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Abstract: This article deals with the creation of a digital twin for an experimental assembly system
based on a belt conveyor system and an automatized line for quality production check. The point of
interest is a Bowden holder assembly from a 3D printer, which consists of a stepper motor, plastic
components, and some fastener parts. The assembly was positioned in a fixture with ultra high
frequency (UHF) tags and internet of things (IoT) devices for identification of status and position.
The main task was parts identification and inspection, with the synchronization of all data to a digital
twin model. The inspection system consisted of an industrial vision system for dimension, part
presence, and errors check before and after assembly operation. A digital twin is realized as a 3D
model, created in CAD design software (CDS) and imported to a Tecnomatix platform to simulate
all processes. Data from the assembly system were collected by a programmable logic controller
(PLC) system and were synchronized by an open platform communications (OPC) server to a digital
twin model and a cloud platform (CP). Digital twins can visualize the real status of a manufacturing
system as 3D simulation with real time actualization. Cloud platforms are used for data mining and
knowledge representation in timeline graphs, with some alarms and automatized protocol generation.
Virtual digital twins can be used for online optimization of an assembly process without the necessity
to stop that is involved in a production line.

Keywords: Industry 4.0; smart manufacturing; digital twin; cloud platform

1. Introduction and Relevant Previous Works

The Industry 4.0 concept is referred to as the fourth industrial revolution and is the current trend
in automation, monitoring, and data mining from manufacturing processes. The main technologies to
realize these tasks are [1]:

• IoT (internet of things);
• CPS (cyber-physical systems);
• CP (cloud platforms);
• CC (cognitive computing);
• AR/VR (augmented reality/virtual reality) devices; and
• other related disciplines.

The main tasks are digitization of data, analysis, and knowledge extraction. In these areas
many papers have been published with research results aimed towards the use of cyber-physical
systems within the Industry 4.0 concept, big data processing [2], and the combination of CPS with
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IoT systems [3]. The next task of the Industry 4.0 concept is product customization, because current
customers want unique products. This requirement is a big challenge for the Industry 4.0 concept to
ensure production with minimal cost and high customization.

Generally, manufacturing systems, production processes, and products are nowadays suitable for
full digitalization. The first task in process digitalization is the specification of suitable technologies.
There can be defined two groups of devices, the first for permanent installation in product, which must
be low cost and the second group for machine and production process monitoring.

Perspective technologies for data digitization and collection from machines, processes,
and products are:

• RFID (radio-frequency identification) labels for wireless part identification, and RFID transceivers
for fixture monitoring in the production process;

• MEMS sensors integrated into the product for contactless data measuring and also integrated in
the production process;

• IoT devices with independent wireless communication for data upload to cloud platforms for
next processing; and

• Cloud platforms with data mining for knowledge extraction and data representation in timelines
and alarms.

A modern approach to product identification is using RFID UHF (ultra high frequency) technology,
because it reaches higher distances and reliability like LF and HF (low and high frequency) RFID
technology. Some research results concerning RFID systems were published in articles about security
of tags [4], detection of missing tags [5], and new searching protocols [6].

MEMS sensors have minimal power consumption and can be powered from battery during
a product’s lifetime. They can be used, for example, for monitoring of product overheating and
vibration during operation by the customers, and are generally used for continuous monitoring of the
product environment. Some research on the usability of MEMS sensor devices was published in the
articles about the monitoring of mechatronic systems by MEMS [7], vibration analyses by MEMS [8],
and structural monitoring by MEMS [9].

Modern IoT systems are based on specialized communication technologies for data isolation from
standard Wi-Fi (Wireless-Fidelity) or Bluetooth networks. The main IoT communication standard
is LPWAN (low-power wide-area network) and includes solutions such as LoRa/LoRaWAN and
Sigfox. Other technologies are using modifications of GSM (Global System for Mobile Communication)
networks for low data transfer. Some research results in this area of interest are described in articles
about energy-efficient communications in the internet of things [10], novel chaining encryption
algorithm for LPWAN IoT networks [11], evaluation of next-generation low-power communication
technology to replace GSM in IoT applications [12], performance assessment of long-range and Sigfox
protocols with mobility support [13], and a new effective way to boost LoRaWAN network capacity [14].

Knowledge extraction (data mining) and data analysis are the main tasks of a cloud system. Cloud
platforms can provide data in user-friendly form by timelines, day/weeks, or monthly automated
reports. There can be also integrated an alarm system for critical production status, usually as a
message by email or SMS (short message service). Some new research trends in cloud platforms
and data mining are described in the papers concerning clouds and big data connection [15], cloud
robotics data [16], clouds in industrial automation [17], and chaos theory combined with cloud
systems [18]. The practical aspects are described in the papers about industrial process simulation and
data digitization in Tecnomatix software [19,20].

Applying a virtual model for remote monitoring is a new trend of the Industry 4.0 concept and
can represent the real manufacturing system, production process, or product. Such virtual models
digitally replicate all aspects of real devices and they are called digital twins, which continuously learn
and update themselves from multiple data sources. The articles and case studies aimed at digital twins
are, for example, about digital twins with ergonomic optimization [21], digital twin methodology
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to commentary [22], the learning of new experiences by digital twins [23], automatic generation of
simulation for digital twins [24], digital twins’ implementation for legacy systems [25], new possibilities
of digital twin technology [26], and its application for Smart Industry [27].

Our research idea was to create a unified methodology for full data transfer from an experimental
manufacturing assembly system to its digital twin, with real-time simulation and long-time data
storage in a cloud platform with adequate synchronization.

The main purpose of this article is to present an architectural concept for a digital twin design
with cloud platform and methodology of full data digitalization for smart manufacturing, which was
implemented and tested on the experimental assembly system based on a belt conveyor system and an
automatized line for quality production check.

2. Problem Specification and Proposed Work

The basic problem in implementation of an Industry 4.0 concept is data acquisition from the
manufacturing environment. So, the first task is to select suitable technologies for data collection from
production machines, production processes, and products.

Data from production processes can be provided by integrated position check sensors, for example:
inductive proximity sensors, optical sensors, and laser sensors. These sensors can provide the actual
status of the production, but no customized data about products; for example, they cannot provide
information about where an exact order is currently positioned within the production process.

The next task is implementation of technology for exact part localization in production. The useful
technology for exact part localization in production is RFID technology. An RFID reader, with an RFID
transceiver on fixture and RFID labels on final assembly or parts, can provide exact information about
the product status and its history.

The next important task in production is quality control. It can be divide into these levels:

• standard part identification;
• part presence check-in;
• dimension check in defined tolerance; and
• assembly check for product completeness.

If there is need for automatic feedback from a realized product, some autonomous monitoring
equipment has to be implemented. The solution is implementation of IoT devices combined with
MEMS sensors. This provides a reliable and low-cost solution with long-term operation. The data
collection must be separated from standard communication networks like Wi-Fi or Bluetooth. The new
IoT communication technologies provide this feature also with roaming possibilities.

The last task involes data storage and knowledge representation in some readable form.
The standard databases cannot be used, because industrial systems now usually produce big data.
The solution is to use industrial cloud platforms for data storage and visualization from all production
processes. Open source timeline databases with graphical visualization are also suitable for data
collection from IoT devices.

The proposed work is divided into four phases:

1. Creation of minimalized physical experimental assembly system with technologies for
data collection;

2. Design of data digitization from all integrated technologies;
3. Synchronization of the actual status of physical devices with a digital twin; and
4. Data accumulation and representation in a cloud platform.

The main novelty of the research is its methodology for full digitalization of different inspection
and identification technologies used in the experimental smart manufacturing assembly system.
The basis is an architectural concept design of the digital twin of the experimental system and its
synchronization with the cloud platform.
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2.1. The Concept of Experimental Smart Manufacturing Assembly System

The concept of the experimental smart manufacturing assembly system is shown in Figure 1 and
partial physical realization for research and educational purposes is shown in Figure 2. This concept
includes all necessary technologies for digital data acquisition: RFID technology, vision systems,
and IoT devices. All data from these technologies must be transformed to standardized industrial
format. The PLC (programmable logic controller) is the main data collector for the next data processing
and transfer to cloud system. Standardization of data is reached by the open platform communications
(OPC) server, which also provides data distribution to the digital twin based on Siemens Tecnomatix
plant simulator and the cloud platform MindSphere.
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Figure 1. The concept of experimental smart manufacturing assembly system with data transfer to
digital twin and cloud.
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Figure 2. (a) The experimental assembly system; (b) the fixture with parts and finalized assembly.

2.2. RFID Part Identification System

The RFID reader (Siemens SIMATIC R685R with one integrated and second external antenna
SIMATIC RF615A) was used for product identification. The first antenna checked the part presence
by RFID labels tags. The second antenna checked the assembly completeness and wrote data for the
fixture’s RFID tag transponder. Implementation of RFID technology created an identification gate for
input parts and output for finalized assembly. Any data acquired from vision system can be written to
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a part or assembly RFID tag as unique data. The used RFID system with two antennas, tested tags,
and RFID tag implementation for some assembling parts and the fixture is shown in Figure 3.
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Data from the RFID system were acquired as EPCID (Electronic Product Code ID) numbers and
collected in PLC system, as shown in Figure 4.
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2.3. Vision Systems for Part and Assembly Inspection

The used industrial vision systems, and specialized vision system with integrated trained
convolutional neural network for standard parts (nuts, screws, washers) recognition [28], are shown
in Figure 5. Examples of using vision systems for part checks, dimension measuring, assembly
completeness, and standard part (nut) identification are shown in Figure 6.
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Figure 5. Industrial vision systems: (a) Omron FZ3-L355 with 5Mpix camera sensor; (b) Cognex with
Insight-Explorer software; (c) Sick Inspector I10 with SOPAS Engineering tools; and (d) the specialized
vision system Nvidia Jetson AGX Xavier Developer Kit with e-con Systems e-CAM130 CUXVR dual
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An example of digital data output from a vision system for measured dimension and its transfer
to the OPC server is shown in Figure 7.
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communications (OPC) server.

2.4. IoT Devices for Long-term Product Monitoring by MEMS Sensors

Three IoT communication technologies (GSM technology, Sigfox, and LoRaWAN) which can
provide isolated data transfer were selected for long-term product monitoring. The experimental
system combines these IoT technologies to one module with data collection to an open source system,
as shown in Figure 8.
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Examples of the tested components for such combined system are shown in Figure 9. The software
was programmed by Pymakr IDE inside Visual Studio and transferred to an FiPy module. The multiple
IoT communication was operated by the FiPy module, which was connected to a MEMS sensor to
collect vibration information.

These devices were used for experimental signal quality measurements, and for real
implementation they must be reduced in dimension for integration to final assembly product.

An example of digital data collected from the hybrid IoT device by LoRaWAN network user
interface “The things network” (TTN) is shown in Figure 10.



Sustainability 2020, 12, 3658 8 of 16

Sustainability 2020, 12, x FOR PEER REVIEW  8 of 16 

 

Examples of the tested components for such combined system are shown in Figure 9. The 

software was programmed by Pymakr IDE inside Visual Studio and transferred to an FiPy module. 

The multiple IoT communication was operated by the FiPy module, which was connected to a MEMS 

sensor to collect vibration information. 

These devices were used for experimental signal quality measurements, and for real 

implementation they must be reduced in dimension for integration to final assembly product. 

  
(a) (b) 

 
(c) 

Figure 9. (a) IoT device FiPy and 9-axis MEMS sensor MPU-6050—accelerometer, gyroscope, 

magnetometer; (b) integration of the FiPy module from PyCom to development board; (c) LoRaWAN 

Gateway “The Things Outdoor Gateway – 868Mhz version” with Omni antenna SIRIO GP 868 C. 

An example of digital data collected from the hybrid IoT device by LoRaWAN network user 

interface “The things network” (TTN) is shown in Figure 10. 

  
(a) (b) 

Figure 10. Digital data from: (a) LoRaWAN TTN network; (b) Sigfox network. 

Figure 9. (a) IoT device FiPy and 9-axis MEMS sensor MPU-6050—accelerometer, gyroscope,
magnetometer; (b) integration of the FiPy module from PyCom to development board; (c) LoRaWAN
Gateway “The Things Outdoor Gateway—868Mhz version” with Omni antenna SIRIO GP 868 C.

Sustainability 2020, 12, x FOR PEER REVIEW  8 of 16 

 

Examples of the tested components for such combined system are shown in Figure 9. The 

software was programmed by Pymakr IDE inside Visual Studio and transferred to an FiPy module. 

The multiple IoT communication was operated by the FiPy module, which was connected to a MEMS 

sensor to collect vibration information. 

These devices were used for experimental signal quality measurements, and for real 

implementation they must be reduced in dimension for integration to final assembly product. 

  
(a) (b) 

 
(c) 

Figure 9. (a) IoT device FiPy and 9-axis MEMS sensor MPU-6050—accelerometer, gyroscope, 

magnetometer; (b) integration of the FiPy module from PyCom to development board; (c) LoRaWAN 

Gateway “The Things Outdoor Gateway – 868Mhz version” with Omni antenna SIRIO GP 868 C. 

An example of digital data collected from the hybrid IoT device by LoRaWAN network user 

interface “The things network” (TTN) is shown in Figure 10. 

  
(a) (b) 

Figure 10. Digital data from: (a) LoRaWAN TTN network; (b) Sigfox network. Figure 10. Digital data from: (a) LoRaWAN TTN network; (b) Sigfox network.

The limitations of the tested IoT communication technologies for industrial use are summarized
in Table 1.

Table 1. Comparison of IoT technologies for industrial tasks.

Technology Nr. of Uplink MSG/Day Nr. of Downlink MSG/Day Bytes Delay

LoRaWAN (TTN) 1440 max 10 10 30s
Sigfox 140 max 4 12 30s
GSM not defined not defined UDP/TCP -
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The simple principle of MEMS system calibration in production is to acquire the reference vibration
of product during normal working condition. Then it is possible to identify increased vibration or
critical states during operating status. An example of the calibration and the critical status identification
is shown in Figure 11. The reference status in this case is vibration amplitude in a stepper motor
running at nominal speed. So, there is need to acquire this reference vibration status as the value range
and write the offset value to the MCU (MicroController Unit) as a critical level. Data acquisition from
MEMS sensors has been tested in Arduino IDE (Integrated Development Environment). An example of
the vibration with filtration based on Kalman filters in x-axis and cumulated data from MEMS sensor
decoded by Node Red interface is shown in Figure 12.Sustainability 2020, 12, x FOR PEER REVIEW  9 of 16 
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Figure 12. An example of data acquired from an accelerometer in x-axis with filter in Arduino IDE.

3. Digital Twin

A digital twin is a digital replica (a virtual model) for several hierarchy levels, like a sensor,
an actuator, a production unit, a plant. It consists of 3D models grouped to assemblies with the
possibility of remote monitoring and data synchronization with a real system and offline simulation.

The basis for digital twin creation is 3D virtual models of empty fixture, a fixture with parts,
a fixture with assembly (Figure 13), and a 3D virtual model of a belt conveyor system with equipment
for data acquisition (Figure 14).

Optimization of the production systems and their processes have so far usually been executed
offline, mainly before the production starts or before it had to be stopped for optimization.
The main improvement in the suggested approach is online optimization within the digital twin and
synchronization with the real system. In the presented setup, a Python OPC UA (Unified Architecture)
server (FreeOpcUa framework) is responsible for data transfer from the digital twin to the PLC system
(Siemens PLC S7-1200 with HMI 4,3” TFT KTP 400).
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So, it is possible to synchronize simulation (digital twin of the system) with control system of
the real manufacturing system and update process variables in a very short time by user interface.
The designed 2D and 3D digital twins of the experimental assembly system are shown in Figure 15.
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The digital twin was transferred to a virtual reality device—HTC Vive Pro virtual reality glasses.
This equipment can be used in quality control to remotely monitor the actual status of production.
The main task is the synchronization of data from real production to the 3D virtual digital twin with
simple visualization. An example of a digital twin of product identification and customization (a) and
transfer (b) of Technomatix simulation to virtual reality by HTC Vive Pro is shown in Figure 16.
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Figure 16. (a) 3D model in plant simulator; (b) digital twin inspection in virtual reality (VR).

VR devices (HTC Vive Pro, Oculus Rift, Valve Index VR) for communication with virtual scenes
use hand controllers, but in assisted assembly there is the need to have both hands free. This problem
was solved by using a Leap motion sensor to detect hand and finger position. Another problem
in assisted assembly is that recognized parts must be detected in any position, rotation, and scale,
but this is unsolvable by standard industrial vision systems. This task we solved by using deep
learning techniques; all assembly parts were trained in deep neural networks by Google TensorFlow
frameworks [29]. The trained network was transformed to OpenCV library DNN (Deep Neural
Network) for Android and executed in an AR device inside a Unity 3D engine. An example of hand
detection by Leap motion installed on a VR device (HTC Vive Pro with SteamVR software) is shown in
Figure 17a, and standardized assembly parts recognized by the AR device (Epson Moverio BT350 with
the development software Unity engine) in Figure 17b [28].
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4. Data Transfer to Cloud System

To isolate the plant from the internet, we used IoT gateway MindConnect (connected to Amazon
Web Services Cloud access) with separated network interfaces: the first one for internet connection,
the second one for data transfer from the isolated manufacturing process by a Python OPC Server. So,
security of all critical digital data transfer from the experimental manufacturing system to the cloud
platform was solved by Mindsphere network unit MindConnect, which works like a hardware firewall



Sustainability 2020, 12, 3658 12 of 16

and isolates the production process (plant) from the internet. The extracted data sent to the cloud
platform Mindsphere were encrypted. The encryption for OPC server data is possible, but all OPC
data were transferred in local networks, so there was no problem with security.

The used communication devices for data transfer to the MindSphere cloud platform are shown
in Figure 18.
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An example of data timelines’ visualization from the vision system for all measured dimensions
in the MindSphere cloud platform is shown in Figure 19.
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Some typical IoT data from MEMS sensors as acceleration in two axis X and Y in the cloud
platform Thinger.io, and signal quality monitoring by Grafana visualization, are shown in Figure 20.
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5. Discussion

All data acquisition technologies, which were integrated into the experimental assembly system
for identification (RFID tags) and inspection (vision systems, MEMS sensors, IoT devices) have their
own limitations, which must be solved before data is stored into a cloud platform.

Identification systems used in manufacturing based on UHF RFID devices cannot be used for
very small parts, because the tag size is limited by antenna length. RFID readers working with low
frequency (LF) or high frequency (HF) tags are the solutions for tagging smaller parts, but they are not
primarily developed for industrial parts (mainly for the food industry) and they reach lower distances
for stable communication. The main limitation of UHF RFID technology in experimental assembly
systems is UHF RFID tag size. The small parts—for example, screws, washers, and nuts—cannot
be tagged. One of the possible solutions could be the combination of UHF with LF or HF RFID
technologies, but this would have the disadvantage of shorter distance detection of assembly parts.

Smart industrial vision systems are usually closed source systems without the capability to modify
an algorithm. This limitation arises especially in surface errors in recognizing very complicated parts.
The next limitation of industrial vision systems for assembly operation is that detected parts must be in
the fixed distance and position from camera, with only limited rotation. A new approach and solution
could be the use of convolutional neural networks (CNN) with deep learning training techniques
described in details in research articles about automated training of deep learning networks by 3D
virtual models [28] and recognition of assembly parts by convolutional neural networks [29]. This new
approach was also tested in the experimental smart manufacturing assembly system using the Tensor
Flow framework, with good results for its application in real production. The main advantage of these
approaches is a relatively simple integration into assisted assembly operation with AR/VR devices.

The data acquisition from MEMS sensors is based on some physical theorems which provide
data with limited long-term precision (LTP), because they are physically isolated from measured
objects and therefore must acquire data contactless. This is main reason why the MEMS sensors’
data from accelerometers or gyroscopes have to be filtered by some filters, for example a Kalman
filter, because their output signal is very noisy. The position of MEMS sensors in the manufacturing
system must be with minimum interferences from RFID system. MEMS sensors integrated into the
product are not influenced by RFID signal because they start to operate after the production process,
during the lifetime of products. The next problem is high frequency output bandwidth generated
by MEMS sensors, which is not compatible with currently used cloud platforms. A standard cloud
platform minimal data acquisition time is one second. So, there is a need to use some buffers for data
accumulation. The problem of how to accumulate more data in the one second interval is described
in the research article about data optimization for communication between wireless IoT devices and
Cloud platforms in production process [30].

The significant problem in the usability of clouds platforms is the lack of support to store a digital
twin and its simulation and visualization. Industry 4.0 uses both technologies: cloud platforms for
simple data storage, and digital twins for actual status visualization and simulation. So, there is a need
to have some connection between these technologies.

Cloud platforms are primarily focused on data collection and basic graphical representation via
timelines and data knowledge extraction, with critical status alarm systems or user-defined periodical
reports: daily, weekly, monthly, and yearly. Available cloud platforms currently offer for storage simple
variables like integer, float, bool, data time, and string. All digital data are usually stored in predefined
frames and defined only by strings or numbers. It is not possible to include advanced structures
with combined blob (Binary Large OBject) data, for example images, or binary data combined with
numerical/string variables.

In the currently available cloud platforms, it is not possible to store customized 3D virtual digital
twin models of products with adequate digital variable data.

The first solution could be to create a separate database for the customized digital twin 3D model,
with a hyperlink to standard digital data stored in a cloud platform. This solution could link data from
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a digital twin to a cloud platform in one direction of synchronization. The main advantage of this
approach would be increased security for critical data of products, because customized digital twin
models of products would be stored in local databases.

The second solution could be the modification of an open source cloud platform for visualization
and storage of customized digital twin models and image data, with simple variables, in one place.
The main advantage of this approach would be very low operating costs, because whole solutions
could be integrated into factory server infrastructure.

The main disadvantage of the designed and tested architecture, with the digital twin and cloud
platform after implementation to real device, is the necessity of trained staff to modify, optimize,
and extract knowledge, which is specific to every production process.

6. Conclusions

Full digitalization of production processes is a very important part of the Industry 4.0 concept
to increase the effectivity of SME (Small and Medium-sized Enterprise) manufacturing. Suitable
technologies for fast digitalization, data transfer, data storage, and finally for data mining have to be
used. In this paper, we described an approach for how to capture data with contactless technologies in
a smart manufacturing assembly process, and to transfer this data from the production process to the
extended digital twin 3D model.

To build a bridge between the real production system and its digital twin, an OPC technology
for data synchronization in both directions was implemented using OPC UA Server (OPC DCOM
–Distributed Component Object Mode). The OPC server must ensure three communications: the first
to the digital twin model, the second to the cloud platforms, and the third to the PLC system.
For that reason, the customized OPC server written in Python Programming Language was designed
and implemented. The IoT gateway MindConnect was used for data transfer to the MindSphere
cloud platform.

The vision system, consisting of three camera modules, was implemented into the experimental
manufacturing assembly process to check the shapes and surfaces of assembly parts and to measure
their dimensions. An RFID system was used to localize parts on the conveyor line by RSSI (radio signal
strength indication) signal from tags. The RFID gate wrote unique information to the main assembly
RFID tag label of every product, as for example, acquired dimension data and quality data. So, in this
way a smart identification system was applied to the experimental manufacturing assembly system.

Furthermore, the MEMS sensor data acquisition in combination with IoT communication
technologies was tested. The product vibrations had been measured by an integrated accelerometer.
The IoT data were processed by Node Red data conversion technology to the specialized NoSQL
(Non-Structured Query Language) database with Grafana visual interface. Independent IoT
communication technologies Sigfox and LoRaWAN were used for data transfer to a cloud platform.

After the implementation of the architectural concept of the digital twin with the cloud platform
to the real manufacturing system with full digitalization, the finding is that there are some limitations
which arise from currently available technologies. The main limitation is the cloud platform because it
does not support storage of customized digital twins and it provides a minimum delay of about one
second in data transfer.

The realized experimental smart manufacturing assembly system will serve for further research
(for example, to extend the digital twin via data from articulated assembly robot) and also for
educational purposes. Using advanced technologies based on the Industry 4.0 concept by educated
students and workers can help to develop sustainable production of SMEs. The designed and tested
digital twin architecture on the experimental manufacturing system with full data digitalization
provides a universal digital model which can be used as a template for real manufacturing of SMEs.
Implementation of digital twins into manufacturing is a necessary condition for product lifecycle
management (PLM) to ensure sustainable production.
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