨

u∈Wt

∨
c∈Dτ(t∧R(w,u))

(c ∧V(u, ψ)) (3.28)

= t ∧
∨

u′∈W ′t

∨
c∈Dτ(t∧R′(w′,u′))

(c ∧V′(u′, ψ)) (3.29)

= t ∧
∨

u′∈W ′t

( ∨
c∈Dτ(t∧R′(w′,u′))

c) ∧V′(u′, ψ)

 (3.30)

≤ t ∧
∨

u′∈W ′t

[
R′(w′, u′) ∧V′(u′, ψ)

]
(3.31)

= t ∧
∨

u′∈W ′

[
R′(w′, u′) ∧V′(u′, ψ)

]
(3.32)

= t ∧V′(w′,♦ψ).

From (3.26) to (3.27) we used the fact that for u ∈W\Wt, t ∧ R(w, u) = 0 and so
t∧ R(w, u)∧V(u, ψ) = 0, hence such a u does not contribute anything in the preceding
join. From (3.28) to (3.29) we use the definition of w′t and for any pair (u, c) in the
(3.28), the forth condition gives a u′ ∈ W ′ such that c ≤ R′(w′, u′) and (u, u′) ∈ Z(c).
By the Inductive Hypothesis, c ∧ V(u, ψ) = c ∧ V′(u′, ψ) and c ≤ t ∧ R(w, u) implies
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c ≤ t ∧ R′(w′, u′). From (3.30) to (3.31) we used the fact that∨
c∈Dτ(t∧R(w,u))

c ≤ t ∧ R(w, u) = t ∧ R′(w′, u′) ≤ R′(w′, u′).

From (3.31) to (3.32) we used the fact that for u′ ∈ W ′\W ′t , t ∧ R′(w′, u′) = 0 and
so t ∧ R′(w′, u′) ∧ V′(u′, ψ) = 0, hence such a u′ does not contribute anything in the
preceding join.
The proof of the other implication is symmetric.

Suppose φ = @iψ. Then

t ∧V(w, @iψ) = t ∧V(n(i), ψ)

t ∧V′(n′(i), ψ) (by IH and (n(i), n′(i)) ∈ Z(t))
= t ∧V′(w′, @iψ).

Therefore the case in which t is join-irreducible is complete. Suppose now that t is
not join-irreducible. Then

t ∧V(w, φ) =

 ∨
c∈Dτ(t)

c

 ∧V(w, φ)

=
∨

c∈Dτ(t)

(c ∧V(w, φ))

=
∨

c∈Dτ(t)

(
c ∧V′(w′, φ)

)
(since c is join-irreducible)

=

 ∨
c∈Dτ(t)

c

 ∧V′(w′, φ)

= t ∧V′(w′, φ).

The whole section has been building up to the next corner stone theorem which is es-
sentially the converse of the preceding theorem; that is, truth invariance implies weak
bisimulation but only for a special set of model, namely the image-finite models. We
constrain our models to a certain condition and prove this converse for this certain
class of models. The proof does not go through with general models. The definition of
the image-finite models was given for classical modal logic in [3] and was later extended
to the many-valued modal logic in [17, Definition 3.13]. We will also use the definition
given in [17].

Definition 3.4.9. A model M = (W, R, n, V) is called t-image-finite if for every w ∈W,
the set Wt

w = {u ∈W : t ∧ R(w, u) 6= 0} is finite.
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Lemma 3.4.10. Let τ be a Heyting algebra and let M = (W, R, n, V) be a t-image-finite
where t ∈ τ(t 6= 0). If t′ ≤ t, then M is t′-image-finite.

Proof. Since M is t-image-finite, the set Wt
w = {u ∈ W : t ∧ R(w, u) 6= 0} is finite.

Suppose that t′ ≤ t. Since t∧R(w, u) 6= 0 for all u ∈W, we have t′ ∧ t∧R(w, u) 6= 0∧ t′

for all u ∈ W. Then we have that t′ ∧ R(w, u) 6= 0 for all u ∈ W. Since Wt
w is finite,

it follows that Wt′
w = {u ∈ W : t′ ∧ R(w, u) 6= 0} is also finite. Hence M is t′-image-

finite.

The following theorem states that for t-image-finite τ-models, t-equivalence implies
weak t-bisimilarity. The proof for many-valued modal case is given in [17]. We will
show each case in detail and extend the theorem to the many-valued hybrid case.

Theorem 3.4.11. Let t ∈ τ (t 6= 0), M = (W, R, n, V) and M′ = (W ′, R′, n′, V′) be t-
image-finite models and w ∈ W and w′ ∈ W ′ two states. If t ∧V(w, φ) = t ∧V′(w′, φ)
for every formula φ, then M, w!t M

′, w′.

Proof. Define the function Z : τ\{0} → 2W×W ′ so that for every w ∈W, every w′ ∈W ′

and every d ∈ τ\{0}, (w, w′) ∈ Z(d) iff d ∧V(w, φ) = d ∧V′(w′, φ). We show that Z is
a weak bisimulation.

• (consistency) Suppose that (w, w′) ∈ Z(t1 ∨ t2). Then for every
φ, (t1 ∨ t2) ∧V(w, φ) = (t1 ∨ t2) ∧V′(w′, φ). Then
t1 ∧ (t1 ∨ t2) ∧V(w, φ) = t1 ∧ (t1 ∨ t2) ∧V′(w′, φ) which implies that
t1 ∧ V(w, φ) = t1 ∧ V′(w′, φ) since t1 ≤ t1 ∨ t2. Therefore (w, w′) ∈ Z(t1). Simi-
larly, taking the meet with t2 implies that (w, w′) ∈ Z(t2). Hence
(w, w′) ∈ Z(t1) ∩ Z(t2).

Conversely, suppose that (w, w′) ∈ Z(t1) ∩ Z(t2). Then for every
φ, t1 ∧V(w, φ) = t1 ∧V′(w′, φ) and t2 ∧V(w, φ) = t2 ∧V′(w′, φ) By distribution,
(t1 ∨ t2) ∧V(w, φ) = (t1 ∨ t2) ∧V′(w′, φ). Hence (w, w′) ∈ Z(t1 ∨ t2).

• From the definition of Z we have that d∧V(w, p) = d∧V′(w′, p) for every p ∈ Φ.

• Suppose that n(i) = w and n′(i) = w′ for i ∈ Ω. We want to show that
(w, w′) ∈ Z(d). Suppose that, for the sake of a contradiction, (w, w′) 6∈ Z(d).
Then we have that d ∧V(w, φ) 6= d ∧V′(w′, φ). Now we consider cases:

– Case 1: φ = i:

Then d ∧ V(w, φ) = d ∧ 1 = d and d ∧ V′(w′, φ) = d ∧ 1 = d which is a
contradiction.

– Case 2: φ 6= i:

Then d ∧ V(w, φ) = d ∧ 0 = 0 and d ∧ V′(w′, φ) = d ∧ 0 = 0 which is a
contradiction.
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• (forth condition) Suppose for the sake of a contradiction that Z does not satisfy
the forth condition. Then there exist a join-irreducible value d ∈ J(τ), a pair
(w, w′) ∈ Z(d), a state u ∈ W such that d ∧ R(w, u) 6= 0 and a join-irreducible
value c ∈ Dτ(d ∧ R(w, u)) such that for every u′ ∈ W ′, if c ≤ R′(w′, u′) then
(u, u′) does not belong to Z(c).
Since M′ is t-image-finite, the set W ′c = {u′ ∈ W ′ : c ≤ R′(w′, u′)} is finite. We
first show that W ′c is non-empty. We have

c ≤ d ∧ R(w, u)

≤ d ∧
∨

u∈W
[R(w, u) ∧ 1]

= d ∧V(w,♦1)

= d ∧V′(w′,♦1)

= d ∧
∨

u′∈W ′

[
R′(w′, u′) ∧ 1

]
=

∨
u′∈W ′

[
d ∧ R′(w′, u′)

]
.

From Lemma 2.1.25 (7) there exists some u′ ∈W ′ such that

c ≤ d ∧ R′(w′, u′) ≤ R′(w′, u′).

Therefore W ′c is non-empty. Suppose that W ′c = {u′1, u′2, . . . , u′k}. Then for every
for i, 1 ≤ i ≤ k, (u, u′i) does not belong to Z(c). Then there exists a formula φi
such that c ∧V(u, φi) 6= c ∧V′(u′i, φi). We will define a new formula ψi such that
c∧V(u, ψi) = c and c∧V′(u′i, ψi) < c. Let ai = c∧V(u, φi) and bi = c∧V′(u′i, φi).
Let ai corresponds to ai ∈ τ. We consider two cases:

1. ai ≤ bi. Define ψi = φi → ai. Then

c ∧V(u, ψi) = c ∧V(u, φi → ai)

= c ∧ (V(u, φi)⇒ V(u, ai))

= c ∧ (V(u, φi)⇒ ai)

= c ∧ ((c ∧V(u, φi))⇒ (c ∧ ai)) (by Lemma2.1.25 (7))
= c ∧ (ai ⇒ ai) (since ai ≤ c).
= c.

Similarly,

c ∧V′(u′i, ψi) = c ∧V′(u′i, φi → ai)

= c ∧ (V′(u′i, φi)⇒ V′(u′i, ai))

= c ∧ (V′(u′i, φi)⇒ ai)

= c ∧ ((c ∧V′(u′i, φi))⇒ (c ∧ ai)) (by Lemma2.1.25 (6))
= c ∧ (bi ⇒ ai).
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Suppose to the contrary that c ∧ (bi ⇒ ai) = c. Then c ≤ (bi ⇒ ai). Hence
c∧ bi ≤ ai by (by Lemma2.1.25 (5)). Note that bi = c∧V′(u′i, φi). So we have
that c ∧ bi = c ∧ c ∧V′(u′i, φi). From the idempotency, we have that
c ∧ bi = c ∧V′(u′i, φi). Hence, c ∧ bi = bi.

Therefore c ∧ bi = bi ≤ ai. Hence ai = bi, which is a contradiction. Hence
c ∧V′(u′i, ψi) < c.

2. ai � bi. Define ψi = ai → φi. Then

c ∧V(u, ψi) = c ∧V(u, ai → φi)

= c ∧ (V(u, ai)⇒ V(u, φi))

= c ∧ (ai ⇒ V(u, φi))

= c ∧ ((c ∧ ai)⇒ (c ∧V(u, φi)))

= c ∧ (ai ⇒ ai)

= c.

Similarly,

c ∧V′(u′i, ψi) = c ∧V′(u′i, ai → φi)

= c ∧ (V′(u′i, ai)⇒ V′(u′i, φi))

= c ∧ (ai ⇒ V′(u′i, φi))

= c ∧ ((c ∧ ai)⇒ (c ∧V′(u′i, φi)))

= c ∧ (ai ⇒ bi).

Suppose to the contrary that c = c ∧ (ai ⇒ bi). Then, c ≤ (ai ⇒ bi). Hence
c ∧ ai ≤ bi by Lemma(2.1.25 (5)). Since ai = c ∧ ai, it follows that ai ≤ bi
which is a contradiction. Therefore, c ∧V′(u′i, ψi) < c.

Let ψ =
∧

1≤i≤k ψi. Then

c ∧V(u, ψ) = c ∧V

(
u,

∧
1≤i≤k

ψi

)
= c. ( since c ∧V(u, ψi) = c for all 1 ≤ i ≤ k)

Similarly c ∧ V′(u′i, ψ) = c ∧ V′
(
u′i,
∧

1≤i≤k ψi
)
< c. Note that this is also saying

that c ≤ V(u, ψ) and c � V′(u′i, ψ) for every i, 1 ≤ i ≤ k. Moreover,

V(w,♦ψ) =
∨

v∈W
[R(w, v) ∧V(v, ψ)] ≥ R(w, u) ∧V(u, ψ) ≥ c ∧ c = c (3.33)
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Since (w, w′) ∈ Z(d), we have, in particular, that d ∧ V(w,♦ψ) = d ∧ V′(w′,♦ψ)
which implies that c ∧ V(w,♦ψ) = c ∧ V′(w′,♦ψ) since c ≤ d. From Equation
3.33 we have that V(w,♦ψ) ≥ c. So it follows from the idempotency that c ∧
V(w,♦ψ) ≥ c. Hence, c ∧ V′(w′,♦ψ) ≥ c, which implies that V′(w′,♦ψ) ≥ c.
Therefore, c ∧V′(w′,♦ψ) = c.

Hence,

c ≤ V′(w′,♦ψ)

=
∨

u′∈W ′

[
R′(w′, u′) ∧V′(u′, ψ)

]
=

∨
u′∈W ′c

[
R′(w′, u′) ∧V′(u′, ψ)

]
∨

∨
u′∈W ′\W ′c

[
R′(w′, u′) ∧V′(u′, ψ)

]
≤

∨
u′∈W ′c

[
V′(u′, ψ)

]
∨

∨
u′∈W ′\W ′c

[
R′(w′, u′)

]
.

Since c is a join-irreducible element, Lemma(2.1.25 (5)) implies that either there
exists an u′ ∈ W ′c such that c ≤ V′(u′, ψ) which contradicts our assumption or
there exists an u′ ∈ W ′\W ′c such that c ≤ R′(w′, u′) which contradicts equation
3.33.

The back condition is proved similar to the forth condition, in the opposite di-
rection.
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Chapter 4

Correspondence for Many-Valued
Hybrid Logic

In this chapter we will pursue one of the central aims of this dissertation. We will
establish the correspondence theory between many-valued first-order logic and many-
valued hybrid logic. Hence we will investigate the connections between first-order
definable properties of τ-frames and the many-valued hybrid formulas that are valid
in them. Our goal in this chapter is to extend the ALBA algorithm to many-valued
hybrid setting. The correspondence theory between many-valued first-order logic and
many-valued modal logic was established in [7]. Our purpose is to further extend
ALBA to many-valued hybrid logic and therefore establish the correspondence theory
between many-valued first-order logic and many-valued hybrid logic. The ALBA al-
gorithm was shown to succeed on a class of formulas that is strictly larger than the
Sahlqvist class, namely the class of inductive formulas. This is a strictly sufficient condition
for hybrid formulas to have a first-order local frame correspondent. The success of the
algorithm on the inductive class of formulas was proved for the 2-valued hybrid logic
[13] and it was also proved for the many-valued modal logic [7]. We will combine these
two results to formulate the extension of ALBA algorithm. The extension of the algo-
rithm that we will formulate will be referred to as the MV-Hybrid ALBA. We will also
prove the correctness of the MV-Hybrid ALBA to establish the correspondence theory
between many-valued hybrid logic and many-valued first-order logic.

We will first introduce many-valued first-order logic (and an extension of it) which
will be the correspondence languages for many-valued hybrid language (and an ex-
tension of it).
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4.1 The Basic Many-Valued First-Order Language and its
Extended Language

We now introduce the basic many-valued first-order language LFO
τ , and later its exten-

sion LFO+
τ which will serve as correspondence languages for Lτ and L+

τ , respectively. A
perfect Heyting algebra τ will serve as a truth-value space for the languages LFO

τ and
LFO+

τ . We will also define a standard translation between Lτ and L+
τ and their appro-

priate correspondence languages and it will be proven that t-truth and t-validity are
invariant under the standard translation.

4.1.1 The Basic Many-Valued First-Order Language

The basic many-valued first-order language LFO
τ contains the following:

1. Logical Symbols:

(a) A set of individual variables VAR, the elements of which will be denoted by
x1, x2, x3, . . .

(b) The connectives ∧,∨ and→
(c) The quantifiers ∀ and ∃
(d) Equality =

(e) Truth constants t for each t ∈ τ

2. Nonlogical Symbols:

(a) Unary predicate symbols P1, P2, P3 . . .

(b) Constant symbols di for each i ∈ Ω

(c) Binary relation R

Terms of LFO
τ are elements of VAR together with the constant symbols, and the set of

terms is denoted by TERMτ. The set of formulas of LFO
τ is denoted by FORMτ and the

formulas are inductively defined as

1. If s1, s2 ∈ TERMτ, then (s1 = s2), R(s1, s2), P(s1) ∈ FORMτ

2. If t ∈ τ, then t ∈ FORMτ

3. If A, B ∈ FORMτ, then A ∧ B, A ∨ B, A→ B ∈ FORMτ

4. If A ∈ FORMτ and xn ∈ VAR, then ∀xn A, ∃xn A ∈ FORMτ

5. If di is a constant and A ∈ FORMτ, then ∀diA ∈ FORMτ and ∃diA ∈ FORMτ

6. Every formula of LFO
τ can be obtained using a finite number of applications of

item 1 through 5.
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The connective ¬ is defined as ¬A = A → 0. We now define the notion of interpre-
tations on LFO

τ . From a correspondence theoretic point of view, interpretations are the
same mathematical objects as models.

Definition 4.1.1. An interpretation I of LFO
τ is a structure consisting of the following

1. A non-empty set W I , called the domain of I

2. For each unary predicate symbol Pn of LFO
τ , a τ-valued unary predicate PI

n : W →
τ

3. For each constant symbol di, an element dI
i of W I

4. For the binary relation symbol R, a binary τ-valued relation RI : (W ×W)→ τ

Definition 4.1.2. Let I be an interpretation for LFO
τ . An assignment on I is a function v

such that v : VAR→W I

Definition 4.1.3. Two assignments v and v′ on an interpretation I are xn-variants
(notation : v′ ∼xn v) if v(xk) = v′(xk) for all k 6= n.

Definition 4.1.4. Given an interpretation I, an assignment v can be extended to formu-
las of LFO

τ such that v : FORMτ → τ. This assignment interprets formulas of LFO
τ as

follows

1. v(s1 = s2) =

{
1 if v(s1) = v(s2)

0 otherwise

2. v (R (s1, s2)) = RI (v (s1) , v (s2))

3. v (Pn (s1)) = PI
n (v (s1))

4. v(t) = t

5. v(α ∧ β) = v(α) ∧τ v(β)

6. v(α ∨ β) = v(α) ∨τ v(β)

7. v(α→ β) = v(α)⇒ v(β)

8. v(∀xnα) =
∧{v′(α) | v′ ∼xn v}

9. v(∃xnα) =
∨{v′(α) | v′ ∼xn v}

For the defined ¬, we will interpret ¬A as v(¬A) = v(A)⇒ 0.
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4.1.2 The Extended Many-Valued First-Order Language

Since the extended many-valued hybrid language L+
τ of Lτ has additional modal oper-

ators � and �, the operators @# and @[, J-variables and M-variables, additional sym-
bols must be added to the language LFO+

τ in order to define a suitable correspondence
language for L+

τ .

The extended many-valued first-order language LFO+
τ contains the following and all

the nonlogical symbols of LFO
τ :

1. Nonlogical Symbols:

(a) Constant symbols cj and cm for each j ∈ J-VAR and for each m ∈ M-VAR.

(b) Truth-constant symbols Cj and Cm for each j ∈ J-VAR and for each m ∈ M-
VAR.

Note that the language LFO
τ and LFO+

τ have exactly the same logical symbols, so we
omitted that in the definition. Terms of LFO+

τ will be elements of TERMτ, together
with the constant symbols cj and cm. The new set of terms will be denoted by TERM+

τ .
The set of formulas of LFO+

τ is denoted by FORM+
τ and the formulas are inductively

defined as

1. If α ∈ FORMτ, then α ∈ FORM+
τ .

2. If cj and cm are constants and xn ∈ VAR, then (cj = xn), (cm = xn) ∈ FORM+
τ .

3. If Cj and Cm are truth constants, then Cj, Cm ∈ FORM+
τ .

4. If A, B ∈ FORM+
τ , then A ∧ B, A ∨ B, A→ B ∈ FORM+

τ .

5. If A ∈ FORM+
τ and xn ∈ VAR, then ∀xn A, ∃xn A ∈ FORM+

τ

6. If di is a constant and A ∈ FORM+
τ , then ∀diA ∈ FORM+

τ and ∃diA ∈ FORM+
τ

7. Every formula of LFO+
τ can be obtained using a finite number of applications of

item 1 through 6.

Definition 4.1.5. An interpretation I of LFO+
τ is a structure consisting of the following

1. A non-empty set W I , called the domain of I.

2. For each unary predicate symbol Pn of LFO+
τ , a many-valued unary predicate

PI
n : W I → τ.

3. For the binary relation symbol R, a binary function RI such that RI : (W I ×
W I)→ τ.
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4. For the constants symbols cj and cm of LFO+
τ , an element cI

j and cI
m of W I , respec-

tively.

5. For the truth constants symbols Cj and Cm of LFO+
τ , an element CI

j and CI
m in τ,

respectively.

We now define the notion of an assignment on an interpretation I for the language
LFO+

τ .

Definition 4.1.6. Let I be an interpretation for LFO+
τ . An assignment on I is a function v

such that v : VAR→W I .

Definition 4.1.7. Two assignments v and v′ on an interpretation I are δn-variants
(notation: v′ ∼δn v) if v(δk) = v′(δk) for all k 6= n and δ is a variable or a constant
indexed by k.

An assignment can be extended to formulas of LFO+
τ . The extended assignment will

interpret the formulas of LFO+
τ as in the assignment on LFO

τ with the additional clauses
for LFO+

τ .

Definition 4.1.8. Given an interpretation I, an assignment v can be extended to formu-
las of LFO+

τ such that v : FORM+
τ → τ. This assignment interprets formulas of LFO+

τ

as follows

1. v(Cj) = CI
j

2. v(Cm) = CI
m

4.1.3 The Basic Many-Valued Second-Order Language and its Exten-
sion

In the 2-valued setting, there are notions that exceed the expressive power of first-order
logic, however, these notions were expressible in second-order logic. For example:

Well-Orderedness: ∀P (∃xP(x)→ ∃y (P(y) ∧ ¬∃z(P(z) ∧ (z ≤ y)))

can be expressed in second-order logic, but not in first-order logic. In correspon-
dence theory, hybrid formulas always correspond to a second-order formula, which
can sometimes be broken down to a first-order formula (but this is not always the case).

The language LSO
τ will be much like LFO

τ , but it will be also be able to quantify over
the unary predicate symbols Pn of LFO

τ . Hence, ∀Pnα and ∃Pnα are also formulas of
LSO

τ .

Any assignment on LSO
τ should still interpret first-order formulas as in LFO

τ , however,
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the definition of an assignment must vary to allow for quantification over second-order
variables. An assignment on LSO

τ is defined as follows:

Definition 4.1.9. Given an interpretation I for LSO
τ , an assignment v on I is a mapping

v : (VAR ∪ {Pn} ∪ {di} ∪ {cj} ∪ {cm} → (W ∪ { f : W → τ}) such that

1. v(xn) = w for some w in W, where xn ∈ VAR.

2. v(Pn) = f , for some f : W → τ, where Pn is a predicate symbol.

3. v(di) = f , for some f : W → τ, where f (w) = 1 for exactly on w in W and
f (w0) = 0 for all w0 6= w and i ∈ Ω.

4. v(cj) = f , for some f : W → τ, where f (w) ∈ J∞(τ) for exactly one w in W and
f (w0) = 0 for all w0 6= w and j ∈ J-VAR.

5. v(cm) = f , for some f : W → τ, where f (w) ∈ M∞(τ) for exactly one w in W
and f (w0) = 1 for all w0 6= w and m ∈ M-VAR.

We have used the same notation v for an assignment in LFO
τ and LSO

τ . When used, it
will be clear from the context which we referring to.

Definition 4.1.10. 1. Two assignments v and v′ are Pn-variants (notation: v′ ∼Pn v)
if v(Pk) = v′(Pk) for all k 6= n.

2. Two assignments v and v′ on an interpretation I are cj
(notation: v′ ∼cj v) if v(ck) = v′(ck) for all k 6= j.

3. Two assignments v and v′ on an interpretation I are cm (notation: v′ ∼cm v) if
v(cn) = v′(cn) for all n 6= m.

4. Two assignments v and v′ on an interpretation I are di (notation: v′ ∼di v) if
v(d′i) = v′(di′) for all i′ 6= i.

A second-order assignment v will interpret a first-order formula as in LFO
τ . Second-

order formulas will be interpreted as follows:

Definition 4.1.11. Let s ∈ TERMτ, then we have the following

1. v(Pn(s)) = v(Pn)(v(s)).

2. v(∀Pnα) =
∧{v′(α) | v′ ∼Pn v}.

3. v(∃Pnα) =
∨{v′(α) | v′ ∼Pn v}.

4. v(∀cjα) =
∧{v′(α) | v′ ∼cj v}.

5. v(∀cmα) =
∧{v′(α) | v′ ∼cm v}.
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6. v(∀diα) =
∧{v′(α) | v′ ∼di v}.

7. v(∃cjα) =
∨{v′(α) | v′ ∼cj v}.

8. v(∃cmα) =
∨{v′(α) | v′ ∼cm v}.

9. v(∃diα) =
∨{v′(α) | v′ ∼di v}.

Extended Many-Valued Second-Order Language The truth constant symbols Cj and
Cm introduced in LFO+

τ can be viewed as nullary many-valued predicates. The ex-
tended many-valued second-order language LSO+

τ , which is intended to be the corre-
spondence language for L+

τ , will allow for quantification over truth constants symbols.
These shall be seen as quantification over τ.

The language LSO+
τ contains additional terms cj, cm and di and additional formulas

containing Cj and Cm.

An assignment on the language LSO+
τ is defined as follows:

Definition 4.1.12. Given an interpretation I for LSO
τ , an assignment v on I is a mapping

v : (VAR ∪ {Pn} ∪ {di} ∪ {cj} ∪ {cm} ∪ {Cj} ∪ {Cm} → (W ∪ { f : W → τ}) such that

1. v(xn) = w for some w in W, where xn ∈ VAR.

2. v(Pn) = f , for some f : W → τ, where Pn is a predicate symbol.

3. v(di) = f , for some f : W → τ, where f (w) = 1 for exactly on w in W and
f (w0) = 0 for all w0 6= w and i ∈ Ω.

4. v(cj) = f , for some f : W → τ, where f (w) ∈ J∞(τ) for exactly one w in W and
f (w0) = 0 for all w0 6= w and j ∈ J-VAR.

5. v(cm) = f , for some f : W → τ, where f (w) ∈ M∞(τ) for exactly one w in W
and f (w0) = 1 for all w0 6= w and m ∈ M-VAR.

Definition 4.1.13. 1. Two assignments v and v′ on I are Cj-variant (notation: v′ ∼Cj

v ) if v(Ck) = v′(Ck) for all k 6= j.

2. Two assignments v and v′ on I are Cm-variant (notation: v′ ∼Cm v) if v(Cn) =
v′(Cn) for all n 6= m.

The second-order assignment v will interpret cj, cm, di and formulas containing Cj and
Cm as in the language LSO

τ case. Quantification over Cj and Cm will be handled as
follows:

Definition 4.1.14. 1. v(∀Cjα) =
∧{v′(α) | v′ ∼Cj v}.
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2. v(∀Cmα) =
∧{v′(α) | v′ ∼Cm v}.

3. v(∃Cjα) =
∨{v′(α) | v′ ∼Cj v}.

4. v(∃Cmα) =
∨{v′(α) | v′ ∼Cm v}.

4.1.4 Standard Translation

As in 2-valued correspondence theory, the standard translation is the link between the
language Lτ(L+

τ ) and language LFO
τ (LFO+

τ ). The standard translation ”translates“ a
many-valued hybrid formula into a many-valued first-order formula in such a way
that a-truth and a-validity, where a ∈ τ, of the formula is preserved in the correspond-
ing language. These are also preserved when we consider the second-order standard
translation. Such results are very crucial in our research as it plays a big role in prov-
ing one of the main theorems of the dissertation, the correctness of Hybrid MV-ALBA
(Theorem 4.2.5).

Definition 4.1.15. Given a τ-frame F = (W, R) for L+
τ and a valuation V on F, the

corresponding first-order interpretation of LFO
τ , denoted by M, consists of:

1. W I = W.

2. RI = R.

3. PI
n(w) = V(w, pn) for w ∈W and pn ∈ Φ.

4. dI
i = n(i) for each i ∈ Ω.

5. cI
j = w0 where V(w0, j) 6= 0 for each j ∈ J-VAR.

6. CI
j = V(wo, j) = J ∈ J∞(τ) for each j ∈ J-VAR.

7. cI
m = w1 where V(w1, m) 6= 1 for each m ∈ M-VAR.

8. CI
m = V(w1, m) = M ∈ M∞(τ) for each m ∈ M-VAR.

With regards to definition (4.1.15), item 4, since nominals are only true at a unique state
in a model, we have that V(w2, i) = 1 which follows that w2 = n(i).

Definition 4.1.16. Let x be a first-order individual variable. The standard translation
STx taking hybrid formulas of Lτ(or L+

τ ) to formulas of LFO
τ (or LFO+

τ ) is defined by the
following:

1. STx(pn) = Pn(x).

2. STx(t) = t.

3. STx(φ ∨ ψ) = STx(φ) ∨ STx(ψ).
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4. STx(φ ∧ ψ) = STx(φ) ∧ STx(ψ).

5. STx(φ→ ψ) = STx(φ)→ STx(ψ).

6. STx(♦ψ) = ∃y
(

Rxy ∧ STy(ψ)
)
.

7. STx(�ψ) = ∀y
(

Rxy→ STy(ψ)
)
.

8. STx(�ψ) = ∃y
(

Ryx ∧ STy(ψ)
)
.

9. STx(�ψ) = ∀y
(

Ryx → STy(ψ)
)
.

10. STx(j) = (x = cj) ∧Cj.

11. STx(m) = (x 6= cm) ∨Cm.

12. STx(i) = (x = di)

13. STx(@iψ) = ∃y
(
y = di ∧ STy(ψ)

)
≡ ∀y

(
y = di → STy(ψ)

)
.

14. STx(@#
i ψ) = (x = di)→ ∀y

(
STy(ψ)

)
.

15. STx(@b
i ψ) = (x = di) ∧ ∃y

(
STy(ψ)

)
.

where y is a variable that has not yet been used in the translation, pn ∈ Φ, i ∈ Ω,
j ∈ J-VAR, m ∈ M-VAR and t is the truth-value constant corresponding to t ∈ τ.

The following proposition asserts that the truth of a hybrid formula is preserved when
the formula is translated to a first-order formula. This is an important results since it
allows us to move from language to language while preserving the truth of formulas,
and such a result also play a part in proving Theorem 4.2.5. An analogous proposition
for many-valued modal logic is found in [7, Proposition 3.29], and its proof is given in
detail. We will state the proposition and complete the proof by only considering the
clauses for the hybrid setting.

Proposition 4.1.17. Let M = (W, R, n, V) be a τ-model, w ∈ W and φ a formula of L+
τ .

Let v be any assignment on the first-order interpretation M such that v(x) = w. Then:

V(w, φ) = v (STx(φ))

where x is a variable of L+
τ .

Proof. The proof is by induction on φ.

1. Suppose that φ = i. There are two cases to consider:

• Case 1: V(w, i) = 0
So we have that dI

i 6= w. Let v be an arbitrary assignment on the first-order
interpretation M such that v(x) = w. We have that v(STx(i)) = v(x = di).
But v(x) = w 6= dI

i . So we have that v(x = di) = 0 so that v(STx(i)) = 0 as
desired.
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• Case 2: V(w, i) = 1
So we have that dI

i = w. Let v be an arbitrary assignment on the first-order
interpretation M such that v(x) = w. So v(di) = dI

i = v(x). Hence v(di =
x) = 1 so that v(STx(i)) = 1 as desired.

Let ψ be a formula containing fewer connectives than a formula φ. Assume the follow-
ing: If v is an assignment such that v(y) = u, then V(u, ψ) = v(STy(ψ)). Let v be an
assignment on the first-order interpretation M such that v(x) = w.

1. Suppose that φ = @iψ. Then:

v(STx(@iψ)) = v(∃y(y = di ∧ STy(ψ)))

=
∨
{v′(y = di ∧ STy(ψ)) | v′ ∼y v}

=
∨
{v′(y = di) ∧ v′(STy(ψ)) | v′ ∼y v}

=
∨
{v′(STy(ψ)) | v′ ∼y v and v′(y) = dI

i }.

Since x 6= y by definition of the standard translation, we have that v′(x) = v(x) =
w for any y-variant v′ of v. Consider any y-variant v′ of v such that v′(y) = n(i).
Hence it follows from the inductive hypothesis that v′(STy(ψ)) = V(n(i), ψ).
Hence:

v(STx(@ψ)) =
∨
{v′(STy(ψ)) | v′ ∼y v and v′(y) = dI

i }
=

∨
y∈W

(V(n(i), ψ) ∧ 1)

=
∨

y∈W
(V(n(i), ψ))

= V(n(i), ψ).

2. Suppose that φ = @#
i ψ. Now:

v(STx(@#
i ψ)) = v((x = di)→ ∀y(STy(ψ))

= v((x = di))→ v(∀y(STy(ψ)))

= v((x = di))→
∧
{v′(STy(ψ)) | v′ ∼y v}

= v((x = di))→
∧
{V(u, ψ) | u ∈W}.

• Case 1: w = n(i)

Then by definition, we have that v(di) = n(i) which implies that v(di =
n(i))=1. Hence,

v(STx(@#
i ψ)) = 1→

∧
u∈W

V(u, ψ)

=
∧

u∈W
V(u, ψ).
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• Case 2: w 6= n(i)

Then by definition, we have that v(di) 6= n(i) which implies that v(di =
n(i)) = 0. Hence,

v(STx(@#
i ψ)) = 0→

∧
u∈W

V(u, ψ)

= 1.

So by the two cases, it follows that v(STx(@#
i ψ)) = V(w, @#

i ψ).

3. Suppose that φ = @b
i ψ. Now:

v(STx(@b
i ψ)) = v((x = di) ∧ ∃y(STy(ψ))

= v((x = di)) ∧ v(∃y(STy(ψ)))

= v((x = di)) ∧
∨
{v′(STy(ψ)) | v′ ∼y v}

= v((x = di)) ∧
∨
{V(u, ψ) | u ∈W}.

• Case 1: w = n(i)

Then by definition, we have that v(di) = n(i) which implies that v(di =
n(i)) = 1. Hence,

v(STx(@b
i ψ)) = 1∧

∨
u∈W

V(u, ψ)

=
∨

u∈W
V(u, ψ).

• Case 2: w 6= n(i)

Then by definition, we have that v(di) 6= n(i) which implies that v(di =
n(i)) = 0. Hence,

v(STx(@b
i ψ)) = 0∧

∨
u∈W

V(u, ψ)

= 0.

So by the two cases, it follows that v(STx(@[
i ψ)) = V(w, @[

i ψ).

Corollary 4.1.18. Let M = (W, R, n, v) be a τ-model, a ∈ τ and φ a formula of L+
τ . Let

x be a variable of LFO+
τ . Then

M, w a φ iff M �a STx(φ)[x = w]
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We can make Proposition 4.1.17 more general by substituting the first-order assign-
ment v for a second-order assignment.

Corollary 4.1.19. Let M = (W, R, n, V) be a τ-model, a ∈ τ, w ∈ W and φ a formula of
L+

τ . Let x be a variable of LFO+
τ . Then

V(w, φ) = v(STx(φ))

where v is a second-order assignment on the interpretation M such that v(x) = w and
v(P) = f , where f ∈ τW such that f (w) = V(w, p).

We will skip this proof entirely. The proof is this Corollary is by induction on φ. The
base case for propositional variable is found in [7]. The other proofs of the other cases
are entirely similar to that of Propositional 4.1.17 and mostly uses the fact that a second-
order assignment evaluates any first-order formula as a first-order assignment would.

In Propositional 4.1.17 we proved that a hybrid formula and its standard translation
have the same truth-value at a state in a τ-model. Now we will use this result to show
that the truth-value of a hybrid formula at the state in τ-frame is the same truth-value
its standard translation have in the corresponding first-order interpretation.

The proof of the following analogous result is found in [7]. The fact that we are in
the hybrid setting does not change the proof. We chose to include this proof in this pa-
per (instead of referencing it) because this result plays a very crucial role in the proof
of the correctness of ALBA algorithm.

Proposition 4.1.20. Let F = (W, R) be a τ-frame, a ∈ τ, w ∈ W and φ a formula of L+
τ .

Let x be a variable of LFO+
τ . Then

F, w a φ iff F a ∀P∀cj∀cm∀Cj∀Cm(STx(φ))[x = w]

where P, cj, cm, Cj and Cm are vectors of many-valued predicate symbols, constant
symbols cj for each j ∈ J-VAR, constant symbols cm for each m ∈ M-VAR, truth con-
stant symbols Cj for each j ∈ J-VAR and truth constant symbol Cm for each m ∈ M-
VAR, respectively, occurring in STx(φ).

Proof. We have that

F, w a φ iff V(w, φ) ≥ a for all valuation V on F

iif v(STx(φ)) ≥ a for all assignments v on F such that v(x) = w
by Proposition 4.1.17

iff F a ∀P∀cj∀cm∀Cj∀Cm(STx(φ))[x = w]

The last step follows since v(STx(φ)) ≥ a holds for all assignments on F such that
v(x) = w, including all δ-variants for δ ∈ {P, cj, cm, Cj, Cm}.
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4.2 Correspondence

We know that two formulas φ and α are local frame correspondents of each other in
the 2-valued if the validity of one guarantees the truth of the other in the corresponding
first-order structure (and vice versa). The following is a generalized version of this
definition.

Definition 4.2.1. Let φ be a formula of L+
τ , α a formula of LFO+

τ , a ∈ τ(a 6= 0) and
F = (W, R) any τ-frame. We say that φ and α are local frame a-correspondents if

F, w a φ iff F �a α[x = w]

where x is any free variable in LFO+
τ and w ∈W.

In other words, V(w, φ) ≥ a for all valuations V on F iff v(α) ≥ a for all assignments
v such that v(x) = w on the first-order interpretation. The case where a = 0 is not
included because it is always the case that V(w, φ) ≥ 0 and v(α) ≥ 0. We now define
the notion of a global frame a-correspondent.

Definition 4.2.2. Let φ be a formula of L+
τ , α a formula of LFO+

τ , a ∈ τ(a 6= 0) and
F = (W, R) any τ-frame. We say that φ and α are global frame a-correspondents if

F a φ iff F �a α

where x is any free variable in LFO+
τ .

Example 4.2.3. Let τ be an arbitrary truth-value space. Consider the formula @i p →
@i♦p and the first-order formula Rxx (reflexivity). Recall that @i p → @i♦p and Rxx
are global frame correspondents in 2-valued setting. We show that @i p → @i♦p and
Rxx are also global frame a-correspondents for an arbitrary a 6= 0 ∈ τ. Let F be any
τ-frame subject to the reflexive condition and let w ∈ W be arbitrary. Suppose that
Rww, then F,�a Rxx[x = w] for a ∈ τ and;

V(w, @i p→ @i♦p) = V(w, @i p)→ V(w, @i♦p)
= V(n(i), p)→ V(n(i),♦p)

= V(n(i), p)→
∨
{V(u, p) ∧ Rn(i)u | u ∈W}

for an arbitrary valuation V. Since F is reflexive, we have that Rn(i)n(i) and therefore,

V(n(i), p) ≤ ∨{V(u, p) ∧ Rn(i)u | u ∈W}

∴ 1∧V(n(i), p) ≤ ∨{V(u, p) ∧ Rn(i)u | u ∈W}

∴ 1∧V(w, @i p) ≤ V(w, @i♦p)
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∴ 1 ≤ V(w, @i p)→ V(w, @i♦p)

Hence, V(w, @i p→ @i♦p) ≥ 1 ≥ a ∈ τ.

For the implication in the other direction we prove the contrapositive. Suppose that
¬Rww so that F 2a Rxx[x = w] for a ∈ τ. Let V(n(i), p) = 1 and V(u, p) = 0 for all
u 6= n(i). Then

V(w, @i p→ @i♦p) = V(w, @i p)→ V(w, @i♦p)
= V(n(i), p)→ V(n(i),♦p)

= V(n(i), p)→
∨
{V(u, p) ∧ Rn(i)u | u ∈W}

= 1→ 0
= 0

so that V(w, @i p → @i♦p) 6= a for any a 6= 0 ∈ τ at an irreflexive point. Since
v(Rxx) = 1 ≥ a under any assignment v that assigns a reflexive state w to x, it follows
that @i p→ @i♦p and Rxx are global frame a-correspondents.

We now give a definition that will be needed in the proof of the correctness of ALBA:

Definition 4.2.4. Given a complex algebra F+ and a ∈ τ, an inequality φ ≤ ψ is a-true
under v in F+ (notation: F+, v a φ ≤ ψ) if v(φ)∧ a ≤ v(ψ) for the assignment v on F+.
An inequality φ ≤ ψ is said to be a-valid in F+ if it is a-true under all assignments v on
F+ (notation: F+ a φ ≤ ψ).

Note that the condition v(φ) ∧ a ≤ v(ψ) is equivalent to v(a) ≤ v(φ)→ v(ψ).

The ALBA Algorithm for Many-Valued Hybrid Logic

We now present the version of the many-valued hybrid ALBA algorithm which is a
combination of the ALBA algorithms presented in [7] and [13]. We will refer to it as
MV-Hybrid-ALBA. With this algorithm we are able to develop a Sahlqvist theory by
introducing the class of hybrid inductive formulas. Each hybrid inductive formula
is shown to have an effectively computable first-order local frame a-correspondent,
where a ∈ τ (a 6= 0). The algorithm aims to eliminate all propositional variables
from a formula or inequality of L+

τ by applying rules that replace certain syntactic
expressions with logically equivalent expressions. When all propositional variables are
eliminated, the standard translation is applied to the set of quasi-inequalities produced
to obtain a first-order frame a-correspondent for the given formula or inequality. As
in [7], we will not invent the new ALBA-like algorithm or even change the old one.
This is because ALBA was designed to work on complex algebras that are normal
distributive lattice expansions (also known as distributive lattices with operators), see
[10] and [11]). Given a τ-frame F, its complex algebra F+ is a perfect Heyting algebra
with operators. Hence the ALBA defined in [13] and [7] can be applied to the complex
algebra of a τ-frame, subject to the certain conditions which will be given below.
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MV-Hybrid ALBA Let a ∈ τ and consider the inequality φ ≤ ψ. Then the inequality
φ ∧ a ≤ ψ is the ALBA input. The algorithm proceeds as follows:

• Phase 1: Preprocessing

The aim of this phase is to equivalently break up an inequality φ ∧ a ≤ ψ, given
as an input, into smaller inequalities through the application of the rules (∨-Adj)
and (∧-Adj) to be given in the Phase 3. To make it easier, consider the positive
generation tree of φ and the negative generation tree of ψ, and the surface positive
occurrence of ∨ and negative occurrence of ∧ by applying the following standard
equivalences:

α ∧ (β ∨ γ) ≡ (α ∧ β) ∨ (α ∧ γ) α ∨ (β ∧ γ) ≡ (α ∨ β) ∧ (α ∨ γ)

¬ (α ∨ β) ≡ ¬α ∧ ¬β ¬ (α ∧ β) ≡ ¬α ∨ ¬β

♦ (α ∨ β) ≡ ♦α ∨♦β � (α ∧ β) ≡ �α ∧�β

@i (α ∨ β) ≡ @iα ∨@iβ @i (α ∧ β) ≡ @iα ∧@iβ

It is easy to check that the inequalities obtained in the preprocessing phase will
be of the form φ ∧ a ≤ ψ. Now, let Preprocess (φ ∧ a ≤ ψ) = {φi ∧ a ≤ ψi | i ∈ I}
be the finite set of inequalities obtained after exhaustive application of the above
equivalences.

• Phase 2: First approximation

Each inequality produced in Phase 1 is turned into a quasi-inequality by apply-
ing the following first approximation rule. The algorithm now proceeds separately
on each of the quasi-inequalities obtained.

First-approximation. Let Preprocess (φ ∧ a ≤ ψ) = {φi ∧ a ≤ ψi | i ∈ I} be the set
of inequalities obtained in Phase 1. Then the following first-approximation rule is
applied to each φi ∧ a ≤ ψi only once:

φi ∧ a ≤ ψi

j ≤ φi ∧ a & ψi ≤ m⇒ j ≤ m
(First-approximation)

where j ∈ J-VAR and m ∈ M-VAR.

The First-approximation yields systems of inequalities {j ≤ φi ∧ a & ψi ≤ m}
for each inequality in Preprocess (φ ∧ a ≤ ψ). Now we apply the (∧-Adj) rule to
obtain {j ≤ φi & j ≤ a & ψi ≤ m}. The algorithm will now proceed on j ≤ φ
and ψ ≤ m and leaves j ≤ a unchanged. Each such system is still called an initial
system.

• Phase 3: Reduction and Elimination
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As in all versions of ALBA algorithm, this phase focuses on eliminating all the
propositional variables from the quasi-inequalities (resulting in Phase 2) through
the application of the Ackermann rules (RH-Ack) and (LH-Ack), or their special
case (RH-Ack-0) and (LH-Ack-0). To bring the quasi-inequality into the shape to
which one of these rules is applicable, the approximation, residuation and adjunction
rules are used. If all propositional variable occurrences have been eliminated, we
denote the resulting set of pure quasi-inequalities by pure (φ ∧ a ≤ ψ). If some
propositional variable could not be eliminated, then the algorithm fails.

Adjunction rules:

α ≤ β ∧ γ

α ≤ β & α ≤ γ
(∧-Adj)

α ∨ β ≤ γ

α ≤ γ & β ≤ γ
(∨-Adj)

α ≤ �β

�α ≤ β
(�-Adj)

♦α ≤ β

α ≤ �β
(♦-Adj)

α ≤ @iβ

@[
i α ≤ β

(@-R-Adj)
@iα ≤ β

α ≤ @#
i β

(@-L-Adj)

The rules (∧-Adj) and (∨-Adj) are justified by the fact that ∧ is a right adjoint
and ∨ is a left adjoint of the diagonal map ∆ : L→ A×A given by ∆(a) = (a, a),
where L is a complex algebra of the given frame and A is a subset of L. The rules
(�-Adj) and (♦-Adj) are justified by the fact that � is the right adjoint of � and
♦ is the left adjoint of�, and (@-R-Adj) and (@-R-Adj) follows from the fact that
@ operator is the right adjoint of the operator @[ and @ is also a left adjoint of the
operator @#, (see Proposition 2.2.12). Note the last two justifications also hold on
a complex algebra of the given frame.

Residuation rules:

α ∧ β ≤ γ

α ≤ β→ γ
(∧-Res)

α ≤ β→ γ

α ∧ β ≤ γ
(→ -Res)

The residuation rules are based on the residuation properties of the interpreta-
tions of the connectives.

Approximation rules:
�α ≤ m

∃m0

(
�m0 ≤ m & α ≤ m0

) (�-Approx)
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j ≤ ♦α

∃j0

(
j ≤ ♦j0 & j0 ≤ α

) (♦-Approx)

@iα ≤ m

∃m0

(
@im0 ≤ m & α ≤ m0

) (@-R-Approx)

j ≤ @iα

∃j0

(
j ≤ @ij0 & j0 ≤ α

) (@-L-Approx)

where m0 ∈ M-VAR and j0 ∈ J-VAR, respectively.

The approximation rules follows from the fact that in a complete and perfect heyt-
ing algebra each element is the join of join-irreducibles below it and the meet of
meet-irreducibles above it.

Ackermann rules: Once the application of the adjunction, residuation and ap-
proximation rules has turned the system to the desired shape, the Ackermann
rules are applied to the whole system to eliminate all the propositional variables.
The Ackermann rules are:

&n
i=1 αi ≤ p & &m

j=1 β j(p) ≤ γj(p)

&m
j=1 β j (

∨n
i=1 αi) ≤ γj (

∨n
i=1 αi)

(RH-Ack)

&n
i=1 p ≤ αi & &m

j=1 γj(p) ≤ β j(p)

&m
j=1 γj (

∧n
i=1 αi) ≤ β j (

∧n
i=1 αi)

(LH-Ack)

where

1. the αi are p-free;

2. the β j are positive in p; and

3. the γj are negative in p.

If n = 0,
∨n

i=0 αi ≡ 0 and
∧n

i=0 αi ≡ 1, then we have the following special cases
(RH-Ack) and (LH-Ack);

&m
j=1 β j(p) ≤ γj(p)

&m
j=1 β j(0) ≤ γj(0)

(RH-Ack-0)

&m
j=1 γj(p) ≤ β j(p)

&m
j=1 γj(1) ≤ β j(1)

(LH-Ack-0)
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• Phase 4: Translation and Output
Assuming that it was possible to rewrite an initial system in a form to which one
of the Ackermann rules is applicable, else MV-Hybrid-ALBA reports failure and
terminates, we denote the set of pure quasi-inequalities obtained in Phase 3 by
pure (φ ∧ a ≤ ψ), containing no propositional variables. Let ALBA(φ ∧ a ≤ ψ) be
the set of quasi-inequalities:

&
i
(pure (φi ∧ a ≤ ψi))⇒ j ≤ m

for each φi ∧ a ≤ ψi ∈Preprocess(φ ∧ a ≤ ψ). All members of ALBA(φ ∧ a ≤ ψ)
are free of propositional variables, so applying the standard translation to each
member of ALBA(φ∧ a ≤ ψ) will result in a set of first-order correspondents, that
is, one for each member of the set of quasi-inequalities. Let ALBAFO(φ ∧ a ≤ ψ)
equal:

∧
1≤i≤n

∀di∀Cm∀cm∀Cj∀~di∀ ~cm0∀ ~Cm0∀~cj0
∀ ~Cj0

(∀xSTx(pure(φi ∧ a ≤ ψi))⇒ ∀xSTx(m ≤ j))

where ~di, ~cm0 , ~Cm0 , ~cj0
and ~Cj0

are the vectors of all variables corresponding to the
standard translations of nominals, M-VAR and J-VAR, respectively, occurring in
pure(φi ∧ a ≤ ψi), other than the reserved m ∈ M-variables and j ∈ J-variables.
Note that the constant variable cj corresponding to j is not quantified over. This
is done to produce a local frame correspondent.

Correctness of MV-hybrid-ALBA

The following theorem shows that φ ∧ a ≤ ψ and ALBAFO(φ ∧ a ≤ ψ) are local frame
correspondents.

Theorem 4.2.5. Let F = (W, R) be a τ-frame and let a ∈ τ. If MV-Hybrid-ALBA
succeeds in reducing an inequality φ ≤ ψ and gives out ALBAFO(φ ∧ a ≤ ψ), then

F, w t φ ≤ ψ iff F+
(
j = fj

)
� ALBA(φ ∧ a ≤ ψ) iff F � ALBAFO (φ ∧ a ≤ ψ)

[
cj = w

]
where with the j ∈ J-VAR we associate a function fj ∈ τW such that fj(w) ∈ J∞(τ) for
exactly one w ∈W and fj(w0) = 0 for all w0 6= w.

Proof. Consider the inequality φ ≤ ψ. To complete the proof, the following chain of
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equivalences must be proven:

F, w a φ ≤ ψ iff F+
(
j = fj

)
�a φ ≤ ψ (4.1)

iff F+
(
j = fj

)
� φ ∧ a ≤ ψ (4.2)

iff F+
(
j = fj

)
� Preprocess(φ ∧ a ≤ ψ) (4.3)

iff F+
(
j = fj

)
� (j ≤ a & j ≤ φi & ψi ≤ m)⇒ (j ≤ m) (4.4)

iff F+
(
j = fj

)
� pure(φi ∧ a ≤ ψi)⇒ (j ≤ m) (4.5)

iff F � ALBA (φ ∧ a ≤ ψ) (4.6)

iff F � ALBAFO (φ ∧ a ≤ ψ)
[
cj = w

]
(4.7)

(4.1): Follows from Proposition 2.3.6.
(4.1) iff (4.2): Follows from Definition 4.2.4.
(4.2) iff (4.3): It was shown in [7] that application of the preprocessing rules will result
in inequalities of the form φi ∧ a ≤ ψi and the preprocessing rules preserve truth.
(4.3) iff (4.4): The proof of this equivalence is found in [10] and [7].
(4.4) iff (4.5): The reduction rules need not be applied to the inequality j ≤ a, as it is al-
ready propositional variable free. By proofs of the correctness of ALBA in [10] and [7],
the reduction rules (containing the modal operators) preserve truth of the inequalities
j ≤ φi and ψ ≤ m. We will extend the proofs in [10] and [7] by showing the reduction
rules containing hybrid operators also preserve the truth of the inequalities j ≤ φi and
ψ ≤ m. We want to show that the following rules

1.
@iφ ≤ ψ

φ ≤ @#
i ψ

2.
φ ≤ @iψ

@[
i φ ≤ ψ

3.
j ≤ @iφ

j ≤ @ij0 & j0 ≤ φ

4.
@iφ ≤ m

@im0 ≤ m & φ ≤ m0

are sound. That is, the premise is true in a complex algebra under an assignment if and
only if the conclusion is true in the same algebra under the same assignment.

1. Follows from the fact that @ is a left adjoint of @#.

2. Follows from the fact that @ is a right adjoint of @[.
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3. Let F+ be a complex algebra of the given τ-frame F = (W, R) and let v be an
assignment on F+. Suppose that v(j) ≤ v(@iφ) Then we have that v(j) ≤
@v(i)(v(φ)). Since J∞(τW) join generates τW , we have that v(j) ≤ @v(i)

∨{j′ ∈
J∞(τW) | j′ ≤ v(φ)}. Hence v(j) ≤ ∨{@v(i)j

′ | J∞(τW) 3 j′ ≤ v(φ)} since @v(i) is
completely join-preserving (see Lemma 2.3.2). Therefore v(j) ≤ @v(i)j0 for some
j0 ∈ J∞(τW) such that j0 ≤ v(φ). Let v′ ∼j0

v be such that v′(j) = j0. Note that
we are using the fact that j0 is a new variable in J-VAR. Then v′(j) ≤ v′(@ij0) and
v′(j0) ≤ v′(φ). Conversely, suppose that v(j) ≤ v(@ij0) and v(j0) ≤ v(φ). Then
v(j) ≤ @v(i)v(j0) and v(j0) ≤ v(φ). So, by the monotonicity of @v(i), we have
that,

v(m) ≤ @v(i) (v(j0)) ≤ @v(i) (v(φ)) = v(@iφ).

4. Let F+ be a complex algebra of the given τ-frame F = (W, R) and let v be an as-
signment on F+. Suppose that v(@iφ) ≤ v(m). Then we have that @v(i) (v(φ)) ≤
v(m). Since M∞(τW) meet generates τW , we have that @v(i)

∧{m′ ∈ M∞(τW) |
v(φ) ≤ m′} ≤ v(m). Therefore,

∧{@v(i)m′ | v(φ) ≤ m′ ∈ M∞(τW)} ≤ v(m)
since @v(i) is completely meet-preserving (see Lemma 2.3.2). Hence, it follows
that @v(i)m0 ≤ v(m) for some m0 ∈ M∞(τW) such that v(φ) ≤ m0. Let v′ ∼m0 v
be such that v′(m) = m0. Note we are using the fact that m0 is a new variable in
M-VAR. Then

v′(@im0) ≤ v′(m) and v′(φ) ≤ v′(m0)

Conversely, suppose that v(@im0) ≤ v(m) and v(φ) ≤ v(m0). Hence,

@v(i) (v(m0)) ≤ v(m) and v(φ) ≤ v(m0).

So, by monotonicity of @v(i),

@v(i) (v(φ)) ≤ @v(i) (v(m0)) ≤ v(m).

Therefore, v(@iφ) ≤ v(m).

(4.5) iff (4.6): Follows from the definition of ALBA(φ ∧ a ≤ ψ), which is defined as:

&(pure(φi ∧ a ≤ ψi))⇒ j ≤ m

for each φi ∧ a ≤ ψi ∈ Preprocess(φ ∧ a ≤ ψ).
(4.6) iff (4.7): Follows from a straightforward extension of Proposition 4.1.20 to cover
quasi-inequalities.

Theorem 4.2.6. MV-Hybrid ALBA succeeds on the class of inductive inequalities (and
hence the class of Sahlqvist inequalities) of L+

τ over all τ-frames.

Corollary 4.2.7. Let τ be any perfect Heyting algebra and let a ∈ τ. All inductive
formulas have effectively computable first-order local frame a-correspondents over the
class of all τ-frames.
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We now have a sufficient condition that assures us that an inequality will have a first-
order frame correspondent and that condition is that the inequality be inductive. Note
that this is a very strong Sahlqvist type result, as it is applicable to a wide range of
truth-value spaces.

We now consider examples to see how the MV-Hybrid-ALBA algorithm is utilized
to find the first-order correspondent of the given hybrid inequality.

Example 4.2.8. The following example is also found in [7]. We will do it differently
here to illustrate the importance of further simplifying the pure formula (formula with
eliminated propositional variables) before applying the standard translation. We know
that in the 2-valued and many-valued setting the formula φ = p → ♦p and Rxx are
each other’s local frame a-correspondents where a ∈ τ (a 6= 0). Now, let a ∈ τ (a 6= 0).
The corresponding in inequality a ∧ p ≤ ♦p remains unchanged under preprocessing
and first-approximation turns in into

&{j ≤ a ∧ p , ♦p ≤ m} ⇒ j ≤ m

Now applying (∧-Adj) to j ≤ a ∧ p gives

&{j ≤ a , j ≤ p , ♦p ≤ m} ⇒ j ≤ m

Applying (RH-Ack) gives

&{j ≤ a , ♦j ≤ m} ⇒ j ≤ m

At this point all propositional variables have been eliminated and the standard trans-
lation of the above quasi-inequality will be a first-order frame correspondent of this
formula. Before attempting this translation, however, we first simplify the quasi-
inequality. Applying (♦-Adj) on ♦j ≤ m we have

&{j ≤ a , j ≤ �m} ⇒ j ≤ m.

Now, since j is less than or equals to both a and �m, it follows that

j ≤ a ∧�m⇒ j ≤ m.

The above implication implies that

a ∧�m ≤ m.

Now, we apply the standard translation to obtain the following:

STx(a ∧�m) ≤ STx(m)
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≡ STx(a) ∧ STx(�m) ≤ STx(m)

≡ a ∧ ∀y(Ryx → STy(m)) ≤ (x 6= cm) ∨Cm

≡ a ∧ ∀y(Ryx → (y 6= cm) ∨Cm) ≤ (x 6= cm) ∨Cm

Now, we write out the translation in full detail:

∀x∀cm∀Cm [a ∧ ∀y(Ryx → (y 6= cm) ∨Cm) ≤ (x 6= cm) ∨Cm]

We have two cases to consider. The case where x 6= cm is not interesting because the
right-hand side of the inequality is 1 and hence makes the whole inequality 1. The case
x = cm is the one that will give us the corresponding first-oder formula. Now, we have
that

∀x∀Cm [a ∧ ∀y(Ryx → (y 6= x) ∨Cm) ≤ Cm]

≡ ∀x∀Cm [a ∧ (Rxx → Cm) ≤ Cm]

≡ ∀x∀Cm [a ≤ (Rxx → Cm)→ Cm]

≡ ∀x(a ≤ ∀Cm [(Rxx → Cm)→ Cm])

≡ ∀x(a ≤ Rxx).

Example 4.2.9. We now use the algorithm to get the first-order local frame a-correspondent
formula of the hybrid formula φ = @i p → @j♦p. The corresponding inequality
φ = @i p ≤ @j♦p remains unchanged under preprocessing and first-approximation
turns it into

&{j0 ≤ a ∧@i p , @j♦p ≤ m0} ⇒ j0 ≤ m0

Applying (∧-Adj) to j0 ≤ a ∧@i p gives

&{j0 ≤ a , j0 ≤ @i p , @j♦p ≤ m0} ⇒ j0 ≤ m0

Applying (@-R-Adj) on j0 ≤ @i p gives

&{j0 ≤ a , @[
i j0 ≤ p , @j♦p ≤ m0} ⇒ j0 ≤ m0

Now applying (RH-Ack) we obtain

&{j0 ≤ a , @j♦@[
i j0 ≤ m0} ⇒ j0 ≤ m0

At this point all propositional variables have been eliminated and the standard trans-
lation of the above quasi-inequality will be a first-order frame correspondent of this
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formula. Before attempting this translation, however, we first simplify the quasi-
inequality. Applying (@-L-Adj) to @j♦@[

i j0 we get

&{j0 ≤ a , ♦@[
i j0 ≤ @#

j m0} ⇒ j0 ≤ m0

Applying (♦-Adj) on ♦@[
i j0 ≤ @#

j m0 we obtain

&{j0 ≤ a , @[
i j0 ≤ �@#

j m0} ⇒ j0 ≤ m0

Applying (@-R-Adj) on @[
i j0 ≤ �@#

j m0 gives

&{j0 ≤ a , j0 ≤ @i�@#
j m0} ⇒ j0 ≤ m0

Now since j0 is less than or equal to both a and @i�@#
j m0, it follows that

j0 ≤ a ∧@i�@#
j m0 ⇒ j0 ≤ m0

The above implication implies that

a ∧@i�@#
j m0 ≤ m0

Now we take the standard translation of the simplified pure formula. That is,

STx(a ∧@i�@#
j m0) ≤ STx(m0)

≡ STx(a) ∧ STx(@i�@#
j m0) ≤ STx(m0)

≡ a ∧ ∃y(y = di ∧ STy(�@#
j m0)) ≤ (x 6= cm) ∨Cm

≡ a ∧ ∃y(y = di ∧ ∀z(Rzy→ STz(@#
j m0))) ≤ (x 6= cm) ∨Cm

≡ a ∧ ∃y(y = di ∧ ∀z(Rzy→ (z = dj)→ ∀t(STt))) ≤ (x 6= cm) ∨Cm

≡ a ∧ ∃y(y = di ∧ ∀z(Rzy→ (z = dj)→ ∀t((t 6= cm) ∨Cm))) ≤ (x 6= cm) ∨Cm
Now, we write the translation in full detail:

∀x∀cm∀Cm∀di∀dj

[a ∧ ∃y(y = di ∧ ∀z(Rzy→ (z = di)→ ∀t((t 6= cm) ∨Cm))) ≤ (x 6= cm) ∨Cm]

Now we have two cases to consider. The case where x 6= cm is equal to 1 because the
right-hand side of the inequality becomes 1 and hence making the whole formula 1.
So, the case where x = cm is the one that will give us the corresponding first-order
formula. So, we have that:
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∀Cm∀di∀dj [a ∧ ∃y(y = di ∧ ∀z(Rzy→ (z = di)→ ∀t((t 6= cm) ∨Cm))) ≤ Cm]

≡ ∀Cm∀di∀dj
[
a ∧ ∃y(y = di ∧ ∀z(Rzy→ ((z = dj)→ Cm))) ≤ Cm

]
≡ ∀Cm∀di∀dj

[
a ≤ ∃y(y = di ∧ ∀z(Rzy→ ((z = dj)→ Cm)))→ Cm

]
≡ ∀di∀dj

[
a ≤ ∀Cm(∃y(y = di ∧ ∀z(Rzy→ ((z = dj)→ Cm))))→ Cm

]
≡ ∀di∀dj

[
a ≤ ∀Cm(∀z(Rzdi → ((z = dj)→ Cm)))→ Cm

]
≡ ∀di∀dj

[
a ≤ ∀Cm(∀z(Rzdi ∧ z = dj)→ Cm)→ Cm

]
≡ ∀di∀dj

[
a ≤ ∀Cm(Rdidj → Cm)→ Cm

]
≡ ∀di∀dj

[
a ≤ Rdidj

]
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Conclusion

In this work we managed to prove t-invariance results for generated submodels (The-
orem 3.1.2) and t-invariance results for bounded morphisms (Theorem 3.2.3) for many-
valued hybrid logic. We have also proved that t-bisimilarity implies hybrid t-equivalence
in general (Theorem 3.4.3). However, the converse is not true in general. We proved
that the converse is true for a weaker notion of a bisimulation for a special set of models,
image t-finite models (Theorem 3.4.11). Lastly, we have proved Theorem 4.2.5 which is
the correctness of MV-Hybrid ALBA. A consequence of Theorem 4.2.5 asserts that the
class of inductive formulas always have a local frame correspondent subject only to the
condition that the truth-value space is a perfect Heyting algebra (Corollary 4.2.7).

There is still much to be done in the expressivity of many-valued hybrid logic. One
of the obvious goal would be to obtain a Goldblatt–Thomason style theorem for many-
valued modal logic and many-valued hybrid logic. The expressivity considered in this
dissertation is building up to the Goldblatt–Thomason style theorem for many-valued
hybrid logic.

Sahlqvist theory has two main parts: the correspondence and canonicity. The corre-
spondence theory for many-valued modal logic was considered in [7]. The work in
this dissertation also considered the correspondence part of the Sahlqvist theory for
many-valued hybrid logic. The canonicity part of Sahlqvist’s theorem is still outstand-
ing for both these logics.

The properties of many-valued hybrid logic remain mostly unexplored. For exam-
ple, it is currently unknown whether the logic enjoys interpolation or Beth definability.
Another possible study would be to obtain a complete Hilbert-style axiomatization of the
minimal many-valued hybrid logic.
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