
COPYRIGHT AND CITATION CONSIDERATIONS FOR THIS THESIS/ DISSERTATION

o Attribution — You must give appropriate credit, provide a link to the license, and indicate if
changes were made. You may do so in any reasonable manner, but not in any way that
suggests the licensor endorses you or your use.

o NonCommercial — You may not use the material for commercial purposes.

o ShareAlike — If you remix, transform, or build upon the material, you must distribute your
contributions under the same license as the original.

How to cite this thesis

Surname, Initial(s). (2012). Title of the thesis or dissertation (Doctoral Thesis / Master’s
Dissertation). Johannesburg: University of Johannesburg. Available from:
http://hdl.handle.net/102000/0002 (Accessed: 22 August 2017).

http://www.uj.ac.za/
https://ujdigispace.uj.ac.za/

UNIVERSITY OF JOHANNESBURG

DOCTORAL THESIS

Network Intrusion Detection with Sensor
Fusion: Performance Bounds and

Benchmarks

Author:
Nenekazi Nokuthala
Penelope MKUZANGWE

Supervisor:
Prof. Fulufhelo
NELWAMONDO

A thesis submitted in fulfilment of the requirements
for the degree of Doctor of Philosophy

in the

Faculty of Engineering and the Built Environment
Department of Electrical and Electronic Engineering Sciences

January 2020

http://www.university.com
http://www.johnsmith.com
http://www.johnsmith.com
http://www.jamessmith.com
http://www.jamessmith.com
http://researchgroup.university.com
http://department.university.com

ii

Declaration of Authorship

I, Nenekazi Nokuthala Penelope MKUZANGWE, declare that this thesis titled,
“Network Intrusion Detection with Sensor Fusion: Performance Bounds and
Benchmarks ” and the work presented in it are my own. I confirm that:

• This work was done wholly or mainly while in candidature for a research
degree at the University of Johannesburg.

• No part of this thesis has previously been submitted for a degree or any other
qualification at this University or any other institution.

• Where I have consulted the published work of others, this is always clearly
attributed.

• Where I have quoted from the work of others, the source is always given. With
the exception of such quotations, this thesis is entirely my own work.

• I have acknowledged all of the main sources of help.

• Where the thesis is based on work done by myself jointly with others, I have
made clear exactly what was done by others and what I have contributed
myself.

Signed:

Date:

iii

“Strive for continuous improvement instead of perfection.”

Kim Collins

iv

Abstract
The achievable performances of intrusion detection systems are unknown
beforehand. Currently, intrusion detection researchers implement these systems
before they can determine what the performances of their systems will be or
compare the performance of their systems to existing systems in order to evaluate
the performances of their systems . Another challenge of network researchers is the
unavailability of real world traffic traces of network activities due to privacy and
legal restrictions.

This Thesis contributes to the literature by

1. presenting the achievable performances of the existing anomaly and
learning based network intrusion detection systems (NIDSs) in detecting the
Transmission Control Protocol (TCP) synchronised (SYN) flooding attacks.
Two anomaly based algorithms, adaptive threshold and cumulative sum based
algorithms were considered in building the anomaly based NIDSs. The logic
OR operator was used to combine the outcomes of the two anomaly based
algorithms to enhance their performance. The three algorithms were used to
detect TCP SYN flooding attacks that were synthetically generated according
to a Poisson process and constant interarrival times. The logic OR operator
performed better than the two algorithms. The three algorithms detected the
Poisson process attacks better than the constant interarrival times attacks. For
the learning based NIDSs, the decision tree and a novel fuzzy logic based
NIDSs were used to detect Neptune, which is a type of a TCP SYN flooding
attack. The decision tree outperformed the fuzzy logic system.

2. providing the achievable upper bounds on the accuracies of two ensembles of
classifiers based NIDSs. The first NIDS is an AdaBoost based ensemble that
uses decision stamp as a base learner. The second NIDS is a Bagging based
ensemble that uses a decision tree as a base learner. The obtained bounds
will enable researchers to estimate the performance of their ensemble based
NIDSs before they implement them and determine how well their ensemble
based NIDSs are performing relative to these bounds. From the empirical
studies, it was deduced that if the dataset entropy with respect to the features
falls between 0.9578 to 0.9586 and the average information gain amongst the
features used in the ensemble falls between 0.045615 and 0.25615 then the
accuracy of the first NIDS will be at most 0.9065 and the accuracy of the second
NIDS will be at best 0.9193. These obtained ensemble accuracy upper bounds
hold irrespective of the attack or dataset provided that the features used in
the ensemble (AdaBoosted decision stump ensemble or Bagged decision tree
ensemble) have the same characteristics as the features used in this Thesis and
the features are discretised in the same way as in this work.

v

3. providing a novel differentially private number of Transmission Control
Protocol Synchronise (TCP SYN) packets associated with the Hypertext
Transfer Protocol (HTTP) requests to address the issue of unavailability of real
world traffic traces of network activities. The utility analysis of the privatised
number of TCP SYN packets associated with HTTP requests indicates that the
released counts are research useful with the added advantage of preserving
privacy and will work well for some algorithms.

vi

Acknowledgements
To God be the Glory for yet another good and perfect gift!

My sincere gratitude goes to Prof Fulufhelo Nelwamondo for his patience, support,
guidance, motivation, advice and financial support throughout the duration of this
research.

I would like to thank my two mentors, namely, Andre McDonald for introducing
me to intrusion detection field and his help in implementing the anomaly
based intrusion detection systems and Nyalleng Moroosi for helping me use the
information theoretic measures with machine learning and with the application of
some of the machine learning techniques. To Dr Graham Barbour, Dr Gugulethu
Mabuza-Hocquet, Mbulelo Ntlangu and Sisanda Makinana, thank you for being my
sounding boards.

I would like to thank Dr Stephen Moepya, Dr Vukosi Marivate, Tshepiso Mokoena
and Abiodun Modupe for helping with the understanding of some of the machine
learning techniques and their applications.

Thank you, Prof Sonali Das, for your advice on data handling.

To the Data Mining team in the CSIR Modelling and Digital Science (MDS) unit,
MDS students and staff members, thank you for the good laughs that we had that
kept me going.

Thank you, Morne Pretorius, for your help with Latex.

I would like to thank the Council for Scientific and Industrial Research (CSIR) and
the Department of Science and Technology (DST) of South Africa for funding this
research.

To my children Migcobo, Ngakuyo and Nkazimulo, thank you guys for your
patience and love. To my friends Vuyokazi Potso and Lulama Kephe , thank you
for walking with me on this journey. Your support and motivation encouraged me
to persevere.

I am truly grateful to have had the love and support from my parents, siblings,
nephews, and niece. You have made this journey easier.

I am sad that this day has come when my grandparents are no more, I know they
would have been proud.

vii

List of Publications
From this thesis, the following papers were published:

• Nenekazi N P Mkuzangwe, Andre McDonald and Fulufhelo V Nelwamondo.
Implementation of anomaly detection algorithms for detecting Transmission
Control Protocol Synchronized flooding attacks. In Proceedings of the 12th
International Conference on Fuzzy Systems and Knowledge Discovery(FSKD), pages
2137-2141, Zhangjiajie, China, 15-17 August 2015.

• Nenekazi N P Mkuzangwe and Fulufhelo V. Nelwamondo. A fuzzy logic
based network intrusion detection system for predicting the TCP SYN flooding
attack. In Proceedings of the 9th Asian Conference on Intelligent Information and
Database Systems (ACIIDS), pages 14-22, Kanazawa, Japan, 3-5 April 2017.

• Nenekazi N P Mkuzangwe and Fulufhelo Nelwamondo. Ensemble of
classifiers based network intrusion detection system performance bound. In
Proceedings of the 4th International Conference on Systems and Informatics(ICSAI),
pages 970-974, Hangzhou, China, 11-13 November 2017.

• Nenekazi N P Mkuzangwe and Fulufhelo Nelwamondo. Differentially private
Transmission Control Protocol Synchronize packet counts. International Journal
of Network Security, 21(5):835-842, 2019.

viii

Contents

Declaration of Authorship ii

Abstract iv

Acknowledgements vi

List of Publications vii

1 Introduction 1
1.1 Introduction . 1
1.2 Problem Description . 4
1.3 Thesis Statements . 4
1.4 Research Motivation . 5
1.5 Research Aim . 5
1.6 Rerseach Objectives . 5
1.7 Contribution, Assumptions, Delimitations and Roadmap 6

2 Background and Literature Review 8
2.1 Intrusion Detection . 8

2.1.1 Network Intrusion Detection Systems (NIDSs) 9
2.1.2 Literature on Sensor Fusion Techniques in Intrusion Detection . 11
2.1.3 Literature on Ensemble Methods in Intrusion Detection 17

2.2 Network Trace Privatisation . 22
2.2.1 Literature on Network Trace Privatisation Techniques 23

2.3 Summary . 29

3 Methodology and Data Description 34
3.1 Experimental Approach . 35
3.2 Intrusion Detection Techniques used in Individual IDSs 37

3.2.1 Adaptive Threshold Algorithm 37
3.2.2 Cumulative Sum (CUSUM) based Algorithm 38
3.2.3 Fuzzy Logic . 40
3.2.4 Decision Tree . 41

3.3 Techniques Used in Combining Multiple IDSs 43
3.3.1 Sensor Fusion based Intrusion Detection Techniques 43

3.3.1.1 Bayesian Inference . 43

ix

3.3.1.2 Dempster–Shafer Belief Theory 44
3.3.1.3 Voting Fusion Theory 45
3.3.1.4 Neural Networks . 46
3.3.1.5 Logic OR Operator . 48

3.3.2 Ensemble Methods Used in Intrusion Detection 48
3.3.2.1 Boosting . 49
3.3.2.2 Bootstraps Aggregating (Bagging) 50

3.4 Selection of Techniques . 51
3.5 Datasets . 52

3.5.1 DARPA 99 . 52
3.5.2 NSL KDD . 53
3.5.3 CICIDS2017 . 53

3.6 Summary . 54

4 Performance Evaluation of Network Intrusion Detection Systems for
Detecting Transmission Control Protocol Synchronised Flooding Attack 55
4.1 Introduction . 55
4.2 Implementation of the Anomaly based Intrusion Detection Algorithms

for Detecting the TCP SYN Flooding Attack 56
4.2.1 Dataset . 57
4.2.2 Attack Generation . 57
4.2.3 Performance Metrics and Parameters 58
4.2.4 Results . 65

4.2.4.1 Poisson Process Attacks Results 65
4.2.4.2 Poisson Process Attacks Results after Tuning the

Parameters . 65
4.2.4.3 Poisson Process Attacks Results with Modified

CUSUM based Algorithm Variance 67
4.2.4.4 Discussion of the Algorithms Performance on

Detecting the Poisson Process Attacks 68
4.2.4.5 Comparing the Algorithms Results for the Poisson

Process Attacks at the Different Parameters 69
4.2.4.6 Constant Rate Attacks Results 69
4.2.4.7 Constant Rate Attacks Results after Tuning the

Parameters . 70
4.2.4.8 Constant Rate Attacks Results with Modified CUSUM

based Algorithm Variance 71
4.2.4.9 Discussion of the Algorithms Performance on

Detecting the Constant Rate Attacks 71
4.2.4.10 Comparing the Algorithms Results for the Constant

Rate Attacks at the Different Parameters 71

x

4.2.4.11 Comparing the Algorithms Results for the Constant
Rate Attacks vs Poisson Process Attacks 72

4.3 Implementation of Learning based Network Intrusion Detection
Algorithms . 74
4.3.1 Dataset . 74
4.3.2 The Fuzzy Logic based Network Intrusion Detection System . . 75

4.3.2.1 Fuzzification and Membership Functions 76
4.3.2.2 Fuzzy Rules Generation 78
4.3.2.3 Fuzzy Inferencing and Defuzzification 78
4.3.2.4 Prediction with the Fuzzy Logic based System 79

4.3.3 Decision Tree Construction . 81
4.3.4 Results . 81

4.4 Summary . 82

5 The Ensemble of Classifiers based Network Intrusion Detection System
Performance Bounds 84
5.1 Introduction . 84
5.2 Information Theoretic Measure . 86

5.2.1 Entropy . 86
5.2.2 Information Gain . 86

5.3 Empirical Studies . 87
5.3.1 Dataset . 87
5.3.2 Information Gain Calculation . 89
5.3.3 Performance Metric . 89
5.3.4 Empirical Determination of the Performance Upper Bound for

the Two Network Intrusion Detection Systems 90
5.3.4.1 Decision Stump Ensemble based Network Intrusion

Detection System . 90
5.3.4.2 Decision Tree Ensemble based Network Intrusion

Detection System . 92
5.4 Results on Determining the Upper Bounds of the two Network

Intrusion Detection Systems . 93
5.4.1 Results on the Decision Stump Ensemble based Network

Intrusion Detection System . 93
5.4.2 Results on the Decision Tree Ensemble based Network

Intrusion Detection System . 97
5.5 Results on Testing if the Obtained Bounds Hold 99
5.6 Summary . 100

6 Differentially Private Transmission Control Protocol Synchronize Packet
Counts 102
6.1 Methodology . 103
6.2 Differential Privacy . 103

xi

6.3 Problem Statement . 105
6.4 Differentially Private TCP SYN Packet Counts 107

6.4.1 Privacy Mechanism . 107
6.4.2 Global Sensitivity . 107
6.4.3 Filtering . 108

6.5 Experimental Work . 109
6.5.1 Dataset . 109
6.5.2 Experimental Setup . 110
6.5.3 Kalman Count Estimates Utility Evaluation 112

6.5.3.1 Average Relative Error 113
6.5.3.2 Utility Loss . 113
6.5.3.3 Use of Intrusion Detection Algorithms 113

6.6 Results . 114
6.7 Summary and Discussion . 116

7 Conclusion 117
7.1 Summary of Conclusions . 117
7.2 Suggestions for Future Work . 119

References 120

xii

List of Figures

2.1 A signature based network intrusion detection. 10
2.2 An anomaly based network intrusion detection. 11

3.1 General experimental process used to determine the performance
upper bound of an ensemble of classifiers based NIDS. 36

3.2 Membership function for variable same host connection counts. 41
3.3 Artificial neuron. 46
3.4 Multilayered artificial neural network. 47

4.1 False negative rates and false positive rates plotted against the
detection thresholds of the two algorithms for the constant rate
attacks at α of 0.5 and a β of 0.98. 61

4.2 False negative rates and false positive rates plotted against the
detection thresholds of the two algorithms for the Poisson process
attacks at α of 0.5 and a β of 0.98. 62

4.3 False negative rates and false positive rates plotted against the
detection thresholds of the two algorithms for the constant rate
attacks after tuning the parameters. 63

4.4 False negative rates and false positive rates plotted against the
detection thresholds of the two algorithms for the Poisson process
attacks after tuning the parameters. 64

4.5 False negative rates and false positive rates plotted against the
detection thresholds of the CUSUM based algorithm after modifying
the variance of the CUSUM based algorithm for the two attacks. 65

4.6 The number of TCP SYN packets for the Poisson process attacks vs
the constant rate attacks. 74

4.7 The membership functions of the fuzzy logic based system 77
4.8 The fuzzy consequents of each fuzzy rules. 80
4.9 The crisp value of the output variable, % intrusion. 81
4.10 The constructed decision tree for predicting Neptune. 81

5.1 Assemble accuracy vs the number of iterations. 93

xiii

5.2 Accuracy for less than the upper quarter of each feature vs the number
of time the Bagging algorithm was run (a) the algorithm was run 1000
times, (b) the algorithm was run 2000 times, (c) the algorithm was run
4000 times and (d) the algorithm was run 6000 times. 96

5.3 Optimal accuracy vs average information gain amongst features used
in the decision stump based ensemble for the different proportions of
the NSL KDD Dataset. 97

5.4 Optimal average accuracy vs average information gain amongst
features used in the decision tree based ensemble for the different
proportions of the NSL KDD dataset. 98

6.1 General experimental process that will be used to create differentially
private TCP SYN packet counts. 103

6.2 Original packet counts. 110
6.3 Laplace perturbed packet counts. 111
6.4 Original packet counts vs Kalman count estimates. 112
6.5 Average relative error comparison. 114
6.6 Utility loss comparison. 115
6.7 CUSUM false positive rates for the original counts vs Kalman estimates.115
6.8 Adaptive threshold algorithm false positive rates for the original

counts vs Kalman estimates. 116

xiv

List of Tables

2.1 Summary of some of the literature in intrusion detection using sensor
combining techniques and network trace privatisation techniques
since 2002. 29

3.1 The types of IDSs and their corresponding algorithms used 34
3.2 The different attacks in the KDD99 dataset that fall into the four attack

categories . 53

4.1 Adaptive threshold algorithm results for detecting Poisson process
attacks at α = 0.5 and β = 0.98 . 66

4.2 Cumulative sum based algorithm for detecting Poisson process
attacks at α = 0.5 and β = 0.98 . 66

4.3 Logic OR operator results for detecting the Poisson process attacks . . 66
4.4 Adaptive threshold algorithm results for detecting Poisson process

attacks after tuning the parameters with α = 0.6 and β = 0.98 66
4.5 Cumulative sum based algorithm for detecting Poisson process

attacks after tuning the parameters with α = 0.8 and β = 0.97 67
4.6 Logic OR operator results for detecting the Poisson process attacks

after tuning the parameters . 67
4.7 Cumulative sum based algorithm for detecting Poisson process

attacks with modified CUSUM based algorithm variance with α = 1
and β = 0.4 . 68

4.8 Logic OR operator results for detecting the Poisson process attacks
with modified CUSUM based algorithm variance 68

4.9 Adaptive threshold algorithm results for detecting constant rate
attacks at α = 0.5 and β = 0.98 . 69

4.10 Cumulative sum based algorithm for detecting constant rate attacks
at α = 0.5 and β = 0.98 . 70

4.11 Logic OR operator for detecting constant rate attacks 70
4.12 Adaptive threshold algorithm results for detecting constant rate

attacks after tuning the parameters to α = 0.2 and β = 0.99 70
4.13 Cumulative sum based algorithm for detecting constant rate attacks

after tuning the parameters to α = 0.21 and β = 0.98 70
4.14 Logic OR operator for detecting constant rate attacks after tuning the

parameters . 71

xv

4.15 Cumulative sum based algorithm with modified variance for
detecting constant rate attacks at α = 1 and β = 0.46 72

4.16 Logic OR operator results with modified CUSUM based algorithm
variance . 72

4.17 An extract of the training data from the NSL KDD dataset 75
4.18 An extract of the test data from the NSL KDD dataset 76
4.19 The minimum, maximum and average values fo the three input

attributes for normal only data . 76
4.20 The minimum, maximum and average values fo the three input

attributes for mixed (normal and attack) data 77
4.21 The minimum, maximum and average values fo the three input

attributes for attack (Neptune) only data 77
4.22 The results of the fuzzy logic based system and the decision tree in

terms of predicted attack proportion and accuracy 81
4.23 The results of the fuzzy logic based system and the decision tree in

terms of sensitivity and specificity . 82
4.24 The results of the fuzzy logic based system and the decision tree in

terms of false positive and false negative rates 82

5.1 The resultant features for the 100 percent NSL KDD dataset. 88
5.2 The resultant features for the 75 percent NSL KDD, 50 percent NSL

KDD and 25 percent NSL KDD datasets. 88
5.3 The resultant features for the CICIDS2017 datasets. 88
5.4 Information gain for the 100 percent NSL KDD dataset resultant features 90
5.5 Information gain for the 75 percent NSL KDD dataset resultant features 90
5.6 Information gain for the 50 percent NSL KDD dataset resultant features 91
5.7 Information gain for the 25 percent NSL KDD dataset resultant features 91
5.8 Information gain for the CICIDS2017 dataset resultant features 92
5.9 Optimal accuracy upper bound against the range of values of AveIG

for the different datasets . 95
5.10 False positive and true positive rates associated with accuracy upper

bounds for the different datasets . 96
5.11 Optimal average accuracy against the range of values of AveIG for the

different datasets . 98
5.12 Average false positive and true positive rates associated with the

optimal average accuracy for the different datasets 98
5.13 Optimal accuracy against the range of values of AveIG for the

CICIDS2017 dataset . 100
5.14 Effect of dataset entropy on the feature average entropy for features

with same/similar information gain . 100

xvi

Abbreviations & Acronyms

AI Artificial Intelligence
ALAD Application Layer Anomaly Detector
ANFIS Adaptive Neural Fuzzy Inference System
ANN Artificial Neural Network
BPA Basic Probability Assignment
BPSO Binary Particle Swarm Optimisation
CART Classification and Regression Trees
CFS-GA Correlation based feature selection-genetic algorithm
CUSUM Cumulative Sum
DARPA Defence Advanced Research Project Agency
DF Data Fusion
DNS Domain Name Server
DoS Denial of Service
DP Differential Privacy
DT Decision Tree
EWMA Exponential Weighted Moving Average
FAST Filtering and Adaptive Sampling for Differential Private Time Series Monitoring
FOD Framework of Discernment
FRM-SFM Feature Removal Method-Sole Feature Method
FTP File Transfer Protocol
GFR Gradual Feature Removal
GMM Gaussian Mixture Models
HIDSs Host based Intrusion Detection Systems
HTTP Hypertext Transfer Protocol
IBK Instance Based Learning with Parameter K
IDS Intrusion Detection System
IDSDFM Intrusion Detection System Data Fusion Model
IDSs Intrusion Detection Systems
IG Information Gain
IoT Internet of Things
IP Internet Protocol
IPv4 Internet Protocol version 4
IPv6 Internet Protocol version 6
KDD Knowledge Discovery in Databases

xvii

kNN k-Nearest Neighbour
LGP Linear Genetic Programming
MAC Media Acess Control
MCS Multiple Classifier System
MLP Multi-Layer Perceptron
MQTT MQ Telemetry Transport
NB Naïve Bayes
NIDS Network Intrusion Detection System
NIDSs Network Intrusion Detection Systems
NN Neural Network
NSL Network Socket Layer
PHAD Packet Header Anomaly Detector
PLSR Partial least square regression
R2L Root to Local
RBF Radial Basis Function Neural Network
RDPSO Rough-Discrete Particle Swarm Optimisation
RF Random Forest
RMSE Root Mean Square Error
SOM Self Organising Map
SVM Support Vector Machines
TCP Transmission Control Protocol
U2R User to Root
UDP User Datagram Protocol
VLAN Virtual Local Area Network

xviii

I dedicate this research to my children Migcobo, Ngakuyo and
Nkazimulo, my mother Nomfundo and my grandfather

Ngubonde. . .

1

Chapter 1

Introduction

1.1 Introduction

Businesses, governments [1] and society increasingly rely on computers and the
internet for communication, information storage, information exchange and other
online services. These services are vulnerable to cyberattacks that attempt to
compromise the integrity, availability or confidentiality of an information resource.
From a user’s perspective cyberattacks result in the unavailability of services, theft
of personal information, identity, and fraud. In 2011 Sony ‘s PlayStation network
was shut down by Lulzsec [1]. The hack affected 77 million accounts, the attackers
stole valuable personal client information like logins, passwords, names, emails,
purchase history, home addresses and credit cards [1]. Sony reportedly lost almost
$171 million and was not insured against this risk [1]. The frequency and severity of
cyberattack incidents have increased due to increased access to computers and attack
tools (available online) and highly charged geopolitical events [2], to mention a few.
Advanced network security measures are therefore needed to protect information
systems against these threats or attacks.

A secure networked computer system ensures that the confidentiality, integrity, as
well as the availability of data and resources, are preserved [3]. The traditional
security mechanisms that are used include firewalls and cryptography [4], however,
in modern networks, these mechanisms are no longer able to completely secure
a network of computers from external threats [4]. Several reasons like network
scale, software complexity, maintenance complexity, traffic rate and complexity,
more sophisticated attacks and interconnections are responsible for this. These
mechanisms also do not protect the network against internal threats as they do not
traverse a firewall. To address the shortcomings of tradition mechanisms, intrusion
detection systems (IDSs) have been proposed for safeguarding modern computer
networks against both external and internal threats.

Intrusion detection systems are hardware systems or software applications that
attempt to identify attacks that are conducted against information systems, and may

2 Chapter 1. Introduction

be classified according to the source of those events that they monitor, for example,
network events or host events. According to Hu and Hu [5], network events consist
of IP package information collected by the network hardware such as routers and
switches and host events are made up of audit data that is collected from the target
host machine. The effectiveness of an IDS is evaluated based on its ability to correctly
classify events to be an attack or normal network behaviour [6].

The reliability and the accuracy of IDSs have been reduced by the increasing network
traffic complexity and the growing sophistication of mechanisms used to attack the
network. Standalone IDSs are famous for generating a lot of alerts with many of
them being false positives or of low importance [7]. According to Bhatti et el. [8], the
major causes of false positives are noise, incomplete data, spurious and duplicate
data, lack of knowledge about the network topology and multiple log formats.
Default IDS configuration is also a cause of false positives. Standalone IDS with high
false positive rates are of little value and need to be improved in terms of accuracy
and speed.

Different techniques for improving the performance of intrusion detection systems
have been proposed in the literature [7], [9]–[13]. Research shows that IDSs tend
to show preference in detecting an attack with certain attributes with improved
accuracy while performing poorly or moderately on the other attack categories.
With the continuing improvements in computing power, it has become possible
to implement different types of IDSs that have different detection capabilities on
the same network. It has been shown that combining the decisions of multiple
IDSs enables a more reliable and accurate decision for a wider class of attacks
[14]. An ensemble of classifiers and sensor fusion techniques have been developed
to answer the question of how to effectively combine multiple sensor outputs to
perform classification. The key concept of sensor fusion is to aggregate information
from IDSs and to infer the state of the network (intrusion or normal). In ensemble
methods, base classifiers are combined in a certain way to yield a strong classifier
that outperforms all the base classifier in the ensemble.

Work that has been done on sensor fusion has been conducted mainly using one of
the methods like probability theory (Bayesian theory), evidence theory (Dempster
Shafer belief theory), voting fusion theory, fuzzy logic theory or machine learning
(neural network) to aggregate information [15] and [16]. Dempster-Shafer belief
theory is commonly used to perform inference in intrusion detection systems that
make use of sensor fusion [17]. Most research and discussions on IDS that make use
of sensor fusion [11], [12], [18]–[20] focus on improving intrusion detection using
advances in sensor fusion or on achieving the best fusion performance. A common
trend is that researchers estimate detection performance through simulations of the
system.

The idea behind constructing an ensemble of classifiers is to build a stronger

1.1. Introduction 3

classification capability that has a better performance than the individual classifiers
that make the ensemble. It has been shown that combining classifiers can lead to a
classifier that performs better than a single best classifier. It has been proven that
a set of weak learners can be boosted to a strong learner. Although strong learners
are desirable they are difficult to get while weak learners are easy to obtain. This
resulted to the generation of strong learners by ensemble methods.

However, the achievable performances of these systems are not known before they
are implemented. Researchers have to implement the systems before they can
determine what the performance of their systems will be.

Besides the various techniques for improving the performance of intrusion detection
systems that have been proposed by researchers, advancement in network research
(including intrusion detection) depends crucially on the availability of real world
traffic traces of network activities. Unfortunately, real world network traces release
is highly restricted by privacy and legal issues. Organisations are not willing to
share their traces since raw network traces may consist of sensitive information that
should not be publicly shared, for example, information that identifies individuals,
patterns of the traffic that can be analysed to determine strategies of organisations,
hints to the weaknesses of a system, etc. [21]. Unavailability of raw network traces
to researchers poses a risk of developing models that compromise accuracy.

To continue with their activities, researchers end up simulating data or signing
non-disclosure agreements and these two ways of obtaining data may compromise
accuracy and repeatability of the research [22]. The traditional solution to this trace
problem is the use of anonymised data. However, anonymisation is vulnerable
to attacks that infer sensitive information [23]. Mogul and Arlitt [21] proposed
an alternative approach to trace anonymisation where data owners perform the
analyses in the place of the researchers to preserve privacy, privacy is preserved
in this approach based on human verification which is likely to make error [24]. This
indicates that the existing approaches provide no guarantee in protecting sensitive
information and therefore a formal privacy guaranteeing approach, that will make
data owners comfortable to adopt before releasing their data, is needed [24].

This research aims at empirically determining the achievable performance bounds
of IDSs that uses sensor fusion or ensemble of classifiers for event aggregation.
The knowledge of these bounds would help researchers with designing the system
without relying only on the simulation of the system. Moreover, these bounds would
allow researchers to determine how far the current sensor fusion or ensemble of
classifiers based IDS performance falls short of what is achievable. This work also
aims at the use of differential privacy as a means of providing privacy to network
trace in order to encourage trace owners in different organisations to release their
traces for use in intrusion detection.

4 Chapter 1. Introduction

1.2 Problem Description

With the continuing improvements in computing power, it has become possible to
implement different types of IDSs that have different detection capabilities on the
same network. Methods like an ensemble of classifiers and sensor fusion have
been successfully implemented in intrusion detection to enhance the performance
of IDSs. However, the achievable performances of these systems are not known
before they are implemented. Researchers have to implement the systems before
they can determine what the performances of their systems will be. This
work aims at providing the achievable performance bounds of network intrusion
detection systems that are based on an ensemble of classifiers that uses dependent
and independent base classifiers. The knowledge of these bounds would help
researchers estimate the performance of their ensemble of classifiers based network
intrusion detection systems (NIDSs) before they even implement them. These
bounds will help developers to design their IDS to reach a particular performance.

Apart from improving the performance of IDSs, the availability of real network
traffic data is important for network research. However, privacy and legal issues
restrict the release of such data. To solve the trace problem, researchers have
proposed the anonymisation of data. However, anonymisation is prone to attacks
that infer sensitive information [23]. Therefore, a formal privacy guaranteeing
approach, that will make data owners comfortable to adopt before releasing their
data, is needed. This research aims at the use of differential privacy as a means of
providing privacy to network trace.

1.3 Thesis Statements

• Achievable upper bounds on the performance of Network Intrusion Detection
Systems (NIDS) that make use of multiple sensor combining techniques
can be determined via an information theoretic approach with given sensor
specification. Two information theoretic measures, information gain of the
features used in building the NIDS and dataset entropy with respect to the
features (referred to as dataset entropy in this study), can be used to define
these bounds under two sensor specifications, namely, a NIDS that combines
multiple independent sensors and a NIDS that combines multiple dependent
sensors.

• Privacy-preserving publishing of the number of Transmission Control Protocol
Synchronise (TCP SYN) packets associated with Hypertext Transfer Protocol
(HTTP) requests can be achieved via differential privacy. Differential privacy
is a formal privacy-preserving technique for publishing data that guarantees

1.4. Research Motivation 5

that the absence or presence of an individual is hard to infer from the output
of the analysis.

1.4 Research Motivation

The motivation for investigating the first Thesis statement is that currently
researchers rely on comparing the performance of their newly developed NIDSs to
the performance of existing NIDSs in order to determine how good they are. This
way of gauging performance does not establish if the new NIDS performance is
optimal or not, all the researcher learns from it is that their new NIDS performs better
or worse than the existing NIDSs. Determining the NIDS’s achievable performance
bound is important because it will provide researchers with a performance reference
point that is optimal and researchers can gauge the performance of their new NIDS
against this bound. From this bound researchers can determine if their NIDSs need
improvement or not. The second Thesis statement is investigated since privacy
preserving network trace that retains the research usefulness of the network trace
is needed since the unavailability of raw network trace (due to privacy and legal
issues that restrict the release of such data) poses a risk of developing models that
compromise accuracy.

1.5 Research Aim

This Thesis aims at addressing the following gaps

• Find the achievable accuracy upper bound and its corresponding detection
and false positive rates of an ensemble based NIDS that has dependent base
classifiers.

• Find the achievable accuracy upper bound and its corresponding detection
and false positive rates of an ensemble based NIDS that has independent base
classifiers.

• Implement differentially privacy on, TCP SYN packet counts, a different
network trace than in literature.

1.6 Rerseach Objectives

The Thesis statements are investigated using the following objectives:

1. To evaluate the performance of anomaly and learning based NIDSs in
detecting the TCP SYN flooding attack.

6 Chapter 1. Introduction

2. To empirically determine the achievable performance bound on how well a
NIDS that uses an ensemble of classifiers with dependent base classifiers can
detect whether a network is under attack or not.

3. To provide the true positive and false positive rate associated with the bound
in objective 1.

4. To empirically determine the achievable performance bound on how well a
NIDS that uses an ensemble of classifiers with independent base classifiers can
detect whether a network is under attack or not.

5. To provide the true positive and false positive rate associated with the bound
in 2.

6. To provide research useful differentially private number of TCP SYN packets
associated with HTTP requests.

1.7 Contribution, Assumptions, Delimitations and Roadmap

The contribution of this Thesis is to

• present the achievable performance of existing individual NIDSs and
combined multiple NIDSs in detecting the TCP SYN flooding attack.

• provide achievable performance bounds on how well a NIDS that uses an
ensemble of classifiers can resolve uncertainty about whether a network is
under attack or not. The utility of this bound is to provide insight into the
fundamental limits of the performance of NIDS as a function of its design,
i.e. ensemble based NIDS built using independent or dependent classifiers.
These bounds can be used to quantify how far the performance of ensemble
based systems fall short of what is achievable. These bounds are the first to be
defined in terms information gain and dataset entropy.

• improve the literature by enabling the NIDS designers to determine what is
required of a NIDS, in terms of its true positive and false positive rates, to give
a certain level of performance.

• provide a novel differentially private Transmission Control Protocol
Synchronise packet counts.

The assumptions of this study are that

• the sensors that are used in the AdaBoosted ensemble are dependent.

• the sensors that are used in the Bagging based ensemble are independent.

1.7. Contribution, Assumptions, Delimitations and Roadmap 7

Sensors are independent if the joint probability density/mass function of their
outcomes on any class i is equal to the product of the marginal density/mass
functions of their outcomes on any class i, otherwise, they are dependent. Only
the

• ensemble based NIDS that uses dependent decision stumps as base classifiers.

• ensemble based NIDS that uses independent decision trees as base classifiers .

are investigated in this study.

The rest of this work is organised as follows:

Chapter 2 provides an intrusion detection and network trace privatisation
background and the review of the studies that used multiple sensors combining
techniques to enhance the performance of IDSs and network trace privatisation
techniques. Specifically, the literature on sensor fusion and an ensemble of classifiers
based techniques that have been successfully applied in intrusion detection and
network trace privatisation techniques is reviewed.

Chapter 3 describes the methodology and data that will be used in the Thesis.

Chapter 4 presents the implementation of some of the intrusion detection algorithms
for detecting intrusions in a network to illustrate the performance of the current
intrusion detection systems. The outcomes of the two of the existing intrusion
detection algorithms are fused to illustrate how combining multiple sensors improve
the detection rate.

Chapter 5 provides the achievable performance bounds of two network intrusion
detection systems (NIDSs) that use an ensemble of classifiers. The performance
bounds are defined in terms of the dataset entropy and the average information
gain associated with the features used in building the ensembles. The performance
bounds are obtained by using ensemble method algorithms, AdaBoost and Bagging.

Chapter 6 presents the use of differential privacy as a means of providing privacy
to network trace, improves the accuracy of the released aggregates by adopting the
filtering component of [25] and test the utility of the released data by using two
utility metrics and comparing the performances of two anomaly based intrusion
detection algorithms on the original aggregates and the released aggregates.

Chapter 7 concludes the Thesis with the summary of findings and suggestions on
the direction in which the work can be extended.

8

Chapter 2

Background and Literature Review

This Chapter provides the background of intrusion detection and network trace
privatisation. The literature review on sensor fusion techniques and ensemble
of classifiers methods used in intrusion detection and network traffic trace
privatisation techniques is also presented in this chapter.

2.1 Intrusion Detection

An intrusion is defined as an unauthorised access on or unauthorised attempt to
access a computer or an information system [9] and [14]. Intrusion detection is
the process of identifying whether an intrusion has been attempted, is occurring or
has occurred [26]. Intrusion detection systems are systems that attempt to identify
attacks that are carried out against information systems. IDSs are a crucial element
of network security infrastructure and play a vital role in detecting intrusions by
monitoring the network traffic or host activities looking for evidence of intrusive
behaviour [7]. IDSs may be classified according to the source of those events
that they monitor. Specifically, IDSs can be classified as host-based IDSs (HIDSs)
and network-based IDSs (NIDSs). HIDSs detect attacks against a specific host by
analysing audit data produced by operating systems, whereas NIDSs detect attacks
by analysing network traffic transmitted, received or forwarded on a network
link. According to Hu and Hu [5] HIDSs can achieve high detection rate and
low false alarm rates since the information provided by the audit data can be
highly comprehensive and elaborate. However, the host-based approaches have the
following drawbacks [5]:

• They cannot easily prevent attacks when an intrusion is detected or the attack
has partially started.

• Attackers may alter the audit data, hence, influencing the reliability of audit
data.

2.1. Intrusion Detection 9

Network-based approaches detect intrusions using the information from the
Internet Protocol (IP) packages collected by the network hardware such as
switches and routers [5]. Therefore, network-based approaches have the following
advantages [5]:

• They can detect distributed intrusions over the whole network, making
intrusion detection easier for the individual host machines.

• NIDSs can also protect the host machines since detection is done before the
data reaches the host machine.

Due to these advantages of NIDSs over the HIDSs, this research focuses on studying
NIDSs.

2.1.1 Network Intrusion Detection Systems (NIDSs)

Network intrusion detection systems are software applications or hardware systems
dedicated to detecting intrusions in a target network [4] and [18]. NIDS sensors
gather information from the network, processes the data and send information
regarding the state of the network to a central node. The node then analyses the
information to identify possible security breaches against the system or the network.

A standard NIDS monitors network traffic on a target network while attempting to
detect malicious activities [17]. In general, NIDSs attempt to identify attacks carried
out over the network that targets some end-node as well as attacks that target the
network itself. The NIDS’s purpose is to reliably detect (in terms of the detection
probability) and/or classify attacks in as short a time span as possible (i.e. the
detection delay), while maintaining a low false positive rate.

Network traffic is typically nonstationary and bursty, with daily and monthly
trends [27]. A large number of connections between nodes (i.e. the connectivity
factor) and the use of packet oriented protocols (such as IP) introduce statistical
correlation between packets transported over a network. Furthermore, commonly
used connection-oriented protocols (such as Transmission Control Protocol (TCP))
introduce correlation between network packets transmitted at different time
instances. Network traffic is also feature rich, with a large number of protocols being
used in modern networks, in addition to a multiplicity of fields in packet headers.
The complexities and variability of network traffic are major challenges to realising
effective NIDSs [18].

Network intrusion detection techniques are typically classified as being misuse-
based or anomaly-based [4]. In misuse-based detection techniques, a signature
of an attack is compiled or specified, after which network traffic is monitored
for an occurrence of the attack. Figure 2.1 depicts how a misuse-based NIDS
works. Anomaly-based detection techniques define a baseline of normal network

10 Chapter 2. Background and Literature Review

behaviour, and monitor the network for any behaviour that deviates from the
baseline. Figure 2.2 illustrates how an anomaly-based NIDS works. These
techniques are complementary in their strengths and weaknesses, misuse based
IDSs have a very low false positive rate but they cannot detect previously unknown
attacks (i.e. zero-day attacks, or even simple variations of existing attacks).
Anomaly-based IDSs are able to detect certain previously unobserved attacks but
suffer from a higher false positive rate than misuse-based IDSs.

FIGURE 2.1: A signature based network intrusion detection.

2.1. Intrusion Detection 11

FIGURE 2.2: An anomaly based network intrusion detection.

Due to the complexity of the network traffic, NIDSs that use a single sensor
cannot give a complete runtime situational awareness of a complex system [7], [26].
Furthermore, the literature reveals that IDSs detect one class of attack with improved
accuracy while performing moderately or poorly on the other classes. These have
led designers to use multiple distinct sensors in modern NIDSs in order to increase
the range of attack classes that are reliably and accurately detected. Sensor fusion
and ensemble of classifiers techniques have been developed to combine multiple
sensor outputs to perform classification. The next two sections review the literature
on sensor fusion techniques and ensemble methods in intrusion detection.

2.1.2 Literature on Sensor Fusion Techniques in Intrusion Detection

Sensor fusion combines inputs from many sources of limited accuracy and reliability
to give information with greater accuracy and reliability. In intrusion detection,
sensor fusion techniques are used to combine outputs of different IDSs to yield
one output that is more accurate than the outputs of the single IDSs. The
reviewed literature developed their sensor fusion based NIDSs using the following
sensor fusion techniques: Dempster Shafer evidence theory, majority voting, Naive
Bayes, averaging, Neural Network and weighted averaging, logic OR operator.

12 Chapter 2. Background and Literature Review

The developed sensor fusion based NIDSs performed equally or better than the
corresponding individual NIDSs.

Thomas et al. [11] presented an architecture using data dependent decision fusion.
The method gathers an in-depth understanding about the input and also the
behaviour of the individual IDS by means of a feed forward back propagation
neural network supervised learner unit. The output of the neural network are
weights assigned to each IDS based on each IDS output and input data. The fusion
unit performed the weighted aggregation of the IDS outputs for the purpose of
classifying the input data. According to the authors the proposed architecture does
not depend on the data and the structure used guarantees improved performance
in terms of detection rate and false alarm rate, works well on large data set, can
identify novel attacks since the rule is dynamically updated and has improved
scalability. They evaluated the proposed architecture using DARPA dataset
and three intrusion detection systems, packet header anomaly detector (PHAD),
application layer anomaly detector (ALAD) and Snort. The following performance
measures were used precision, recall, accuracy, detection performance, F-Score and
receiver operating characteristic (ROC) curve. The data dependent decision fusion
IDS achieved a detection rate of 0.68 and F-score of 0.50 as compared to PHAD,
ALAD and Snort with detection rates of 0.35, 0.38 and 0.09 respectively and F-scores
of 0.31, 0.35 and 0.15 respectively. The results indicate the proposed approached
shows improved performance as compared to individual IDSs.

Thomas et al. [11] architecture incorporates the reliability (weights) of an IDS to the
fusion rule which improved the performance of their fusion based IDS, however,
the limitation to their architecture is that the assignment of weights to the IDSs
depends on supervised learning. Thus, if the target outputs are unknown the weight
assignment strategy will have to be modified. Therefore, a weight assigning strategy
that can handle both supervised and unsupervised learning is needed.

Tian et al. [12] presented a fusion model called Intrusion Detection System Data
Fusion Model (IDSDFM). The model merges alerts from the different IDSs and
performs inferences by applying the Dempster-Shafer (DS) evidence theory in which
the alerts are used as evidence. After the current network security status has been
estimated, some of the IDSs are adjusted dynamically and new rules are added to
the IDS feature database. According to Tian et. al. [12], adjusting the IDS and adding
of new rules, improves its detection efficiency and reduces false positive and false
negatives rates. Their [12] alert correlation strategy assigns similar alerts i.e. alerts
with dissimilarity(degree of difference between alerts) close to zero, to the same alert
track(a set of alerts which relate to an attack event). This means their model did not
capture cases where similar alerts describe different attack events or different alerts
describe the same attack event.

Thomas et al. [13] used Chebyshev inequality principle to set threshold bounds

2.1. Intrusion Detection 13

for sensor fusion and simple rule based fusion in order to improve sensor fusion
performance. They also attempted to prove the advantage of sensor fusion over
individual IDS. Thomas et al. [28] criticised the rule based fusion system of [13]
arguing that it only works with small input data and it is dependent on the IDSs
that are used in that particular sensor fusion. In their [13] attempt to prove the
advantage of sensor fusion over individual IDS, the result indicated that sensor
fusion incorporating both Chebychev inequality threshold bounds and rule based
fusion perform better than individual IDSs in terms of detection rate. Even though
their [13] sensor fusion based IDS detection rates for the R2L and U2R attacks, of 49%
and 27% respectively, are better or equal to those of the best performing individual
IDS they are still low. Thomas et al. [13] claims, based on investigating feature
relevance in the 1999 DARPA IDS evaluation dataset, that this poor detection of the
R2L and U2R attacks is due to the fact that the features that are used to characterise
these attacks do not discriminate them much. This means, apart from using sensor
fusion advances to improving IDS performance, features that discriminate these
attacks well are still needed in order to improve the detection rate of these attacks.

Gong et al. [20] presented a neural network based data fusion model. In the model a
back propagation neural network was designed to perform the fusion and intrusion
detection. In their work a pruning algorithm is used to prune redundant connections
and neurones provided that the pruning process will not decrease the processing
ability of the neural network. The pruning process is supposed to improve the
network in terms of generalisation and reduction of computational cost [29] and
hence make the IDS more efficient. Gong et al. [20] used the KDD 99 dataset in
this study. They considered four types of attacks from the data, namely, Neptune,
Smurf, Satan and Portsweep. The results show that the model yields high overall
detection accuracy of 83.4% before pruning and 82.0% after pruning. The drawback
in their work [20] is that they have adopted the misuse detection approach at the
output layer of the neural network to decide on whether a certain attack is occurring
or not. The use of misuse detection method is a drawback due to the fact that the
method cannot detect new attacks since signatures of these new attacks would not
have been defined. This means that their IDS may not be able to detect any new or
slight variations of the four types of attacks they have considered.

Chan et al. [30] did a comparative study on adopting different fusion strategies
for a multiple classifier system (MCS) in a denial of service (DoS) problem. The
comparison was done on these fusion methods: Dempster–Shafer combination,
majority vote, weighted majority vote, naïve Bayes combination, average and a
neural network (radial basis function neural network). KDD 99 dataset was used
in this study to evaluate the performance of the different fusion methods. They
considered normal and DoS attacks from the dataset. Six DoS attacks were chosen
from the dataset and used in the study. These were Surmf, Neptune, Back, Teardrop,
Land and Ping of Death attacks. Accuracy and false alarm rate are used as a

14 Chapter 2. Background and Literature Review

performance measures and 10 fold cross-validation is adopted. The results of
the different fusion methods are averaged. The neural network and Dempster-
Shafer combination provided the best performance with high average accuracy
and low average false positive rate. The majority vote, weighted majority vote
and the average gave comparable performance with their average accuracy being
approximately 20% lower than the Dempster-Shafer and the neural network and an
average false positive rate of approximately 2% higher than the Dempster-Shafer
and the neural network. The naïve Bayes combination was the worst performing
method of them all. The architecture of their MCS is such that each base classifier
is assigned to detect one of the six DoS attack types considered. The authors also
pointed out that the design of their architectures is such that they can add a classifier
for detecting novel attacks in the future which means currently their architecture
does not cater for novel attacks. This means the classifiers and fusion methods may
be underperforming.

Kaliappan et al. [31] proposed fusion of heterogeneous IDSs for detecting network
attacks. Their sensor fusion based NIDS consists of five detection algorithms with
three of them following the anomaly detection approach and two of them being
signature based. The anomaly based algorithms are the support vector machines
(SVM), instance-based learning with parameter k (IBK) and random forest (RF). The
signature based algorithms are the J48 and BayesNets. They used the NSL KDD
dataset to evaluate their proposed system. The proposed system architecture is
made up of three phases. In the first phase, features are selected using information
gain and the genetic algorithm. In the second phase, the selected features serve as
inputs to the five IDSs and the IDSs classify the input as one of the attack categories
found in the NSL KDD dataset (probe, DoS, U2R or R2L) or normal. In the third
phase, the input data is categorised as either attack or non-attack. The traffic attacks
(probe, DoS, U2R or R2L) are labelled as attack group and the normal traffic as
non-attack group such that if an IDS outcome is DoS then that outcome is labelled
as an attack. The outputs of the IDSs are combined by majority voting to obtain
the final decision. The results indicate that the proposed system performed better
than individual IDS. They [31] also compared their work to the work of Thomas
and Balakrishnan [28] and their [31] work outperformed the work of Thomas and
Balakrishnan [28]. Kaliappan et al. [31] rely on comparing the performance of their
system to that of other works to gauge the performance of their [31] system. If NIDS
performance bounds were known then they [31] would be able to determine how
far their NIDS is from these bounds in order to decide whether their NIDS needs
improvement or not.

Shah et al. [32] discussed the limitations of Dempster-Shafer (DS) rule in combining
decisions/evidence from multiple intrusion detection systems and proposed a
modified framework for fusing these decisions. According to Shah et al. [32], most
fusion rules proposed in literature including DS rule assume all evidence provided

2.1. Intrusion Detection 15

by the fused IDSs to be equally reliable and weigh them equally during the fusion
process. However, some IDSs are more reliable than others [32], where reliability
of an IDS is defined as a level of trust about the evidence provided by the IDS
for the presence of an intrusion that lies between 0 and 1 [33]. Therefore, their
[32] framework incorporates the reliability value for each fused intrusion detection
systems in the fusion rule. The results show that fusing with the proposed rules
leads to improved performance as compared to fusing with DS rule. The main
problem with the proposed fusion rule is assigning the reliability value of each IDS
to be fused. They [32] proposed two ways of assigning the IDS reliability value,
namely,

• using the true positive rate (TPR). The drawback of using the TPR is that the
ground truth needs to be known.

• using the conflicting evidence amongst the IDSs since it can work without
knowing the ground truth [32]. However, assigning reliability using IDSs
conflicting evidence might be subjective (what reliability score gets assigned
to all agreeing or disagreeing IDSs?). In their [32] extended work [34] they
proposed that a highly conflicting IDS should be assigned least reliability value
and a least conflicting IDS be assigned the highest reliability score. This is
still subjective since assigning reliability values for IDSs that are not so highly
conflicting and those that are least conflicting will depend on a individual.

The proposed framework that incorporates IDS reliability improves the performance
of the fused IDS. However, objective ways that do not depend on the knowledge of
the ground truth are needed to assign the IDSs reliability values.

Mkuzangwe et al. [35] fused the outcomes of two anomaly based intrusion detection
algorithms for detecting the Transmission Control Protocol Synchronised flooding
attacks using the logic OR operator. The two algorithms are the adaptive threshold
algorithm and the cumulative sum algorithm of Siris and Papagalou [36] and their
outcomes were fused in order to enhance their detection probability. The attacks
were synthetically generated in accordance to constant rate arrivals. The DARPA
dataset was used to implement the two algorithms. The results indicate that the logic
OR operator outperformed the two algorithms in terms of detection probability and
detection delay while it had the worst false alarm rate.

Li et al. [37] presented a review of data fusion (DF) techniques used in building
network intrusion detection systems. They reviewed the DF techniques in the
feature fusion and decision fusion layers of the data fusion levels since they [37]
have observed that most research in NIDSs uses open dataset, therefore tend to omit
the data fusion layer. In the review, the authors proposed a general data fusion
framework for NIDSs and a criteria for evaluating the performance of these DF
techniques based NIDS. The proposed framework consists of six parts: input or data
source, data pre-processing, feature fusion, classification, decision fusion and output

16 Chapter 2. Background and Literature Review

or decision. The proposed performance evaluation criteria evaluated the reviewed
NIDS based on dataset utilised, validity, efficiency, data security and scalability. To
test the efficiency of the NIDS, they first compared the feature fusion techniques of
the reviewed NIDS in terms of training time on different datasets. According to the
authors the following feature fusion techniques had a minimum training time:

• gradual feature removal (GFR) method, feature removal method-sole feature
method (FRM-SFM) and classification and regression trees(CART) for the KDD
dataset variants (DARPA99, KDD99 and KDD99_10%).

• correlation based feature selection-genetic algorithm (CFS-GA) for the NSL-
KDD dataset.

• partial least square regression (PLSR) for the Kyoto 2006+ dataset.

To test the validity of the NIDSs, the authors compared the feature fusion techniques
in terms of accuracy, precision, recall, F measure, false positive rate and false
negative rate. The review provides the techniques that led to the highest accuracy
and low FPR for the different dataset. The authors notice that accuracy of classifiers
in the UNSW-NB15 dataset was not so good. According to the authors all the
reviewed studies did not consider data security since they were using publicly
available data and scalability was not mentioned in the studies. According to [37]
the evaluation of the decision fusion indicated that the Dempster-Schafer evidence
theory (DS), neural networks (NN), random forest (RF), data dependent fusion (DD)
and adaptive boosting (AdaBoost) performed well in fusing the multiple decisions
in terms of accuracy and false positive rate in the KDD dataset variants.

Some of the open issues that were highlighted from this review were:

• Data security is not considered in the existing DF techniques.

• There are few studies that have considered data fusion visualisation.

The authors have proposed the following future works:

• To find advanced DF techniques that will improve the detection of attacks on
complex data sets like UNSW_NB15 dataset.

• Investigation of DF techniques that are effective and adaptive to big network
data.

• Studies on a universal, flexible and extensible fusion framework are needed.

• Data security needs to be ensured in data fusion.

• Data layer fusion is an important part in conducting real time network
intrusion detection.

2.1. Intrusion Detection 17

2.1.3 Literature on Ensemble Methods in Intrusion Detection

In ensemble methods, learning algorithms are used to construct a set of classifiers
whose predictions are combined in a certain way (commonly by weighted or
unweighted) to classify a new instance. It has been discovered that ensembles are
more accurate than the individual classifiers that make up the ensemble. Ensemble
methods have been successfully adopted in intrusion detection to build a classifier
that is more accurate than the classifiers in the ensemble and below is the review of
the works that have employed the ensemble methods in intrusion detection.

Hu and Hu [5] proposed an AdaBoost based algorithm that uses decision stumps
as weak classifiers for network intrusion detection. They adopted simple strategies
for removing noise and avoid overfitting, since the AdaBoost algorithm is sensitive
to noise and sometimes it overfits, to improve the performance of the algorithm.
Hu and Hu [5] modified the initial weights assigned to samples from a uniform
distribution to adjustable initial weights since in AdaBoost theory the uniform
distributed initial weights focus on reducing the mean classification error which is
not suitable for intrusion detection according to [5]. Hu and Hu [5] say in intrusion
detection it is necessary to reduce the false alarm rate instead of the mean error.
They provided decision rules for both categorical and continuous features of the
KDD 99 data set. They considered all attacks as a single category. They reported
their results in terms of detection and false positive rates for the standard AdaBoost
algorithm and the proposed AdaBoost based algorithm. The detection and false
alarm rates for the standard AdaBoost algorithm were 90.738% and 3.428%. They
reported a detection rate ranging from 90.04% to 90.88% with a false alarm rate lying
between 0.31% and 1.79% for the proposed AdaBoost based algorithm. They also
compared the performance of their algorithm with published intrusion detection
algorithms in terms of detection rate, false alarm rate and computational times.
Their algorithm outperformed all the published algorithms in terms of false positive
rate and computational time.

Borji [38] proposed a combining classification approach for intrusion detection.
He implemented four base classifiers, namely, artificial neural network (ANN),
support vector machines (SVM), k-nearest neighbour (kNN) and decision trees
(DT). The outputs of the four base classifiers were fused using three combining
strategies: majority voting, Bayesian averaging and a belief measure. Different
combining strategies to illustrate the effect of combining approaches were used.
Detection and false positive rates were used to measure the performance of the
proposed system. The results showed that the proposed approach outperformed the
individual classifiers and that the belief measure was a better combining approach
followed by the Bayesian averaging then the majority voting. Borji’s work illustrates
how ensemble methods enhance the performance of individual classifiers and the
effect of combining approaches on the performance of the ensemble. However, the

18 Chapter 2. Background and Literature Review

work does not give insight on the extent to which the ensemble methods are able to
improve the performance of the individual classifier irrespective of the combining
approach.

Govindarajan and Chandrasekaran [39] presented a new arcing based hybrid
classifier that is made up of heterogeneous classifiers. They use radial basis
function neural network (RBF) and support vector machines (SVM) as base learners.
The proposed hybrid intelligent intrusion detection system consisted of four
main phases, namely, data pre-processing, feature reduction, classification and
combination phases. They used the NSL KDD dataset to train and test their
base learners and the hybrid classifier. Classification accuracy was used as the
performance metric and was evaluated using 10-fold cross validation. The results
indicate that the hybrid classifier outperforms the individual base learners.

Sornsuwit and Jaiyen [40] focused on building an ensemble for detecting network
intrusion data that are difficult to detect. Specifically, they proposed AdaBoost
based ensembles of a single weak learner for the prediction of U2R and R2L attacks.
They implemented AdaBoost ensembles from each of the following weak classifiers,
naïve Bayes (NB), decision tree (DT), multilayer perceptron (MLP), support vector
machine (SVM) and k-nearest neighbor (kNN). They used the KDD 99 dataset
to train and test the ensemble. They build AdaBoost ensembles of these weak
learners using all the features in the dataset. To improve the performance of their
ensembles they used correlation based feature selection and built the ensembles
using the selected features only. Sensitivity and specificity were used as performance
measures.

For the AdaBoost based ensembles with all features, the MLP ensemble produced
the highest sensitivity of 0.1753 and the NB achieved the highest specificity of 0.9856.
For the AdaBoost based ensembles with feature selection, the NB and the MLP
ensembles achieved the highest sensitivity of 0.76 and the NB ensemble produced
the highest specificity of 0.9905. The AdaBoost based ensembles with feature
selection had improved sensitivity and specificity as compared to the AdaBoost
based ensemble with all the features. Both these ensembles had better performance
than their corresponding individual classifiers except for NB that outperformed its
ensemble when all the features were used.

Prusti and Jena [41] proposed an ensemble based predictive model to classify normal
and attack classes. They used support vector machine (SVM), decision tree (DT) and
neural network (NN) as weak learners and combined their decisions by majority
voting to get the final predicted class. In the training phase, the data was pre-
processed and normalised and then used to train the learning algorithms (SVM, DT
and NN). The AdaBoosting concept was used to reduce the training error during
the training process. The model was evaluated on two datasets, namely, NSL KDD
and KDD corrected. Different performance metrics including accuracy, true positive

2.1. Intrusion Detection 19

rate (TPR) and false positive rate (FPR) were used. The results indicated that the
proposed system performed very well in both the NSL KDD and the KDD corrected
datasets.

Zainal et al. [42] presented an ensemble of classifiers based IDS with the intention
of maximizing detection accuracy and minimizing false alarm rates. The ensemble
was made up of linear genetic programming (LGP), adaptive neural fuzzy inference
system (ANFIS) and random forest (RF) as base learners. The KDD Cup 99 dataset
was used to train and test the individual classifiers and the ensemble. Five classes (
normal, probe, DoS, U2R and R2L as they exist in the dataset) were considered in
their classification. They performed feature selection using rough-discrete particle
swarm optimisation (RDPSO) that selected 15 features for all the classes out of the
41 features contained in the KDD Cup 99 dataset. The features differed from class
to class. They further refined the obtained features using binary particle swarm
optimisation (BPSO) and obtained 6 to 8 features for the different classes.

The performances of the individual classifiers and the ensemble were evaluated
in terms of accuracy, true positive rate and false positive rates. The decisions of
the individual classifiers were combined using weighted voting to make the final
decision. The accuracy of the ensemble of 99.27 for normal class, 99.88% for probe,
98.26% for DoS, 99.96% for U2R and 99.79% for R2L slightly improved from that of
LGP which was the best individual classifier with 98.83% for normal class, 99.68%
for Probe, 97.45% for DoS, 99.91% for U2R and 99.63% for R2L.

The works of [39]–[42] focused on building an ensemble of classifiers based
NIDS with different base learners with the intentions of producing a NIDS
that has improved performance measured by one or more of these performance
metrics accuracy, detection rate/sensitivity, false positive and specificity. These
works indeed improved these performance metrics, however, the bounds on the
performance of an ensemble of classifiers based are unknown. These researchers do
not know how far their systems are from what is achievable by such systems, they
just know that their systems are performing better than the individual classifiers and
cannot estimate the performance of their systems before they implement them.

Natesan et al. [43] presented an AdaBoost algorithm for a NIDS that uses a single
weak classifier for the detection of DoS, probe, U2R and R2L attacks. The main
focus of their work was to improve the detection rate and reduce the false alarm
rate to a minimum level. They used AdaBoost to improve the performance of
each of the following weak classifiers: Bayes net, naïve Bayes and decision tree.
The proposed NIDS consisted of four phases, namely, feature extraction, instance
labeling, selection of base learners and building of a strong learner. They compared
the performance of the three AdaBoost based NIDSs based on the detection rate of
the four attacks, false alarm rate, training time and testing time. The results show
that the AdaBoosted naïve Bayes had the smallest false alarm rate. The AdaBoosted

20 Chapter 2. Background and Literature Review

decision tree was the fastest in both training and testing. They also compared the
performances of their AdaBoosted naïve Bayes and decision tree classifiers with
published intrusion detection algorithms, namely, KDD 99 winner, multi-classifier
and associate rule. The AdaBoosted decision tree classifiers outperformed the
existing algorithms in terms of detection rate.

Both works of [5] and [43] focused on improving the detection and false positive
rates of their proposed NIDSs and resulted in algorithms that yield lowest false
positive rate [5] and highest overall detection rate [43] as compared to other existing
intrusion detection algorithms. However, the lowest achievable bound on the false
positive rate and highest achievable bound on the detection rate of a NIDS are
unknown. This means

• they rely on comparing the performances of their systems to those of other
systems to gauge their systems’ performances.

• even though their algorithms outperform the other algorithms, they cannot
determine how far their NIDSs are from these bounds in order to decide if
their NIDSs need improvement or not.

Kumar and Kumar [44] presented a review on the use of artificial intelligence
(AI) based ensembles for intrusion detection. Their work helps with a better
understanding of the different directions in which research on ensembles has been
done in the field of intrusion detection. They have observed that successful
application of ensemble methods in intrusion detection depends on factors like size
of the training dataset, modification of dataset for training different base classifiers,
choice of accurate and diverse base classifiers, etc.

Most of the studies they have evaluated implemented their ensemble based IDSs
using the KDD 99 dataset which fails to realistically simulate a real network [44].
They pointed out that there is a need for high quality benchmark datasets for
intrusion detection since an IDS trained and tested on the KDD 99 dataset may not
perform well in the real environment. An important feature of an IDS is its ability to
adapt to the changes of the behaviour of intrusive and normal traffic without having
to be retrained. If an IDS is not able to adjust according to the changes of the traffic
behaviour then its detection performance may decline. According to Kumar and
Kumar [44], the AI based ensembles are able to address this issue but little work has
been done to address it. This means the current IDS may be underperforming due
to a lack of this desired feature and need to be improved accordingly in order to
perform better in the presence of such traffic changes.

Aburimman and Reaz [45] presented a survey of intrusion detection systems based
on ensemble (both homogeneous and heterogeneous) and hybrid techniques along
with heterogeneous ensemble applied to other domain. The survey also presented
an overview of the popular ensemble algorithms namely, bagging, boosting,

2.1. Intrusion Detection 21

stacking and a mixture of experts as well as an overview of the variants of voting
methods for combining class labels. Aburimman and Reaz [45] also conducted a
performance comparison of different methods used to classify the full NSL KDD
dataset. Accuracy was used to compare these methods and the results suggest that
an ensemble that uses majority voting to combine the decisions of the base classifiers
is a better classifier. Aburimman and Reaz [45] discovered the following from the
survey:

• homogeneous ensembles have been successfully implemented in IDS

• heterogeneous ensembles implementation in IDS is less complete

• weighted majority voting is rarely implemented in heterogeneous ensembles

The literature for ensemble and hybrid techniques examined in [45] survey indicate
that the researchers either report the performance of their newly developed IDSs
in terms of what they can achieve or compare the performance of their newly
developed IDSs to the performance of existing IDS to gauge their performances.
If upper bounds on the performances of homogenous and heterogeneous ensemble
based IDSs were known, researches would compare the performances of their newly
developed IDSs to these bounds and determine how far they are from the achievable
bounds.

Jabbar et al. [46] presented a cluster based ensemble of classifiers IDS that uses
the alternative decision tree and k-nearest neighbour as base learners. They
implemented their IDS on Gure dataset. In their [46] approach the data was first
clustered into two clusters using k-means clustering. This was followed by training
their ensemble. The obtained ensemble performance was evaluated using detection
rate, false alarm rate, Huberts index, Rand index and accuracy. The performance of
their ensemble was also compared to that of existing IDSs of [47] and [48] in terms
of detection rate and false alarm rate. The results indicate that the proposed IDS
performed well and outperformed the existing IDSs. It is unclear why the authors
would use a clustering technique k- means on a labeled dataset.

The recent work of Mkuzangwe and Nelwamondo [49] presented the performance
bound of an AdaBoost based NIDS that uses the decision stump as a base learner.
The performance bound of their NIDS is defined in terms of the average information
gain amongst the features that were used in building the ensemble. The NSL KDD
dataset was utilised in this study.

Moustafa et al. [50] presented an AdaBoost based ensemble of classifiers IDS for
detecting attack on network traffic of the Internet of Things (IoT). The decision tree,
naïve Bayes and artificial neural networks were used as weak learners. Statistical
features associated with DNS, HTTP, MQTT protocols were generated since these
protocols are mainly used in the IoT services. The features associated with the
HTTP and DNS protocols were generated from the UNSW-NB15 and NIMS datasets.

22 Chapter 2. Background and Literature Review

The coefficient of correlation was used to select features to be included in the
ensemble. For each dataset (UNSW-NB15 or NMS), two ensembles were built
using the HTTP features for one ensemble and the DNS features for the other
ensemble. The performance of each of the developed ensembles was evaluated using
accuracy, detection rate (DR), false positive rate (FPR), time and receiver operating
characteristic (ROC) curve. For both datasets, the results indicate the built ensembles
outperformed the weak learners in terms of accuracy, detection rate, false positive
rate and ROC curve. The ensembles were also evaluated on detecting specific attacks
and the results show that the ensembles performed well. The performances of the
ensembles were compared to the existing support vector machines of [51], Bayesian
networks of [51] and Markov chain for botnets of [52]. The ensembles outperformed
the existing works in terms of DR and FPR. According to the authors, this work can
be extended by collecting more relevant features from other IoT protocols in order
to build an effective profile of normal and attack patterns.

Mirsky et al. [53] presented Kitsune, an unsupervised online ensemble of
autoencoders based NIDS to perform an anomaly detection of attacks on a local
network. Kitsune’s framework consists of packet capturer, packet parser, feature
mapper and anomaly detector. The main input parameter for Kitsune is the
maximum number of inputs to the autoencoders (m). The parameter determines
the complexity of the ensemble and involves the trade-off between detection and
runtime performance. Real IP camera vieo surveillance network and wi-Fi network
consisting of nine IoT devices and three personal computers were used to evaluate
the performance of Kitsune in terms of detection and runtime. The performance of
Kitsune at m = 1 and m = 10 was compared to offline algorithms such as isolation
forest of [54] and Gaussian mixture models (GMM) of [55] and online algorithms
such as incremental GMM of [56], pcStream2 of [57] and Suricata of [58]. The true
positive rate (TPR) and false negative rate (FNR) of these systems were compared at
FPR of 0 and 0.001. The results indicate that the performance of Kitsune is indeed
comparable to the existing algorithms. However, the number of hidden layers of
Kitsune’s autoencoders was restricted to three and how this value was obtained is
not justified in the work. This means that one cannot tell if the obtained results are
optimal or not.

2.2 Network Trace Privatisation

Network trace privatisation techniques can be typically categorised into two
paradigms, namely, sanitisation based systems and query based systems [59].
The sanitisation based systems remove or anonymise privacy sensitive packet
fields such as payloads and IP addresses. The anonymisation process intends to
protect the privacy of the monitored users, hide the topology of the network and

2.2. Network Trace Privatisation 23

provide realistic and useful anonymised network trace [60]. Literature reveals that
anonymisation is vulnerable to attacks that infer sensitive information. This means
trace anonymisation provides no guarantee in protecting sensitive information.

The query based systems are commonly used in the problem of protecting sensitive
information in a database while allowing statistical queries. Adam and Wortmann
[61] classify the approaches taken by the query based systems into four categories:
query restriction, data perturbation, output perturbation and conceptual approach.
Where [61] defines these categories as follows:

• In query restriction, the queries are required to follow a particular structure in
order to prevent attackers from gaining too much information about records
in a specific database.

• In data perturbation, the database is perturbed and the query is answered
according to the perturbed database.

• In the output perturbation, the database computes the answer of the query first
and returns the perturbed version of the answer.

• In the conceptual approach two models are defined namely, conceptual and
lattice models. The conceptual model provides a structure for investigating
the security problem at the conceptual data level. The lattice model provides a
structure for representing the data in a tabular form.

The use of query restriction and data perturbation approaches in protecting network
trace have been proposed in the literature. Subsection 2.2.1 presents a review of
studies done on network trace privatisation.

2.2.1 Literature on Network Trace Privatisation Techniques

Many challenges are associated with network trace privatisation such as information
loss after privatising the data, utility loss of the privatised data, attacks that want to
infer sensitive information from the privatised data, etc. Therefore, the proposed
systems must be mindful of these challenges in their design requirements [59] so
that they produce research useful data while preserving privacy. A review of works
that conducted network traffic trace privatisation is presented below.

Mogul and Arlitt [21] proposed an alternative approach to trace anonymisation
where data owners run analyses on behalf of the researchers, i.e. researchers send
their code to data owners, to preserve privacy. The proposed approach does not
send traces from the trace owners to the researchers, only the results and this solves
the problem of shipping large traces. However, the results may still reveal some
information about the behaviour of the information contributors in the trace that
might single out individuals or machines [21]. To handle this the authors have

24 Chapter 2. Background and Literature Review

proposed that an independent expert or the trace owner must review the properties
of the framework and analysis module to detect leakage. This means that the privacy
preserving approach depends on human verification which is error prone [24]. The
approach also addresses the issue of trace storage, since some organisations prohibit
internal trace storage, by performing online data analysis as the data arrives and
discarding it after the analysis. The authors have pointed out several drawbacks in
their approach that include the following:

• Debugging the analysis software will be difficult since the code would have
been trained on different software.

• The reasons for trace owners to participate are unclear.

• It might be hard to use this approach if the analyses need to be done across
multiple sites since there may be in conflict with data owner privacy policies.

McSherry and Mahajan [24] investigated the potential for network trace analysis
while providing the guarantees of differential privacy (DP). The network trace
analyses performed by [24] include multiple examples of packet level, flow
level and graph level computation from network literature. They used Privacy
Integrated Queries (PINQ) [62] as an analysis platform that provides differential
privacy. They performed two kinds of packet level analyses. One computed the
cumulative distribution functions (CDFs) of packet size and ports and the other
was a computation that involved payloads, ports and IP addresses for automated
worm fingerprinting. For the CDFs of the packet size and ports they observed the
behaviour of the CDFs at three privacy budgets, ε = 0.1, 1 and 10 and compared
these CDFs to the CDF of the noise free data. They also computed the root mean
square error to measure the overall accuracy. The results indicate that the privately
computed CDFs for both packet size and ports faithfully followed that of a noise
free data. The RMSE for packet size and ports were 0.01% and 0.07% respectively at
ε = 0.1. In automated worm fingerprinting the results indicate that with dispersion
threshold of 50 for sources and destinations, the noise free computation yielded 29
payloads. The differential private search with ε = 0.1, 1 and 10 reveals 7, 24 and
29 payloads respectively. This means the accuracy of worm fingerprinting is low at
high privacy levels and high at low privacy levels.

In the flow level analysis, McSherry and Mahajan [24] considered two kinds of
analyses where one computes statistics within the flow and the other analysis
operates across packets of different flows. For statistics within the flow they
computed the flow round trip time (RTT) and loss rate without noise and with
differential privacy at ε = 0.1, 1 and 10 and then studied their distributions in terms
of CDFs. The differentially private CDFs faithfully followed that of a noise free RTT
and loss rate. The RMSE for RTT and loss rate were 2.8% and 0.2% respectively at
ε = 0.1. For the analysis across the flow, they detected stepping stone relationships
between flows with differential privacy at ε = 0.1, 1 and 10. The results indicated

2.2. Network Trace Privatisation 25

that ε = 0.1 led to the highest false positive rate and ε = 1 with the lowest false
positive rate.

In the graph level analysis [24] considered two analyses, namely, anomaly detection
and passive network discovery. In anomaly detection they observed the link level
traffic volumes across time. They followed the analysis proposed by Lakhina et al.
[63] to detect anomalies. The results show that the behaviour of anomalous traffic
computed with differential privacy is indistinguishable from the one computed
without noise. In the passive network discovery they wanted to reproduce the
clustering analysis conducted by Eriksson et al. [64] in a differentially private
manner. The results indicate that the analysis is only accurate for low privacy
levels. McSherry and Mahajan’s [24] results indicate that differential privacy has the
potential to be the basis for mediated network trace analysis. However, the work
[24] was implemented at a granularity privacy principal of records in the dataset,
developing support for coarser granularity privacy principals like hosts or flows
(even if the underlying data is at a finer granularity like packets) is still a challenge
as pointed out by [24]. They [24] also pointed out that guidelines for data owners on
what privacy level to set for their datasets need to be developed.

Pang and Paxson [65] developed a new method to allow anonymisation of packet
payloads as well as headers. The tool provides high level language support for
packet transformation allowing the user to write short policy scripts to express
sophisticated trace transformation. Traces are processed in three steps, namely,

• Reassembling and parsing of payloads to generate application protocol level
protocol and semantically meaningful data elements.

• A policy script transforms data elements to remove sensitive information and
send the resulting elements to the composer.

• The trace composer converts application protocol data elements back to bytes
sequences and frames the bytes into packets, matching the new packets to the
original packets in order to preserve the transport protocol dynamics.

They developed an anonymisation scheme for FTP trace and implemented it on the
LBNL’s FTP traces. Their objectives were as follows:

• To ensure that anonymisation hides the identification of clients, non-public
FTP servers, non-public files and confidential authentication

• To ensure that anonymisation keeps the original request/reply sequence and
other non-sensitive information intact.

Their scheme [65] does not address all of the attacks that infer sensitive information
and is dependent on the specific policy approved by a site [65] which means a
scheme that is site policy independent and prevents sensitive information from
being inferred by attackers is needed.

26 Chapter 2. Background and Literature Review

Xu and Moon [66] focused on IP address anonymisation. They evaluated the prefix
preserving anonymisation techniques with the intention of establishing the effect of
some types of attacks on the security of the prefix preserving anonymisation process
and to determined a bound on the effectiveness of the attacks in general. They also
developed a cryptography based prefix preserving anonymisation technique. They
developed the cryptography based technique in order to address the drawbacks of
the TCP dpriv, an existing prefix anonymisation tool, while maintaining the same
level of anonymity as TCPdpriv.

Instead of preserving network trace privacy by using anonymisation or removal of
sensitive data, Mirkovic [67] proposed a new paradigm of secure queries. In this
paradigm the data owner publishes a query language and online portal allowing
researchers to submit sets of queries to be run on the data. In the work of [66],
the privacy of results released by the data owners was verified by an independent
expert. To remove human verification Mirkovic [67] proposes query restriction
based on the provider’s privacy policy and was enforced by the secure query
language. The query restriction forbids some operations to be done on certain trace
fields and in some context in order to avoid private leakage in the presence of passive
and active attacks and maximise trace’s research utility. The authors pointed out
that they could not prove that there was no information leakage by secure queries,
however, they showed that some attacks could be handled by their proposed privacy
methods.

Mugal and Arlitt [21] presented a method that uses human verification to preserve
privacy and Mirkovic [67] removed human verification and introduced rules to
preserve privacy, however, the privacy properties attained by these works are
unclear [24].

Dijkhuizen and Ham [68] conducted a literature survey over the period of 1998-
2017 on network traffic anonymisation techniques and their implementations. In the
survey,

• a brief description of currently available anonymisation and pseudonymisation
techniques and a rough indication of their effectiveness is provided. These
techniques include prefix preservation [69], replacement of a field [65] and data
removal [70]

• fields containing privacy sensitive information in the link, internet and
transport layers are discussed,

• existing anonymisation tools and frameworks like Bro Anonymiser Plug-
in [65], PktAnon [71] and Anonym [72] are described. The tools are
compared against each other based on the following features, whether the
source compilation is without problems, ability to anonymise IPv4 and IPv6
addresses, whether the anonymisation supports MAC addresses, VLAN tags,

2.2. Network Trace Privatisation 27

UDP/TCP port numbers, header checksum correction, application layer,
tunnels and IP/TCP options, real time or online anonymisation and license
type for the tool (open source or proprietary),

• future research directions to enable easier sharing of network traffic are
provided.

From the comparison of the tool, PktAnon met most of the evaluation features except
for anonymisation support for the application layer and partial anonymisation
support for IP/TCP options. Some of the future research directions suggested by
Dijkhuizen and Ham [68] include:

• the need for updating the rigorous mathematical review of the anonymisation
techniques since the last one was conducted by Coull et al. [73] in 2008 to show
new developments.

• IPv6 packet sensitive fields have not been looked into much. Furthermore,
sensitive fields may change due to the changing nature of network traffic and
the context of the captured network.

• their survey indicated that packet trace anonymisation has not matured,
therefore there is a need for undertaking more anonymisation of packet traces
since packet traces are needed for conducting different network research.

Fan et al. [74] adopted differential privacy to protect the presence or absence of each
individual web browsing session. Fan et al. [74] considered the problem of releasing
the number of visits to each web page at every time stamp instead of releasing a
collection of browsing sessions. A state space approach to monitor the number of
visits to each webpage at every time stamp using differential privacy with the true
aggregates being the hidden states and the noisy aggregates (noise perturbed true
aggregates by a differential privacy mechanism) as noisy observations was proposed
by Fan et al. [74]. Fan et al. [74] used the Laplace mechanism to perturb true
aggregates. Based on the differential privacy perturbation mechanism, Fan et al.
[74] proposed to release the posterior estimates of the hidden states than the noisy
observations for web monitoring. Fan et al. [74] established a univariate time series
space model to monitor the number of visits to a webpage per time stamp and a
multivariate time series space model for simultaneously monitoring the visits to all
webpages. For both models, they used the Kalman filter to obtain the posterior
estimates of the true aggregates. To learn the parameters of the model they used
a subset of the training data. Fan et al. [74] used the following utility measures:
average relative error, precision for top-K mining and KL-divergence to test if the
usefulness of the released posterior estimates is close to that of the true aggregates.
They conducted their experiments using real data from msnbc.com. The results
indicate that their proposed methods release in real time useful posterior estimates
that preserve privacy. The work of Fan et al. [74] is limited to monitoring browsing

28 Chapter 2. Background and Literature Review

sessions to a single server, however, in real world users browse in different servers,
across platforms, etc. Fan et al. [74] pointed out this shortfall as something that can
be explored in the future.

Blocki et al. [75] presented a novel mechanism for releasing the perturbed password
frequency list. They based their differential privacy mechanism on the exponential
mechanism of McSherry and Talwar [76]. They represented all possible password
frequency lists of a passwords database consisting of N users as all possible
partitions of integer N with a password frequency list being a single partition of the
integer N. In exponential mechanism, given a password frequency list as an input,
each possible randomly sampled integer partition from the exponential mechanism
is returned with a probability associated with it. The exponential mechanism
preserves ε- differential privacy and leads to minimum cumulative distortion
(cumulative distortion measures the distance between the original password list
and the released password list). However, according to [75] direct implementation
of the exponential mechanism will require exponential time and space and there
is evidence that sampling with the exponential mechanism is computationally
demanding [77]. To address this drawback of an exponential mechanism, they
proposed a novel dynamic programming algorithm to approximate samples from
an exponential mechanism for integer partitions when N is large. As a first step
in developing this novel sampling algorithm they proposed the relaxation of the
exponential mechanism by completely ignoring partitions from the exponential
mechanism that are far from the true distribution (large values of cumulative
distortion). This relaxed exponential mechanism provides (ε, δ)-differential privacy
and minimal cumulative distortion. They developed a novel algorithm (of (N1.5/ε)

time according to [75]) to sample from this relaxed exponential mechanism. They
conducted their experimental work using the data from RockYou passwords breach
with ε varying between 0.002 and 8 and δ = 2−100. The results indicate that
the normalised distortion coefficient (which is the distance between the released
password frequency list and the original password frequency list divided by the
number of users) lies between 8.83E − 07 and 1.90E − 03. Based on the obtained
values [75] concluded that their sanitized password frequency list would be useful
for password research without testing the utility of these released password
frequency list. They also had a challenge of fitting the dynamic programming tables
into memory as ε got smaller. To overcome the memory challenge they only stored
pieces of the dynamic programme table in memory and recomputed the rest as they
progressed. They pointed out the memory challenge as a place of improvement in
their work.

Deng and Mirkovic [78] proposed a mechanism that achieves commoner privacy-
interactive k-anonymity. Commoner privacy fuzzes only those output points where
an individual’s contribution is an outlier by omitting or aggregating or adding
noise. They also discussed query composition and showed how they can guarantee

2.3. Summary 29

privacy via a pre-sampling step or query introspection. They implemented their
privacy mechanism and query introspection on network traces, namely, packet
counts sent per source port, packet counts received per destination service port,
connection count in the trace and traffic volume in the trace using a system called
Patrol. They compared the performance of their privacy preserving mechanism
against differential privacy and crowd blending privacy. The results indicate that
their proposed mechanism released outputs that have a higher research utility as
compared to the two privacy preserving techniques. However, differential privacy
guarantees high privacy than the other two techniques [78] and can protect against
both all-but-one and interactive adversaries. The other two techniques can protect
an individual from interactive adversary only. Several approaches to improve the
utility of release aggregates using differential privacy exists. Therefore, releasing
aggregates using differential privacy is still of benefit.

2.3 Summary

Table 2.1 provides a summary of the papers that have been presented in intrusion
detection using sensor combining techniques and network trace privatisation
techniques since 2002. The author and the year of publication are presented in
the first column. The sensor combining technique or network trace privatisation
technique used is provided in the second and the third column gives the aim of each
paper.

TABLE 2.1: Summary of some of the literature in intrusion detection
using sensor combining techniques and network trace privatisation

techniques since 2002.

Author Sensor Combining
Technique or Network
Trace Privatisation
Technique

Main Objective

Thomas
et al. [11]
2008

Weighted Aggregation presented an architecture using data
dependent decision fusion.

Tian
et al. [12]
2005

DS Merged alerts from different IDSs to
estimate the current network security
status

Thomas
et al. [13]
2007

Rule based fusion Set threshold bounds for sensor fusion
using the principle of Chebyshev
inequality and used rule based fusion to
improve sensor fusion performance.

30 Chapter 2. Background and Literature Review

Gong
et al. [20]
2010

NN presented a neural network based data
fusion model to perform fusion and
intrusion detection

Chan
et al. [30]
2005

DS, MV, WMV, NB, A and
NN.

Compared the different fusion strategies
for a multiple classifier system for a
denial of service problem.

Kaliappan
et al. [31]
2015

MV fused heterogeneous IDSs to detect
network attacks.

Shah
et al. [32]
2017

Modified DS rule discussed the limitations of DS rule in
combining IDSs decisions and proposed
a new fusion rule which modifies the DS
framework.

Mkuzangwe
et al. [35]
2015

OR operator fused the outcomes of two anomaly
based IDS in order to improve the
detection probability of the two IDSs.

Li et al. [37]
2015

DS, RF, NN and DD presented a review of data fusion
techniques used in building network
intrusion detection systems.

Hu and Hu [5]
2005

Weighted Majority voting proposed an AdaBoost based algorithm
that uses decision stump as a base learn
for network intrusion detection systems.

Borji [38]
2007

Majority voting,Bayesian
averaging and a belief
measure

presented a combining approach for
intrusion detection where different
combining strategies we used to illustrate
their effect.

Govindarajan
and
Chandrasekaran
[39]
2012

Arcing presented a new arcing based
hybrid classifier that is made up of
heterogeneous classifiers.

Sornsuwit and
Jaiyen [40]
2015

Weighted Majority Voting built an AdaBoost based ensemble for
detecting network intrusion data that are
difficult to detect (U2R and R2L).

Prusti and
Jena [41]
2015

Majority voting presented an AdaBoost based predictive
model to classify normal class and attack
class.

Zainal et al.
[42]
2009

Weighted voting presented an ensemble of classifiers
based IDS in order to maximise detection
accuracy and minimise false alarm rate.

2.3. Summary 31

Natesan et al.
[43]
2012

Weighted Majority Voting to improve the performance of each of the
weak classifiers (Bayes Net, Naïve Bayes
and decision tree), used the AdaBoost
algorithm.

Kumar and
Kumar [44]
2012

Majority Voting,
Threshold plurality vote,
Fuzzy Theory, etc

presented a review on the use of artificial
intelligence (AI) based ensembles for
intrusion detection.

Aburimman
and Reaz [45]
2017

Voting presented a survey of intrusion detection
systems based on ensemble (both
homogeneous and heterogeneous) and
hybrid techniques and heterogeneous
ensemble applied to other domain.

Jabbar et
al.[46]
2017

Voting presented a cluster based ensemble
of classifiers that used the alternative
decision tree and k-Nearest Neighbour
as base learners.

Moustafa et al.
[50]
2018

weighted Majority Voting presented an AdaBoost based ensemble
of classifiers IDS for detecting attacks on
network traffic of IoT.

Mirsky et al.
[53]
2018

Voting presented Kitsune, an unsupervised
online ensemble of autoencoders based
NIDS to perform anomaly detection of
attacks on a local network.

Mogul and
Arlitt [21]
2006

Human Verification (Trace
owners/ Independent
Expert)

proposed an alternative approach to
trace anonymisation where researchers
send their code to data owners and
the data owners do the analysis for the
researchers, to preserve privacy. After
the analysis, trace owners send the
results to the researchers. To prevent
any information leakages an independent
experts checks the data

McSherry and
Mahajan [24]
2011

Differential Privacy (DP) investigated the potential for network
trace analysis while providing the
guarantees of differential privacy.

Pang and
Paxson [65]
2003

Policy Script in order to anonymise packet headers
and payloads, proposed a tool that
provides high level language support for
packet transformation allowing the user
to write short policy scripts to express
sophisticated trace transformation.

32 Chapter 2. Background and Literature Review

Xu and Moon
[66]
2002

cryptography based prefix
preserving anonymisation

developed a cryptography based prefix
preserving anonymisation technique
in order to address the drawbacks
of the TCP dpriv, an existing prefix
anonymisation tool.

Mirkovic [67]
2008

Secure Queries proposed a new paradigm of secure
queries where the data owner publishes
a query language and online portal
allowing researchers to submit sets of
queries to be run on the data.

Dijkhuizen
and Ham [68]
2018

Bro Anonymiser Plug-in,
PktAnon, Anonym, etc.

presented a literature survey over the
period of 1998-2017 on network traffic
anonymisation techniques and their
implementation.

Fan et al. [74]
2014

DP protected the presence or absence of each
individual web browsing session using
differential privacy.

Blocki et al.
[75]
2016

DP protected a password frequency list using
differential privacy.

Deng and
Mirkovic [78]
2017

Commoner Privacy-
Interactive k-Anonymity

proposed a mechanism that achieves
commoner privacy-interactive k-
anonymity.

Mkuzangwe
and
Nelwamondo
[79]
2019

Differential Privacy proposed differentially private number
of TCP SYN packets, which is a different
network trace than in literature.

The above review of works in the field of intrusion detection based on sensor fusion
and ensemble methods reveals that researchers

• focus on improving the performance of their NIDSs even though they do not
know to what extent the performance can be improved.

• implement their systems and either report the performance obtained by their
NIDSs or compare the performance of their new IDSs to existing NIDSs in
order to gauge how good their new NIDSs are.

• cannot estimate the performance of their NIDSs before they implement them.

This review indicates that if the achievable performance bounds of the NIDSs that
are based on sensor fusion and ensemble methods were known, researchers would

2.3. Summary 33

compare their new NIDS to these bounds and be able to determine if their NIDSs
need improvement or not. Furthermore, researchers would be able to estimate what
their NIDSs are capable of achieving before they implement them. Therefore, this
Thesis aims at determining these achievable performance bounds of sensor fusion
and ensemble methods based NIDSs so that researchers can have a reference point
to gauge the performance of their NIDSs.

The review of studies in network trace privatisation indicates that more works in
privatising packet trace are needed. Therefore, this Thesis also aims to address the
need for more privatisation of packet traces by implementing differential privacy
on, TCP SYN packet counts, a different network trace than in literature.

34

Chapter 3

Methodology and Data Description

This Chapter provides a description of the experimental approach, techniques and
data that are used to evaluate the first Thesis statements in Section 1.3. The first
Thesis statement states that the achievable upper bounds on the performance of
network intrusion detection systems that make use of multiple sensors combining
techniques can be derived via an information theoretic approach with given sensor
specification. Two combined IDSs methods are considered in this work, namely,
sensor fusion and ensemble methods. This Thesis also evaluates the performance
of existing individual IDSs in order to illustrate what the existing IDSs can
currently achieve. Therefore, techniques that are used to build individual IDSs
are also presented in this Chapter. The individual and combined IDSs and their
corresponding techniques/algorithms that are used in this work are presented in
Table 3.1.

TABLE 3.1: The types of IDSs and their corresponding algorithms
used

IDS Types Algorithms Used

Individual IDSs
Adaptive Threshold Algorithm, Cumulative Sum
(CUSUM) based Algorithm, Fuzzy Logic and
Decision Tree.

Sensor Fusion based IDSs
Bayesian Inference, Dempster-Shafer Belief Theory,
Voting Fusion Theory, Neural Network and Logic
OR operator.

Ensemble based IDSs Boosting and Bootstrap Aggregating

The rest of this Chapter is as follows, Section 3.1 presents the experimental approach
that will be used to test the first Thesis statement, which will be followed by a
description of intrusion detection techniques used in individual and combining
multiple intrusion detection systems in Sections 3.2 and 3.3 respectively. Section
3.4 presents the selection of techniques to be used in this Thesis. The Chapter is
concluded by providing a detailed description of the data that will be used in this
Thesis in Section 3.5 and a brief summary.

3.1. Experimental Approach 35

3.1 Experimental Approach

The knowledge of the performance bounds of IDSs that use multiple sensor
combining techniques for event aggregation would help researchers with designing
the system without relying only on simulation of the system. Moreover, these
bounds would allow researchers to determine how far the current IDS that uses
the multiple sensors combining techniques for event aggregation performance falls
short of what is achievable. Therefore the first ultimate objective of this Thesis is to
provide the upper bound on the performance of the ensemble of classifiers based
network intrusion detection system (NIDS) under the following specifications:

a) classifiers in the ensemble are dependent and

b) classifiers in the ensemble are independent.

Classifiers are independent if the joint probability density/mass function of their
outcomes on any class i is equal to the product of the marginal density/mass
functions of their outcomes on any class i, otherwise, they are dependent. The
general experimental process used in determining the performance upper bound
of an ensemble of classifiers based NIDS is depicted in Figure 3.1. In the data pre-
processing step, the classes that are of interest are decided upon and the dataset is
extracted according to these classes. Features that are going to be used in classifying
the network traffic are selected. All features or a subset of features selected based
on a feature selection method that helps to decide on the importance of a feature or
criteria can be used in fitting/training the classification model. In the classification
model training step, a classification model is trained on the features obtained in
the data pre-processing step. This step is followed by testing the performance of the
model on a new dataset that the model has not seen. If the model performs well then
the model training stops otherwise optimisation techniques are used to improve
the performance of the model. On the model performance optimisation phase, the
optimisation techniques that are used to boost the performance of the classification
model to its optimality are applied to the model. One of those optimisation
methods is adaptive boosting (AdaBoost) algorithm. A detailed description and
pseudocode of AdaBoost algorithm is given in Section 3.3 under the ensemble of
classifiers methods. The model performance evaluation step presents the results
of the optimised model and the upper bound on its performance. The results of
the model are commonly presented on a confusion matrix form that includes false
positives, false negatives, true positives and true negatives.

36 Chapter 3. Methodology and Data Description

FIGURE 3.1: General experimental process used to determine the
performance upper bound of an ensemble of classifiers based NIDS.

True Positives (TP) are the number of positive instances that were correctly
classified as positives.

True Negatives (TN) are negative instances that were correctly predicted as
negatives.

False Negatives (FN) are positive instances that were misclassified as negative.

False Positives (FP) are negative instances that are misclassified as positive.

Accuracy is the proportion of correctly classified instances in the dataset.

True Positive Rate (TPR) or Sensitivity is the positive class accuracy or is the
probability of correctly classifying the attacks.

True Negative Rate (TNR) is the probability of correctly classifying the non-attacks.

False Positive Rate (FPR) is the probability of incorrectly classifying normal data as
attacked data.

False Negative Rate (FNR) or Specificity is the probability of incorrectly classifying
attacked data as normal data.

Detection delay (DD) is the average time at which the algorithm was able to detect
the occurrence of the attacks.

Equal Error Rate (EER) is an error rate value where the FPR is equal to the FNR.

The equations for Accuracy, TPR, TNR, FPR and FNR are given below.

Accuracy =
TP + TN

TP + FP + FN + TN
. (3.1)

3.2. Intrusion Detection Techniques used in Individual IDSs 37

TPR =
TP

TP + FN
. (3.2)

TNR =
TN

FP + TN
. (3.3)

FPR =
FP

FP + TN
and. (3.4)

FNR =
FN

TP + FN
. (3.5)

3.2 Intrusion Detection Techniques used in Individual IDSs

A standard NIDS monitors network traffic on a target network while attempting
to detect malicious activities [17]. In general, NIDSs attempt to identify attacks
carried out over a network that targets some end node and attacks that target the
network itself. The NIDS’s purpose is to reliably detect (in terms of the detection
probability) and/or classify attacks in as short a time span as possible (i.e. the
detection delay) while maintaining a low false positive rate. In this section, four
intrusion detection techniques or algorithms that are used by individual IDSs to
classify events as attacks or normal network behaviour are described. These are the
adaptive threshold algorithm, cumulative sum (CUSUM) based algorithm, fuzzy
logic and decision tree. Literature reveals that the first three techniques are easy
to implement and the CUSUM algorithm is one of the mostly used algorithms in
anomaly based intrusion.

3.2.1 Adaptive Threshold Algorithm

This algorithm tests whether the traffic measurement, number of Transmission
Control Protocol (TCP) Synchronise (SYN) packets in a given time interval, exceeds
a certain threshold. The trends and seasonality (weekly and daily variations) are
addressed by adaptively setting the threshold value from an estimate of the mean of
the traffic measurements. If xn is the traffic measurement in the n-th time interval
and µn−1 is the mean rate estimated from measurements prior n, then at time n the
alarm is signalled if

xn ≥ (α + 1)µn−1. (3.6)

where α > 0 is a parameter that the percentage above the mean value that is
considered to be anomalous behaviour. Some past time window or exponential

38 Chapter 3. Methodology and Data Description

weighted moving average (EWMA) of past measurements can be used to calculate
the mean µn as:

µn = βµn−1 + (1− β)xn. (3.7)

where β is the EWMA factor. Normal traffic, now and again, can violate the
threshold, therefore, relying on a single threshold violation as a detection condition
may increase the number of false positives. To enhance the performance of the
algorithm, the algorithm’s alarm condition is changed such that the alarm is
signalled after a minimum number of successive threshold crossings i.e. If

n

∑
i=n−k+1

1{xi≥(α+1)µi−1} ≥ k. (3.8)

then an alarm is raised at time n , where k > 1 is a parameter that represents the
number of successive intervals the threshold must be crossed for an alarm to be
signalled. The tuning parameters of the above algorithm are α, k, β and the size of
the time interval over which traffic measurements are taken.

3.2.2 Cumulative Sum (CUSUM) based Algorithm

The CUSUM algorithm comes from the family of change point detection algorithms
that are hypotheses testing based and was developed for independent and
identically distributed random variables {yi}. The CUSUM algorithm consists of
two hypotheses θ0 and θ1, where the first hypothesis corresponds to the statistical
distribution before a change and the second hypothesis to the distribution after a
change. The test for indicating a change is based on the log-likelihood ratio Sn given
by

Sn =
n

∑
i=1

si where si = ln
pθ1(yi)

pθ0(yi)
. (3.9)

The log-likelihood ratio Sn tends to include a negative drift prior to a change and
a positive drift after the change. Therefore, the relevant information for detecting
a change is found on the difference between the log-likelihood ratio value and its
current minimum value [80]. Hence, the alarm is raised at time n if gn ≥ h, where

gn = Sn −mn and mn = min
1≤j≤n

Sj. (3.10)

and h is a threshold parameter. The direct form of the CUSUM algorithm is
presented in Algorithm 1

3.2. Intrusion Detection Techniques used in Individual IDSs 39

Using the repeated sequential probability ratio test (its definition can be found in
[80], (3.10) can be recursively written as

gn = [gn−1 + sn]
+. (3.11)

Recalling that sn = ln
pθ1(yn)
pθ0(yn)

, if the {yi} are assumed to be independent random

variables that follow a Gaussian distribution with a known variance σ2, which is
assumed to stay the same after the change, and µ0 and µ1 the mean prior to and
after the change respectively then

sn = ln
(1

σ
√

2π
e−

(yn−µ1)
2

2σ2

1
σ
√

2π
e−

(yn−µ0)
2

2σ2

)
since pθ(yn) =

1
σ
√

2π
e−

(yn−µ)2

2σ2

= ln
(

e−
(yn−µ1)

2

2σ2

e−
(yn−µ0)

2

2σ2

)

=

(
− (yn − µ1)

2m
2σ2 +

(yn − µ0)2m
2σ2

)
=

1
2σ2

(
2yn(µ1 − µ0)− (µ1 + µ0)(µ1 − µ0)

)
=

(µ1 − µ0)

σ2

(
yn −

(µ1 + µ0)

2

)
.

(3.12)

Substituting (3.12) to (3.11) results in (3.13).

gn = [gn−1 +
µ0 − µ1

σ2 (yn −
µ1 + µ

2
)]+. (3.13)

The algorithm assumes that yi are independent random variables that follow a
Gaussian distribution which is not true for the number of SYN packets due to
seasonal variations, trends, and time correlations. Such non-stationarity behaviour
needs to be removed prior to using the CUSUM algorithm. The tuning parameters
of the above algorithm are α h, β and the size of the time interval over which traffic
measurements are taken.

40 Chapter 3. Methodology and Data Description

Algorithm 1 The direct form of the CUSUM algorithm
Initialisation

• set the detection threshold h > 0

• k = 0

end
While the algorithm is not stopped do

• measure the current sample s[k]

• s[k] = ln
(p(s[k],θ1)

p(s[k],θ0)

)
• S[k] = ∑k

n=0 s[n];

• G(X) = S[k]−min1≤nc≤k S[nc − 1]

• if G(X) > h then

– nd < −k

– nc = arg min1≤nc≤k S[nc − 1]

– stop or reset the algorithm

end

• k = k + 1

end

3.2.3 Fuzzy Logic

Zadeh [81] conceived the concept of fuzzy logic as a way of processing data by
using a fuzzy set instead of using a crisp set. In a fuzzy set, partial membership
to a set is allowed whereas in crisp set an instant either belongs to a set or does
not belong to a set. It provides very valuable flexibility for reasoning that takes
uncertainties and inaccuracies into considerations [82]. It provides a simple way of
reaching a definite conclusion based upon ambiguous, vague, imprecise, noisy or
missing input information. This definite conclusion is reached using the following

3.2. Intrusion Detection Techniques used in Individual IDSs 41

steps: fuzzification, fuzzy rule generation, fuzzy inferencing and finding the crisp
value of the output variable. In fuzzification all input and output variable values
are fuzzified into fuzzy membership functions, that is, the range of values taken
by each input variable are divide into fuzzy sets and a fuzzy membership function
is determined based on expert knowledge to assign the degree of membership
to a fuzzy set of the input and output variables. An example of a membership
function for an input variable called same host connection counts (which is the
number of connections to the same host as the current connection in the past two
seconds) whose input values are broken down to fuzzy sets No Attack, Medium
Attack and Heavy Attack is given in Figure 3.2. In fuzzy rule generation, the rules
are generated in the form of If X = x and Y = y then Z = z statement and
are used to describe the desired system output. Given an instance, some of the
fuzzy rules will be activated. In fuzzy inferencing, the activated fuzzy rules are
aggregated to obtain the fuzzy output distribution. Three fuzzy inference methods
exist, namely, Mamdani, Sugeno and Tsukamoto with Mamdani being the most
commonly used fuzzy inference method [83]. The fundamental difference between
the three inference methods is the way they obtain their crisp value from the
fuzzy inputs. Mamdani inference method defuzzifies the fuzzy output distribution
whereas the Sugeno and Tsukamoto inference methods use a weighted average to
determine the crisp value [83].

FIGURE 3.2: Membership function for variable same host connection
counts.

3.2.4 Decision Tree

Decision trees (DT) are among the popular classification models due to their ease to
implement and understand. A decision tree is made up of three basic elements:

1. a decision node which specifies a test attribute;

2. a branch which corresponds to one of the possible values of the test attribute;
and

3. a leaf that contains the class to which the object belongs.

42 Chapter 3. Methodology and Data Description

To use a decision tree for classification of instances, two phases should be ensured.
The first phase is to build the decision tree that involves the selection of the
appropriate test attributes for each decision node and defining the class label for each
leaf given training data. The second phase involves the classification of instances
where new instance classification begins at the root of the decision tree where the
attribute specified by this node is tested. The result of this test allows moving down
the tree branch that corresponds to the attribute value of the given instance. This
process is repeated until a leaf is reached. The instance is then classified in the
class that is described by the reached leaf (descend strategy). To ensure the descend
strategy the following components are required

a) the attribute selection measure that determines the ability of the features to
split the training dataset into classes and assign the root of the tree. Many
attribute selection measures exist in literature with Shannon’s entropy [84] and
Information Gain [84] being the most common measures.

b) the partitioning strategy aims at dividing the current training dataset by taking
into account the selected test attribute.

c) the stopping criterion is used to stop the tree growing process. There are two
possible ways of stopping the tree growing process: stop if all the leaf nodes
contain one class or stop when the number of test cases has fallen below a
certain threshold.

Several algorithms have been developed to construct decision trees with the C4.5
and ID3 algorithms developed by Quinlan [85] being probably the most popular.

Decision trees are, however, known to be unstable [86] (i.e small changes in the
training data may lead to drastic changes in the structure of the tree which may cause
the performance of the tree to change). To address this shortfall of the DT, ensemble
methods that combine many trees into a single model that has better predictive
performance than a single tree have been developed by researchers. Bootstrap
aggregating (Bagging) is one example of such ensemble methods.

A decision stump is a one level decision tree. A decision stump uses only one
feature for splitting at the root level and is often used in the ensemble method called
boosting as a weak learner. A weak learner is a learner that has a classification
accuracy on new instances of just above random guessing.

Due to the complexity of the network traffic, NIDSs that use a single sensor cannot
give a complete runtime situational awareness of a complex system [7], [26]. This
has led designers to use multiple distinct sensors in modern NIDSs. The ensemble of
classifiers and sensor fusion techniques have been developed to answer the question
of how to effectively combine multiple sensor outputs to perform classification and
are discussed in the next section.

3.3. Techniques Used in Combining Multiple IDSs 43

3.3 Techniques Used in Combining Multiple IDSs

3.3.1 Sensor Fusion based Intrusion Detection Techniques

Sensor fusion refers to the concept of combining sensor data collected from multiple
distinct sources [87]. Its goal is to improve the accuracy or dependability of the data
as compared to the case where the data from each source is used individually. Sensor
fusion has been identified as a possible solution for improving the performance of
IDSs. In general, sensor fusion techniques for improving IDS performance involve
multiple observations, combinations of decisions and inferences via scenarios and
models [18]. Most of the sensor fusion techniques that have been successfully
applied to network intrusion detection are mainly based on methods like Bayesian
Inference, Dempster-Shafer Belief Theory, Voting Fusion Theory, Neural Network
and Logic OR operator to aggregate information. An overview of these techniques
is given below.

3.3.1.1 Bayesian Inference

Bayesian inference provides the mathematical framework for calculating the
likelihood of a hypothesis, given one or more pieces of evidence or observations,
according to the rules of probability [88]. More specifically, it establishes the
relationship between the revised (a posteriori) probability of a hypothesis, its apriori
probability, and the conditional probability of an observation given each hypothesis.
It uses this relationship to provide a posteriori probability of a hypothesis which is
the probability of a hypothesis being true given the evidence. It is defined as follows:

Given hypotheses H1, H2, ..., HM and suppose that they are exhaustive and mutually
exclusive hypotheses that explain the observed data S, then

p(Hj|S) =
p(S|Hj)p(Hj)

∑i p(S|Hi)p(Hi)
. (3.14)

and

∑
i

p(Hi) = 1. (3.15)

where p(Hi) is the probability that the hypothesis is true before considering the
data (evidence), p(S|Hi) is the probability of obtaining the data S given that the
hypothesis Hi is true and p(Hj|S) is the revised probability of Hj after considering
the data S (evidence).

For data that comes from several sensors S1, S2, ..., Sn

44 Chapter 3. Methodology and Data Description

p(Hj|S1 ∩ ...∩ Sn) =
p(Hj)p(S1|Hj)p(S2|Hj)...p(Sn|Hj)

∑i p(Hi)p(S1|Hi)p(S2|Hi)...p(Sn|Hi)
. (3.16)

The decision is usually based on the maximum a posteriori principle.

The applicability of Bayesian inference is limited by [18]

• the difficulty of defining prior probabilities for each hypothesis,

• the requirement of having to define the problem in terms of observations that
are mutually exclusive and exhaustive, and

• its computational complexity when applied to large scale problems with
multiple hypotheses and observations.

3.3.1.2 Dempster–Shafer Belief Theory

The Dempster–Shafer (DS) belief theory [89] is a mathematical theory of evidence
that provides a means for combining evidence from different sources to arrive
at a degree of belief (represented as a belief function) in a hypothesis that takes
into account of all available evidence. It is a generalization of Bayesian inference
that makes use of belief functions instead of probability distributions. It defines a
framework of discernment (FOD) denoted as Θ which is a finite set of all possible
mutually exclusive outcomes about some problem domain. The set of the possible
mutually exclusive subsets of the elements of Θ including Θ is called a power set
denoted by 2Θ. Each subset is defined as the hypothesis. The basic probability
assignment (BPA) reflects a degree of belief in a hypothesis or the degree to which the
evidence supports the hypothesis. The BPA over Θ denoted by m maps the power
set Θ to the interval [0, 1] such that the following conditions hold

m(∅) = 0

∑A⊆Θ m(A) = 1.
(3.17)

The elements of the power set that have non zero values of BPA are called focal
elements. From the basic probability assignment, two functions are defined, namely,
belief and plausibility functions. The belief function of set A quantifies the strength
of the belief that event A occurs. The belief for set A is the sum of all the BPA of the
proper subsets B of set A. The plausibility function of A is the degree to which one
believes that A is not false. The plausibility for set A is the sum of all the sets B that
intersect set A. The two functions can be formally represented as follows:

Bel(A) = ∑
B⊂A

m(B). (3.18)

3.3. Techniques Used in Combining Multiple IDSs 45

Pl(A) = 1− Bel(A) = ∑
A∩B 6=∅

m(B). (3.19)

The belief and plausibility provide the lower and upper bounds of the probability
interval that contains the precise probability of the set of interest.

Dempster’s rule of combination is a rule for combining degrees of belief when they
are based on independent items of evidence [89] and outputs a fused decision. Given
several belief functions, that are not entirely conflicting, on the same Θ based on
distinct or independent sources of evidence a new belief function using Dempster’s
rule of combination can be obtained. It is called the orthogonal sum of several
belief functions. The orthogonal sum Bel1 ⊕ Bel2 of two belief functions over Θ is
a belief function whose focal elements are all the possible intersections between the
combining focal elements and whose BPA is given by

m(A) =

∑Ai Bj=A m1(Ai)m2(Bj)

1−∑Ai Bj=∅ m1(Ai)m2(Bj)
, when A 6= ∅

0, when A = ∅.
(3.20)

The computational complexity involved in using DS belief theory grows
exponentially with the number of hypotheses associated with the problem.
The computational time necessary to perform inference using DS belief theory
disqualifies its use in many time critical operations.

3.3.1.3 Voting Fusion Theory

Voting is one of the oldest and the most widely used fusion decision method [90].
The fusion unit arrives at an agreement by a voting scheme like majority voting,
plurality voting, weighted majority voting, etc. In majority voting each sensor gives
a single class label as an output and the final class label output is assigned to the class
that receives more than half of the votes. The advantages of majority voting are its
simplicity and low error count since it makes an error if the majority of the sensors
are wrong. The drawback of majority voting is that no prediction is made by the
combined sensors if there is no class label that receives more than half of the votes
and the sample is rejected by the voting method [91]. In plurality voting, each sensor
gives a single class label as an output and the final output is assigned to the class
where most of the sensors have chosen as a class output. Plurality voting is easy
to use and simple. The downside to plurality voting is the possibility of winning
on a small number of votes and thus of a minority and probably erroneous win
[91]. Plurality voting coincides with majority voting if two classes are considered.
In weighted majority voting, the fusion rule assigns a weight to each sensor which

46 Chapter 3. Methodology and Data Description

indicates the degree of importance of the sensor output with respect to the final
output. More weights are assigned to accurate sensors.

3.3.1.4 Neural Networks

A neural network is a machine learning based computational model that is modelled
from the human brain and nervous system. It is a network of artificial neurons in
which each input feature called an input node is connected to one or more output
nodes. A typical artificial neuron is depicted in Figure 3.3.

FIGURE 3.3: Artificial neuron.

The basic architecture of a neural network consists of three types of neuron layers:
input, hidden and output layers. Figure 3.4 illustrates a multi-layered neural
network. The nodes in the input layer represent the variables in the dataset. In
the case of sensor fusion the input nodes represent the decisions of the sensors.

The hidden nodes in the hidden layer are linear combinations of the input variables
(or sensor decisions) in the form

ak = wk0 +
P

∑
i

wikxi. (3.21)

where the parameters wk0 are the biases and parameters wikare the weights that
represent the effect of the ith feature on the hidden node k. The quantities ak are
typically transformed using a non-linear function f (·) such as sigmoid or hyperbolic
tangent to give

hk = f (ak). (3.22)

3.3. Techniques Used in Combining Multiple IDSs 47

FIGURE 3.4: Multilayered artificial neural network.

A neural network may have more than one hidden layer and the number of hidden
layers, H, is one of the model parameters that need to be tuned. After the number
of hidden layers has been decided upon, the output is obtained from the following
linear transformation:

o(x) = α0 +
H

∑
k=1

αkhk. (3.23)

with o(x) being the weighted sum of the hidden nodes and αk the weight of each
hidden node. The number of hidden nodes affects the ability of the neural network
in separating the data. Too many ensure that the neural network correctly learns
and is able to predict the data it was trained on correctly, however, its ability to
generalise gets compromised. Too few may cause the neural network to fail to
learn the relationships amongst the data resulting in unacceptable error. Therefore
selection of the number of hidden nodes is an important decision.

Learning in neural network may fall under three categories:

• supervised learning in which an input vector is presented at the input layer
together with the set of the desired outputs, one for each node, at the output
layer.

48 Chapter 3. Methodology and Data Description

• unsupervised learning in which an output unit is trained to respond to clusters
of patterns with in the input. There is no prior set of classes into which
the patterns are to be categorised, the neural network must develop its own
representation of the input.

• reinforcement learning is learning what to do to optimise an objective function.
The learner discovers the best actions by trial and error search.

The neural network is prone to overfitting due to the amount of parameters the
model estimates. Several approaches have been proposed to address the overfitting
in a neural network with the early stopping approach being the mostly utilised
[92]. In early stopping, the neural network training is stopped at the smallest
generalisation error [93].

3.3.1.5 Logic OR Operator

The logic OR operator assigns the Boolean value true if one or both operands are true
and false otherwise. However, the use of the logic OR operator as a fusion method
leads to a high false positive rate.

3.3.2 Ensemble Methods Used in Intrusion Detection

The ensemble learning method combines several individual classifiers to obtain
better predictive performance than that obtained from the individual best classifier
in the ensemble. In this method, multiple classifiers are combined together to yield a
strong classifier. The use of several classifiers helps in finding the global solution that
leads to reduced false alarm rate and increased detection accuracy [44]. According
to Kuncheva [94], two types of ensembles exist, namely, decision optimization and
coverage optimization. In decision optimization, the optimal combining method is
chosen for a fixed ensemble of base classifiers (learners used in the ensemble). In
coverage optimization, optimality is obtained by creating different base classifiers
assuming a fixed combining method.

Several methods exist for constructing an ensemble of classifiers. These methods
include manipulation of the training dataset, manipulation of the input features,
manipulation of the output targets and injecting randomness into the learning
algorithm. In the manipulation of the input features method, the learning algorithm
is run on different subsets of the input features creating classifiers made up of
different features. This approach improves the computational efficiency of the
ensemble and increases its accuracy.

3.3. Techniques Used in Combining Multiple IDSs 49

In the manipulation of the output targets method, the output classes of the training
data that are given to the learning algorithm are altered. For example, if the number
of the output labels, N, is large, a new learning problem can be constructed by
randomly partitioning the N labels into two subsets Al and Bl . The input data
can then be relabelled so that any of the original in set Al are labelled as 0 and the
originals in set Bl are labelled as 1. This relabelled data is then given to the learning
algorithm. If this process (generating different subsets Al and Bl) is repeated K times
an ensemble consisting of different K classifiers is created

An example of injecting randomness to the learning algorithm is when initial
weights of the network are set randomly in the backpropagation algorithm for
training the neural network. If the algorithm is applied to the same training
instances but with different initial weights, the resulting classifiers can be quite
different.

In the manipulation of the training dataset method, the learning algorithm is run on
different distributions of the training dataset. This method is the mostly proposed
and implemented in literature [44]. Two of the most popular methods that utilise
the manipulation of training dataset method to construct an ensemble are boosting
and bootstrap aggregating (Bagging) [95] and they have been successfully used in
intrusion detection. Both of these techniques call a learning algorithm and run it
several times on different distributions of the training datasets. An overview of the
two methods is given below.

3.3.2.1 Boosting

In boosting, classifiers are trained in a sequence on different distributions of the
original training dataset. One method of obtaining the various distributions of the
original training dataset is to assign weights on the training dataset instances at each
iteration with bigger weights given to the instances that were incorrectly classified
by the previous classifier. Boosting combines the predictions of the classifiers and
votes on the final prediction using weighted majority voting.

Boosting reduces the bias and variance of the predictions. Boosting methods
are sensitive to outliers and noise, especially for small datasets [94]. A popular
boosting algorithm is that of Freund and Schapire [96] called an adaptive boosting
(AdaBoost) algorithm. The AdaBoost algorithm is an ensemble based machine
learning algorithm that can be combined with other machine learning classifiers
in order to boost their classification performances. In AdaBoost, a base learner is
called for a specific number of iterations. For the first iteration, instances are given
equal weights. For the successive iterations, the weights distribution is modified
such that instances that were incorrectly classified by the base learner in the previous
iteration are given bigger weights so that in the current iteration the base learner may

50 Chapter 3. Methodology and Data Description

concentrate on classifying correctly those previously misclassified instances. The
final decision of the ensemble is obtained by combining, using weighted majority
voting, the decisions of the base learners in those iterations. The pseudocode for the
AdaBoost algorithm from [97] can be found in Algorithm 2. AdaBoost is less prone
to overfitting [97] and its implementation is easy. It is sensitive to noise and cannot
adapt to new data changes. However, the latter drawback can be overlooked since
the algorithm was not developed for that.

Algorithm 2 Pseudocode for the AdaBoost Algorithm
Given:(x1, y1), ..., (xm, ym) where xi ∈ X, yi ∈ {−1,+1}
Initialize: D1(i) = 1/m for i = 1, · · · , m.
For t = 1, · · · , T :
• Train weak learner using distribution Dt.
• Get weak hypothesis ht : X→ {−1,+1}.
• Aim: select ht with low weighted error: εt = Pri∼Dt [ht(xi) 6= yi].
• Choose αt =

1
2 ln

(1−εt
εt

)
.

• Update,for i = 1, · · · , m :
Dt+1(i) =

Dt(i)exp(−αt yi ht(xi))
Zt

where Zt is a normalization factor (chosen so that Dt+1 will be a distribution).
Output the final hypothesis: H(x) = sign

(
∑T

t=1 αt ht(x)
)
.

3.3.2.2 Bootstraps Aggregating (Bagging)

In Bagging, each training set is created by forming a bootstrap replica of the original
training set. That is, if there is a training set S with m instances a new set S′ is
generated from S by randomly sampling with replacement m instances. This creates
samples where some of the instances will appear more than once while some do not
appear at all. If T bootstrap samples are generated then for each bootstrap sample
a classifier Ci is built. A final classifier C∗ is built from these formed classifiers and
the output of the final classifier is obtained by combining the outputs of the formed
classifiers by majority voting with ties arbitrarily broken. The Bagging algorithm
from [98] is given in Algorithm 3.

Bagging requires that the base classifiers (classifiers used in the ensemble) are
unstable so that the small changes in the training set may result in different
classifiers. Bagging reduces the variance of the predictions made by the base
classifiers [41] and is effective on noisy data [44].

3.4. Selection of Techniques 51

Algorithm 3 Bagging Algorithm
Input: training set S, learning algorithm I , number of boostrap samples T

For t = 1, · · · , T :
• S′ = bootstrap sample from S (i.i.d sample with replacement).
• Ci = I(S′).

C ∗ (x) = arg max
y∈Y

∑i:Ci(x)=y 1 (the most often predicted label y)

Output: classifier C∗.

3.4 Selection of Techniques

In intrusion detection literature techniques or algorithms used to build individual
IDSs originating from different fields such as statistics, machine learning, data
mining, etc. Therefore in this Thesis, we used statistical and learning based
techniques to construct individual IDSs since statistical and machine learning based
techniques are amongst the used techniques. The statistical based algorithms used
in this work were an adaptive threshold and cumulative sum based algorithms.
The adaptive threshold algorithm was used because of its ease to implement. The
cumulative sum based algorithm was selected since it is commonly used in anomaly
based intrusion detection. The learning based techniques used in this Thesis are
decision tree, decision stump and fuzzy logic. The decision tree was used because
of its ease to implement. The decision stump was chosen since it is one of the
commonly used weak learners in ensemble methods. Uncertainty is an intrinsic
characteristic of intrusion analysis, therefore fuzzy logic was used since it is a
powerful learning based tool in reason under uncertainty.

For the sensor combining techniques used in intrusion detection, the logic OR
operator as a sensor fusion method and ensemble methods boosting and Bagging
were used. The logic OR operator was used since it easy to implement and always
leads to improved detection probability. The outcomes of the two algorithms were
simply 1 or 0 therefore it was not necessary to use techniques like DS and NN that
are complex to implement or to use voting methods since we had only two outcome
in the case of majority voting or having to find a strategy of assigning weights to
each algorithm in order to perform weighted voting when the logic OR operator
could easily combine the outcomes and provide an improved detection probability.
To compensate for the high false positive rate associated with logic OR operator
the parameters of the algorithms were tuned in such a way that the best accuracy
was achieved. The ensemble techniques boosting and Bagging were selected since
they are the mostly used ensemble methods and have the ability to optimise the
performance of an IDS. This ability to optimise the performance of an IDS is utilised
in finding the performance bounds of IDSs.

52 Chapter 3. Methodology and Data Description

3.5 Datasets

The DARPA 99, NSL KDD and CICIDS2017 datasets were utilised in this Thesis. The
individual IDSs were built and tested using the DARPA 99 and NSL KDD datasets.
Even though the DARPA dataset is old, it was used in this study since it is the mostly
used dataset in literature in testing detection and false alarm rates of an IDS [99].
Kumar and Kumar [44] criticised the use of the KDD 99, hence in this work the NSL
KDD which is a refined KDD Cup 99 data was used. The NSL KDD advantage over
the Kyoto 2006+ is that it specifies the attacks whereas the Kyoto 2006+ does not.
The inability of the Kyoto 2006+ dataset to specify attacks is limiting in the sense
that researchers may never be able to build IDSs for specific attacks. The IDS built
using the Kyoto 2006+ will have to be used to detect all types of attacks. However,
the work of Kayacik et al. [100] has indicated that certain attributes are more relevant
in detecting certain attacks which means this finding can never be used to improve
the performance of IDSs in the context of the Kyoto 2006+. Therefore in this study,
the NSL KDD dataset which allows the selection and use of relevant features in
detecting specific attacks as indicated in [100] was used and using relevant features
in detecting a specific attack improves the performance of the built IDS.

In this Thesis, the performance bounds of the NIDSs are obtained via a supervised
learning approach. In supervised learning the classification algorithm learns from
labelled training data. Therefore the NSL KDD and the CICIDS2017 datasets were
used.

3.5.1 DARPA 99

Simulated network traffic obtained from MIT Lincoln Laboratory, i.e. DARPA
1999 dataset [101], was used in this study. The dataset consists of three weeks
of training data where the training data for the first and third weeks are attack
free. This training data was provided for offline evaluation of intrusion detection
systems. The attack free training data was provided for training anomaly based
IDSs. The test dataset consists of two weeks of network based attacks in the midst
of normal background data. The dataset consists of different types of attacks that
are categorised into probes, denial of service attack, user to root attack and remote
to user attack. We used a training data that had no attacks taken on a Monday of the
first week, with the packets collected between 08:00 to 17:00. Attack free data was
selected so that we could have control on the attacks launched and test the utility of
the privatised network trace in terms of false positive rate.

3.5. Datasets 53

3.5.2 NSL KDD

The NSL KDD [102] dataset was also utilised in this study. The NSL KDD dataset
was created from the KDD99 dataset [103] by taking out duplicate and redundant
instances and decreasing the size of the dataset. The KDD99 dataset is a revised
version of the DARPA 98 MIT Lincoln Lab dataset [101] that was summarized into
network connections. Each network connection is a single row vector that consists
of 41 features and is marked as either a particular attack type or normal. The list of
all 41 features can be found in [100]. In this work, the network connections are also
referred to as cases.

The dataset consists of different types of attacks that are categorised into denial of
service attack, remote to user attack, user to root attack and probes and are depicted
in Table 3.2. The four attack categories are described below.

• In denial of Service (DoS) legitimate users are prevented from utilising a
service.

• In remote to local (R2L) the attacker attempts to get access to a machine (victim)
that they do not have an account on.

• In user to root (U2R) the attacker attempts to get super user rights to a machine
that they have local access to.

• In probe, the attacker attempts to get information about the target host.

TABLE 3.2: The different attacks in the KDD99 dataset that fall into
the four attack categories

Attack Categories Attacks
Denial of Service Land, back, Neptune, smurf, pod and teardrop
User to Root Buffer overflow, load module, perl and rootkit

Remote to local
Imap, ftp write, guess passwd, phf , multihop,spy, warezmaster
and warezclient

Probes Satan, ipsweep, nmap and portsweep

3.5.3 CICIDS2017

The Canadian Institute for Cybersecurity created the CICIDS2017 dataset [104] in
2017. It consists of realistic benign traffic and updated family of attacks [105].The
dataset consists of 80 features. The dataset includes seven attack families, namely,
brute force, heartbleed, botnet, denial of service, distributed denial of service, web
and infiltration.

54 Chapter 3. Methodology and Data Description

3.6 Summary

In this Chapter, some of the intrusion detection techniques used in individual and
combining multiple intrusion detection systems used for classifying instances or
detecting attacks were presented. These include: adaptive threshold algorithm,
cumulative sum based algorithm, decision tree and fuzzy logic for individual IDSs
and Bayesian inference, Dempster Shafer belief theory, voting fusion theory, neural
networks, logic OR operator, boosting and Bagging for combining multiple IDSs. A
brief description of the datasets that will be used to test the Thesis statements was
given.

55

Chapter 4

Performance Evaluation of
Network Intrusion Detection
Systems for Detecting
Transmission Control Protocol
Synchronised Flooding Attack

This Chapter evaluates the performances of existing individual NIDSs and NIDSs
based on combining multiple sensors for the detection of the TCP SYN flooding
attack in order to illustrate what the existing NIDSs can achieve. This performance
serves as a benchmark to what is currently achievable. The individual based
intrusion detection algorithms that are considered in this study are the adaptive
threshold algorithm, cumulative sum based algorithm, the decision tree and the
fuzzy logic based system. The combining multiple sensors algorithm that is used
is the logic OR operator.

4.1 Introduction

Transmission Control Protocol Synchronised (TCP SYN) flooding attack is an attack
that leads to denial of service to legitimate clients. In this attack, the attacker
sends a large number of TCP SYN messages to a server. The server replies with
Synchronised/Acknowledgement (SYN/ACK) messages, however, the attacker
never acknowledges these SYN/ACK messages resulting in a large number of half
open connections on the server using up its resources. This continues until the
entire server’s resources are used up and the server is no longer able to accept any
new TCP SYN connection request which leads to legitimate clients being unable to
access the services offered by the server. Unavailability of service to clients is very
costly to organisations that provide online services, for example, if an organisation

56
Chapter 4. Performance Evaluation of Network Intrusion Detection Systems for

Detecting Transmission Control Protocol Synchronised Flooding Attack

sells products online TCP SYN flooding attack will have adverse effect on the sales
of those organisation’s products and hence affect the revenue and profit made
by that organisation. Network security measures are therefore needed to protect
information systems against this threat or attack. The network security research
community has proposed several methods of detecting TCP SYN flooding attack
[36], [106]–[111]. These methods have their origin in statistics, machine learning
and data mining , to mention a few. These methods utilise different network traffic
measurements to detect TCP SYN flood attack, for example, the number of SYN
packets received in a given time interval, filtering the network packets in terms
of the TCP header and Internet Protocol header characteristics using payload, etc.
Beaumont-Gay [112] compared three TCP SYN flood attack methods, which used
different traffic measurements, in terms of detection time and quiescence time.
Beaumont-Gay reported that one method was good at both times, while another
method was good in detection time and the last method was good in quiescence
time.

The existing individual NIDSs used in this Chapter originate from statistical and
learning methods. The statistical based algorithms utilised are anomaly based
algorithms called adaptive threshold and cumulative sum based algorithms. The
learning based algorithms used are the decision tree and fuzzy logic system. The
outcomes of the two anomaly based algorithms in detecting the TCP SYN flood
attack are combined using the logic OR operator to improve the algorithms detection
probability.

The rest of the Chapter is organised as follows, Section 4.2 implements two anomaly
based algorithms for the detection of the TCP SYN flooding attacks. Furthermore,
their outcomes are combined using the logic OR operator to improve the true
positive rate (TPR) and detection delay (DD) of the NIDSs. Followed by the
implementation of two learning based NIDSs for predicting the TCP SYN flood
attack in Section 4.3. The Chapter is concluded by a brief summary.

4.2 Implementation of the Anomaly based Intrusion Detection
Algorithms for Detecting the TCP SYN Flooding Attack

Two anomaly detection algorithms for detecting the TCP SYN flooding attack
from the work of Siris and Papagalou [36] are implemented on synthetic attacks
generated according to a Poisson process as in [36] and constant rate arrivals. The
two algorithms are a cumulative sum (CUSUM) based algorithm and an adaptive
threshold algorithm which have their origin in Statistics. Furthermore, the decisions
of the algorithms are combined using the logic OR operator in order to improve
the detection probability since sensor fusion is known for improving the detection
probability. In their work [36], the cumulative sum (CUSUM) based algorithm

4.2. Implementation of the Anomaly based Intrusion Detection Algorithms for
Detecting the TCP SYN Flooding Attack

57

performed better than the adaptive threshold algorithm in terms of detecting low
intensity SYN flood attacks. Hence, in this research the decision of the two
algorithms are combined to get the improved detection probability. This work
extends the work of [36] and literature by introducing new synthetic attacks that
are generated according to constant rate arrivals, evaluating the performance of [36]
algorithms in these new attacks and comparing the performance of these algorithms
on the two attacks. The detecting probability of the two algorithms is enhanced by
fusing the algorithms’ outcomes.

4.2.1 Dataset

Simulated network traffic obtained from MIT Lincoln Laboratory, i.e. DARPA 1999
dataset, was used in this section and the detailed description of this data is given in
Section 3.5. We used attack-free data taken on a Monday, with the packets collected
between 08:00 to 17:00 i.e. collected over 9 hours. The data was filtered for the
Transmission Control Protocol (TCP) Synchronise (SYN) packets. The number of
TCP SYN packets in a 10 second interval was the traffic measurement of interest
in this study. The number of TCP SYN packets in 10 second intervals over the 9
hours were determined and used to detect the TCP SYN flooding attack using the
two algorithms. Algorithm 4 illustrates how the number of TCP SYN packets in 10
second intervals over the 9 hours were determined.

Algorithm 4 Attack free TCP SYN packet counts in every 10s interval.
Given the arrival times of the attack free TCP SYN packets

• Break the range of the TCP SYN packets arrival times to 10s intervals
• Calculate the number of TCP SYN packets that arrived in each 10s interval
• Store these packet counts in a vector

4.2.2 Attack Generation

In this section, the attacks were generated synthetically. We generated two types
of attacks, namely, those that arrived in accordance to a Poisson process as in
[36] and those that arrived at a constant rate. In a Poisson, process the arrivals
follow a Poisson distribution and the interarrival times between successive arrivals
are independent and exponentially distributed. In the constant arrival rate, the
interarrival times between successive arrivals are the same. Similarly to the work
of [36], we generated the Poisson attacks such that the interarrival times between
successive attacks follow an exponential distribution with a mean of 460 time
intervals. This resulted in the average number of attacks to be approximately
seven attacks in 9 hours (08:00 to 17:00). The work of [36] used synthetic attacks
(Poisson process attacks) in order to have control over the characteristics of the

58
Chapter 4. Performance Evaluation of Network Intrusion Detection Systems for

Detecting Transmission Control Protocol Synchronised Flooding Attack

attacks. Similarly to the work of [36], we used synthetic attacks in order to have
control of the characteristics of the attacks. The constant rate attacks were chosen
arbitrarily as different attacks since this work extends the work of [36] by comparing
the performance of their algorithms to two different attacks. Different attack arrival
rates were not explored since this work extends the work of [36] by comparing the
performance of the two anomaly based algorithms on the two attacks. The duration
of both attacks was 300s since in [36] the attacks on average had a duration of 600s.

Siris and Papagalou [36] generated low and high intensity attacks. The high intensity
attacks had a mean amplitude that was 250% more than the mean traffic rate while
the low intensity attacks had a mean amplitude that was 50% of the mean traffic
rate. In this study, we only considered low intensity attacks since being able to detect
them is important because they are not so obvious in the network traffic and they
were defined exactly like in [36]. Algorithms 5 and 6 respectively illustrates how the
attacks arriving according to a constant rate and Poisson process were added to the
traffic free data.

Algorithm 5 Addition of the attacks arriving according to a constant rate.
Do

Break the range of 10s intervals obtained in Algorithm 4 into 300s intervals (30 10s
intervals, since the duration of the attack is 300s)
For every 300s intervals

1. Calculate the mean number of attack free TCP SYN packets in each 300s
interval, denoted by meanRate.

2. Using the above mean, calculate the number of TCP SYN attack packets to be
added in the intervals such that the mean amplitude of the traffic in each 300s
interval is 50% of the mean traffic rate as follows:

number of attack TCP SYN packet to be added = 0.5∗meanRate
3. Add the obtained number of attack TCP SYN packets in each 300s interval to

the number of attack free TCP SYN packets in the corresponding 300s intervals.
end

4.2.3 Performance Metrics and Parameters

Siris and Papagalou [36] used detection delays (DD), true positive rate (TPR) or
detection probability (DP) and false positive rate (FPR) or false alarm rate (FAR)
as performance metrics. In this research, the same performance metrics were used.
Algorithms 7 and 8 illustrate how the true positive and false positive rates of the two
anomaly based intrusion detection algorithms were respectively obtained.

We included the false negative rate (FNR) in order to determine the equal error rate
(EER). The EER was used in choosing the two algorithms’ detection thresholds to be
used in the fusion of the two algorithms’ outcomes. Accuracy was also included as a

4.2. Implementation of the Anomaly based Intrusion Detection Algorithms for
Detecting the TCP SYN Flooding Attack

59

Algorithm 6 Addition of the attacks arriving according to a Poisson process.
Do

1. Generate Poisson arrivals to get attack arrival times.
2. For each generated attack arrival time determine the 10s interval it falls in.
3. From each determined 10s interval add 29 more 10s intervals to make 300s

(since the attack duration is 300s)
For each of the determined 300s intervals

1. Calculate the mean number of attack free TCP SYN packets in each 300s
interval first, denoted by meanRateP.

2. Using the above mean, calculate the number of TCP SYN attack packets to be
added in the intervals such that the mean amplitude of the traffic in each 300s
interval is 50% more than the mean traffic rate as follows:

number of attack TCP SYN packet to be added = 0.5∗meanRateP
3. Add the obtained number of attack TCP SYN packets in each 300s interval to

the number of attack free TCP SYN packets in the corresponding 300s intervals.
end
end

performance metric that was used to tune the parameters of the two anomaly based
algorithms. These performance measures were described in Section 3.1.

Initially, the two anomaly based algorithms were implemented for both the Poisson
process and constant rate attacks using the parameter values that were used by Siris
and Papagalou [36] of an α of 0.5 and a β of 0.98. The detection threshold parameters
k and h ranging between 1 and 10 and 1 and 20 respectively were used. The detection
threshold values were selected such that the TPR and FPR values were forced to
approach zero in order to obtain the EER value. The EER value was utilised to decide
on the detection thresholds of the two anomaly based algorithms to be used in fusing
the two algorithm outcomes.

For the constant rate attacks,

• the EER of the adaptive threshold algorithm fell between k = 2 and k = 3,
therefore, our optimal k is any k ≤ 2 i.e. where the false negative rate is less
than the false positive rate. Figure 4.1a depicts this.

• the EER of the CUSUM algorithm fell between h = 6 and h = 7 as shown in
Figure 4.1b. Therefore the optimal h is any h ≤ 6 .

• the results of the adaptive threshold algorithm for k = 1, 2 and 3 thresholds
were combined with the results of the CUSUM algorithm for h = 5, 6 and
7 thresholds using the logic OR operator. We included k = 3 and h = 7
thresholds so that we do not compare the results for only two threshold values
and these thresholds can be used when one wants to also operate around the
EER. We chose h = 5 and 6 thresholds (instead of h = 1 and 2) since they
are two thresholds away from the EER like k = 1 and 2 are two thresholds

60
Chapter 4. Performance Evaluation of Network Intrusion Detection Systems for

Detecting Transmission Control Protocol Synchronised Flooding Attack

Algorithm 7 True positive rate calculation for the two anomaly based intrusion
detection algorithms for the two attacks.
Given the attacked data and the 300s intervals (30 10s intervals) where the attacks
were added.
Do,

• For each of the considered 300s intervals
check if there is at least one detection in the 30 10s intervals
if so
true positive = 1
else
true positive = 0
end
store the outcome (0 or 1) in a vector.
end

• TPR = number of ones in the above vector
number of the considered 300s intervals

end

Algorithm 8 False positive rate calculation for the two anomaly based intrusion
detection algorithms for the two attacks.
Given the attack free data and the 300s intervals (30 10s intervals) that correspond to
the
300s intervals where the attacks were added.
• For each of the considered 300s intervals check if there is at least one detection

in the 30 10s intervals
if so
false positive = 1
else
false positive = 0
end
store the outcome (0 or 1) in a vector.
end
FPR = number of ones in the above vector

number of the considered 300s intervals

away from the EER. Therefore we used two thresholds before EER (optimal
thresholds) and one threshold after the EER as a standard procedure for
choosing thresholds for fusing the decisions of the two anomaly based NIDSs
using the logic OR operator.

4.2. Implementation of the Anomaly based Intrusion Detection Algorithms for
Detecting the TCP SYN Flooding Attack

61

(A) adaptive threshold algorithm. (B) CUSUM based algorithm.

FIGURE 4.1: False negative rates and false positive rates plotted
against the detection thresholds of the two algorithms for the constant

rate attacks at α of 0.5 and a β of 0.98.

For the Poisson process attacks,

• the EER of the adaptive threshold algorithm fell between k = 3 and k = 4,
therefore, the optimal k is any k ≤ 3. Figure 4.2a illustrates this.

• the EER of the CUSUM algorithm fell between h = 4 and h = 5 as shown in
Figure 4.2b. Therefore the optimal h is any h ≤ 4.

• the results of the adaptive threshold algorithm for k = 2, 3 and 4 thresholds
were combined with the results of the CUSUM algorithm for h = 3, 4 and 5
thresholds using the logic OR operator. The three thresholds per threshold
parameter were chosen since we use two thresholds before EER (optimal
thresholds) and one threshold after the EER as a standard procedure for
choosing thresholds for fusing the decisions of the two anomaly based NIDSs
using the logic OR operator.

62
Chapter 4. Performance Evaluation of Network Intrusion Detection Systems for

Detecting Transmission Control Protocol Synchronised Flooding Attack

(A) adaptive threshold algorithm. (B) CUSUM based algorithm.

FIGURE 4.2: False negative rates and false positive rates plotted
against the detection thresholds of the two algorithms for the Poisson

process attacks at α of 0.5 and a β of 0.98.

We then tuned the parameters for the constant rate and Poisson process attacks
instead of just using the parameters proposed by [36]. The parameters were chosen
based on the alpha beta combination that yielded the highest accuracy across all
thresholds. For the constant rate attacks the chosen parameters were an α of 0.2 and
a β of 0.99 with k ranging between 1 and 10 for the adaptive threshold algorithm
and an α of 0.21 and a β of 0.98 with h ranging between 1 and 9 for the CUSUM
based algorithm. For the Poisson process attacks the chosen parameters were an α

of 0.6 and a β of 0.98 with k ranging between 1 and 10 for the adaptive threshold
algorithm and an α of 0.8 and a β of 0.97 with h ranging between 1 and 12 for the
CUSUM based algorithm.

For the constant rate attacks,

• the EER of the adaptive threshold algorithm fell between k = 3 and k = 4,
therefore, the optimal k is any k ≤ 3. Figure 4.3a shows this.

• the EER of the CUSUM algorithm fell at h = 5 as depicted in Figure 4.3b.
Therefore the optimal h is any h ≤ 5.

• the results of the adaptive threshold algorithm for k = 2, 3 and 4 thresholds
were combined with the results of the CUSUM algorithm for h = 3, 4 and 6
thresholds using the logic OR operator. The three thresholds per threshold
parameter were chosen since we use two thresholds before EER (optimal
thresholds) and one threshold after the EER as a standard procedure for
choosing thresholds for fusing the decisions of the two anomaly based NIDSs
using the logic OR operator.

4.2. Implementation of the Anomaly based Intrusion Detection Algorithms for
Detecting the TCP SYN Flooding Attack

63

(A) adaptive threshold algorithm. (B) CUSUM based algorithm.

FIGURE 4.3: False negative rates and false positive rates plotted
against the detection thresholds of the two algorithms for the constant

rate attacks after tuning the parameters.

For the Poisson process attacks,

• the EER of the adaptive threshold algorithm fell between k = 3 and k = 4,
therefore, the optimal k is any k ≤ 3. Figure 4.4a depicts this.

• the EER CUSUM algorithm was at h = 6 as shown in Figure 4.4b. Therefore
the optimal h is any h ≤ 5.

• the results of the adaptive threshold algorithm for k = 2, 3 and 4 thresholds
were combined with the results of the CUSUM algorithm for h = 4, 5 and 7
thresholds using the logic OR operator. The three thresholds per threshold
parameter were chosen since we use two thresholds before EER (optimal
thresholds) and one threshold after the EER as a standard procedure for
choosing thresholds for fusing the decisions of the two anomaly based NIDSs
using the logic OR operator.

64
Chapter 4. Performance Evaluation of Network Intrusion Detection Systems for

Detecting Transmission Control Protocol Synchronised Flooding Attack

(A) adaptive threshold algorithm. (B) CUSUM based algorithm.

FIGURE 4.4: False negative rates and false positive rates plotted
against the detection thresholds of the two algorithms for the Poisson

process attacks after tuning the parameters.

Based on the optimal thresholds the average accuracy of the CUSUM based
algorithm was the lowest of the three algorithms in both attacks whereas in the
work of [36] the CUSUM based algorithm outperformed the adaptive threshold
algorithm. To improve the performance of the CUSUM based algorithm we changed
the calculation of variance from using the previous thirty 10s interval samples to
using the exponential weighted moving variance for both attacks. We tuned the
CUSUM based algorithm parameters to obtain the alpha and beta combination that
leads to the highest average accuracy across all thresholds. For the constant rate
attacks, the chosen parameters were an α of 1 and a β of 0.46 with h ranging between
1 and 100. For the Poisson process attacks, the chosen parameters were an α of 1 and
a β of 0.4 with h ranging between 1 and 100.

For the constant rate attacks,

• the CUSUM algorithm EER was at h = 55 as illustrated in Figure 4.5a .
Therefore the optimal h is any h ≤ 54.

• the results of the adaptive threshold algorithm for k = 2, 3 and 4 thresholds
(previously obtained when we tuned the parameters the first time) were
combined with the results of the CUSUM algorithm for h = 53, 54 and 56
thresholds using the logic OR operator. The three thresholds were chosen
since we use two thresholds before EER (optimal thresholds) and one threshold
after the EER as a standard procedure for choosing thresholds for fusing the
decisions of the two anomaly based NIDSs using the logic OR operator.

For the Poisson process attacks,

• the CUSUM algorithm EER was at h = 60 to 66 as illustrated in Figure 4.5b.
Therefore the optimal h is any h ≤ 59.

4.2. Implementation of the Anomaly based Intrusion Detection Algorithms for
Detecting the TCP SYN Flooding Attack

65

• the results of the adaptive threshold algorithm for k = 2, 3 and 4 thresholds
(previously obtained when we tuned the parameters the first time) were
combined with the results of the CUSUM algorithm for h = 58, 59 and 67
thresholds using the logic OR operator. The three thresholds were chosen
since we use two thresholds before EER (optimal thresholds) and one threshold
after the EER as a standard procedure for choosing thresholds for fusing the
decisions of the two anomaly based NIDSs using the logic OR operator.

(A) Constant rate attacks. (B) Poisson process attacks.

FIGURE 4.5: False negative rates and false positive rates plotted
against the detection thresholds of the CUSUM based algorithm after
modifying the variance of the CUSUM based algorithm for the two

attacks.

4.2.4 Results

4.2.4.1 Poisson Process Attacks Results

Results presented in Tables 4.1, 4.2 and 4.3 show that the logic OR operator detects
TCP SYN flood attacks significantly better and quicker, however, its false positive
rate is higher than those of the other two algorithms. Furthermore, the accuracy of
the logic OR operator is worse than those of the other two algorithms. Based on the
optimal threshold values in Tables 4.1, 4.2 and 4.3 the logic OR operator’s average
detection probability is significantly better than those of the two algorithms with the
percentage improvement of 45% to that of the CUSUM based algorithm and 14% to
that of the adaptive threshold algorithm.

4.2.4.2 Poisson Process Attacks Results after Tuning the Parameters

Results presented in Tables 4.4, 4.5 and 4.6 show that the logic OR operator detects
TCP SYN flood attacks significantly better and quicker. Furthermore, the logic OR
operator has an accuracy that is slightly better than that of CUSUM based algorithm,

66
Chapter 4. Performance Evaluation of Network Intrusion Detection Systems for

Detecting Transmission Control Protocol Synchronised Flooding Attack

TABLE 4.1: Adaptive threshold algorithm results for detecting
Poisson process attacks at α = 0.5 and β = 0.98

Optimal
Threshold

Detection
Probability

False Positive
Rate

Accuracy
Detection Delay
(10s interval)

k = 2 1.0000 0.9167 0.5417 10.4
k = 3 0.9167 0.5833 0.6667 14.3
k = 4 0.4167 0.2500 0.5833 20.8

Average 0.7778 0.5833 0.5972 15.1

TABLE 4.2: Cumulative sum based algorithm for detecting Poisson
process attacks at α = 0.5 and β = 0.98

Optimal
Threshold

Detection
Probability

False Positive
Rate

Accuracy
Detection Delay
(10s interval)

h = 3 0.6667 0.5833 0.54167 17.3
h = 4 0.5833 0.5000 0.54167 18.2
h = 5 0.5833 0.2500 0.6667 20.7

Average 0.6111 0.4444 0.5833 18.7

TABLE 4.3: Logic OR operator results for detecting the Poisson
process attacks

Optimal
Threshold

Detection
Probability

False Positive
Rate

Accuracy
Detection Delay
(10s interval)

k = 2, h = 3 1.0000 0.9167 0.5417 9.3
k = 3, h = 4 0.9167 0.9167 0.5000 12.2
k = 4, h = 5 0.7500 0.5833 0.5834 16.8

Average 0.8889 0.8056 0.5417 12.7

however, its false positive rate is higher than those of the other two algorithms.
Based on the optimal thresholds values in Tables 4.4, 4.5 and 4.6 the logic OR
operator’s:

• average detection probability is significantly better than those of the two
algorithms with the percentage improvement of 52% to that of the CUSUM
based algorithm and 19% to that of the adaptive threshold algorithm.

• average accuracy is slightly better than that of the CUSUM based algorithm by
3%.

TABLE 4.4: Adaptive threshold algorithm results for detecting
Poisson process attacks after tuning the parameters with α = 0.6 and

β = 0.98

Optimal
Threshold

Detection
Probability

False Positive
Rate

Accuracy
Detection Delay
(10s interval)

k = 2 1.0000 0.8333 0.5833 10.4
k = 3 0.8333 0.4167 0.7083 15.1
k = 4 0.4167 0.1667 0.6250 20.8

Average 0.7500 0.4722 0.6389 15.4

4.2. Implementation of the Anomaly based Intrusion Detection Algorithms for
Detecting the TCP SYN Flooding Attack

67

TABLE 4.5: Cumulative sum based algorithm for detecting Poisson
process attacks after tuning the parameters with α = 0.8 and β = 0.97

Optimal
Threshold

Detection
Probability

False Positive
Rate

Accuracy
Detection Delay
(10s interval)

h = 4 0.5833 0.5833 0.500 17.8
h = 5 0.5833 0.5000 0.5417 19.3
h = 7 0.5833 0.1667 0.7083 21.6

Average 0.5833 0.4167 0.5833 19.6

TABLE 4.6: Logic OR operator results for detecting the Poisson
process attacks after tuning the parameters

Optimal
Threshold

Detection
Probability

False Positive
Rate

Accuracy
Detection Delay
(10s interval)

k = 2, h = 4 1.0000 0.9167 0.5417 9.3
k = 3, h = 5 0.9167 0.7500 0.5834 13.1
k = 4, h = 7 0.7500 0.3333 0.7084 16.8

Average 0.8889 0.6667 0.6111 13.1

4.2.4.3 Poisson Process Attacks Results with Modified CUSUM based Algorithm
Variance

Results presented in Tables 4.4, 4.7 and 4.8 show that the logic OR operator detects
TCP SYN flood attacks significantly better and quicker. Furthermore, the logic OR
operator has an accuracy that is slightly better than that of the adaptive threshold
algorithm, however, its false positive rate is higher than those of the other two
algorithms. Based on the optimal threshold values in Tables 4.4, 4.7 and 4.8 the
logic OR operator’s:

• average detection probability is significantly better than those of the two
algorithms with the percentage improvement of 14% to that of the CUSUM
based algorithm and 22% to that of the adaptive threshold algorithm.

• average accuracy is slightly better than that of the adaptive threshold
algorithm by 2%.

Modifying the variance of the CUSUM based algorithm also lead to a higher
average detection probability, average accuracy and average detection delay and
lower average false positive rate for the Poisson attacks than those of the adaptive
threshold algorithm. This result agrees with the work of [36] which means how the
variance is calculated in the CUSUM algorithm has an effect on the performance of
this algorithm.

68
Chapter 4. Performance Evaluation of Network Intrusion Detection Systems for

Detecting Transmission Control Protocol Synchronised Flooding Attack

TABLE 4.7: Cumulative sum based algorithm for detecting Poisson
process attacks with modified CUSUM based algorithm variance

with α = 1 and β = 0.4

Optimal
Threshold

Detection
Probability

False Positive
Rate

Accuracy
Detection Delay
(10s interval)

h = 58 0.8333 0.2500 0.7917 13.8
h = 59 0.8333 0.2500 0.7917 13.8
h = 67 0.7500 0.1667 0.7917 14

Average 0.8056 0.2222 0.7917 13.9

TABLE 4.8: Logic OR operator results for detecting the Poisson
process attacks with modified CUSUM based algorithm variance

Optimal
Threshold

Detection
Probability

False Positive
Rate

Accuracy
Detection Delay
(10s interval)

k = 2, h = 58 1.0000 0.9167 0.5417 7.0
k = 3, h = 59 0.9167 0.5833 0.6667 8.9
k = 4, h = 67 0.8333 0.3333 0.7500 10.9

Average 0.9167 0.6111 0.6528 8.9

4.2.4.4 Discussion of the Algorithms Performance on Detecting the Poisson
Process Attacks

What is observed from the results in Subsubsections 4.2.4.1, 4.2.4.2 and 4.2.4.3 is that

• the logic OR operator has outperformed the two anomaly based algorithms
in terms of detection probability and detection delay. These results are to
be expected since the logic OR operator takes the best outcome(s) of the two
anomaly based algorithms. That is, if at least one algorithm correctly detected
the attack then the logic OR operator will detect that attack.

• the logic OR operator has the worst false positive rate, this is justified since it
aggregates the errors of the two anomaly based algorithms. That is, if at least
one of the two anomaly based algorithm incorrectly labels normal traffic as an
attack then the logic OR operator will label that instant as an attack even if the
other algorithm correctly labelled that instant as normal. This increases the
number of false positives and hence the false positive rate.

• the accuracy of the logic OR operator is at least worse than one of the anomaly
based algorithms. This is to be expected due to the high false positive rate of
the logic OR operator.

4.2. Implementation of the Anomaly based Intrusion Detection Algorithms for
Detecting the TCP SYN Flooding Attack

69

4.2.4.5 Comparing the Algorithms Results for the Poisson Process Attacks at the
Different Parameters

In this work, the performance of this algorithm at different parameters is based on
the tradeoff between the FNR and the FPR where the EER is used to gauge the
performance of the algorithm. The algorithms’ results at α = 0.5 and β = 0.98,
Figures 4.2a and 4.2b, are used as a baseline for comparison. When the parameters
of the adaptive threshold and CUSUM based algorithms were tuned (Figures 4.4a
and 4.4b), based on the optimal thresholds the new parameters lead to the following:

The adaptive threshold algorithm’s EER at α = 0.6 and β = 0.98 is approximately
0.34 (as seen in Figure 4.4a) and is lower than the algorithm’s EER at α = 0.5 and
β = 0.98 of approximately 0.37 (as seen in figure 4.2a). This means the algorithm
with α = 0.6 and β = 0.98 is more accurate.

For the CUSUM based algorithm the obtained parameters α = 0.8 and β = 0.97 led
to the same EER of approximately 0.41 as the algorithm at α = 0.5 and β = 0.98
(see Figures 4.2b and 4.4b). This means the accuracy of the algorithm at the different
parameters is the same.

4.2.4.6 Constant Rate Attacks Results

Results presented in Tables 4.9, 4.10 and 4.11 show that the logic OR operator detects
TCP SYN flood attacks significantly better and quicker. Furthermore, the logic OR
operator has improved accuracy as compared to the adaptive threshold algorithm,
however, its false positive rate is higher than those of the other two algorithms.
Based on the optimal thresholds values in Tables 4.9, 4.10 and 4.11 the logic OR
operator’s:

• average detection probability is significantly better than those of the two
algorithms with the percentage improvement of 48% to that of the CUSUM
based algorithm and 12% to that of the adaptive threshold algorithm.

• average accuracy is slightly better than that of the adaptive threshold
algorithm by 1.8%.

TABLE 4.9: Adaptive threshold algorithm results for detecting
constant rate attacks at α = 0.5 and β = 0.98

Optimal
Threshold

Detection
Probability

False Positive
Rate

Accuracy
Detection Delay
(10s interval)

k = 1 0.9906 0.9906 0.5 4.1
k = 2 0.8396 0.7830 0.5283 12.1
k = 3 0.5472 0.3962 0.5755 19.3

Average 0.7925 0.7233 0.5346 11.8

70
Chapter 4. Performance Evaluation of Network Intrusion Detection Systems for

Detecting Transmission Control Protocol Synchronised Flooding Attack

TABLE 4.10: Cumulative sum based algorithm for detecting constant
rate attacks at α = 0.5 and β = 0.98

Optimal
Threshold

Detection
Probability

False Positive
Rate

Accuracy
Detection Delay
(10s interval)

h = 5 0.6698 0.5566 0.5566 14.9
h = 6 0.6132 0.4245 0.5944 17.3
h = 7 0.5094 0.3491 0.5802 19.9

Average 0.5975 0.4434 0.5770 17.4

TABLE 4.11: Logic OR operator for detecting constant rate attacks

Optimal
Threshold

Detection
Probability

False Positive
Rate

Accuracy
Detection Delay
(10s interval)

k = 1, h = 5 1.0000 1.0000 0.5 3.1
k = 2, h = 6 0.9245 0.8396 0.5425 8.3
k = 3, h = 7 0.7358 0.5566 0.5896 14.1

Average 0.8868 0.7987 0.5440 8.5

4.2.4.7 Constant Rate Attacks Results after Tuning the Parameters

Results presented in Tables 4.12, 4.13 and 4.14 show that the logic OR operator
detects TCP SYN flood attacks significantly better and quicker. Furthermore, the
logic OR’s false positive rate is the highest resulting in the worst accuracy. Based on
the optimal thresholds values in Tables 4.12, 4.13 and 4.14 the logic OR operator’s:

• average detection probability is significantly better than those of the two
algorithms with the percentage improvement of 26% to that of the CUSUM
based algorithm and 11% to that of the adaptive threshold algorithm.

TABLE 4.12: Adaptive threshold algorithm results for detecting
constant rate attacks after tuning the parameters to α = 0.2 and

β = 0.99

Optimal
Threshold

Detection
Probability

False Positive
Rate

Accuracy
Detection Delay
(10s interval)

k = 2 0.9340 0.8491 0.5425 8.8
k = 3 0.7453 0.5189 0.6132 14.8
k = 4 0.4811 0.1981 0.6415 20.8

Average 0.7201 0.5220 0.5991 14.8

TABLE 4.13: Cumulative sum based algorithm for detecting constant
rate attacks after tuning the parameters to α = 0.21 and β = 0.98

Optimal
Threshold

Detection
Probability

False Positive
Rate

Accuracy
Detection Delay
(10s interval)

h = 3 0.7831 0.6415 0.5708 11.0
h = 4 0.6698 0.5755 0.5472 14.1
h = 6 0.4434 0.2170 0.6132 22.9

Average 0.6321 0.4780 0.5770 16.0

4.2. Implementation of the Anomaly based Intrusion Detection Algorithms for
Detecting the TCP SYN Flooding Attack

71

TABLE 4.14: Logic OR operator for detecting constant rate attacks
after tuning the parameters

Optimal
Threshold

Detection
Probability

False Positive
Rate

Accuracy
Detection Delay
(10s interval)

k = 2, h = 3 0.9623 0.9245 0.5189 5.1
k = 3, h = 4 0.8679 0.7547 0.5566 8.8
k = 4, h = 6 0.566 0.3774 0.5943 18.1

Average 0.7987 0.6855 0.5566 10.7

4.2.4.8 Constant Rate Attacks Results with Modified CUSUM based Algorithm
Variance

Results presented in Tables 4.12, 4.15 and 4.16 show that the logic OR operator
detects TCP SYN flood attacks significantly better and quicker. Furthermore, the
logic OR operator has improved accuracy as compared to the adaptive threshold
algorithm, however, its false positive rate is higher than those of the other two
algorithms. Based on the optimal threshold values in Tables 4.12, 4.15 and 4.16 the
logic OR operator’s:

• average detection probability is significantly better than those of the two
algorithms with the percentage improvement of 30% for the CUSUM based
algorithm and 28% for the adaptive threshold algorithm.

• average accuracy is slightly better than that of the adaptive threshold
algorithm by 5%.

Modifying the variance of the CUSUM based algorithm also lead to a lower average
false positive rate and a higher average accuracy for the constant rate attacks than
those of the adaptive threshold algorithm. Similarly to the Poisson process attacks,
this result means the manner in which the variance is calculated in the CUSUM
algorithm has an effect on the performance of this algorithm.

4.2.4.9 Discussion of the Algorithms Performance on Detecting the Constant
Rate Attacks

The logic OR operator performed in a similar manner to the Poisson attacks in
detecting the constant arrival attacks.

4.2.4.10 Comparing the Algorithms Results for the Constant Rate Attacks at the
Different Parameters

The algorithms’ results at α = 0.5 and β = 0.98, Figures 4.1a and 4.1b are used
as a baseline for comparison. When the parameters of the adaptive threshold and

72
Chapter 4. Performance Evaluation of Network Intrusion Detection Systems for

Detecting Transmission Control Protocol Synchronised Flooding Attack

TABLE 4.15: Cumulative sum based algorithm with modified
variance for detecting constant rate attacks at α = 1 and β = 0.46

Optimal
Threshold

Detection
Probability

False Positive
Rate

Accuracy
Detection Delay
(10s interval)

h =53 0.7170 0.3019 0.7075 16.3
h = 54 0.7170 0.2925 0.7123 16.3
h = 56 0.6981 0.2925 0.7028 16.6

Average 0.7107 0.2956 0.7075 16.4

TABLE 4.16: Logic OR operator results with modified CUSUM based
algorithm variance

Optimal
Threshold

Detection
Probability

False Positive
Rate

Accuracy
Detection Delay
(10s interval)

k = 2, h = 53 0.9811 0.8962 0.5425 5.8
k = 3, h = 54 0.9151 0.6415 0.6368 9.1
k = 4, h = 56 0.8679 0.4151 0.7264 11.4

Average 0.9214 0.6509 0.6352 8.8

CUSUM based algorithms were tuned (Figures 4.3a and 4.3b), based on the optimal
thresholds the new parameters lead to the following:

For the adaptive threshold algorithm the obtained parameters α = 0.2 and β = 0.99
led to EER of approximately 0.37 (as seen in figure 4.3a) and is lower than the
algorithm’s EER at α = 0.5 and β = 0.98 of approximately 0.425 (as seen in figure
4.1a). This means the algorithm with α = 0.2 and β = 0.99 is more accurate.

For the CUSUM based algorithm the obtained parameters α = 0.21 and β = 0.98
led to an EER of 0.44 (as seen in figure 4.3b) and is higher than the algorithm’s
EER at α = 0.5 and β = 0.98 of approximately 0.41 (as seen in figure 4.1b). This
means the algorithm with α = 0.21 and β = 0.98 is less accurate as compared to
the algorithm with α = 0.5 and β = 0.98. This is contrary to expectation since
the selected parameters led to the highest average accuracy. This may indicate that
choosing parameters based on the average accuracy does not always give the best
parameters.

4.2.4.11 Comparing the Algorithms Results for the Constant Rate Attacks vs
Poisson Process Attacks

The algorithms’ results are discussed based on the optimal thresholds at α = 0.5
and β = 0.98, after tuning the parameters and after modifying the variance of the
CUSUM based algorithm. For the constant rate attacks at α = 0.5 and β = 0.98
(Tables 4.9, 4.10 and 4.11 vs 4.1, 4.2 and 4.3),

• the three algorithms detected the attacks quicker as compared to the Poisson
process attacks.

4.2. Implementation of the Anomaly based Intrusion Detection Algorithms for
Detecting the TCP SYN Flooding Attack

73

• the use of the logic OR operator and the CUSUM based algorithm present
lower average detection probability whereas the adaptive threshold algorithm
has a higher average detection probability as compared to the Poisson process
attacks.

• the use of the logic OR operator and the adaptive threshold algorithm present
higher average false positive rates whereas the CUSUM based algorithm had
a lower average false positive rate as compared to the Poisson process attacks.

• the use of the three algorithms present lower average accuracies as compared
to the Poisson process attacks.

For the constant rate attacks after tuning the parameters (Tables 4.12, 4.13 and 4.14
vs 4.4, 4.5 and 4.6),

• the three algorithms detected the attacks quicker as compared to the Poisson
process attacks.

• the use of the logic OR operator and the adaptive threshold algorithm
presented lower average detection probability whereas the CUSUM based
algorithm had a higher average detection probability as compared to the
Poisson process attacks.

• the use of the three algorithms present higher average false positive rates as
compared to the Poisson process attacks.

• the use of the three algorithms present lower average accuracies as compared
to the Poisson process attacks.

For the constant rate attacks after modifying the variance of the CUSUM based
algorithm (Tables 4.12, 4.15 and 4.16 vs 4.4, 4.7 and 4.8),

• the CUSUM based algorithm took longer to detect the attacks whereas the
adaptive threshold algorithm and the logic OR operator were quicker as
compared to the Poisson process attacks.

• the use of the logic OR operator presented higher average detection probability
whereas the CUSUM based algorithm had a lower average detection
probability as compared to the Poisson process attacks.

• the use of the logic OR operator and the CUSUM based algorithms presented
higher average false positive rates as compared to the Poisson process attacks.

• the use of the logic OR operator and the CUSUM based algorithms presented
lower average accuracies as compared to the Poisson process attacks.

The results indicate that the overall detection of Poisson process attacks was better
than that of the constant rate attacks. When we counted the number of TCP
SYN packets in the intervals where the Poisson attacks were added for both the

74
Chapter 4. Performance Evaluation of Network Intrusion Detection Systems for

Detecting Transmission Control Protocol Synchronised Flooding Attack

Poisson process and the constant rate attacks, the number of TCP SYN packets for
the Poisson process attacks were higher than those of the constant rate attacks as
depicted in Figure 4.6. This means the Poisson attacks were more likely to cross the
alarm threshold than the constant rate attacks, hence the better detection.

FIGURE 4.6: The number of TCP SYN packets for the Poisson process
attacks vs the constant rate attacks.

4.3 Implementation of Learning based Network Intrusion
Detection Algorithms

The intrusion detection problem is a classification problem that involves
categorising the network traffic into normal network traffic or intrusive network
traffic. Learning based algorithms are used to build classification models, therefore
they can be utilised in the problem of intrusion detection. The intrinsic characteristic
of intrusion analysis is uncertainty. Therefore classification models that are able
to analyse data in the presence of uncertainty are indispensable. In this section,
a decision tree which is a popular machine learning technique that is used for
classification of instances and fuzzy logic which is a learning based powerful tool
for reasoning under uncertainty are used to detect Neptune which is a type of a
Transmission Control Protocol Synchronized (TCP SYN) flooding attack.

4.3.1 Dataset

In this section, the NSL KDD training and test data were filtered for Neptune (a
type of a DoS attack) and normal connections that are referred to as Neptune and
normal cases respectively. The resultant training data had 10858 cases with 41215
Neptune cases and 67343 normal cases. The resultant test data had 14368 cases with
4657 Neptune cases and 9711 normal cases. Our interest was in predicting the actual
proportion of Neptune cases in the test data where the actual proportion of Neptune

4.3. Implementation of Learning based Network Intrusion Detection Algorithms 75

cases in the test data is the number of Neptune cases in the test data divided by the
number of cases in the test data.

The NSL KDD dataset has 41 attributes and Kayacik et al. [100] recommended
ten attributes as relevant in identifying Neptune. The rule base of a fuzzy logic
system tends to be complex quickly if a large number of input and output attributes
are used, therefore, four input attributes were selected and used to train and test
the fuzzy logic based NIDS. These attributes were the percentage of connections
that have “SYN” errors, percentage of connections to the same service, percentage
of connections to the different service and count of connections having the same
destination host and using the same service. In this research, they are denoted as
SynErrorRate, SameSrvRate, DiffSrvRate and DStHostSrvCount respectively. These
attributes were also used to train the decision true. The extracts of the training
and test data consisting the four attributes are given in Tables 4.17 and 4.18.
DstHostSrvCount attribute was not included in the resultant decision tree. This
occurs when the accuracy of the decision tree is not improved by the attribute [113].
This means that this attribute is redundant and including a redundant attribute
adversely affects the accuracy of a classifier [114]. The fuzzy logic based NIDS was
implemented using the attributes that were in the constructed decision tree.

TABLE 4.17: An extract of the training data from the NSL KDD
dataset

SynErrorRate SameSrvRate DiffSrvRate DstHostSrvCount Class Label
0 1 0 25 Normal
0 0.08 0.15 1 Normal
1 0.05 0.07 26 Neptune

0.2 1 0 255 Normal
0 1 0 255 Normal
0 0.16 0.06 19 Neptune
1 0.05 0.06 9 Neptune
1 0.14 0.06 15 Neptune
1 0.09 0.05 23 Neptune
1 0.06 0.06 13 Neptune
0 0.06 0.06 12 Neptune
1 0.02 0.06 13 Neptune
0 1 0 219 Normal

4.3.2 The Fuzzy Logic based Network Intrusion Detection System

In this subsection, the fuzzy logic based NIDS used in detecting Neptune is built
and tested. The building phase involves the fuzzification of the input and output
attributes into fuzzy membership functions, the generation of the fuzzy rules that
are used to describe the desired system output and the determining of the fuzzy
inferencing and defuzzification methods.

76
Chapter 4. Performance Evaluation of Network Intrusion Detection Systems for

Detecting Transmission Control Protocol Synchronised Flooding Attack

TABLE 4.18: An extract of the test data from the NSL KDD dataset

SynErrorRate SameSrvRate DiffSrvRate DstHostSrvCount Class Label
0 0.04 0.06 10 Neptune
0 0.01 0.06 1 Neptune
0 1 0 86 Normal
0 1 0 255 Normal
0 1 0 28 Normal
0 1 0 255 Normal
0 1 0 129 Normal
0 0.02 0.07 2 Neptune
1 1 0 171 Neptune
0 1 0 73 Normal
0 1 0 255 Normal
0 1 0 255 Normal
0 1 0 255 Normal

4.3.2.1 Fuzzification and Membership Functions

In fuzzification, all input and output variable values are fuzzified into fuzzy
membership functions, that is, the range of values taken by each input/output
variable are divided into fuzzy sets and a fuzzy membership function is determined
to assign the degree of membership to a fuzzy set of the input and output variables.
In this study, the fuzzy sets are referred to as membership values. To derive the
membership values for each of the input attributes, the range of values each attribute
takes were observed and the minimum, maximum and average values for each
attribute in the normal, attack and mixed (consists of both attack and normal)
data of the training data were calculated and are depicted in Tables 4.19, 4.20 and
4.21. For each attribute, we defined three membership values, namely, L (low), M
(medium) and H (high). The attributes membership values were chosen based on
the maximum, average and minimum values of each attribute.

TABLE 4.19: The minimum, maximum and average values fo the
three input attributes for normal only data

Attribute Value SynErrorRate SameErrorRate DiffSrvRate

Minimum 0 0 0

Maximum 1 1 1

Average 0.0134 0.9694 0.0288

4.3. Implementation of Learning based Network Intrusion Detection Algorithms 77

TABLE 4.20: The minimum, maximum and average values fo the
three input attributes for mixed (normal and attack) data

Attribute Value SynErrorRate SameErrorRate DiffSrvRate

Minimum 0 0 0

Maximum 1 1 1

Average 0.3242 0.6398 0.0454

TABLE 4.21: The minimum, maximum and average values fo the
three input attributes for attack (Neptune) only data

Attribute Value SynErrorRate SameErrorRate DiffSrvRate

Minimum 0 0 0

Maximum 1 1 1

Average 0.8319 0.1012 0.0725

The commonly used triangular membership function was utilised to assign the
degree of membership to each attribute membership value as shown in Figure 4.7.
The output is defined as the percentage of intrusion in the data (% Intrusion). It is
also fuzzified into three membership values, namely, L (low), M (medium) and H
(high) and the triangular membership function was also used to assign the degree
of membership to each membership value of the output attribute.

FIGURE 4.7: The membership functions of the fuzzy logic based
system

78
Chapter 4. Performance Evaluation of Network Intrusion Detection Systems for

Detecting Transmission Control Protocol Synchronised Flooding Attack

4.3.2.2 Fuzzy Rules Generation

The rules were generated in the form of IF X = x and Y = y THEN Z = z statements.
All possible permutations of the membership values of the three attributes were
enumerated. Initially we used all twenty seven permutations to create the rules,
however, for some permutations, it was difficult to infer the consequent which
resulted in poor performance of the system. Therefore, only the permutations that
led to an easy way to deduce the consequent of the rules were selected and it
resulted in only nine permutations. The permutations were used as the antecedent
for each rule. From the training data, the average value for each attribute in the
attack, normal and mixed data was observed. It was noticed that the average value
decreased in the presence of attacks for some attributes while it increased for some
attributes. The consequent of each rule was then based on the behaviour of the
average value of each attribute in the absence or presence of an attack. The generated
rules are given below.

Rule 1: IF Average of SynErrorRate = L AND Average SameSrvRate = L AND
Average of DiffSrvRate = L THEN % Intrusion = L.

Rule 2: IF Average of SynErrorRate = L AND Average SameSrvRate = H AND
Average of DiffSrvRate = L THEN % Intrusion = L.

Rule 3: IF Average of SynErrorRate = H AND Average SameSrvRate = L AND
Average of DiffSrvRate = H THEN % Intrusion = H.

Rule 4: IF Average of SynErrorRate = H AND Average SameSrvRate = L AND
Average of DiffSrvRate = L THEN % Intrusion = M.

Rule 5: IF Average of SynErrorRate = H AND Average SameSrvRate = H AND
Average of DiffSrvRate = H THEN % Intrusion = M.

Rule 6: IF Average of SynErrorRate = L AND Average SameSrvRate = L AND
Average of DiffSrvRate = H THEN % Intrusion = M.

Rule 7: IF Average of SynErrorRate = M AND Average SameSrvRate = M AND
Average of DiffSrvRate = M THEN % Intrusion = M.

Rule 8: IF Average of SynErrorRate = H AND Average SameSrvRate = H AND
Average of DiffSrvRate = L THEN % Intrusion = L. Rule 9: IF Average of
SynErrorRate = L AND Average SameSrvRate = H AND Average of DiffSrvRate
= H THEN % Intrusion = L.

4.3.2.3 Fuzzy Inferencing and Defuzzification

The Mamdani fuzzy inferencing was adopted in this study since it is the commonly
utilised method [83]. The fuzzified inputs are combined to obtain the strength

4.3. Implementation of Learning based Network Intrusion Detection Algorithms 79

of each rule. The strength of each rule is determined by combining the input
membership indices corresponding to the input attribute averages (fuzzified inputs)
using the fuzzy "and" operator. The fuzzy "and" operator returns the minimum
membership index associated with the fuzzified inputs. Each rule strength is
combined with the output membership function to get the membership index of
the fuzzy consequent/output of each rule. Some membership indices of the rule
consequents will be zero and some will be greater than zero. The rules whose
fuzzy consequent membership indices are more than zero become activated. The
fuzzy outputs/ consequents of all the activated rules are combined to obtain one
fuzzy output distribution. The outputs associated with the activated are usually
combined using the fuzzy "or" operator that returns the maximum membership
indices associated with the fuzzy outputs.

One of the commonly used defuzzification techniques called centroid is utilised to
find the crisp value of the output. This technique returns the centre of the area under
the fuzzy output distribution as the crisp value.

4.3.2.4 Prediction with the Fuzzy Logic based System

For each attribute an average was calculated from the test data and the obtained
averages for SynErrorRate, SameSrvRate and DiffSrvRate were 0.1077, 0.6904 and
0.0339 respectively. These averages were tested against the generated rules of the
proposed system to determine the strength of each rule. Each rule strength was
combined with the output membership function to get the fuzzy consequent/output
of each rule. Figure 4.8 presents the fuzzy consequent for each rule. From Figure 4.8
some membership indices of the rule consequents are zero and some are greater than
zero.

80
Chapter 4. Performance Evaluation of Network Intrusion Detection Systems for

Detecting Transmission Control Protocol Synchronised Flooding Attack

FIGURE 4.8: The fuzzy consequents of each fuzzy rules.

Rule 7 and Rule 9 that are respectively:

Rule 7: IF Average of SynErrorRate = M AND Average SameSrvRate = M AND
Average of DiffSrvRate = M THEN % Intrusion = M.

Rule 9: IF Average of SynErrorRate = L AND Average SameSrvRate = H AND
Average of DiffSrvRate = H THEN % Intrusion = 1.

have membership indices that are more than zero and are therefore activated. The
fuzzy consequents of the two activated rules are combined using the fuzzy "or"
operator to obtain the fuzzy output distribution in Figure 4.9. The crisp value of the
output attribute was determined using the centroid approach that finds the centre
of the obtained fuzzy output distribution and is illustrated by the solid vertical line
in Figure 4.9.

4.3. Implementation of Learning based Network Intrusion Detection Algorithms 81

FIGURE 4.9: The crisp value of the output variable, % intrusion.

4.3.3 Decision Tree Construction

The decision tree was built from the training data set and Figure 4.10 depicts the
resultant decision tree. We used the constructed decision tree to predict Neptune
from the processed test data.

FIGURE 4.10: The constructed decision tree for predicting Neptune.

4.3.4 Results

The actual proportion of Neptune cases (attacks) in the test data is 0.3241. The
proportion of Neptune cases predicted by the two algorithms as well as algorithms’
accuracies are presented in Table 4.22. The results in Table 4.22 show that the
accuracy of the fuzzy system in predicting the proportion of Neptune cases in the
test data is less than the decision tree accuracy.

TABLE 4.22: The results of the fuzzy logic based system and the
decision tree in terms of predicted attack proportion and accuracy

Performance Metrics Fuzzy Logic based System Decision Tree
Predicted Proportion of Attacks 0.3200 0.3223
Accuracy 0.9324 0.9964

82
Chapter 4. Performance Evaluation of Network Intrusion Detection Systems for

Detecting Transmission Control Protocol Synchronised Flooding Attack

The results in Table 4.23 show that the difference between the performances of the
fuzzy system and the decision tree, in terms of sensitivity, is negligible and the
specificity of the fuzzy system is worse than that of the decision tree. The results in

TABLE 4.23: The results of the fuzzy logic based system and the
decision tree in terms of sensitivity and specificity

Performance Metrics Fuzzy Logic based System Decision Tree
Sensitivity 0.9873 0.9944
Specificity 0.9060 0.9973

Table 4.24 show that the decision tree has lower false positive and false negative rates
as compared to the fuzzy logic based system. The decision tree has performed better
than the fuzzy logic based system. One of the challenges of working with fuzzy
logic is to set the location of the membership function of the features which is solved
by trial and error [115], which is the challenge we also encountered. Specifically, we
struggled with setting the boundaries of the fuzzy sets of the membership functions
of the features. For different boundaries we obtained different true positive rates and
false positive rates, therefore through trial and error we obtained the recorded TPR
and FPR which were the best of the other obtained true positive and false positive
rates. This means a different researcher could set different fuzzy set boundaries for
the same features that may lead to better or worse TPR and FPR than those of a
decision tree or our IDS.

TABLE 4.24: The results of the fuzzy logic based system and the
decision tree in terms of false positive and false negative rates

Performance Metrics Fuzzy Logic based System Decision Tree
False Positive Rate 0.0940 0.0027

False Negative Rate 0.0127 0.0056

4.4 Summary

The main aim of this Chapter was to illustrate the achievable performance of
existing network intrusion detection systems for detecting SYN flooding attacks.
Firstly two anomaly detection algorithms from the work of [36] for detecting SYN
flooding attack were implemented to detect synthetic attacks generated according
to a Poisson process and constant rate arrivals. Furthermore, the decisions
of the two algorithms were combined at different detection thresholds of the
two algorithms using the logic OR operator for both attack types. Detection
probability, false positive rate, accuracy and detection delay were utilised as
measures of performance. Initially, parameters from the work of [36] were used
in the implementation of the two anomaly based algorithms, followed by tuning
the parameters of the two anomaly based algorithms and using the parameter
combination that leads to the highest accuracy the best parameters were chosen. The

4.4. Summary 83

CUSUM based algorithm performance was lower than that of the adaptive threshold
algorithm, however, in the work of [36] the CUSUM algorithm outperformed the
adaptive threshold algorithm so to improve the performance of the CUSUM based
algorithm we modified its variance and also chose the best parameter combination
in the presence of the modified variance.

For each set of parameters, where the equal error rate of the two anomaly based
algorithms were used to select the parameter (detection threshold) values to be used,
the logic OR operator performed better than the two anomaly based algorithms in
terms of detection probability and detection delay. However, the logic OR operator
had the worst false alarm, as a result, it had the worst accuracy most of the time for
both attacks.

For the Poisson process attacks, the tuning of the parameters led to the reduction
of the false alarm rate which caused accuracy of the three algorithms to improve
or, at least, remained the same. For the constant rate attacks, the tuning of the
parameters led to the reduction of the false alarm rate for the adaptive threshold
algorithm which resulted in an improvement to its accuracy.

Modifying the variance of the CUSUM based algorithm led to a higher average
detection probability, average accuracy and average detection delay. The
modification led to a lower average false positive rate for the Poisson attacks along
with a lower average false positive rate and a higher average accuracy for the
constant rate attacks than those of the adaptive threshold algorithm.

The three algorithms, at most, performed better in detecting the Poisson attacks as
compared to the constant rate attacks.

Lastly, two learning based NIDSs fuzzy logic based system and decision tree, for
predicting Neptune were implemented. The results also indicate that the accuracy,
specificity, false negative and false positive rates of the decision tree are better
than those of the fuzzy logic based system in predicting the proportion of Neptune
attacks.

84

Chapter 5

The Ensemble of Classifiers based
Network Intrusion Detection
System Performance Bounds

This Chapter empirically determines the achievable performance bounds of two
ensemble of classifiers based NIDSs. The first NIDS is an AdaBoost based ensemble
that has a decision stump as a base learner. The second NIDS is a Bagging based
ensemble that has a decision tree as a base learner. The information theoretic
measure, information gain and entropy are used to define the bounds.

5.1 Introduction

The ensemble of classifiers and sensor fusion methods that combine predictions/
decisions from a set of IDSs to make the final decision have been implemented
successfully in intrusion detection to improve the performance of intrusion detection
systems. Thomas and Balakrishna [11], Tian et al. [12] and Gong et al. [20] presented
some of the studies that implemented sensor fusion in intrusion detection. Hu et al.
[19], Borji [38], Govindarajan [39], Sornsuwit and Jaiyen [40], Prusti [41], Natesan
et al. [43] and Kumar and Kumar [44] are some of the works that implemented
ensemble methods in intrusion detection.

However, the achievable performance bounds of these systems are not known
beforehand. Currently, researchers have to implement the systems before they can
determine what their systems performances will be. To gauge the performance of the
NIDSs, researchers compare their systems’ performances to those of other existing
systems. This means a performance bound that can be used as reference point
for gauging NIDSs’ performances is needed. Even though the newly developed
algorithms may outperform the existing algorithms, the lack of the knowledge
of the achievable performance bound disadvantages the researcher in the sense
that researchers cannot determine how far the performance of their system is

5.1. Introduction 85

from optimality in order to decide if their NIDSs need improvement or not. The
knowledge of the achievable performance bounds of NIDSs will help researchers to
predict their NIDSs performances before they even implement them. This achievable
performance bound will serve as a performance reference point that can be used by
researchers to gauge the performance of their systems and help them determine if
there is a need for improvement on the performance of their systems.

This Thesis provides the achievable performance upper bounds of network intrusion
detection systems (NIDSs) that use ensembles of classifiers. The ensemble of
classifiers methods combine several classifiers in a certain way to produce an
optimal classifier whereas in sensor fusion the multiple IDSs are combined in such a
way that the produced IDS performs better than the individual IDS not necessarily
optimal. The ensemble of classifier methods are chosen in this work due to their
ability to obtain optimal performance. The ensemble of classifiers can be built
using one base classifiers or different base classifier with their earlier ensemble
referred to as a homogeneous ensemble and the latter as a heterogeneous ensemble.
Since this Thesis is the first attempt in determining the achievable performance
bounds of an NIDSs, the performance bounds of two homogeneous ensembles are
determined. As mention in Chapter 3, there are different ways of building the
ensemble of classifiers with the ensemble of classifiers built from manipulating the
dataset being the popular method, this work considers the ensemble of classifiers
built from manipulating the dataset. Two popular methods of building an ensemble
of classifiers from manipulating the dataset are boosting and Bagging and are
considered in this works since, apart from bringing an optimal classifier, they
also bring the aspect of independence/dependency of the base classifiers in the
ensemble. In boosting the classifiers are assumed to be dependent since the decision
of the current classifier is influenced by the decision of the previous classifier. In
Bagging the classifiers are assumed to be independent since they are built from
independent bootstrap samples of the original dataset so the decisions made by
those classifiers are independent. In boosting the base classifiers are required to
be weak base classifiers. In Bagging the base classifiers are required to be unstable.

This work, therefore, provides the achievable performance bounds of two kinds of
NIDSs, namely, a NIDS that uses an ensemble of classifiers with dependent base
classifiers and a NIDS that uses an ensemble of classifiers with independent base
classifiers. The performance upper bounds are defined in terms of an information
theoretic measure called information gain and entropy. Specifically, the average
information gain associated with the features used in building the ensembles of
classifiers and the dataset entropy are used to define the two performance bounds.
The information gain and entropy descriptions are provided in Section 5.2. In
the NIDS that uses an ensemble of classifiers with dependent base classifiers, the
decision stump is used as the weak base classifier and its performance is boosted
to optimality using the boosting ensemble method. In the NIDS that uses an

86
Chapter 5. The Ensemble of Classifiers based Network Intrusion Detection System

Performance Bounds

ensemble of classifiers with independent base classifiers the decision tree is used
as the unstable base classifier and its performance is optimised using the Bagging
ensemble method.

Different proportions of the NSL KDD dataset that were filtered for normal and
Neptune connections were used as different datasets in this research in order to
observe the behaviour of the performance of the ensemble. The CICIDS2017 was
used to test if the bounds hold for a different dataset. The bounds are based on the
performance of these ensembles in classifying the Neptune and normal connections.
The performance metric used in this study was classification accuracy. This Thesis
also provides the false positive and true positive rates associated with these accuracy
upper bounds. The rest of this Chapter is organised as follows: Section 5.2 provides a
brief description of information theoretic measures and performance metrics used in
this Chapter. The empirical studies are presented in Section 5.3. Section 5.4 presents
the results and the Chapter is concluded by a summary in Section 5.6.

5.2 Information Theoretic Measure

5.2.1 Entropy

The entropy H(X) of a discrete random variable X measures the uncertainty
associated with the values of X and is defined as

H(X) = −∑
x
(p(x)log(p(x))), (5.1)

where p(x) = P(X = x) and P is the probability. The small value of H(X) indicates
that X is more regular(less uncertain).

5.2.2 Information Gain

Information gain (IG) measures the amount of information a feature gives about
the classification feature. Features that discriminate the data perfectly result in
maximum information and irrelevant features give no information. Information
gain is calculated using the following equation

IG(A) = H(S)−∑
i

Si

S
H(Si). (5.2)

Where H(S) is the entropy of the given dataset S in terms of the classification feature
and H(Si) is the entropy of the subset created by partitioning S with respect to
feature A [116].

5.3. Empirical Studies 87

5.3 Empirical Studies

In this section, empirical studies are conducted in order to determine the
performance bounds of the two kinds of NIDSs. The two kinds of NIDSs are a NIDS
that uses an ensemble of classifiers with dependent base classifiers and a NIDS that
uses an ensemble of classifiers with independent base classifiers. The first ensemble
uses the decision stump as the base classifier while the second ensemble uses the
decision tree as the base classifier. The performance metric considered in this work
was classification accuracy. Therefore, the empirical studies are for determining the
upper bounds on the accuracies of the two NIDSs. The performance bounds of the
two kinds of NIDSs are defined in terms of information gain of the features used to
build the two ensembles of classifiers based NIDSs and dataset entropy with respect
to the features. This section begins by describing the dataset used in the study,
followed by the calculation of the information gain associated with each feature used
in the ensembles, which is followed by the definition of the performance metric used
in this study and is concluded by describing how the upper bounds on the accuracy
of the two ensembles of classifiers based NIDSs were determined.

5.3.1 Dataset

The NSL KDD dataset (both training and test) was filtered for normal and Neptune
connections. Initially, 100% of the NSL KDD dataset was used and then we
randomly selected 25%, 50% and 75% of the NSL KDD dataset to create different
datasets since different datasets were needed in order to observe the consistence
of classification accuracy bound (the performance metric in this study). For the
CICIDS2017 dataset, the dataset for normal traffic, DoS attacks and Heartbeat attack
was filtered for DoS attacks and normal traffic and the DoS attacks were grouped
into one category called attacks. Therefore the dataset consisted of attacks and
normal samples.

One of the ensemble methods used in this study requires that the base learner to
be weak, where weak learners have accuracy of just above random guess on new
instances. Therefore, continuous features that resulted to decision stumps with an
accuracy of less than 70 percent were selected from the five datasets since weak
learners have an accuracy of just above random guess on new instance. For the

• NSL KDD dataset, the resultant features are presented in Table 5.1 for the 100%
NSL KDD dataset and Table 5.2 for the 25% NSL KDD dataset, 50% NSL KDD
dataset and 75% NSL KDD dataset. However, two continuous features that
had decision stumps with an accuracy of less than 70 percent, namely, number
of wrong fragments and number of outbound commands in an ftp session,
were not included in the study since the two features lead to decision stumps

88
Chapter 5. The Ensemble of Classifiers based Network Intrusion Detection System

Performance Bounds

with only one class at the root node with no branches. For these features, it
was not possible to calculate their information gain values.

• CICIDS dataset, the resultant features are presented in Table 5.3.

The different datasets with their selected features were used to determine the upper
bounds of the two NIDSs. The CICIDS2017 dataset was used to test if the bounds
hold in a new dataset.

TABLE 5.1: The resultant features for the 100 percent NSL KDD
dataset.

Dataset Features

100% NSL KDD duration (D), hot (H), failed logins (FL), num compromised
(NC), urgent (U), num shells (NS), num root (NR),num file
creations (NCF), num access files (NAF), srv count (SC), srv
diff host rate (SDHR),dst host srv diff host rate (DHSDHR)
and dst host count (DHC)

TABLE 5.2: The resultant features for the 75 percent NSL KDD, 50
percent NSL KDD and 25 percent NSL KDD datasets.

Dataset Features

75% NSL KDD,

50% NSL KDD and
25% NSL KDD

duration (D), hot (H), failed logins (FL), num compromised
(NC), urgent (U), num shells (NS), num root (NR),num
file creations (NCF), num access files (NAF), srv count
(SC), srv diff host rate (SDHR),dst host srv diff host rate
(DHSDHR), dst host rerror rate (DHER),dst host srv rerror
rate (DHSER), rerror rate (RER) and srv rerror rate (SRER)

TABLE 5.3: The resultant features for the CICIDS2017 datasets.

Dataset Features

CICIDS2017 forward packet length mean (FPLM), forward header
length (FHL), syn.flag.count (SFC), rst.flag.count (RFC),
psh.flag.count (PFC), ack.flag.count (AFC), urg.flag.count
(UFC), ece.flag.count (EFC), down.up.ratio (DUR),
avg.fwd.segment.size (AFSS), fw.header.length.1 (FHL1),
lmt_win_bytes_fwd (LWBF), act_data_pkt_fwd (ADPF),
min_seg_size_fwd (MSSF), active_std (AS) and idle_std
(IS)

5.3. Empirical Studies 89

5.3.2 Information Gain Calculation

The continuous features were discretised by splitting each feature values into two
categories. The splitting value of each decision stump obtained in Subsection 5.3.1
was used to split the values of each feature. After discretising the continuous
features, we used (5.2) to calculate the information gain values for the features.
We repeated this to all different datasets. Tables 5.4, 5.5, 5.6, 5.7 and 5.8 depict the
information gain values for the resultant features of the different datasets.

For each dataset, we needed a way of using the information gain of the features in
the ensemble to define the upper bound on the accuracy of the ensemble. It was
observed that the information gain values of the features used in the ensemble did
not follow any particular trend that could be used to define the bound. We, therefore,
decided to find a measure that was able to represent the information gain values
for all the features in a single value. Different measures that can represent a set of
data in a single value exist, namely, mean (average) which is a measure of central
tendency, measures of variation, measures of skewness and measures of kurtosis. In
this work, the average information gain amongst the features in the ensemble was
used to represent the information gain associated with the features in the ensemble.
Where the average information gain amongst the features in the ensemble (AveIG)
is defined as the sum of the information gain values of the features used in the
ensemble divided by the number of those features. Given features A1, ..., AN the
equation for calculating the average information gain amongst the features in the
ensemble is

AveIG =
∑N

i=1 IG(Ai)

N
. (5.3)

where IG(Ai) is the information gain of the i-th feature and N is the number of
features. AveIG decreases as the number of features increases since we added the
features that have lower information gain values last in the ensemble.

5.3.3 Performance Metric

The performance measure used in this Chapter is classification accuracy and is
calculated using (3.1). The results are reported with respect to the range of values of
the dataset entropy and the range of values of the average information gain amongst
the features that were used in constructing the two ensembles.

90
Chapter 5. The Ensemble of Classifiers based Network Intrusion Detection System

Performance Bounds

TABLE 5.4: Information gain for the 100 percent NSL KDD dataset
resultant features

Features Information Gain
DHC 0.2665

DHSDHR 0.2458
SDHR 0.1674

SC 0.0606
D 0.0529
H 0.0080

NR 0.0040
NC 0.0024

NAF 0.0023
NCF 0.0016
FL 0.000432
NS 0.00025
U 3.81E-05

TABLE 5.5: Information gain for the 75 percent NSL KDD dataset
resultant features

Features Information Gain
DHSDHR 0.2458

SDHR 0.1674
SC 0.0606

DHSER 0.0548
D 0.0526
H 0.0076

DHER 0.0425
SRER 0.033
RER 0.0326
NR 0.004

NAF 0.0023
NC 0.0023

NCF 0.0016
FL 0.000459
NS 0.00021
U 2.55E-05

5.3.4 Empirical Determination of the Performance Upper Bound for the
Two Network Intrusion Detection Systems

5.3.4.1 Decision Stump Ensemble based Network Intrusion Detection System

For the different datasets, the accuracy of the decision stump was boosted using
the popular AdaBoost algorithm until it converged onto a particular value and this
value is the optimal accuracy of the ensemble. In AdaBoosting, the base classifier is
called over several iteration and the accuracy value of the ensemble tends to improve
as the number of iterations increases. However, as the number of iterations increases

5.3. Empirical Studies 91

TABLE 5.6: Information gain for the 50 percent NSL KDD dataset
resultant features

Features Information Gain
DHSDHR 0.2458

SDHR 0.1672
SC 0.0820

DHSER 0.0551
D 0.0523

DHER 0.0428
RER 0.0330

SRER 0.0334
H 0.0076

NR 0.004
NC 0.0022

NAF 0.0022
NCF 0.0015
FL 0.000496
NS 0.00023
U 1.27E-05

TABLE 5.7: Information gain for the 25 percent NSL KDD dataset
resultant features

Features Information Gain
DHSDHR 0.2461

SDHR 0.1656
SC 0.0818

DHSER 0.0544
D 0.0533

DHER 0.0433
SRER 0.0341
RER 0.0338

H 0.0074
NR 0.0038
NC 0.0023

NAF 0.0022
NCF 0.0018
FL 0.000533
NS 0.00023
U 2.54E-05

the accuracy value of the ensemble converges onto a particular value and remains
at that value even if more iterations are performed. Figure 5.1 illustrates this. This
reached accuracy value is the optimal ensemble accuracy.

Algorithm 9 explains how the features were selected and add to the ensemble in
order to train the ensemble, the ensemble was tested and the optimal accuracy of the
ensemble was determined.

92
Chapter 5. The Ensemble of Classifiers based Network Intrusion Detection System

Performance Bounds

TABLE 5.8: Information gain for the CICIDS2017 dataset resultant
features

Features Information Gain
FPLM 0.0433
FHL 0.1802
SFC 0.0121
RFC 0.00023
PFC 0.0156
AFC 0.0906
UFC 0.0359
EFC 0.00023
DUR 0.0683
AFSS 0.0433
FHL1 0.1802
LWBF 0.2409
ADPF 0.0376
MSSF 0.0201

AS 0.0282
IS 0.0116

For all the datasets, we noticed that as we added new features to the ensemble
the optimal accuracy value tended to increase, therefore we grouped the optimal
accuracy values according to the average information gain of the features that
resulted in that optimal accuracy. Figure 5.3 illustrate this. Algorithm 10 describes
how the results displayed in Figures 5.3 and 5.4 were obtained.

5.3.4.2 Decision Tree Ensemble based Network Intrusion Detection System

For the different datasets, the accuracy of the decision tree was improved using the
Bagging algorithm until it converged onto a particular value and this value is the
optimal accuracy of the ensemble. In Bagging as more and more bootstrap sample
based classifiers are added in the ensemble the accuracy of the ensemble improves
until it reaches a particular value and remains at that value even if the number of
classifiers (resulting from more bootstrap samples) in the ensemble is increased. This
reached accuracy value is the optimal ensemble accuracy.

However, the ensemble accuracy changed as we repeated the experiment due to
the random sampling in the bootstrap samples. This means that, depending on
the bootstraps samples, different accuracy values will be obtained. To address this
variation, we first tested if the Bagging algorithm was stable using the bounded
input and bounded out (BIBO) method. To test for the stability of the algorithm we
used the training data of the NSL KDD dataset to train and test the algorithm. We set
different bounds for the training data (input) and trained a Bagging based ensemble
of two trees. The ensemble was tested 1000, 2000, 4000 and 6000 times to determine

5.4. Results on Determining the Upper Bounds of the two Network Intrusion
Detection Systems

93

FIGURE 5.1: Assemble accuracy vs the number of iterations.

if the ensemble’s accuracy (output) was bounded. Figure 5.2 depicts the outcomes
of the stability test. From the stability test results, we concluded that the Bagging
algorithm was stable. This means that we expect the outcomes of the algorithm no
to vary uncontrollably but to be within a controlled/closed range of values.

Secondly, we ran each ensembles (starting with an ensemble of size 2) 100 times
(instead of 10000 times which is roughly 10% of the training data size) since
the algorithm was stable and averaged their accuracies instead of using a single
accuracy value. The upper bound on the decision tree ensemble accuracy was based
on the optimal average accuracy and it was reported with error to accommodate the
random behaviour of the individual ensemble accuracies due to the randomness of
the bootstraps. The optimal average ensemble accuracy was the average ensemble
accuracy that the ensemble converges onto as the ensemble size grows.

The features were added in this ensemble similarly to the decision stump ensemble,
see Algorithm 9.

5.4 Results on Determining the Upper Bounds of the two
Network Intrusion Detection Systems

5.4.1 Results on the Decision Stump Ensemble based Network Intrusion
Detection System

The optimal ensemble accuracies for the different values of the average information
gain amongst the features used in the ensemble (AveIG) for the four datasets are
presented in Figure 5.3.

94
Chapter 5. The Ensemble of Classifiers based Network Intrusion Detection System

Performance Bounds

Algorithm 9 Building and testing of the ensemble
Given:

1. Training dataset D1.

2. Test dataset D2.

3. Features A1, A2, ..., AN in both D1 and D2 with IG(A1) > IG(A2) > ... >
IG(AN) where IG(A) is the information gain of feature A.

To start the ensemble: Select two features from D1 with the highest information
gain.
ensemble sizes = size1, size2, ..., sizem
While not all features in D1 are in the ensemble
For ensemble size = smallest to largest
At the current ensemble size:

• Train the ensemble with the selected features from D1.

• Test the trained ensemble with the corresponding features in D2.

• Calculate the accuracy of the trained ensemble.

• Record the obtained accuracy.

Move to the next ensemble size.
end
Determine the optimal accuracy (the accuracy value to which the recorded
accuracies converge)
Select a new feature from D1, of the features that have not been used in the
ensemble, with highest IG.
Add the selected feature to the features previously selected from D1.
end

For the four datasets, the curves in Figure 5.3 show that as more features are added
to the ensemble, represented by smaller values of AveIG, the optimal accuracy of the
ensemble increases. The curves for all datasets also indicate that optimal accuracy
of the ensemble stopped to increase although more features were added.

The upper bound on the accuracy of the ensemble and the range of values of AveIG
for the different datasets are presented in Table 5.9. The results in Table 5.9 show
that the differences between the range of values of AveIG and the accuracy upper
bounds for the 25% NSL KDD dataset, 50% NSL KDD dataset and 75% NSL KDD
dataset are small. The 100% NSL KDD has a slightly higher range of values of AveIG
and a slightly lower accuracy upper bound as compared to those of the to the other
datasets.

Table 5.10 presents the false positive and true positive rates associated with accuracy

5.4. Results on Determining the Upper Bounds of the two Network Intrusion
Detection Systems

95

Algorithm 10 The resultant optimal accuracy vs AveIG
Given:
dataset D1 and dataset D2 and features A1, A2, ..., AN as described in Algorithm 9.
Do,
Select two features from D1 with the highest information gain.

1. Train the ensemble with the selected features from D1.

2. Test the trained ensemble with the corresponding features in D2.

3. Determine the optimal accuracy of the build ensemble and record it.

While not all features in D1 are in the ensemble

• Add a new feature in the ensemble.

• Repeat steps 1 and 3.

• If the optimal accuracy keeps on changing as more features are added,
keep adding new features
else
use (5.3) to calculate the AveIG that led to the same optimal accuracy (referred
to as resultant optimal accuracy) as they were successively added to the
ensemble before the optimal accuracy changed.
• Record the obtained AveIG and the resultant optimal accuracy.

end

TABLE 5.9: Optimal accuracy upper bound against the range of
values of AveIG for the different datasets

NSL KDD % AveIG Range of Values Accuracy Upper Bound
100 0.062478 to 0.25615 0.8780
75 0.045631 to 0.20695 0.9027
50 0.045615 to 0.2065 0.9003
25 0.045668 to 0.20585 0.9065

upper bounds for the different datasets. The results in Table 5.10 show that there is
a small difference on the true positive rates associated with accuracy upper bounds
for all datasets NSL KDD datasets. The 100% NSL KDD dataset has slightly higher
false positive rate as compared to those of the other datasets.

96
Chapter 5. The Ensemble of Classifiers based Network Intrusion Detection System

Performance Bounds

(A) Algorithm ran 1000 times. (B) Algorithm ran 2000 times.

(C) Algorithm ran 4000 times.
(D) Algorithm ran 6000 times.

FIGURE 5.2: Accuracy for less than the upper quarter of each
feature vs the number of time the Bagging algorithm was run (a) the
algorithm was run 1000 times, (b) the algorithm was run 2000 times,
(c) the algorithm was run 4000 times and (d) the algorithm was run

6000 times.

TABLE 5.10: False positive and true positive rates associated with
accuracy upper bounds for the different datasets

NSL KDD Accuracy Upper Bound True Positive Rate False Positive Rate

100% 0.8780 0.9242 0.1442

75% 0.9027 0.9364 0.1183

50% 0.9003 0.9354 0.1212

25% 0.9065 0.9334 0.1101

From the experimental results in Table 5.9 the upper bound on the accuracy of the
assemble was obtained by determining the highest accuracy upper bound, the lower
limit of the range of values of AveIg was obtained by determining the smallest lower
limit of the range of values of AveIg and the upper limit of the range of values of
AveIg was obtained by determining the largest upper limit of the range of values of
AveIg amongst the four datasets which correspond to 0.9065, 0.045615 and 0.25615
respectively. Therefore we infer that, if the AveIg falls between 0.045615 and 0.25615
then the ensemble accuracy will be at most 0.9065. The true positive and false

5.4. Results on Determining the Upper Bounds of the two Network Intrusion
Detection Systems

97

FIGURE 5.3: Optimal accuracy vs average information gain amongst
features used in the decision stump based ensemble for the different

proportions of the NSL KDD Dataset.

positive rates associated with this bound are 0.9334 and 0.1101.

5.4.2 Results on the Decision Tree Ensemble based Network Intrusion
Detection System

The optimal average accuracies of the ensemble for the different AveIG values for
the four datasets are presented in Figure 5.4. The optimal average ensemble accuracy
is the average ensemble accuracy that the ensemble converges to as the ensemble
size grows.

For the four datasets, the curves in Figure 5.4 show that as more features are added to
the ensemble, represented by smaller values of AveIG, the optimal average accuracy
of the ensemble tends to increase. However, after increasing to a certain value the
ensemble accuracy starts to decrease continuously for the 75% NSL KDD and the
50% NSL KDD datasets while for the 100% NSL KDD and 25% NSL KDD datasets
the ensemble accuracy decreases and then stops decreasing (remains at the same
value) as more features are added. This value that the optimal average accuracy
increases up to before it starts decreasing is used as the optimal average ensemble
accuracy for each dataset that is going to be used to determine the upper bound on
the accuracy of decision tree based ensemble of classifiers.

The range of values of AveIG and optimal average ensemble accuracy for the four
datasets are presented in Table 5.11. The results in Table 5.11 show that there is a
small difference in the optimal average accuracies for the 75% NSL KDD, 50% NSL
KDD and 25% NSL KDD datasets while the optimal average accuracy for the 100%
NSL KDD dataset is the lowest .

98
Chapter 5. The Ensemble of Classifiers based Network Intrusion Detection System

Performance Bounds

FIGURE 5.4: Optimal average accuracy vs average information gain
amongst features used in the decision tree based ensemble for the

different proportions of the NSL KDD dataset.

TABLE 5.11: Optimal average accuracy against the range of values of
AveIG for the different datasets

NSL KDD % AveIG Range of Values Optimal Average Accuracy
100 0.062478 to 0.25615 0.8712
75 0.045631 to 0.20695 0.9054
50 0.045615 to 0.2065 0.9029
25 0.045668 to 0.20585 0.9084

The average false positive and true positive rates associated with optimal average
accuracy upper bounds for the different datasets are presented in Table 5.12. The
results in Table 5.12 show that there is a small difference in the average true positive
rates associated with optimal average accuracy upper bounds for the 70% NSL KDD,
50% NSL KDD and 25% NSL KDD datasets. The 100% NSL KDD dataset has slightly
higher average false positive and true positive rates as compared to those of the other
datasets.

TABLE 5.12: Average false positive and true positive rates associated
with the optimal average accuracy for the different datasets

NSL KDD Optimal Average Accuracy Average TPR Average FPR

100% 0.8712 0.9792 0.1806

75% 0.9054 0.9380 0.1148

50% 0.9029 0.9390 0.1193

25% 0.9084 0.9344 0.1076

From the experimental results in Table 5.11 the optimal average ensemble accuracy
to be used in determining the upper bound in the accuracy of the ensemble is
obtained by determining the highest optimal average ensemble accuracy amongst

5.5. Results on Testing if the Obtained Bounds Hold 99

the four datasets which corresponds to 0.9084. In Subsubsection 5.3.4.2 we had said
the upper bound on the ensemble would be reported with an error. To determine
the error, the highest accuracy (irrespective of the number of features used in the
ensemble) achieved by the ensemble using the 25% dataset (dataset corresponds
to the highest optimal average accuracy) and its corresponding minimum accuracy
were determined and subtracted from the optimal average ensemble accuracy. The
maximum difference from the optimal average accuracy was used as the error. There
were two records that led to the same highest accuracy with different minimum
accuracies. Therefore we averaged the accuracies of the two records to get the
minimum and the maximum accuracies of the ensemble. The minimum ensemble
accuracy is 0.8976. The maximum ensemble accuracy is 0.9098. The maximum
difference from the optimal average accuracy is 0.01085. Therefore, we propose that
the upper bound of the ensemble accuracy falls within the optimal average accuracy
and the maximum difference from the optimal average ensemble accuracy, which is,
0.9084±0.01085. The lower and the upper limits of the range of values of AveIG are
obtained similarly to the decision stump based ensemble. Therefore we infer that,
if the AveIG falls between 0.045615 and 0.25615 then the ensemble accuracy will at
best be 0.9193 .

5.5 Results on Testing if the Obtained Bounds Hold

Table 5.13 presents the optimal accuracies for the two NIDSs obtained using the
CICIDS2017 dataset. As can be seen from the results, the optimal accuracies are
higher than the proposed bounds. From the definition of the bounds, it is expected
that the optimal accuracies of the two NIDSs would be within the two bounds
despite the dataset as long as the range of the values of the average information
gain amongst the features used in the two NIDSs is between 0.045615 and 0.25615.
Indeed, the range of the values of the average information gain amongst the features
used in the ensemble was within the given range. The cause for the departure from
expected was investigated. It was discovered that features with the same/similar
information gain coming from different datasets may have different feature average
entropy(average entropy resulting from partitioning the dataset with respect to a
specific feature). This means these features have different distributions with respect
to the target. The differences in feature average entropies of the features with
the same information gain are due to the differences amongst the different dataset
entropies. As a result, a dataset with low dataset entropy will lead to lower feature
average entropy as compared to a dataset with high dataset entropy, Table 5.14
depicts this. This means features with low average entropy are better features and
will result in better accuracy. Based on these findings, the data entropy was added
as one of the conditions for defining the performance bounds.

100
Chapter 5. The Ensemble of Classifiers based Network Intrusion Detection System

Performance Bounds

TABLE 5.13: Optimal accuracy against the range of values of AveIG
for the CICIDS2017 dataset

Dataset Entropy AveIG Range of Values NIDS Optimal Accuracy

0.9462 0.063022 to 0.21055
Decision Stump 0.9807

Decision Tree 0.9943

TABLE 5.14: Effect of dataset entropy on the feature average entropy
for features with same/similar information gain

Dataset Dataset
Entropy

Feature Feature
Average
Entropy

Information
Gain

NSL KDD 100 % 0.9578
DHSDHR 0.7120 0.2458
SDHR 0.7904 0.1674

NSL KDD 75 % 0.9586
DHSDHR 0.7131 0.2456
SDHR 0.7986 0.1683

NSL KDD 50 % 0.9583
DHSDHR 0.7125 0.2458
SDHR 0.7911 0.1672
NS 0.9581 0.00023

NSL KDD 25 % 0.9578
DHSDHR 0.7117 0.2461
SDHR 0.7922 0.1656
NS 0.9575 0.00023

CICIDS2017 0.9462
LWBF 0.7052 0.2409
FHL 0.7052 0.1802
EFC 0.9459 0.00023

Based on the dataset entropies of the different NSL KDD dataset, we deduce that the
obtained bounds that are defined in terms of the average information gain amongst
features hold if the dataset entropy falls between 0.9578 and 0.9586. Where the lower
limit on dataset entropy was obtained by determining the lowest dataset entropy
and the upper limit on the dataset entropy was obtained by determining the highest
dataset entropy (of the 25%, 50%, 75% and 100% NSL KDD datasets) which led to
0.9578 and 0.9586. Outside this range of values of the dataset entropy, the bounds
may not hold. Therefore we infer that, if the dataset entropy falls between 0.9578 and
0.9586 and the AveIg falls between 0.045615 and 0.25615 then the ensemble accuracy
will be at most 0.9065 for the decision stump based NIDS and at the best be 0.9193
for the decision tree based NIDS.

5.6 Summary

The main aim of this Chapter was to determine the upper bounds on the accuracy
of an AdaBoost based NIDS that utilises a decision stump as a weak learner and
a Bagging based NIDS that utilises a decision tree as a base learner. From using
the different proportions of the NSL KDD dataset that were filtered for normal and

5.6. Summary 101

Neptune connections, the continuous features that resulted to decision stumps with
accuracy of less than 70% and splitting these features based on the split point of these
decision stumps to calculate the information gain values of these features resulted
in an accuracy of at most 0.9065 for the AdaBoost based NIDS and 0.9193 for the
Bagging based NIDS. These bounds are defined in terms of the range of the values of
the dataset entropy and the range of values of the average information gain amongst
the features used in these ensembles (AveIG). The bounds only hold if continuous
features that lead to decision stumps with accuracies of less than 70% are used.

It was observed that the range of values of AveIG was dependent on how the
splitting point of the continuous feature is selected and the way the features are
added to the ensemble. In this research the splitting point of the continuous features
was based on the split point of the decision stump used to select the features, as
described under Subsection 5.3.2. Two features that had the highest information
gain values were used to start the ensemble. The average information gain value of
the two features was important since it provided the upper bound of the range of
values of AveIG. Therefore, this research only presents the range of values of AveIG
that are obtained according to Subsection 5.3.2 to define the performance bounds of
the two ensembles. If a different way of splitting the continuous features in order to
obtain their information gain values is used or if features are added to the ensemble
differently then AveIG may be different. It has also been observed that the bounds
are dependent on the dataset entropy.

From the empirical studies conducted in this Chapter, we deduce that the accuracy
upper bounds of the ensembles vary with the range of values of the average
information gain amongst features used in the ensemble and may vary with different
dataset entropy and also the information gain values of the continuous features
depend on how the features are discretised.

102

Chapter 6

Differentially Private Transmission
Control Protocol Synchronize
Packet Counts

This Chapter presents the use of differential privacy as a means of providing privacy
to network trace. The application of differentially privacy to the network is done
similarly to the work of [117]. Specifically, in this study the number of Transmission
Control Protocol Synchronise packets associated with HTTP requests made to a
web server(s) by employees of an organisation on an eight hour working day
are monitored with differential privacy. These packet counts are monitored over
every 10 second interval of an eight hour working day. The differential privacy
randomisation mechanism called the Laplace mechanism is utilised. Laplace
mechanism adds noise to the aggregated statistics of the data (the number of TCP
SYN packets, also referred to as TCP SYN counts, in this study). Releasing a
series of aggregates with differential privacy tend to lead to high perturbation
error more especially if the data values are aggregated over a long period [117].
Therefore to improve the accuracy (the closeness to the original aggregates) of
the released aggregates, the added noise is reduced (filtered) using the filtering
component of [25]. The research utility of the released aggregates is tested using two
utility metrics and by comparing the performance of two anomaly based intrusion
detection algorithms on the original aggregates and the released aggregates. The
utility measures are utilised to establish if the inferences made using the released
aggregates are close to those reached using the original aggregates.

The rest of this Chapter is organised as follows, the methodology and definition
of differential privacy and its associated theorems and concepts are presented in
Sections 6.1 and 6.2. Section 6.3 presents the problem statement. Section 6.4
provides the application of differential privacy to address the problem statement.
The experimental work is carried in Section 6.5. The results are reported in Section
6.6. The Chapter concludes with a brief summary and discussion in Section 6.7.

6.1. Methodology 103

6.1 Methodology

The methodology framework of the experimentation for this Chapter is outlined in
this section. The second ultimate objective of this Thesis is to release differentially
private Transmission Control Protocol (TCP) Synchronise (SYN) packet counts.
Figure 6.1 presents the general experimental approach that will be followed in
creating differentially private TCP SYN Packet Counts. The first step is to extract
the relevant network trace from the network traffic. Followed by determining the
aggregate statistic of interest per time stamp from the extracted trace. Differential
privacy technique is applied on the aggregate statistics. This technique involves
adding noise to the aggregate statistics of the original trace and this may cause
the statistics to be of no useful value. The accuracy of the privatised aggregate
statistics is improved by filtering some of the noise from the privatised aggregate
statistics. Kalman filter, has been successfully used in literature to filter such noise.
To measure the utility of the noise filtered privatised aggregate statistics, one can
use general utility measures like average relative error. Detection algorithms can
also be implemented on the original and noise filtered privatised aggregate statistics
and determine if what is inferred using the original data is close to what is inferred
using the privatised data.

FIGURE 6.1: General experimental process that will be used to create
differentially private TCP SYN packet counts.

6.2 Differential Privacy

In this work, we aim to provide differential private TCP SYN packet counts. A
mechanism is differentially private if its outcome is not significantly affected by

104
Chapter 6. Differentially Private Transmission Control Protocol Synchronize

Packet Counts

the removal or addition of any record. Therefore at the release of the outcome,
an adversary learns almost the same information about any individual record,
regardless of its presence or absence in the original database.

Definition 1, (ε-differential privacy [118]). A privacy mechanism A satisfies ε-
differential privacy if for any dataset D1 and D2 differing on at most one record,
and for any possible anonymised dataset D ∈ Range(A),

Pr[A(D1) = D] ≤ eε Pr[A(D2) = D.] (6.1)

where the probability is taken over the randomness of A.

The privacy parameter ε also called the privacy budget [62], specifies the degree of
privacy offered. Intuitively, a lower value of ε implies stronger privacy guarantee
and a larger perturbation noise, and a higher value of ε implies a weaker guarantee
while possibly achieving higher accuracy. Two databases D1 and D2 that differ on
at most one record are called neighbouring databases. In our problem definition, a
database “record” represents a new connection request to the web server, i.e. the
record is associated with the sending of the TCP SYN packet to the web server by
the client (web browsing employee) and therefore our work is designed to protect
the presence or absence of every web browsing employee.

Laplace Mechanism. Dwork et al. [119] show that ε-differential privacy can be
achieved by adding independent and identically distributed noise to query result
q(D):

q(D) = q(D) + (N1, ..., Nm). (6.2)

Ni = Lap(0,
GS(q)

ε
) f ori = 1, ..., m. (6.3)

where m represents the dimension of q(D). The magnitude of Ni conforms to a
Laplace distribution with 0 mean and GS(q)/ε scale, where GS(q) represents the
global sensitivity [119] of the query q.

Global sensitivity. The global sensitivity [119] is the maximum L1 distance between
the results of q from any two neighbouring databases D1 and D2. Formally, it is
defined as follows:

6.3. Problem Statement 105

GS(q) = max ||q(D1)− q(D2)||. (6.4)

Composition. The composition properties of differential privacy provide privacy
guarantees for a sequence of computations as outlined in theorem 1 below.

Theorem 1. [Sequential composition [62]].
Let each Ai provide ε i-differential privacy. A sequence of Ai(D) over the dataset D
provides ∑i ε i-differential privacy.

From theorem 1, a baseline solution to sharing differentially private time series can
be deduced, specifically, a Laplace perturbation is applied at every time series time
stamp to guarantee (ε/T)-differential privacy, where T is the length of the entire
series [25].

6.3 Problem Statement

This section formally defines the problem of monitoring, using differential privacy,
the new connections to the web server(s) initiated by employees of an organisation
that are browsing the web in a given working day (eight hours). Specifically, the
number of TCP SYN packets sent to the webserver during each 10s interval of a
given working day resulting from the new connection request to the web server(s)
by employees of an organisation that are browsing the web are released using
differential privacy to protect the identity of web browsing employees from being
inferred by an adversary from the original number of TCP SYN packets using
possible background knowledge about the employees’ web browsing patterns. That
is, if the adversary knows the surfing behaviours of employees in an organisation
releasing original HTTP associated TCP SYN packet counts can result in an
adversary identifying the presence or absence of at least one employee in the
organisation’s database of HTTP associated TCP SYN packets. For an example, if
the adversary knows that employee A surfs the net noticeably more (more HTTP
associated TCP SYN packets generated for this employee) than the other employees
and this employee surfs the net at a particular time interval during the day then
the presence or the absence of that employee can be determined by the adversary
since if employee A is present in the database the TCP SYN packet counts in that
period will be noticeably higher than the TCP SYN packet counts in that period in
a database that has the same records as the first database except that employee A
has been removed. Therefore that noticeable difference in the TCP SYN counts in
that period between the two databases has to be masked and differential privacy is
capable of doing so. Furthermore, according to Yurcik et al. [120] TCP flags can be

106
Chapter 6. Differentially Private Transmission Control Protocol Synchronize

Packet Counts

used to finger print different operating systems. Therefore releasing raw TCP SYN
packets can expose the different operating systems of the machines in use.

The Hypertext Transfer Protocol (HTTP) is the application layer protocol that defines
how web clients (browsers) request web pages from the web servers and how these
web pages are transferred by the servers to the clients. The HTTP version, HTTP/1.0
and HTTP/1.1 use TCP as their underlying transport layer protocol. The HTTP
client first initiates a TCP connection with the server. Specifically, when a client
request a TCP connection to the server a three way handshake process is carried
out. Firstly the client sends a request, which is a TCP SYN packet, to the server to
establish a connection. The server replies with a TCP SYN/ACK packet. Finally, the
client sends a TCP ACK packet to the server and the data transfer is started.

In this work, the TCP SYN packets that initiate new TCP connections between
HTTP clients (web browsing employees) and the web server(s) are monitored with
differential privacy. Specifically, the number of TCP SYN packets sent to the web
server(s) during each 10 second (s) interval of a given working day resulting from the
new connection request to the web server(s) by employees of an organization that
are browsing the web is released using differential privacy. The availability of such
aggregated TCP SYN packet counts will assist the intrusion detection researchers in
training their intrusion detection system in order to be able to detect attacks such as
TCP SYN flooding attack. The goal of this work is to release the number of TCP SYN
packets sent during each 10s interval of a given working day without disclosing the
presence or absence of a particular web browsing employee.

Formally the problem statement is stated below as Private TCP SYN packet counts
monitoring: Let xt denote the number of TCP SYN packets sent to the web server(s)
at time interval t, with 1 ≤ t ≤ T where T is the total number of time intervals
in the monitoring period under the assumption that the time interval at which the
packet was sent is the same as the time interval at which it arrives at the web server.
For every time interval t, a private count st is to be released such that the released
series {st, t = 1, . . . , T} is ε-differential private.

Furthermore, similarly to [74], we decided to have a limit on the number of webpage
requests initiated by an individual employee to the web server(s) in the 8 hours,
hence we set a limit on the number TCP SYN packets sent to the web server(s) by an
individual employee on a given 8 hour working day, since

1. An employee should not be browsing the web the whole 8 hours (except it is
their job description, in which this work excludes those types of employees or
organisations or cases).

2. Any web browser can only browse a limited number of web pages in a given
8 hours.

6.4. Differentially Private TCP SYN Packet Counts 107

3. From a privacy point of view, if an employee requests an unlimited number
of web pages in the 8 hours then large amount of noise will be required in
order to account for such influence on the aggregate. The limit to the TCP SYN
packets sent by an individual employee to the web server(s) on a given eight
hour working day is denoted by Cmax and we assume Cmax < T.

6.4 Differentially Private TCP SYN Packet Counts

In this section, the application of differential privacy to the TCP SYN packet counts
is outlined.

6.4.1 Privacy Mechanism

The Laplace Mechanism is suitable for numerical queries [121] and is adopted in
this work as the privacy mechanism since we are monitoring a numerical aggregate
statistic. Algorithm 11 illustrates the perturbation of the original TCP SYN counts
by adding the Laplace noise to each original TCP SYN count.

Algorithm 11 Laplace noise perturbation of the original TCP SYN count
Input: Original TCP SYN count at time t, xt.
Output: Laplace perturbed TCP SYN counts vector, Zt.
For t = 1 to T

1. Create a Laplace measurement at time t, νt from the Laplace distribution as
follows: νt = Laplace(GS(q)/εt).

2. Perturb xt by νt to obtain a Laplace perturbed TCP SYN count, zt which is
zt = xt + νt.

3. Store zt in vector Zt as follows: Zt = zt.

4. t = t + 1.
end

6.4.2 Global Sensitivity

In this section the global sensitivity for monitoring the TCP SYN packet counts per
10s interval in a given eight hour working day is analysed.

Let D be the database that consists of employees’ HTTP requests to the web server
in a given 8 hour working day, q(D) = {x1, . . . , xT} be the sequence of outputs from
the count queries, where xt denotes the number of TCP SYN packets sent during
t-th 10s interval and T be the length of the series (number of 10s intervals in an 8
hour working day). To determine the global sensitivity GS(q), we studied the HTTP
related TCP SYN packets in the DARPA 1999 dataset and noticed that an individual

108
Chapter 6. Differentially Private Transmission Control Protocol Synchronize

Packet Counts

can request more than one web page in a given time interval t and can appear in
more than one time interval. Meaning that more than one TCP SYN packet can
originate from the same source in a given time interval t. The effect of this is that the
removal or addition of an individual to database D would change the output by at
least 1. As we have observed also that the individual can appear in more than one
time interval, the global sensitivity of the count query will be affected since global
sensitivity defines the maximum contribution of an individual to the function output
[117]. From the DARPA 1999 dataset, we found Cmax = 712, where Cmax value is the
maximum HTTP related TCP SYN packets originating from the same source over
the eight hours. We, therefore, set GS(q) = 712 since this is the highest maximum
contribution by an individual in D.

6.4.3 Filtering

As we have mentioned in the introduction, the direct application of the Laplace
mechanism to the original aggregates may lead to high perturbation error and
leaving the released aggregates to be of no useful value, we adopted the filtering
component of [25] in order to improve the accuracy of the released aggregates.
Their filtering component utilizes time series modelling and estimation algorithm.
In their [25] context, filtering refers to the derivation of the posterior estimates of
the original time series from the noisy measurements with the hope of removing
background noise from the signal. They estimated the original time series from
the noisy measurements using a Kalman filter [122] based estimation algorithm and
used a state space model to describe the underlying dynamics of a time series as
well as how an observation is derived from a hidden state [25]. In this work, we
modelled the time series and noisy measurements and estimated the original series
from the noisy estimates to obtain the posterior estimates referred to as Kalman
count estimates as follows:

Time series modelling. For the TCP SYN packet count series i.e. {xt, t = 1, . . . , T},
we defined the following models;

process model:
xt = xt−1 + ωt. (6.5)

ωt ∼ N(0, Q). (6.6)

where ωt denotes the process noise at time interval t ,which is assumed to be a white
Gaussian noise with variance Q.
Similarly, the measurement model for the noisy observations that are obtained from

6.5. Experimental Work 109

the Laplace perturbation mechanism is:

zt = xt + νt. (6.7)

νt ∼ Laplace(GS(q) /ε). (6.8)

where νt is the measurement noise at time interval t. Fan and Xiong [25] have
established that the posterior distribution cannot be analytically determined if the
distribution of the measurement noise is not Gaussian and reported that it is
sufficient to approximate the distribution of the measurement noise to a Gaussian
distribution. Thus, the following Gaussian distribution was proposed:

νt ∼ N(0, R), with R ∝ (GS(q))2/ε2. (6.9)

In this work, we adopted the same approximation in (6.9).

Estimation algorithm. We adopted the estimation algorithm of [74] which is based
on the Kalman filter and approximated Laplace noise with Gaussian noise as
suggested by [25]. Kalman filter [122] is a recursive method that provides an efficient
means to estimate the state of a linear Gaussian process, by minimizing the variance
of the posterior error. It consists of two steps, namely, prediction and correction
steps. In the prediction step the state is predicted with the dynamic model. In the
correction step the state is corrected with the observation model such that the error
covariance of the estimator is minimised. The prediction and correction algorithms
adopted in this work can be found in [74].

Privacy guarantee. The estimation algorithm provides ε-differential privacy since
by definition of Laplace mechanism and sensitivity analysis in Section 6.2, the
Laplace perturbed values {zt, t = 1, . . . , T} satisfy ε-differential privacy and
similarly to [74], neither the prediction nor correction interacts with the raw data
so there is no extra privacy leakage incurred by those two procedures.

6.5 Experimental Work

6.5.1 Dataset

Attack free data taken on a Monday of the first week of the DARPA 1999 was utilised
in this Chapter. TCP SYN packets associated with HTTP requests to seven web
servers were collected between 08:00 to 16:00, i.e., TCP SYN packets collected over

110
Chapter 6. Differentially Private Transmission Control Protocol Synchronize

Packet Counts

8 hours. The number of TCP SYN packets in 10 second intervals were determined.
The attack free data was selected for two reasons:

1. the released differentially private TCP counts can be used to train anomaly
based IDS and anomaly based IDS are trained on attack free data.

2. the usability of the differential private data using an anomaly detection
algorithm is evaluated in terms of false positive rates which are easier to
determine.

Seven servers were used in order to limit the number of times an individual (web
browsing employee) appears in the dataset so that the restrictions set in Section 6.3
for individuals browsing the net in a given eight hour working day are met. The
TCP SYN packets were collected over eight hours since this study monitors the TCP
SYN packets associated with HTTP requests during an eight hour working day of an
organisation. The number of TCP SYN packets in 10 second interval is an aggregated
statistic of interest since it is used by some of the anomaly detection algorithms.

6.5.2 Experimental Setup

The implementation of algorithms was carried out using Matlab R2016a. The
Laplace perturbation of the TCP SYN packets in 10 second intervals were performed
in R Studio.

The number of TCP SYN packets in 10 second intervals, also referred to as TCP SYN
counts or original counts or just counts, were determined and Figure 6.2 depicts the
original counts for the first 500 10s intervals of packet arrivals.

FIGURE 6.2: Original packet counts.

6.5. Experimental Work 111

The Laplace noise was added to each count in each interval at the interval privacy
budget of, ε i = 0.01 (i.e. for each 10s interval a Laplace mechanism that provides ε i-
differential privacy was used) and a global sensitivity of GS(q) = 712. The interval
budget of ε i = 0.01 was chosen since it provides the lowest overall privacy budget
(that can be obtained by using theorem 1) of the recommended privacy budgets (0.01
and 0.1) [123]. Figure 6.3 illustrates the Laplace perturbed counts for the first 500 10s
intervals of packet arrivals.

As mentioned at the beginning of the Chapter that direct application of Laplace
mechanism by adding the perturbation noise to the aggregated statistics at each
time interval can result in a high overall perturbation error causing the released
aggregates to be of no useful value especially when T is large [117]. To address
this drawback Fan and Xiong [25] have proposed a filtering component that models
the series using a state space model and estimates the original data from the noisy
data using Kalman filter where the resulting estimates are released in the place of
the noisy perturbed data. For the filtering component, the process noise of Q =

10000 which was empirically determined as the value that yields better estimates
of the original TCP SYN packet counts given the interval privacy budget and the
measurement noise of R = (GS(q))2/ε2

i were used.

Fan and Xiong [25] also suggested the Laplace noise to be approximated by the
Gaussian distribution for the Kalman filter to work. Therefore, the Kalman filter was
used to estimate the original counts from the Gaussian perturbed counts (estimates
of the Laplace perturbed counts as suggested by [25]). These estimates are the ones
that are released instead of the noisy counts resulting from Laplace perturbation.
Figure 6.4 presents the original counts and the estimates of the original counts,
referred to as Kalman count estimates for the first 500 10s intervals of packet arrivals.

FIGURE 6.3: Laplace perturbed packet counts.

112
Chapter 6. Differentially Private Transmission Control Protocol Synchronize

Packet Counts

6.5.3 Kalman Count Estimates Utility Evaluation

To measure the quality of released Kalman count estimates {st, t = 1, . . . , T}:

1. We used two utility metrics called average relative error (E) and utility loss (U)

2. The performances of the cumulative sum (CUSUM) and adaptive threshold
algorithms on the original aggregates were compared to their performances
on the released aggregates and this is illustrated in Algorithm 12

Algorithm 12 Utility evaluation of Kalman count estimates using the CUSUM and
adaptive threshold algorithms
Input: Attack free original counts and Kalman count estmates.
Output: False positive rates (FPRs) for the CUSUM and adaptive threshold
algorithms.
Given: Attack free original counts, Kalman count estimates and two intrusion
detection algorithms: CUSUM and adaptive threshold algorithms.

Do
1. Run the CUSUM algorithm on the attack free original counts.
2. Determine the FPRs associated with the CUSUM algorithm since the algorithm

did detection on attack free counts.
3. Repeat steps 1 and 2 on the Kalman count estimates.
4. Compare the CUSUM’s FPRs on the original counts with CUSUM’s FPRs on

the Kalman count estimates.
5. Repeat steps 1-4 with the adaptive threshold algorithm.

end

FIGURE 6.4: Original packet counts vs Kalman count estimates.

6.5. Experimental Work 113

6.5.3.1 Average Relative Error

Average relative error, E, is a widely used metric to evaluate the accuracy of the
data. It measures how well the released time series {st, t = 1, ..., T} follows the
original series {xt, t = 1, ..., T}. It is defined as follows:

E =
1
T

T

∑
t=1

|st − xt|
max{xt, δ} . (6.10)

where δ = 1 in order to handle cases where xt = 0. Smaller values of E indicate high
similarity between the released and the original series.

To evaluate the usefulness of the release Kalman count estimates, the E values for the
Laplace perturbed counts and the released Kalman count estimates corresponding
to three interval privacy budget values ε i = 0.01, 0.1 and 1 were computed. The
obtained E values for the Laplace perturbed counts were compared to the E values
for the Kalman count estimates.

6.5.3.2 Utility Loss

Utility loss is a relative cumulative difference between the true data points {xt, t =
1, ..., T} and the fuzzed data points {st, t = 1, ..., T} [78]. It is defined as follows

U =
∑N

i=1 |si − xi|
∑N

i=1 |xi|
. (6.11)

Small values of this measure indicate higher research utility [78].

We computed U values for the Laplace perturbed series and the Kalman count
estimates corresponding to the three interval privacy budget values ε i = 0.01, 0.1
and 1 in order to evaluate the research usefulness of the released counts. The
obtained U values for the Laplace perturbed counts were compared to the U values
for the Kalman count estimates.

6.5.3.3 Use of Intrusion Detection Algorithms

The CUSUM based intrusion detection algorithm and the Adaptive Threshold
algorithm are used in this work to determine if inferences made using the Kalman
count estimates are close to the corresponding ones using the original data.
Specifically, in this work, the false positive rates obtained from the two algorithms’
detection thresholds (h and k respectively) using the Kalman estimates are compared
to those obtained using the original data. The comparison is done in order to
determine if the two algorithms’ false positives rates obtained from the Kalman

114
Chapter 6. Differentially Private Transmission Control Protocol Synchronize

Packet Counts

count estimates are close to those obtained from the original counts. The two
algorithms’ detection thresholds ranged from 1 to 10. The detection threshold values
were selected such that the algorithm’s false positive rates approach zero.

6.6 Results

This section presents the results of the utility evaluation of the Kalman count
estimates. Figure 6.5 presents the average relative error values for the Laplace
perturbed counts and Kalman count estimates at three interval privacy budget
values ε i = 0.01, 0.1 and 1. As indicated in Figure 6.5, the average relative errors
for the Laplace perturbed counts were 67701, 6770 and 677 for ε i = 0.01, 0.1 and 1,
respectively while the Kalman count estimates resulted in average relative errors of
984, 434 and 136 for ε i = 0.01, 0.1 and 1, respectively. These results indicate that
the Kalman count estimates which are the released counts are closer to the original
counts.

FIGURE 6.5: Average relative error comparison.

Figure 6.6 presents the utility loss values for the Laplace perturbed counts and
Kalman count estimates at three interval privacy budget values ε i = 0.01, 0.1 and
1. As indicated in Figure 6.6, the utility loss values for the Laplace perturbed counts
were 47262, 4725 and 472 for ε i = 0.01, 0.1 and 1 respectively. The Kalman count
estimates resulted in utility loss values of 679, 300 and 94 for ε i = 0.01, 0.1 and 1
respectively. These results indicate that the Kalman count estimates have higher
research utility than the Laplace perturbed counts.

6.6. Results 115

FIGURE 6.6: Utility loss comparison.

Figure 6.7 presents the CUSUM based algorithm false positive rates of the original
counts against the Kalman count estimates. When one looks at the overall pattern
of the curves in Figure 6.7, the Kalman count estimates curve for h ≤ 8 tend to
follow the pattern of the original counts curve for h ≤ 6 with lag effect which means
inferences made using the Kalman count estimates for h ≤ 8 will not be too far from
the inferences made using the original counts for h ≤ 6 .

FIGURE 6.7: CUSUM false positive rates for the original counts vs
Kalman estimates.

Figure 6.8 presents the Adaptive Threshold algorithm false positive rates of the
original counts against the Kalman count estimates. From Figure 6.8, the Kalman
count estimates curve for 3 ≤ k ≤ 5 tends to follow the pattern of the original
counts curve for 3 ≤ k ≤ 4 with a lag effect, which means inferences made using the
Kalman count estimates for 3 ≤ k ≤ 5 will not be too different from the inferences
made using the original counts for 3 ≤ k ≤ 4.

116
Chapter 6. Differentially Private Transmission Control Protocol Synchronize

Packet Counts

FIGURE 6.8: Adaptive threshold algorithm false positive rates for the
original counts vs Kalman estimates.

6.7 Summary and Discussion

In this Chapter, differential privacy was used as a means of providing privacy to
TCP SYN packets counts. The filtering component of [25] was adopted in order to
improve the accuracy of the released counts. The utility of Kalman count estimates
was tested by using two utility metrics, average relative error and utility loss. The
performances of cumulative sum based intrusion detection and adaptive threshold
algorithms on the original counts were compared to their performances on the
released counts. The utility measure, average relative error at ε i = 0.01, indicates
that the Kalman estimates are closer to the original counts as compared to the
Laplace perturbed counts. The Utility loss measure at ε i = 0.01 shows that the
released counts have higher research utility as compared to the Laplace counts while
preserving privacy.

The cumulative sum based intrusion detection algorithm performance on the
original counts and Kalman count estimates indicates that the false positive rates
obtained using the Kalman count estimates are not that different from those obtained
using the original counts for most of the algorithm’s detection threshold, with added
advantage of privacy and being estimates of the original counts instead of being
simulated counts. The false positive rates obtained from the CUSUM algorithm
detection thresholds using the released counts are closer to the ones obtained from
the original counts as compared to those obtained from the adaptive threshold
algorithm. However, the run time of the CUSUM algorithm is longer than that of
the adaptive threshold algorithm.

117

Chapter 7

Conclusion

7.1 Summary of Conclusions

In order to illustrate the achievable performances of the existing NIDSs, this Thesis
evaluated the performances of Adaptive Threshold algorithm, Cumulative Sum
based algorithm, Decision Tree and Fuzzy Logic based system for individual NIDSs
and the logic OR operator for combined NIDSs in detecting the TCP SYN flooding
attack. The analysis of the anomaly based individual NIDSs and logic OR operator
based NIDS indicates that the attacks generated using the Poisson process were
detected better than those generated at constant interarrival times. Furthermore,
the logic OR operator based NIDS outperformed the two individual anomaly based
NIDSs in terms of detection probability and detection delay. For the learning based
NIDSs, the Decision Tree performed better than the novel Fuzzy Logic based NIDS
in terms of accuracy, specificity, false positive and false negative rates.

One of the aims of this research was to determine the upper bounds on the accuracies
of network intrusion detection systems (NIDSs) that are based on combining
multiple NIDSs. Specifically, the information theoretic measures, information gain
of the features used in building the NIDS and dataset entropy with respect to the
features, were used to define these bounds under two sensor specifications, namely,
a NIDS that combines multiple independent sensors and a NIDS that combines
multiple dependent sensors. The upper bounds on the accuracies of the two
ensembles of classifiers based NIDSs were empirically determined in this study.
In the NIDS that uses ensemble of classifiers with dependent base classifiers, the
decision stump was used as the weak base classifier and its accuracy was boosted to
optimality using the boosting ensemble method algorithm AdaBoost. In the NIDS
that uses an ensemble of classifiers with independent base classifiers the decision
tree was used as the unstable base classifier and its accuracy was optimised using
the Bagging ensemble method. The results indicate that if the dataset entropy falls
between 0.9578 and 0.9586 and the average information gain value amongst features
used in the two ensembles falls between 0.045615 and 0.25615 then the accuracy of

118 Chapter 7. Conclusion

the NIDS with dependent base learners will at most be 0.9065 while that of the NIDS
with independent base learners will at best be 0.9193 .

On determining the upper bounds on the accuracies of the two NIDSs the following
conclusions were reached:

a) different range of values of the average information gain amongst features
used in the ensembles lead to different ensemble accuracy upper bounds.
The range of values of the average information gain amongst features in the
ensemble that lead to equal ensemble accuracy upper bounds would result
from the addition of poor features in the ensemble that change the average
information gain amongst features but not the accuracy of the ensemble.

b) the obtained ensemble accuracy bounds hold even for the detection of different
attacks (normal vs any attack type) provided that the ensemble (AdaBoosted
decision stump ensemble or Bagged decision tree ensemble) is built from
continuous features with the same information gain values as features used in
building the two ensembles and the discretisation of the continuous features is
done according to this Thesis.

c) how the continuous features are discretised results to different values of the
information gain of the features.

d) features with the same information gain, coming from different datasets may
lead to different accuracy bounds if the different datasets have different dataset
entropies.

The true positive and false positive rates associated with these bounds provide
insight to NIDS designers as to what true positive and false positive rate values
must they set their NIDS to in order to obtain a certain level of accuracy.

Another aim of this Thesis was to provide privacy-preserving network trace.
Differential privacy, which is a privacy-preserving technique for data publishing,
was implemented on the number of TCP SYN packets associated with HTTP
requests. The utility analysis of the released privatised number of TCP SYN packets
associated with HTTP request indicates that

• the false positive rates of the released counts obtained at some of the detection
thresholds of the two anomaly based algorithms are closer to the false positive
rates of the original counts at those thresholds.

• the false positive rates obtained from the CUSUM algorithm detection
thresholds using the released counts are closer to the ones obtained using
original counts as compared to those of the Adaptive Threshold algorithm.

• the CUSUM algorithm has more detection thresholds that lead to useful
research inferences as compared to the Adaptive Threshold algorithm.

7.2. Suggestions for Future Work 119

Where useful research inferences means that false positive rates from the released
counts will be not that different from false positive rates obtained using the original
counts. Therefore, it is concluded that the released counts

• are research useful while preserving privacy.

• will work well for some algorithms and not so well for others.

7.2 Suggestions for Future Work

This research only determined the upper bounds on the accuracies of ensemble
of classifiers-based network intrusion detection systems that use decision stump
and decision tree as base learners. An investigation on the upper bounds
on the accuracy of network intrusion detection systems that use other base
learners like neural networks can be conducted. The performance bounds of two
homogenous ensembles were determined, this investigation can also be extended
to heterogeneous ensembles. Both ensembles were built using continuous features
only, determining upper bounds on accuracy for ensembles built from discrete
features or a combination of continuous and discrete features may be another
research topic. A comparison of upper bounds for ensembles built from continuous,
discrete and combination of continuous and discrete features to determine which
one is superior may be another research topic.

120

References

[1] K. Curtin, Sa business unprepared for the growing risk of cyber attacks. 2013.
[Online]. Available: www.fanews.co.za/article/short-term-insurance/1.

[2] T. Seals, Cyber-attack volume doubled in first half of 2017, 2017. [Online].
Available: https://www.infosecurity-magazine.com/news/cyberattack-
volume-doubled-2017/.

[3] T. Lappas and K. Pelechrinis, “Data mining techniques for (network)
intrusion detection systems”, Department of Computer Science and Engineering
UC Riverside, Riverside CA, vol. 92521, 2007.

[4] C. Kruegel, F. Valeur, and G. Vigna, Intrusion detection and correlation:
challenges and solutions. Springer Science & Business Media, 2004, vol. 14.

[5] W. Hu and W. Hu, “Network-based intrusion detection using adaboost
algorithm”, in Proceedings of the 2005 IEEE/WIC/ACM International Conference
on Web Intelligence, IEEE Computer Society, 2005, pp. 712–717.

[6] S. Wu and W. Banzhaf, “The use of computational intelligence in intrusion
detection systems: A review”, Applied Soft Computing, vol. 10, no. 1, pp. 1–35,
2010.

[7] A. Mokarian, A. Faraahi, and A. G. Delavar, “False positives reduction
techniques in intrusion detection systems-a review”, International Journal of
Computer Science and Network Security (IJCSNS), vol. 13, no. 10, p. 128, 2013.

[8] D. G. Bhatti, P. V. Virparia, and B. Patel, “Conceptual framework for
soft computing based intrusion detection to reduce false positive rate”,
International Journal of Computer Applications, vol. 44, no. 13, pp. 1–3, 2012.

[9] M Khalilian, N Mustapha, M. N. Sulaiman, and A Mamat, “Intrusion
detection system with data mining approach: A review”, Global Journal of
Computer Science and Technology, 2011.

[10] G. P. Spathoulas and S. K. Katsikas, “Reducing false positives in intrusion
detection systems”, computers & security, vol. 29, no. 1, pp. 35–44, 2010.

[11] C. Thomas and N. Balakrishnan, “Advanced sensor fusion technique for
enhanced intrusion detection”, in Intelligence and Security Informatics, 2008.
ISI 2008. IEEE International Conference on, IEEE, 2008, pp. 173–178.

www.fanews.co.za/article/short-term-insurance/1
https://www.infosecurity-magazine.com/news/cyberattack-volume-doubled-2017/
https://www.infosecurity-magazine.com/news/cyberattack-volume-doubled-2017/

REFERENCES 121

[12] J. Tian, W. Zhao, R. Du, and Z. Zhang, “Ds evidence theory and its data fusion
application in intrusion detection”, in Parallel and Distributed Computing,
Applications and Technologies, 2005. PDCAT 2005. Sixth International Conference
on, IEEE, 2005, pp. 115–119.

[13] C. Thomas and N. Balakrishnan, “Selection of intrusion detection system
threshold bounds for effective sensor fusion.”, in Data Mining, Intrusion
Detection, Information Assurance, and Data Networks Security, 2007, p. 657 007.

[14] C. H. Rowland, Intrusion detection system, US Patent 6,405,318, 2002.

[15] C. Siaterlis and B. Maglaris, “Towards multisensor data fusion for dos
detection”, in Proceedings of the 2004 ACM symposium on Applied computing,
ACM, 2004, pp. 439–446.

[16] Y. Wang, H. Yang, X. Wang, and R. Zhang, “Distributed intrusion detection
system based on data fusion method”, in Intelligent Control and Automation,
2004. WCICA 2004. Fifth World Congress on, IEEE, vol. 5, 2004, pp. 4331–4334.

[17] E. Menahem, G. Nakibly, and Y. Elovici, “Network-based intrusion detection
systems go active!”, in Proceedings of the 2012 ACM conference on Computer and
communications security, ACM, 2012, pp. 1004–1006.

[18] C. Thomas and N. Balakrishnan, “Performance enhancement of intrusion
detection systems using advances in sensor fusion”, Supercomputer Education
and Research Centre Indian Institute of Science, Doctoral Thesis, 304pp. Available
at: http://www. serc. iisc. ernet. in/graduation-theses/CizaThomas-PhD-Thesis. pdf,
2009.

[19] W. Hu, J. Li, and Q. Gao, “Intrusion detection engine based on dempster-
shafer’s theory of evidence”, in Communications, Circuits and Systems
Proceedings, 2006 International Conference on, IEEE, vol. 3, 2006, pp. 1627–1631.

[20] W. Gong, W. Fu, and L. Cai, “A neural network based intrusion detection data
fusion model”, in Computational Science and Optimization (CSO), 2010 Third
International Joint Conference on, IEEE, vol. 2, 2010, pp. 410–414.

[21] J. C. Mogul and M. Arlitt, “Sc2d: An alternative to trace anonymization”,
in Proceedings of the 2006 SIGCOMM workshop on Mining network data, ACM,
2006, pp. 323–328.

[22] R. Paul, V. C. Valgenti, and M. S. Kim, Obfuscating and anonymizing network
traffic & a new dimension to network research, 2010. [Online]. Available: https:
//research.wsulibs.wsu.edu/xmlui/bitstream/handle/2376/2655/Paul,

%20R%20Obfuscating%20and%20anonymizing%20.pdf.

[23] S. E. Coull, C. V. Wright, F. Monrose, M. P. Collins, and M. K. Reiter, “Playing
devil’s advocate: Inferring sensitive information from anonymized network
traces.”, in NDSS, vol. 7, 2007, pp. 35–47.

https://research.wsulibs.wsu.edu/xmlui/bitstream/handle/2376/2655/Paul,%20R%20Obfuscating%20and%20anonymizing%20.pdf
https://research.wsulibs.wsu.edu/xmlui/bitstream/handle/2376/2655/Paul,%20R%20Obfuscating%20and%20anonymizing%20.pdf
https://research.wsulibs.wsu.edu/xmlui/bitstream/handle/2376/2655/Paul,%20R%20Obfuscating%20and%20anonymizing%20.pdf

122 REFERENCES

[24] F. McSherry and R. Mahajan, “Differentially-private network trace analysis”,
ACM SIGCOMM Computer Communication Review, vol. 41, no. 4, pp. 123–134,
2011.

[25] L. Fan and L. Xiong, “Real-time aggregate monitoring with differential
privacy”, in Proceedings of the 21st ACM international conference on Information
and knowledge management, ACM, 2012, pp. 2169–2173.

[26] A. Siraj and R. B. Vaughn, “Multi-level alert clustering for intrusion detection
sensor data”, in Fuzzy Information Processing Society, 2005. NAFIPS 2005.
Annual Meeting of the North American, IEEE, 2005, pp. 748–753.

[27] J. L. Hellerstein, F. Zhang, and P. Shahabuddin, “Characterizing normal
operation of a web server: Application to workload forecasting and problem
detection”, in CMG-CONFERENCE-, COMPSCER MEASUREMENT GROUP
INC, vol. 1, 1998, pp. 150–160.

[28] C. Thomas and N. Balakrishnan, “Improvement in intrusion detection with
advances in sensor fusion”, IEEE Transactions on Information Forensics and
Security, vol. 4, no. 3, pp. 542–551, 2009.

[29] G. Thimm and E. Fiesler, “Pruning of neural networks”, IDIAP, Tech. Rep.,
1997.

[30] A. P. F. Chan, W. W. Ng, D. S. Yeung, and E. C. C. Tsang, “Comparison of
different fusion approaches for network intrusion detection using ensemble
of rbfnn”, in Proceedings of 2005 international conference on machine learning and
cybernetics, vol. 6, 2005, pp. 18–21.

[31] J. Kaliappan, R. Thiagarajan, and K. Sundararajan, “Fusion of heterogeneous
intrusion detection systems for network attack detection”, The Scientific World
Journal, vol. 2015, pp. 1–8, 2015.

[32] V. Shah, A. K. Aggarwal, and N. Chaubey, “Performance improvement of
intrusion detection with fusion of multiple sensors”, Complex & Intelligent
Systems, vol. 3, no. 1, pp. 33–39, 2017.

[33] G. L. Rogova and V. Nimier, “Reliability in information fusion: Literature
survey”, in Proceedings of the seventh international conference on information
fusion, vol. 2, 2004, pp. 1158–1165.

[34] V. M. Shah and A. K. Agarwal, “Reliable alert fusion of multiple intrusion
detection systems.”, IJ Network Security, vol. 19, no. 2, pp. 182–192, 2017.

[35] N. N. P. Mkuzangwe, A. McDonald, and F. V. Nelwamondo, “Implementation
of anomaly detection algorithms for detecting transmission control protocol
synchronized flooding attacks”, in Fuzzy Systems and Knowledge Discovery
(FSKD), 2015 12th International Conference on, IEEE, 2015, pp. 2137–2141.

REFERENCES 123

[36] V. A. Siris and F. Papagalou, “Application of anomaly detection algorithms
for detecting syn flooding attacks”, Computer communications, vol. 29, no. 9,
pp. 1433–1442, 2006.

[37] G. Li, Z. Yan, Y. Fu, and H. Chen, “Data fusion for network intrusion
detection: A review”, Security and Communication Networks, vol. 2018, 2018.

[38] A. Borji, “Combining heterogeneous classifiers for network intrusion
detection”, in Annual Asian Computing Science Conference, Springer, 2007,
pp. 254–260.

[39] M. Govindarajan and R. M. Chandrasekaran, “Intrusion detection using
an ensemble of classification methods”, in Proc. of the World Congress on
Engineering and Computer Science, vol. 1, 2012, pp. 459–464.

[40] P. Sornsuwit and S. Jaiyen, “Intrusion detection model based on ensemble
learning for u2r and r2l attacks”, in Information Technology and Electrical
Engineering (ICITEE), 2015 7th International Conference on, IEEE, 2015,
pp. 354–359.

[41] D. Prusti and S. K. Jena, An efficient intrusion detection model using ensemble
methods, 2015. [Online]. Available: http://ethesis.nitrkl.ac.in/7304/1/
Efficient_Prusti_2015.pdf.

[42] A. Zainal, M. A. Maarof, and S. M. Shamsuddin, “Ensemble classifiers for
network intrusion detection system”, Journal of Information Assurance and
Security, vol. 4, no. 3, pp. 217–225, 2009.

[43] P. Natesan, P. Balasubramanie, and G. Gowrison, “Improving attack detection
rate in network intrusion detection using adaboost algorithm”, Journal of
Computer Science, vol. 8, no. 7, pp. 1041–1048, 2012.

[44] G. Kumar and K. Kumar, “The use of artificial-intelligence-based ensembles
for intrusion detection: A review”, Applied Computational Intelligence and Soft
Computing, vol. 2012, p. 21, 2012.

[45] A. A. Aburomman and M. B. I. Reaz, “A survey of intrusion detection
systems based on ensemble and hybrid classifiers”, Computers & Security,
vol. 65, pp. 135–152, 2017.

[46] M. Jabbar, R. Aluvalu, and S Reddy, “Cluster based ensemble classification
for intrusion detection system”, in Proceedings of the 9th International
Conference on Machine Learning and Computing, ACM, 2017, pp. 253–257.

[47] W. Yassin, N. I. Udzir, Z. Muda, M. N. Sulaiman, et al., “Anomaly-
based intrusion detection through k-means clustering and naives bayes
classification”, in Proc. 4th Int. Conf. Comput. Informatics, ICOCI, 2013,
pp. 298–303.

http://ethesis.nitrkl.ac.in/7304/1/Efficient_Prusti_2015.pdf
http://ethesis.nitrkl.ac.in/7304/1/Efficient_Prusti_2015.pdf

124 REFERENCES

[48] S. S. S. Sindhu, S. Geetha, and A. Kannan, “Decision tree based light
weight intrusion detection using a wrapper approach”, Expert Systems with
applications, vol. 39, no. 1, pp. 129–141, 2012.

[49] N. N. P. Mkuzangwe and F. Nelwamondo, “Ensemble of classifiers
based network intrusion detection system performance bound”, in Systems
and Informatics (ICSAI), 2017 4th International Conference on, IEEE, 2017,
pp. 970–974.

[50] N. Moustafa, B. Turnbull, and K.-K. R. Choo, “An ensemble intrusion
detection technique based on proposed statistical flow features for protecting
network traffic of internet of things”, IEEE Internet of Things Journal, 2018.

[51] F. Haddadi and A. N. Zincir-Heywood, “Benchmarking the effect of flow
exporters and protocol filters on botnet traffic classification”, IEEE Systems
journal, vol. 10, no. 4, pp. 1390–1401, 2014.

[52] Z. Abaid, D. Sarkar, M. A. Kaafar, and S. Jha, “The early bird gets the botnet:
A markov chain based early warning system for botnet attacks”, in 2016 IEEE
41st Conference on Local Computer Networks (LCN), IEEE, 2016, pp. 61–68.

[53] Y. Mirsky, T. Doitshman, Y. Elovici, and A. Shabtai, “Kitsune: An ensemble
of autoencoders for online network intrusion detection”, arXiv preprint
arXiv:1802.09089, 2018.

[54] F. T. Liu, K. M. Ting, and Z.-H. Zhou, “Isolation forest”, in 2008 Eighth IEEE
International Conference on Data Mining, IEEE, 2008, pp. 413–422.

[55] D. Reynolds, “Gaussian mixture models”, Encyclopedia of biometrics,
pp. 827–832, 2015.

[56] S. Calinon and A. Billard, “Incremental learning of gestures by imitation in
a humanoid robot”, in Proceedings of the ACM/IEEE international conference on
Human-robot interaction, ACM, 2007, pp. 255–262.

[57] Y. Mirsky, T. Halpern, R. Upadhyay, S. Toledo, and Y. Elovici, “Enhanced
situation space mining for data streams”, in Proceedings of the Symposium on
Applied Computing, ACM, 2017, pp. 842–849.

[58] Suricata- open source ids/ ips/nsm engine. 2017. [Online]. Available: https://
suricata-ids.org/.

[59] Y. Song, “A behavior-based approach towards statistics-preserving network
trace anonymization”, PhD thesis, Columbia University, 2012.

[60] D. Koukis, S. Antonatos, D. Antoniades, E. P. Markatos, and P. Trimintzios,
“A generic anonymization framework for network traffic”, in 2006 IEEE
International Conference on Communications, IEEE, vol. 5, 2006, pp. 2302–2309.

[61] N. R. Adam and J. C. Worthmann, “Security-control methods for statistical
databases: A comparative study”, ACM Computing Surveys (CSUR), vol. 21,
no. 4, pp. 515–556, 1989.

https://suricata-ids.org/
https://suricata-ids.org/

REFERENCES 125

[62] F. D. McSherry, “Privacy integrated queries: An extensible platform for
privacy-preserving data analysis”, in Proceedings of the 2009 ACM SIGMOD
International Conference on Management of data, ACM, 2009, pp. 19–30.

[63] A. Lakhina, M. Crovella, and C. Diot, “Diagnosing network-wide traffic
anomalies”, in ACM SIGCOMM Computer Communication Review, ACM,
vol. 34, 2004, pp. 219–230.

[64] B. Eriksson, P. Barford, and R. Nowak, “Network discovery from passive
measurements”, in ACM SIGCOMM Computer Communication Review, ACM,
vol. 38, 2008, pp. 291–302.

[65] R. Pang and V. Paxson, “A high-level programming environment for
packet trace anonymization and transformation”, in Proceedings of the 2003
conference on Applications, technologies, architectures, and protocols for computer
communications, ACM, 2003, pp. 339–351.

[66] J. Xu, J. Fan, M. H. Ammar, and S. B. Moon, “Prefix-preserving ip
address anonymization: Measurement-based security evaluation and a new
cryptography-based scheme”, in Network Protocols, 2002. Proceedings. 10th
IEEE International Conference on, IEEE, 2002, pp. 280–289.

[67] J. Mirkovic, “Privacy-safe network trace sharing via secure queries”, in
Proceedings of the 1st ACM workshop on Network data anonymization, ACM, 2008,
pp. 3–10.

[68] N. V. Dijkhuizen and J. V. D. Ham, “A survey of network traffic
anonymisation techniques and implementations”, ACM Computing Surveys
(CSUR), vol. 51, no. 3, p. 52, 2018.

[69] A. J. Slagell, K. Lakkaraju, and K. Luo, “Flaim: A multi-level anonymization
framework for computer and network logs.”, in LISA, vol. 6, 2006, pp. 3–8.

[70] A. J. Slagell, Y. Li, and K. Luo, “Sharing network logs for computer forensics:
A new tool for the anonymization of netflow records”, in Security and Privacy
for Emerging Areas in Communication Networks, 2005. Workshop of the 1st
International Conference on, IEEE, 2005, pp. 37–42.

[71] T. Gamer, C. Mayer, and M. Schöller, “Pktanon–a generic framework for
profile-based traffic anonymization”, PIK-Praxis der Informationsverarbeitung
und Kommunikation, vol. 31, no. 2, pp. 76–81, 2008.

[72] T. Farah and L. Trajković, “Anonym: A tool for anonymization of the internet
traffic”, in Cybernetics (CYBCONF), 2013 IEEE International Conference on,
IEEE, 2013, pp. 261–266.

[73] S. E. Coull, C. V. Wright, A. D. Keromytis, F. Monrose, and M. K. Reiter,
“Taming the devil: Techniques for evaluating anonymized network data.”,
in NDSS, 2008.

126 REFERENCES

[74] L. Fan, L. Bonomi, L. Xiong, and V. Sunderam, “Monitoring web browsing
behavior with differential privacy”, in Proceedings of the 23rd international
conference on World wide web, ACM, 2014, pp. 177–188.

[75] J. Blocki, A. Datta, and J. Bonneau, “Differentially private password
frequency lists.”, IACR Cryptology ePrint Archive, vol. 2016, p. 153, 2016.

[76] F. McSherry and K. Talwar, “Mechanism design via differential privacy”, in
Foundations of Computer Science, 2007. FOCS’07. 48th Annual IEEE Symposium
on, IEEE, 2007, pp. 94–103.

[77] M. Hardt, K. Ligett, and F. McSherry, “A simple and practical algorithm
for differentially private data release”, in Advances in Neural Information
Processing Systems, 2012, pp. 2339–2347.

[78] X. Deng and J. Mirkovic, “Commoner privacy and a study on network
traces”, in Proceedings of the 33rd Annual Computer Security Applications
Conference, ACM, 2017, pp. 566–576.

[79] N. N. P. Mkuzangwe and F. Nelwamondo, “Differentially private
transmission control protocol synchronise packet counts”, International
Journal of Network Security, vol. 21, no. 5, pp. 835–842, 2019.

[80] M. Basseville and I. V. Nikiforov, Detection of abrupt changes: theory and
application. Prentice Hall Englewood Cliffs, 1993, vol. 104.

[81] L. A. Zadeh, “Fuzzy sets”, Information and Control, vol. 8, no. 3, pp. 338–353,
1965.

[82] F. Dernoncourt, Introduction to fuzzy logic, 2013. [Online]. Available: http:
//www.francky.me/doc/course/fuzzy_logic.pdf.

[83] W. E. Sari, O. Wahyunggoro, and S. Fauziati, “A comparative study on fuzzy
mamdani-sugeno-tsukamoto for the childhood tuberculosis diagnosis”, in
AIP Conference Proceedings, AIP Publishing, vol. 1755, 2016, p. 070 003.

[84] B. Hssina, A. Merbouha, H. Ezzikouri, and M. Erritali, “A comparative study
of decision tree id3 and c4. 5”, International Journal of Advanced Computer
Science and Applications, vol. 4, no. 2, 2014.

[85] J. R. Quinlan, C4. 5: programs for machine learning. Elsevier, 2014.

[86] L. Breiman, “Heuristics of instability and stabilization in model selection”,
The annals of statistics, vol. 24, no. 6, pp. 2350–2383, 1996.

[87] R. R. Brooks and S. S. Iyengar, Multi-sensor fusion: fundamentals and
applications with software. Prentice-Hall, Inc., 1998.

[88] Y. Zeng, J. Zhang, and J. L. Van Genderen, “Comparison and analysis of
remote sensing data fusion techniques at feature and decision levels”, in
ISPRS Commission VII Mid-term Symposium" Remote Sensing: From Pixels to
Processes, 2006.

http://www.francky.me/doc/course/fuzzy_logic.pdf
http://www.francky.me/doc/course/fuzzy_logic.pdf

REFERENCES 127

[89] D. L. Hall and S. A. H. McMullen, Mathematical techniques in multisensor data
fusion. Artech House, 2004.

[90] B. Parhami, “A taxonomy of voting schemes for data fusion and dependable
computation”, Reliability Engineering and System Safety, vol. 52, no. 2,
pp. 139–151, 1996.

[91] M. Van Erp, L. Vuurpijl, and L. Schomaker, “An overview and comparison
of voting methods for pattern recognition”, in Frontiers in Handwriting
Recognition, 2002. Proceedings. Eighth International Workshop on, IEEE, 2002,
pp. 195–200.

[92] A. P. Piotrowski and J. J. Napiorkowski, “A comparison of methods to
avoid overfitting in neural networks training in the case of catchment runoff
modelling”, Journal of Hydrology, vol. 476, pp. 97–111, 2013.

[93] C. M. Bishop, Pattern recognition and machine learning. Springer, 2006.

[94] L. I. Kuncheva, Combining pattern classifiers: methods and algorithms. John Wiley
& Sons, 2004.

[95] T. G. Dietterich, “An experimental comparison of three methods for
constructing ensembles of decision trees: Bagging, boosting, and randomization”,
Machine learning, vol. 40, no. 2, pp. 139–157, 2000.

[96] Y. Freund and R. E. Schapire, “A desicion-theoretic generalization of on-
line learning and an application to boosting”, in European conference on
computational learning theory, Springer, 1995, pp. 23–37.

[97] R. E. Schapire, “Explaining adaboost”, in Empirical inference, Springer, 2013,
pp. 37–52.

[98] E. Bauer and R. Kohavi, “An empirical comparison of voting classification
algorithms: Bagging, boosting, and variants”, Machine learning, vol. 36, no. 1,
pp. 105–139, 1999.

[99] D. D. Protić, “Review of kdd cup’99, nsl-kdd and kyoto 2006+ datasets”,
Vojnotehnički glasnik, vol. 66, no. 3, pp. 580–596, 2018.

[100] H. G. Kayacik, A. N. Zincir-Heywood, and M. I. Heywood, “Selecting
features for intrusion detection: A feature relevance analysis on kdd 99
intrusion detection datasets”, in Proceedings of the third annual conference on
privacy, security and trust, 2005.

[101] Darpa intrusion detection data sets, 1998. [Online]. Available: https://www.ll.
mit.edu/ideval/data/.

[102] M. Tavallaee, E. Bagheri, W Lu, and A. A. Ghorbani, “A detailed analysis of
the kdd cup 99 data set”, in Computational Intelligence for Security and Defense
Applications, 2009. CISDA 2009. IEEE Symposium on, IEEE, 2009, pp. 1–6.

[103] Kdd cup 1999 dataset, 1999. [Online]. Available: https://kdd.ics.uci.edu/
databases/kddcup99/kddcup99.html.

https://www.ll.mit.edu/ideval/data/
https://www.ll.mit.edu/ideval/data/
https://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
https://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html

128 REFERENCES

[104] Cicids2017 dataset, 2017. [Online]. Available: www.unb.ca/cic/datasets/ids-
2017.html.

[105] I. Sharafaldin, A. H. Lashkari, and A. A. Ghorbani, “Toward generating a
new intrusion detection dataset and intrusion traffic characterization”, in
ICISSP, 2018, pp. 108–116.

[106] S. H. C. Haris, R. B. Ahmad, and M. A.H. A. Ghani, “Detecting tcp syn
flood attack based on anomaly detection”, in Network Applications Protocols
and Services (NETAPPS), 2010 Second International Conference on, IEEE, 2010,
pp. 240–244.

[107] T. Zhang, “Cumulative sum algorithm for detecting syn flooding attacks”,
Computing Research Repository (CoRR), vol. abs/1212.5129, 2012. [Online].
Available: http://arxiv.org/abs/1212.5129.

[108] S. Wang, Q. Sun, H. Zou, and F. Yang, “Detecting syn flooding attacks based
on traffic prediction”, Security and Communication Networks, vol. 5, no. 10,
pp. 1131–1140, 2012.

[109] G. Thatte, U. Mitra, and J. Heidemann, “Parametric methods for anomaly
detection in aggregate traffic”, IEEE/ACM Transactions On Networking, vol. 19,
no. 2, pp. 512–525, 2011.

[110] R. R. Kompella, S. Singh, and G. Varghese, “On scalable attack detection in
the network”, in Proceedings of the 4th ACM SIGCOMM conference on Internet
measurement, ACM, 2004, pp. 187–200.

[111] N. N. P. Mkuzangwe and F. V. Nelwamondo, “A fuzzy logic based network
intrusion detection system for predicting the tcp syn flooding attack”, in
Asian conference on intelligent information and database systems, Springer, 2017,
pp. 14–22.

[112] M. Beaumont-Gay, “A comparison of syn flood detection algorithms”, in
Internet Monitoring and Protection, 2007. ICIMP 2007. Second International
Conference on, IEEE, 2007, pp. 9–9.

[113] P. Langley and S. Sage, “Pruning irrelevant features from oblivious decision
trees”, target, vol. 4, p. 5, 1993.

[114] N. K. Choudhary, Y. Shinde, R. Kannan, and V. Venkatraman, “Impact of
attribute selection on the accuracy of multilayer perceptron”, Int. J. IT Knowl.
Manag.(IJITKM), vol. 7, no. 2, pp. 32–36, 2014.

[115] P. Tahmasebi and A. Hezarkhani, “Application of adaptive neuro-fuzzy
inference system for grade estimation; case study, sarcheshmeh porphyry
copper deposit, kerman, iran”, Australian Journal of Basic and Applied Sciences,
vol. 4, no. 3, pp. 408–420, 2010.

[116] B. Sui, Information gain feature selection based on feature interactions, 2013.
[Online]. Available: https://uh-ir.tdl.org/uh-ir/handle/10657/523.

www.unb.ca/cic/datasets/ids-2017.html
www.unb.ca/cic/datasets/ids-2017.html
http: //arxiv.org/abs/1212.5129
https://uh-ir.tdl.org/uh-ir/handle/10657/523

REFERENCES 129

[117] L. Fan and L. Xiong, “Differentially private anomaly detection with a case
study on epidemic outbreak detection”, in Data Mining Workshops (ICDMW),
2013 IEEE 13th International Conference on, IEEE, 2013, pp. 833–840.

[118] A. Blum, K. Ligett, and A. Roth, “A learning theory approach to
noninteractive database privacy”, Journal of the ACM (JACM), vol. 60, no. 2,
p. 12, 2013.

[119] C. Dwork, F. McSherry, K. Nissim, and A. Smith, “Calibrating noise to
sensitivity in private data analysis”, in TCC, Springer, vol. 3876, 2006,
pp. 265–284.

[120] W. Yurcik, C. Woolam, G. Hellings, L. Khan, and B. Thuraisingham, “Toward
trusted sharing of network packet traces using anonymization: Single-field
privacy/analysis tradeoffs”, arXiv preprint arXiv:0710.3979, 2007.

[121] T. Zhu, G. Li, W. Zhou, and S. Y. Philip, “Preliminary of differential privacy”,
in Differential Privacy and Applications, Springer, 2017, pp. 7–16.

[122] R. E. Kalman, “A new approach to linear filtering and prediction problems”,
Journal of basic Engineering, vol. 82, no. 1, pp. 35–45, 1960.

[123] C. Dwork, “Differential privacy: A survey of results”, in International
Conference on Theory and Applications of Models of Computation, Springer, 2008,
pp. 1–19.

	Declaration of Authorship
	Abstract
	Acknowledgements
	List of Publications
	Introduction
	Introduction
	 Problem Description
	Thesis Statements
	Research Motivation
	Research Aim
	 Rerseach Objectives
	 Contribution, Assumptions, Delimitations and Roadmap

	 Background and Literature Review
	Intrusion Detection
	Network Intrusion Detection Systems (NIDSs)
	Literature on Sensor Fusion Techniques in Intrusion Detection
	Literature on Ensemble Methods in Intrusion Detection

	Network Trace Privatisation
	Literature on Network Trace Privatisation Techniques

	Summary

	Methodology and Data Description
	Experimental Approach
	 Intrusion Detection Techniques used in Individual IDSs
	Adaptive Threshold Algorithm
	Cumulative Sum (CUSUM) based Algorithm
	Fuzzy Logic
	Decision Tree

	Techniques Used in Combining Multiple IDSs
	Sensor Fusion based Intrusion Detection Techniques
	Bayesian Inference
	Dempster–Shafer Belief Theory
	Voting Fusion Theory
	Neural Networks
	Logic OR Operator

	Ensemble Methods Used in Intrusion Detection
	Boosting
	Bootstraps Aggregating (Bagging)

	Selection of Techniques
	Datasets
	DARPA 99
	NSL KDD
	CICIDS2017

	Summary

	Performance Evaluation of Network Intrusion Detection Systems for Detecting Transmission Control Protocol Synchronised Flooding Attack
	Introduction
	Implementation of the Anomaly based Intrusion Detection Algorithms for Detecting the TCP SYN Flooding Attack
	Dataset
	Attack Generation
	Performance Metrics and Parameters
	Results
	Poisson Process Attacks Results
	Poisson Process Attacks Results after Tuning the Parameters
	Poisson Process Attacks Results with Modified CUSUM based Algorithm Variance
	Discussion of the Algorithms Performance on Detecting the Poisson Process Attacks
	Comparing the Algorithms Results for the Poisson Process Attacks at the Different Parameters
	Constant Rate Attacks Results
	Constant Rate Attacks Results after Tuning the Parameters
	Constant Rate Attacks Results with Modified CUSUM based Algorithm Variance
	Discussion of the Algorithms Performance on Detecting the Constant Rate Attacks
	Comparing the Algorithms Results for the Constant Rate Attacks at the Different Parameters
	Comparing the Algorithms Results for the Constant Rate Attacks vs Poisson Process Attacks

	Implementation of Learning based Network Intrusion Detection Algorithms
	Dataset
	The Fuzzy Logic based Network Intrusion Detection System
	Fuzzification and Membership Functions
	Fuzzy Rules Generation
	Fuzzy Inferencing and Defuzzification
	Prediction with the Fuzzy Logic based System

	Decision Tree Construction
	Results

	Summary

	The Ensemble of Classifiers based Network Intrusion Detection System Performance Bounds
	Introduction
	Information Theoretic Measure
	Entropy
	Information Gain

	Empirical Studies
	Dataset
	Information Gain Calculation
	Performance Metric
	Empirical Determination of the Performance Upper Bound for the Two Network Intrusion Detection Systems
	Decision Stump Ensemble based Network Intrusion Detection System
	Decision Tree Ensemble based Network Intrusion Detection System

	Results on Determining the Upper Bounds of the two Network Intrusion Detection Systems
	Results on the Decision Stump Ensemble based Network Intrusion Detection System
	Results on the Decision Tree Ensemble based Network Intrusion Detection System

	Results on Testing if the Obtained Bounds Hold
	Summary

	Differentially Private Transmission Control Protocol Synchronize Packet Counts
	Methodology
	 Differential Privacy
	Problem Statement
	Differentially Private TCP SYN Packet Counts
	Privacy Mechanism
	Global Sensitivity
	Filtering

	Experimental Work
	 Dataset
	Experimental Setup
	Kalman Count Estimates Utility Evaluation
	Average Relative Error
	Utility Loss
	Use of Intrusion Detection Algorithms

	Results
	Summary and Discussion

	Conclusion
	Summary of Conclusions
	Suggestions for Future Work

	References

