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Abstract: In this research paper a hybridization of two computational intelligence fields, which are evolutionary 

computation techniques and complex networks, is presented. During the optimization run of the Success-History based 

Adaptive Differential Evolution (SHADE) a complex network is built and its feature, node degree centrality, is extracted 

for each node. Nodes represent here the individual solutions from the SHADE population. Edges in the network mirror 

the knowledge transfer between individuals in SHADE’s population, and therefore, the node degree centrality can be 

used to measure knowledge transfer capabilities of each individual. The correlation between individual’s quality and its 

knowledge transfer capability is recorded and analyzed on the CEC2015 benchmark set in three different dimensionality 

settings – 10D, 30D, and 50D. Results of the analysis are discussed, and possible directions for future research are 

suggested. 
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1   Introduction 

The Differential Evolution (DE) algorithm was proposed by Storn and Price in 1995 [1] to solve optimization problems 

in the non-linear continuous domain. Since then, it is one of the best performing optimization algorithms from the family 

of Evolutionary Computational Techniques (ECTs) with a notable scientific community [2]–[4]. Every year, the 

community produces a large number of improvements, updates and even new versions of the original DE algorithm, 

which aim to improve the performance and robustness of the DE. This leads to a need for an understanding of the problem 

domain, to select appropriate DE variant, which might be a problem for a non-experienced user. Luckily, over the last 

few years, there have been published surveys to help distinguish between numerous DE variants [5]–[7]. 

There is another critical aspect of using DE for optimization tasks, and that is an appropriate setting of its control 

parameters. The canonical DE from 1995 incorporates three control parameters (apart from the max. number of 

generations) – population size NP, scaling factor F and crossover rate CR. Algorithms performance is heavily influenced 

by these three parameters [8], [9], and therefore, there has been an endeavor for a robust parameter-less DE, which would 

serve users, without a need for expert knowledge in the DE field. The late trend in this research direction is an adaptation 

of the control parameters to a given task during the optimization itself. In a sense, these algorithms try to overcome the 

famous No Free Lunch (NFL) theorem [10]. Typical examples are SDE [11] with self-adaptive scaling factor and 

crossover rate generated from normal distribution, jDE [12] with scaling factor and crossover rate values encoded into 

individuals, MDE-pBX [13] with adaptive scaling factor generated from Cauchy distribution, adaptive crossover rate 

generated from Gaussian distribution and a new mutation scheme “current-to-gr_best/1”, SaDE [14] with self-adaptive 

mutation strategies along with scaling factor and crossover rate, JADE [15] with a novel mutation strategy “current-to-

pbest/1” and adaptation of both scaling factor and crossover rate, SHADE [16] which is an improved variant of JADE 

with historical memories of successful control parameters and L-SHADE [17] which adds linear decrease of population 

size (simple population management) into the SHADE algorithm. 

The performance abilities of adaptive DE variants [18]–[26] are notable from recent competitions in numerical 

optimization, where especially variants of Success-History based Adaptive Differential Evolution (SHADE) were 

successful: 3rd place on CEC2013 – SHADE [16], 1st place on CEC2014 – L-SHADE [17], 1st place on CEC2015 – SPS-

L-SHADE-EIG [27], joint 1st place on CEC2016 – LSHADE_EpSin [28] and 1st place on CEC2017 – jSO [29]. 

Adaptive DE variants were also successfully used in numerous real-world applications, i.e., for solving the vehicle routing 

problem with profits [30], automatic test case generation [31], underwater glider path planning [32], high-rise building 

design [33], power system stabilizer design [34] and in designing of optimal harmonic filters [35]. 

Thanks to the rising popularity of SHADE algorithm variants in both benchmark and real problem domains, there is a 

need for a thorough analysis of its inner dynamics, capabilities and design weaknesses, because there are still challenges 

in the understanding of the control parameter properties [36] and their online effects [37]. Moreover, according to the 

recent study by Tanabe and Fukunaga [38], there is still much room-for-improvement in the adaptive algorithm design. 
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Therefore, this paper presents a possible future direction in the analysis and design of the SHADE algorithm by combining 

the field of ECTs with the field of Complex Networks (CNs). 

Currently, the utilization of CN as a visualization tool for the analysis of population dynamics for evolutionary and swarm-

based algorithms is becoming an attractive open research task. The population is visualized as an evolving complex 

network that exhibits non-trivial features. These features offer a clear description of the population under evaluation and 

can be utilized for the adaptive population as well as parameter control during the metaheuristic run. The initial studies 

[39]–[41] describing the possibilities of transforming population dynamics into complex networks, were followed by the 

successful adaptation and control of the metaheuristic algorithm during the run through the given complex networks ́ 

frameworks [42]–[44]. 

The idea of a mutual connection between ECTs and CN was already expanded to the SHADE algorithm universum in 

[45] and with the feedback to the running algorithm in [46], where the inner dynamics of the SHADE was translated into 

the CN and its features were used as guidance for linear population size decrease. This paper builds on these foundations 

and proposes an analysis of the knowledge transfer between individuals of SHADE algorithm in each generation by 

analyzing the node degree centrality of CN created during mutation, crossover and selection steps and its correlation to 

the quality of individual solutions. 

The remainder of this paper is structured as follows: Sections 2 and 3 are dedicated to DE and SHADE algorithms, Section 

4 describes the network design and scoring methods for individuals. Section 5 depicts experimental setting, Section 6 

discusses results, and the last section of this paper contains the concluding remarks. 

 

2   Differential Evolution 

The DE algorithm is initialized with a random population of individuals P, that represent solutions to the optimization 

problem. The population size NP is set by the user along with other control parameters – scaling factor F and crossover 

rate CR. 

In continuous optimization, each individual is composed of a vector x of length D, which is a dimensionality (number of 

optimized attributes) of the problem, and each vector component represents a value of the corresponding attribute, and of 

objective function value f(x). 

For each individual in a population, three mutually different individuals are selected for mutation of vectors and resulting 

mutated vector v is combined with the original vector x in crossover step. The objective function value f(u) of the resulting 

trial vector u is evaluated and compared to that of the original individual. When the quality (objective function value) of 

the trial individual is better, it is placed into the next generation. Otherwise, the original individual is placed there. This 

step is called selection. The process is repeated until the stopping criterion is met (e.g., the maximum number of objective 

function evaluations, the maximum number of generations, the low bound for diversity between objective function values 

in population). 

The following sections describe four steps of DE: Initialization, mutation, crossover, and selection. 

 

2.1   Initialization 

As aforementioned, the initial population P, of size NP, of individuals is randomly generated. For this purpose, the 

individual vector xi components are generated by Random Number Generator (RNG) with uniform distribution from the 

range which is specified for the problem by lower and upper bound (1). 

 𝒙𝑗,𝑖 = 𝑈[𝑙𝑜𝑤𝑒𝑟𝑗 , 𝑢𝑝𝑝𝑒𝑟𝑗] for 𝑗 = 1, … , 𝐷, (1) 

where i is the index of a current individual, j is the index of current attribute and D is the dimensionality of the problem. 

In the initialization phase, a scaling factor value F and crossover value CR has to be assigned as well. The typical range 

for F value is [0, 2] and for CR, it is [0, 1]. 

 

2.2   Mutation 

In the mutation step, three mutually different individuals xr1, xr2, xr3 from a population are randomly selected and 

combined in mutation according to the mutation strategy. The original mutation strategy of canonical DE is “rand/1” and 

is depicted in (2). 

 𝒗𝑖 = 𝒙𝑟1 + 𝐹(𝒙𝑟2 − 𝒙𝑟3), (2) 

where r1 ≠ r2 ≠ r3 ≠ i, F is the scaling factor value, and vi is the resulting mutated vector. 

 

2.3   Crossover 

In the crossover step, mutated vector vi is combined with the original vector xi and produces trial vector ui. The binary 

crossover (3) is used in canonical DE. 

 𝑢𝑗,𝑖 = {
𝑣𝑗,𝑖 if 𝑈[0,1] ≤ 𝐶𝑅 or 𝑗 =  𝑗𝑟𝑎𝑛𝑑

𝑥𝑗,𝑖 otherwise
, (3) 

where CR is the used crossover rate value, and jrand is an index of an attribute that has to be from the mutated vector vi 

(ensures generation of a vector with at least one new component). 



 

2.4   Selection 

The selection step ensures that the optimization progress will lead to better solutions because it allows only individuals 

of better or at least equal objective function value to proceed into the next generation G+1 (4). 

 𝒙𝑖,𝐺+1 = {
𝒖𝑖,𝐺 if 𝑓(𝒖𝑖,𝐺) ≤ 𝑓(𝒙𝑖,𝐺)

𝒙𝑖,𝐺 otherwise
, (4) 

where G is the index of the current generation. 

The whole DE algorithm is depicted in pseudo-code below. 

Algorithm pseudo-code 1: DE 

1. Set NP, CR, F and stopping criterion; 

2. G = 0, xbest = {}; 

3. Randomly initialize (1) population P = (x1,G,…,xNP,G); 

4. Pnew = {}, xbest = best from population P; 

5. while stopping criterion not met 

6.  for i = 1 to NP do 

7.   xi,G = P[i]; 

8.   vi,G by mutation (2); 

9.   ui,G by crossover (3); 

10.   if f(ui,G) < f(xi,G) then 

11.    xi,G+1 = ui,G; 

12.   else 

13.    xi,G+1 = xi,G; 

14.   end 

15.   xi,G+1 → Pnew; 

16.  end 

17.  P = Pnew, Pnew = {}, xbest = best from population P; 

18. end 

19. return xbest as the best found solution 

 

3   Success-History based Adaptive Differential Evolution 

In SHADE, the only control parameter that can be set by the user is population size NP, other two parameters (F, CR) are 

adapted to the given optimization task. A new parameter H is introduced, which determines the sizes of F and CR value 

memories. The initialization step of the SHADE is, therefore, similar to DE. Mutation, however, is entirely different 

because of the used strategy “current-to-pbest/1” and the fact, that it uses different scaling factor value Fi for each 

individual. Mutation strategy also works with a new feature – external archive of inferior solutions. This archive holds 

individuals from previous generations, which were outperformed in the selection step. The size of the archive retains the 

same size as the size of the population by randomly discarding its contents whenever the size overflows NP. 

Crossover is still binary, but similarly to the mutation and scaling factor values, crossover rate value CRi is also different 

for each individual. 

The selection step is the same and therefore following sections describe only different aspects of initialization, mutation, 

and crossover. 

 

3.1   Initialization 

As aforementioned, initial population P is randomly generated as in DE, but additional memories for F and CR values are 

initialized as well. Both memories have the same size H and are equally initialized, the memory for CR values is titled 

MCR and the memory for F is titled MF. Their initialization is depicted in (5). 

 𝑀𝐶𝑅,𝑖 =  𝑀𝐹,𝑖 = 0.5 for 𝑖 = 1, … , 𝐻. (5) 

Also, the external archive of inferior solutions A is initialized. Since there are no solutions so far, it is initialized empty A 

= Ø and its maximum size is set to NP. 

 

3.2   Mutation 

Mutation strategy “current-to-pbest/1” was introduced in [15] and unlike “rand/1”, it combines four mutually different 

vectors, therefore pbest ≠ r1 ≠ r2 ≠ i (6). 

 𝒗𝑖 =  𝒙𝑖 + 𝐹𝑖(𝒙𝑝𝑏𝑒𝑠𝑡 − 𝒙𝑖) + 𝐹𝑖(𝒙𝑟1 − 𝒙𝑟2), (6) 

where xpbest is randomly selected from the best NP × p best individuals in the current population. The p value is randomly 

generated for each mutation by RNG with uniform distribution from the range [pmin, 0.2]. where pmin = 2/NP. Vector xr1 



is randomly selected from the current population, and vector xr2 is randomly selected from the union of current population 

P and archive A. The scaling factor value Fi is given by (7). 

 𝐹𝑖 = 𝐶[𝑀𝐹,𝑟 , 0.1], (7) 

where MF,r is a randomly selected value (by index r) from MF memory and C stands for Cauchy distribution, therefore 

the Fi value is generated from the Cauchy distribution with location parameter value MF,r and scale parameter value 0.1. 

If the generated value Fi > 1, it is truncated to 1 and if it is Fi ≤ 0, it is generated again by (7). 

 

3.3   Crossover 

Crossover is the same as in (3), but the CR value is changed to CRi, which is generated separately for each individual (8). 

The value is generated from the Gaussian distribution with a mean parameter value of MCR.r, which is randomly selected 

(by the same index r as in mutation) from MCR memory and standard deviation value of 0.1. 

 𝐶𝑅𝑖 = 𝑁[𝑀𝐶𝑅,𝑟 , 0.1]. (8) 

 

3.4   Historical Memory Updates 

Historical memories MF and MCR are initialized according to (5), but its components change during the evolution. These 

memories serve to hold successful values of F and CR used in mutation and crossover steps. Successful in terms of 

producing trial individual better than the original individual. During one generation, these successful values are stored in 

corresponding arrays SF and SCR. After each generation, one cell of MF and MCR memories is updated. This cell is given 

by the index k, which starts at 1 and increases by 1 after each generation. When it overflows the size limit of memories 

H, it is again set to 1. The new value of k-th cell for MF is calculated by (9) and for MCR by (10). 

 𝑀𝐹,𝑘 = {
mean𝑊𝐿(𝑺𝐹) if 𝑺𝐹 ≠ ∅

𝑀𝐹,𝑘 otherwise
, (9) 

 𝑀𝐶𝑅,𝑘 = {
mean𝑊𝐿(𝑺𝐶𝑅) if 𝑺𝐶𝑅 ≠ ∅

𝑀𝐶𝑅,𝑘 otherwise
, (10) 

 

where meanWL() stands for weighted Lehmer mean (11). 

 mean𝑊𝐿(𝑺) =
∑ 𝑤𝑘∙𝑆𝑘

2|𝑺|
𝑘=1

∑ 𝑤𝑘∙𝑆𝑘
|𝑺|
𝑘=1

, (11) 

where the weight vector w is given by (12) and is based on the improvement in objective function value between trial and 

original individuals. 

 𝑤𝑘 =
abs(𝑓(𝒖𝑘,𝐺)−𝑓(𝒙𝑘,𝐺))

∑ abs(𝑓(𝒖𝑚,𝐺)−𝑓(𝒙𝑚,𝐺))
|𝑺|
𝑚=1

. (12) 

Moreover, since both arrays SF and SCR have the same size, it is arbitrary which size will be used as the upper bound for 

m in (12). Complete SHADE algorithm is depicted in pseudo-code below. 

Algorithm pseudo-code 2: SHADE 

1. Set NP, H and stopping criterion; 

2. G = 0, xbest = {}, k = 1, pmin = 2/NP, A = Ø; 

3. Randomly initialize (1) population P = (x1,G,…,xNP,G); 

4. Set MF and MCR according to (5); 

5. Pnew = {}, xbest = best from population P; 

6. while stopping criterion not met 

7.  SF = Ø, SCR = Ø; 

8.  for i = 1 to NP do 

9.   xi,G = P[i]; 

10.   r = U[1, H], pi = U[pmin, 0.2]; 

11.   Set Fi by (7) and CRi by (8); 

12.   vi,G by mutation (6); 

13.   ui,G by crossover (3); 

14.   if f(ui,G) < f(xi,G) then 

15.    xi,G+1 = ui,G; 

16.    xi,G → A; 

17.    Fi → SF, CRi → SCR; 

18.   else 

19.    xi,G+1 = xi,G; 

20.   end 

21.   if |A|>NP then randomly delete an ind. from A; 

22.   xi,G+1 → Pnew; 



23.  end 

24.  if SF ≠ Ø and SCR ≠ Ø then 

25.   Update MF,k (9) and MCR,k (10), k++; 

26.   if k > H then k = 1, end; 

27.  end 

28.  P = Pnew, Pnew = {}, xbest = best from population P; 

29. end 

30. return xbest as the best found solution 

 

4   Network Design and Scoring Methods for Individuals 

Since this research paper presents a hybridization of evolutionary computational technique with a complex network, this 

section describes the network design during an optimization run of the SHADE algorithm and also presents two scoring 

methods for individuals that were used in the experiment. 

Individuals from the SHADE algorithm are represented by nodes in the network and edges mirror the communication 

between them. Therefore, a new edge is created each time an individual helped to produce a solution of higher quality. 

The key aspects in the production of a new solution are mutation and crossover steps. Thus all individuals that are present 

in these steps are candidates for new edges. Once a trial individual ui succeeds in the selection step, three new edges are 

created in the network. Those edges connect a trial individual node (its node is also a node for the original individual xi) 

with its mutation partner’s nodes – xpbest, xr1 and xr2. An example of the representation of individuals in a network and 

example of the creation of new edges after successful mutation is depicted in Figure 1. 

 
Figure 1: Network edges created for one successful mutation. 

 

A new network is created in each generation to capture the communication dynamic between individuals. Since there can 

be more than just one exchange of knowledge between the same two individuals in one generation, the network is 

represented by an undirected multigraph, where the maximum number of edges that can be created during one generation 

is 3×NP, which would happen only if all trial individuals outperformed their original versions. 

In order to evaluate the correlation between the quality of an individual and its communication in the complex network, 

two scoring methods were implemented. First of them depicts the quality of an individual (objective function value score) 

and is abbreviated to ofvScore. This score corresponds to the number of individuals in a population that have worse 

objective function value than the evaluated individual. Therefore, in an example of the population of 100 individuals, the 

one with the best objective function value will have ofvScore = 99, and the one with the worst objective function value 

will have ofvScore = 0. Second scoring method scores the individual based on their node degree centrality, which is a 

network feature and the score is abbreviated to cenScore. Node degree centrality ci is equal to the sum of edges that are 

connected to the i-th node. Therefore, the individuals in the population can be scored by their node degree centralities in 

a similar way as in a case of ofvScore. In the same example of a population of 100 individuals, the one with the most 

connections (edges) in the complex network will have cenScore = 99, and the one with least connections will have 

cenScore = 0. 

 

5   Experimental Setting 

In this study, a primary assumption, that the individuals of higher quality (better objective function value) are the ones 

that are driving the evolution towards global optima was tested on a CEC2015 benchmark set of 15 test functions in three 

distinctive dimensionality settings – 10D, 30D, and 50D. The stopping criterion was set according to the benchmark 

requirements to 10,000×D as well as the number of independent runs – 51. The algorithm settings were – population size 

NP = 100 and historical memory size H = 10. 

Both scoring methods from the previous section (ofvScore, cenScore) were recorded as well as the convergence history. 

To test the assumption, Spearman’s rank correlation coefficient was computed between ofvScore and cenScore, which 



should be positive in the case that the assumption is correct – individuals with high ofvScore should correspondingly have 

high cenScore. 

 

6   Results and Discussion 

In this part, 15 figures with convergence and Spearman’s correlation history are depicted for 15 test functions in three-

dimensional settings – 10D, 30D, and 50D. Also, the correlation history was classified into three behavior groups – high 

correlation (H), low correlation (L) and fluctuating correlation (F). 

The CEC2015 benchmark set contains four types of test functions – unimodal functions (f1 and f2), simple multimodal 

functions (f3 to f9), hybrid functions (f10 to f12) and composition functions (f13 to f15). Since the SHADE algorithm uses 

“current-to-pbest/1” mutation strategy, the primary assumption of the high correlation between quality of the solution and 

its knowledge transfer capabilities is incorporated into one of the most important aspects of the algorithm – mutation. The 

pbest set of individuals consists of NP × p best individuals in the population according to their objective function value, 

and therefore this greedy approach favors them for the production of new mutated vectors. Such behavior is rewarded 

during the optimization of functions, where the fast convergence is needed – unimodal functions. These serve as an 

example of the typical high correlation of ofvScore and cenScore (Figure 1 and Figure 2). It can be seen, that during 

convergence, the mean correlation stays high somewhere around 0.5 in all dimensionality settings. This can also be found 

in the case of test functions f9, f12 and f15, where SHADE fails to avoid the premature convergence to local optima. 

On the other hand, SHADE algorithm has mechanisms, which were designed to prevent the premature convergence on 

more complex problems. This can be observed on some of the multimodal (f3, f4, and f5) and one composition (f13) 

function. Such behavior is distinctive by a high peak in correlation right at the start of the evolution but quickly decreasing 

to almost 0 during the later phases while the convergence continues. 

A clear fluctuating correlation can be observed in the composition test function f14, where there is more than just one 

peak in the correlation history. In this case, there is a fast convergence to the local optima, which is followed by the slow 

refining of the final solution in this area, which brings later peaks of correlation. 

The remaining multimodal (f6, f7, and f8) and hybrid (f10 and f11) functions experience different correlation behavior in 

distinctive dimensionality settings.  

 f6 and f8 – fluctuating behavior in 10D and 30D with the capability of reaching the global optima. High 

correlation behavior in 50D, where the algorithm converges slowly to local optima. 

 f7 – low correlation behavior in 10D and 30D with the capability of reaching the global optima. High correlation 

behavior 50D, where the algorithm converges slowly to local optima. 

 F10 – fluctuating behavior in 10D and high correlation behavior in 30D and 50D, with convergence to local 

optima. 

 F11 - fluctuating behavior in 10D with the capability of reaching the global optima. High correlation behavior 

in 30D and 50D, with convergence to local optima. 

 

   

   
Figure 2: Average convergence graphs and corresponding correlation graphs in 10D, 30D and 50D (from left) for test 

function f1. 

 

 

 

 

 

 

 



 

   

   
Figure 3: Average convergence graphs and corresponding correlation graphs in 10D, 30D and 50D (from left) for test 

function f2. 

 

   

   
Figure 4: Average convergence graphs and corresponding correlation graphs in 10D, 30D and 50D (from left) for test 

function f3. 

 

   

   
Figure 5: Average convergence graphs and corresponding correlation graphs in 10D, 30D and 50D (from left) for test 

function f4. 

 



   

   
Figure 6: Average convergence graphs and corresponding correlation graphs in 10D, 30D and 50D (from left) for test 

function f5. 

 

   

   
Figure 7: Average convergence graphs and corresponding correlation graphs in 10D, 30D and 50D (from left) for test 

function f6. 

   

   
Figure 8: Average convergence graphs and corresponding correlation graphs in 10D, 30D and 50D (from left) for test 

function f7. 

 



   

   
Figure 9: Average convergence graphs and corresponding correlation graphs in 10D, 30D and 50D (from left) for test 

function f8. 

 

   

   
Figure 10: Average convergence graphs and corresponding correlation graphs in 10D, 30D and 50D (from left) for test 

function f9. 

 

   

   
Figure 11: Average convergence graphs and corresponding correlation graphs in 10D, 30D and 50D (from left) for test 

function f10. 

 



   

   
Figure 12: Average convergence graphs and corresponding correlation graphs in 10D, 30D and 50D (from left) for test 

function f11. 

 

   

   
Figure 13: Average convergence graphs and corresponding correlation graphs in 10D, 30D and 50D (from left) for test 

function f12. 

 

   

   
Figure 14: Average convergence graphs and corresponding correlation graphs in 10D, 30D and 50D (from left) for test 

function f13. 

 



   

   
Figure 15: Average convergence graphs and corresponding correlation graphs in 10D, 30D and 50D (from left) for test 

function f14. 

 

   

   
Figure 16: Average convergence graphs and corresponding correlation graphs in 10D, 30D and 50D (from left) for test 

function f15. 

 

The correlation behavior classification is summarized in Table 1, where the cases when SHADE algorithm is not capable 

of advancing towards the globally optimal solution are highlighted by bold text. It is clear that the ability to obtain globally 

optimal solution decreases with the dimensionality of the problem and it is invariant to the type of the correlation behavior. 

 

Dim \ f 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

10 H H L L L F L F L F F L L F H 

30 H H L L L F L F L H H L L F H 

50 H H L L L H H H L H H L L F H 

Table 1: Classification of the correlation behavior in three-dimensional settings (10D, 30D, and 50D), H – high 

correlation, L – low correlation, F – fluctuating correlation. 

 

The results suggest that the greedy approach used in “current-to-pbest/1” mutation strategy might not be the most efficient 

and rather than using a set of best (in terms of objective function value) individuals for the xpbest, it could be preferred to 

use a set given by another common characteristic (potentially one of the network features, e.g. node degree centrality or 

clustering coefficient). The same goes for a greedy approach to the linear decrease in population size, where the worst 

individuals are removed from the population during evolution. Findings in this paper suggest that there might be 

individuals with worse objective function value who might still provide a good search direction. Also, this research 

supports the idea that there is still much room-for-improvement and the hybrid approach with complex networks is one 

of the promising candidates for future study. 

 

7   Conclusion 

This research presented an analysis of the state-of-the-art DE variant – SHADE with the aid of the complex network and 

its features, namely – node degree centrality. The analysis was performed on the basis of the CEC2015 benchmark set in 



three distinctive dimensional settings (10D, 30D, and 50D) to provide a robust overview of the correlation between the 

quality of individual solutions and their knowledge transfer capabilities. The findings in this paper suggest that the current 

greedy approach might not always be the most suitable one and that there is a room-for-improvement. Therefore, the 

hybridization of the two computational intelligence fields (evolutionary computational techniques and complex networks) 

is a promising direction for the future research in improving the performance of existing DE-based algorithms, or possibly 

for the proposals of new hybrid evolutionary algorithms that would incorporate information from complex networks into 

the algorithm’s inner workings. 

The future research will aim at the next step in this direction, which is incorporating the information from the complex 

network into the algorithm to improve its ability to avoid the premature convergence into local optima and to fully use 

the knowledge transfer capabilities of individual solutions. 
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