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;; Abstract. The analysis of the impaet of spin-orbit coupling (SOC) on the Kondo
29 state has generated considerable controversy, mainly regarding the dependence of the
30 Kondo temperature Tk oniSOC strength. Here, we study the one-dimensional (1D)
31 single impurity Anderson moedel (STAM) subjected to Rashba («) and Dresselhaus
32 (8) SOC. Tt is shown that, due to,time-reversal symmetry, the hybridization function
33 between impurity and quantum wire is diagonal and spin independent (as it is the
34 case for the zero-SOE STAM), thus the finite-SOC SIAM has a Kondo ground state
35 similar to that for/the zero-SOC SIAM. This similarity allows the use of the Haldane
36 expression for T, with parameters renormalized by SOC, which are calculated through
37 a physically motivat& change of basis. Analytic results for the parameters of the SOC-
38 renormalized Haldane ‘expression are obtained, facilitating the analysis of the SOC
39 effect averT i . It is found that SOC acting in the quantum wire exponentially decreases
40 Tk while SOC at the impurity exponentially increases it. These analytical results are
2; fully supportedsby calculations using the Numerical Renormalization Group (NRG),
43 applied to the wide-band regime, and the Projector Operator Approach, applied to
44 the infinite-U regime. Literature results, using Quantum Monte Carlo, for a system
45 with Fermisénergy near the bottom of the band, are qualitatively reproduced, using
46 NRG. Im\addition, it is shown that the 1D SOC SIAM for arbitrary « and S displays
47 a/persistent spin helix SU(2) symmetry similar to the one for a 2D Fermi sea with the
48 restriction o = .
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1. Introduction

It is well-known that magnetic impurities, when diluted in smally concentrations
in a metallic host, impart singular characteristics to its properties;y most notably
its resistivity, which acquires a minimum as a function of temperaturé, [1]. This
phenomenon, first observed in the mid 1930s [2], was given a satisfaetory/explanation
only in 1964 by Jun Kondo [3]: the localized magnetic moment of the impurity is
screened by the spins of the conduction electrons below a ¢haracteristic temperature,
the so-called Kondo temperature Tk.

Recently, there has been much interest in the studynof the Kondo regime of a
magnetic impurity coupled to a metallic substrate presenting SOC. Theoretical work
by Meir and Wingreen in 1994 [4] concluded that4SOC doesmot suppress the Kondo
effect. This subject lay dormant for many years, amitil a'surge in interest (see Refs. 5,6)
was stimulated by SOC’s importance for systems with spifitronic applications, e.g., the
Datta-Das spin transistor [7]. Thus, SOC’s effect on the Kondo state of a magnetic
impurity, or a quantum dot, embedded in a two-dimensional (2D) system has received,
in the last decade, renewed attention [8-13}. However, less attention has been given
to an impurity coupled to a one-dimensional (1D) system [14,15]. Nevertheless, for
either 1D or 2D, the effect SOC has on the Kondo regime became a controversial topic.
Indeed, while some theory [15]iand experimental [16] groups argue that SOC suppresses
the Kondo effect, other groups.arrived at the opposite conclusion, arguing that SOC
enhances Tk [10,12,14]. Other studiesypredict that T is not affected by SOC [4, 8],
while still others concludedsthat,the effect depends upon the parameters defining the
system [9]. It is expected that inca 1D conductor, where SOC produces only forward
and backward scattering, it‘should have a stronger influence than in 2D systems [14].
On one hand, Sousa«t al. have concluded, using a renormalization group analysis, that
SOC exponentially inereases T in 1D [14]. On the other hand, using the Hirsch-Fye
Quantum Monte Carlo simulation and a slave-boson mean-field approximation, Chen
and Han concluded that 7y is reduced by SOC [15].

Here, we open a short parenthesis to mention that a related phenomenon, viz.,
Kondo effect in' topological insulators (TI), bears some resemblances to the Kondo effect
discussed here, but the list of differences—e.g., in T1 we have absence of spin precession,
no interband scattering, energy dependent density of states, etc. (see Ref. [17])—is too
large to warrant a direct comparison to our results.

The discussion above implies that the physics associated to the Kondo state under
the effeet” of SOC requires a more profound understanding, comprising an effort of
synthesis and clarification. Finally, most of the studies considered just SOC acting in
the bulk, neglecting SOC acting at the impurity itself [18].

In this work, we show that the Haldane expression for Ty [1,19,20], originally
obtained for a zero-SOC single impurity Anderson model (SIAM), is still valid, with
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renormalized parameters, for a SIAM in which the Fermi sea, modeled as a 1D guantum
wire (QW) has Rashba [21] and linear Dresselhaus [22] SOC, with coupliugs o and
B, respectively. This occurs because the hybridization matrix, which incorporatessthe
coupling between impurity and Fermi sea, and thus determines the Kondonstate, is
diagonal and spin independent (thus a scalar function) for both finités and zere-SOC
models. This may seem surprising, as SOC breaks full spin SU(2) symmetry, However,
we argue that this property of the hybridization function is guaranteed, dm our case,
by time-reversal symmetry, which is preserved by SOC. To illusfrate that{ and to find
analytical expressions for the renormalized parameters of the Haldane e?pression for T,
we perform a change of basis that places the finite-SOC SIANEL Hamiltenian into a form
similar to that of the zero-SOC SIAM. This basis is then used to define a global pseudo-
spin [23] wave-vector-dependent operator, obeying an SU(2)algebra, whose components
(denoted by Sf,) commute with the finite-SOC SIAM Hamiltonian for arbitrary values
of @ and . This shows that the Hamiltonian has a pseudo-spin'SU(2) symmetry, similar
in spirit to the persistent spin helix (PSH) SU(2)symmetry found by Bernevig et al. [24]
for a 2D model, with the restriction oo = f3. y

We then present numerical supportto the amalytical results described above by
using the Numerical Renormalization Groupn(NRG) in two different regimes of the
SIAM: (i) a wide-band regime, i.e., where the half band-width D is much larger than
the impurity Coulomb repulsion U anduits _coupling to the band A. In that case,
the analytical results obtained throughnythe appropriate Haldane expression for the
Kondo temperature [see Eq.“[37] in Ref. 19, reproduced below as Eq. (11)], are in
excellent agreement with the NRG xesults, showing that, indeed, in this regime, SOC
exponentially decreases the Kondo temperature; (ii) in an intermediate regime, where
U =D > A, with the Fermi‘energy ¢lose to the bottom of the band. The motivation
for analyzing this regime is o cempare the results obtained by Chen and Han [15],
using Quantum MonteyCarlo (QMC) calculations, with our NRG results. Finally, the
analytical results fortheldKondo temperature are compared to numerical results obtained
by the Projector Operator Approach [25,26] (POA), for yet a third regime, that of
infinite Coulomb,repulsion, and shown to be in excellent agreement.

2. Model

The system consists of a quantum wire (QW), i.e., a 1D Fermi sea (along the x-axis),
coupled to a magnetic impurity. It is modeled by a SIAM [1,27] extension, modified
to Anclude Rashba [21] and linear Dresselhaus [22] SOC. The Hamiltonian is given by
H'= Hyive & Hipp + Hpyp, where

Hyire = — Z (2t cosk — p) czwc;w
k,o

_ Z 2sink (’yc}rﬁcki + h.c.> : (1)
k
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Figure 1. (a) Quantum wire dispersion €, + o for zero-SOC. Solid/dashed (red/blue)
curve for o =1 / | (b)Dispersion €, for || = 0.5. Here, the bands are characterized by
the helicity quantummumber v: solid/dashed (red/blue) curve for v = +/— (c) Same as
in (b), but now thé bands arecharacterized by the quantum number o,.: solid/dashed
(red/blue) curve foreg, =1,/ . Wave vector @), connecting both bands, is discussed
in the text. (d) DOS"p(@)'= —ImA,,(w)/ (A?) with and without SOC. The dotted
black curve corresponds to zero-SOC (|| = 0) and the solid/dashed (red/blue) curves
correspond to |y|.= 045, for o =1 / |, for an arbitrary spin quantization axis. Note

in panel (b), the definition of the SOC energy, E

+, used in Fig. 3(a).

shownrfor,u = 0.

Hip = Z €0Noo 1 Z %no(;nom

(o)

Hip =3 {Z (Viclycor) +

k o

i’Yimp,kC]];\LCOT + Z"}/;(mpkaLTC0¢ + hC:| .

All results are

(2)

(3)

In the equations above, ¢} (crs) creates (annihilates) an electron with momentum

k and spin ¢ in the QW, which is modeled by a 1D tight-binding approximation with

nearest-neighbor hopping ¢, lattice parameter a = 1, and . = € is the chemical potential

(Fermi energy). Note that p will be set to 0 (half-filling) for most calculations, except
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when we investigate the Kondo state for a Fermi energy close to the bottom of the band,
when it will be set to u = e = —0.8. The second term in Eq. (1) describes the$SOC [28];
where v = 8 + ia, i = /=1. The impurity is modeled by Hj,p, Eq.(2), whereleg-is
the impurity orbital energy and U is the Coulomb repulsion for its double eecupancy.
The operator ¢}, (co,) creates (annihilates) an electron with spin o @t the impurity,
and ng, = C(T)Uco,,. Equation (3) represents the coupling between thefimpurity and the
QW, where the first term denotes the hybridization Vj, which preserves ¢he electron
spin between the impurity and the QW, while the other term sepresentsthe spin-flip
coupling due to the local SOC at the impurity, of magnitude im, x [15; 29]. As it is the
case for the hybridization Vi, Yimpr depends, in principle, apen the linear momentum
k. However, for simplicity, we will assume that the two parameters are k-independent,
denoted from now on as V' and ;. Note that, in the literature, alinear approximation
of the electronic dispersion, valid for small values of & [14,15], is frequently used. In the
present study, we will not make this approximationjitaking £'in the whole interval, i.e.,
—m < k <. Finally, we note that the results showniin Figs. 1 and 4 were obtained for
t = 1 as the energy unit, while for the NRG results in Figs.’2 and 3 the half band-width
D =1 was used as energy unit (thus, t Zi/2).

3. Spin rotation and STAM Hamiltonian in the o, basis

Let us first analyze the decoupled (nepimpurity) QW. In Fig. 1(a), it is shown the
dispersion when there is nofSOC, v =0 (solid/dashed (red/blue) curve for spin
up/down). In this case, the Hamiltonian has spin SU(2) symmetry, i.e., the spin is
a good quantum number and the energy dispersion does not depend upon it. Thus,
the eigenstates |k 1) and |ksf)(in the S, basis) are degenerate and the z-axis can be
chosen to point in any direction. However, for finite-SOC, the spin angular momentum,
for an arbitrary quantization axis, is no longer a good quantum number, because of the
spin-mixing term in Equ(1). Nonetheless, as SOC preserves time-reversal symmetry, we
can define a helicity operator h such that [h, Hy.| = 0, and whose eigenvalues v = +
are thus good quantum numbers for the eigenstates of H,;... Indeed, in the helicity
basis

1 )
= 7 (cLT + Vske“i’cli) ) (4)

where ¢ = tan 1 (%/g) and sp = sgn(k), Hyire = Z,W ekl,czycky is diagonal, with a
dispersion relation
€y = —2t cosk — 2v|y||sin k| + p. (5)

Figure 1(b) shows ¢y, for |y| = 0.5, plotted as a function of k for each v: the lower band
(solid (red) curve) associated to the quantum number v = + and the upper band (dashed
(blué)seurve) to v = —. As SOC preserves time-reversal symmetry, i.e., [0, Hyr] = 0,
where O is the time-reversal operator, we have degenerate Kramers doublets [30] in the
same helicity band, €, = €_y,.
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However, as the helicity v is not defined for the impurity, its coupling to the QW
mixes helicity channels and v is not longer a good quantum number. We can rewrite
Hyire + Hpyp in a more convenient form by choosing another basis.™ The key here
is to realize that the |kv) = ¢ |0) are eigenstates of the S, component ofsthe spin
angular momentum pointing along the direction # = [# = 7/2, ¢|, for s= +, and along
the opposite direction —# = [0 = 7/2,¢ + 7|, for s, = —. Thusg#rdetermines the
direction of what is conventionally called the effective “spin-orbit magnetic field” [31],
i.e., BE . (k) = |y|sin (k)7 [see Eq. (5)], such that when k changeés to,—kthe effective
magnetic field points in the opposite direction, thus conserving timefreversal symmetry.
Note that, in this context, ‘up’ and ‘down’ refers to spin quamtization/‘along 7', where
7 lays on the zy plane, somewhere in its first quadrant, depending on the ratio @/s.
Thus, as we will see next, for finite SOC, the presence of,the impurity will make it
advantageous to work in the S, basis, with spin quantum number o,..

The ground state of the Kondo regime is a singlet formed between the impurity and
the conduction electrons, whose spins in the finite=SOC QW are good quantum numbers
when quantized along the 7 direction. As a consequence,’it is natural to expect that
it will be advantageous to choose a quauntization axis along 7 for the impurity as well.
Thus, if we take 7 = [# = 7/2, ¢] as the spiniguantization axis for the impurity, then
the spin up (0, =1 = +) and spin down (o, = | = —) impurity states are given
by cggr = 1/\/§(ch + o) 1), where CEOT.(COUT) creates (annihilates) an electron at the
impurity with spin o,, quantized alongithe r direction, with the understanding that
when o, appears as a subscripthit means (1,4), and when it appears in an equation it
means (+, —), respectively.

The total Hamiltonian in this new basis is written as

N U
H = Z €kdy c,Tch;wT + Z €0M0q, 1 Z §n00Tn0cr_r
Or

k,op or
£ A (el con, + el ) (6)
k,or

where ng,, = cgarcow is ghe impurity number operator, c,t;ar(ckor) creates (annihilates)
an electron at the Fermi,sea with momentum & and spin o, and A = (V? + |%mp|2)1/ :
with a dispersion

€ho, = =20/ + 7[> cos (k — o,0) + 11, (7)

where = tanz! ("/t). Each one of the bands in ¢,,, displaced from each other along
the k-axis by ) = 2¢, is associated to one of the S, eigenvalues o, =1, ], as shown in

Fig.d(c).
4. Time-reversal and the Hybridization Function

It is well known that the hybridization function (which determines the properties of
the Kondo state [32]) for the zero-SOC SIAM is a spin-independent scalar function,
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denoted by A(w). As the Hamiltonian shown in Eq. (6) is similar to that for the zero-
SOC SIAM, one may be led to assume that this is still the case for the finite-SOC
hybridization function. However, there is an important detail in Eq. (6): the QW
dispersion €, is spin dependent [see Eq. (7) and Fig. 1(c)], which may amplysthat the
hybridization function is spin dependent. A simple numerical calculatiomshows that this
is not the case [see Fig. 1(d)]. A general argument shows that time-réversalsymmetry
requires the finite-SOC SIAM hybridization matrix A, (w) to bé diagonél and spin-
independent for any spin orientation ¢ along an arbitrary quantizatiomaxis{ like the one
for the zero-SOC SIAM [32]. Indeed, the matrix elements of the2 ) hybridization
matrix can be written as Ay, (w) = >, Boor(k,w), where By (k,w) &= A2GY5¢(k,w),
and GY7¢(k,w) is the single-particle Green’s function for the QW. An analysis of the
expressions for the matrix elements ¥,/ (k,w) indicates that their parity, in relation
to k, can be readily obtained from Eq. (1): no-spin-flipsterms ¥, (k,w), produced
by the first term in H., which is associated 4o the kinetic energy p?/2m, are
therefore even in &k and spin independent, whilesion=diagonal spin-flip terms ¥,5(k, w)
are produced by the (SOC) second term in H,4, Whial, to preserve time-reversal
symmetry, has to be odd in k. Thus, integrating ¥y (k,w) in k to obtain A, (w)
results in A (w) = Ay (w) = A(w) and Ay (@)= A1 (w) = 0. Therefore, as previously
advertised, the spin independence of the hybridization function for the finite-SOC SIAM
(despite the broken spin SU(2) symmetry)uis guaranteed by the time-reversal symmetry.
To illustrate these results, —ImA,, (w)/(rA?) = p(w) is plotted in Fig. 1(d) for finite-
SOC (solid/dashed (red/blue)ieurve for an arbitrary spin orientation o =1 / ), and,
as expected, it does not dependsupon the spin orientation.

5. Pseudo-spin SU(2) Symmetry

Motivated by the fact, that the/dispersion relation in Eq. (7) satisfies the identity
€kor = €k+Qa,, Which.guarantees that a 2D Fermi sea has a pseudo-spin SU(2) symmetry
(when o = ) [24]; we,analyze if this is the case too for our system. To accomplish
that, we generalize the problem to treat the Anderson model by introducing the spinor
operators (in_the gp basis) c,tQ = {c/,t:T cl Lqu) and = {C(T)T c(Tu}, and with them
construct the operaters 285, = >, cLQaickQ +cloicy, where the o are the Pauli matrices
and @ = 2 [sée Eqi (7)]. These operators obey the angular momentum commutation
relation§ [S5,Sp] = ie"'S}), where €' is the Levi-Civita symbol. It can be shown
that the 8¢, (for i = z,y,2) commute with the finite-SOC SIAM Hamiltonian. Note
that, as in Ref. [24], the commutation [Ség, H] = 0 is satisfied because of the equality
€5+ Q0. = €ka,, When QQ = 2¢ [see Eq. (7) and Fig. 1(c)] showing that our Hamiltonian
is pseudo-spin SU(2) symmetric. Thus, the operators SZ; are the generators of the
symmetry operations connected to the PSH states [24], which the authors believe may
be associated with the structure of the Kondo cloud formed in our system, as observed
in a previous work on Topological Insulators (see Fig. 10(a) in Ref. [33]).
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6. Renormalized Haldane Expression

Through the application of Anderson’s poor man’s scaling approach [34} to the STAM,
different expressions for the Kondo temperature Tk can be found for a wariety of
parameter regimes [1]. All of them, collectively known as Haldane expression [19, 20],
are proportional to an exponential exp (mo(c0o+U)/2av) multiplied by a-funetion of A, D,
€p and U, whose form depends on these parameters relative values. In the wide-band
limit, i.e., D > U, A, |¢|, Haldane obtained (see Eq. [37] in Ref.19)

~

Tie = 0.364 (2AU/:)% exp {%} , (8)
where A = 7V2%p(er) and p(ep) is the band DOS at ‘the Fermi energy ep. As our
Hamiltonian [Eq. (6)] is formally equivalent to the zero-SOCSITAM Hamiltonian used
to obtain Eq. (8), the Haldane expression should he valid forjour finite-SOC SIAM as
well, but with band parameters renormalized by SO€. (an SOC renormalized parameter
will be denoted with a ~ on top of it). Indeed, ag illustrated’in Fig. 1(d), which compares
the DOS for v = 0.0 (dotted black line) with that for || = 0.5 (solid/dashed (red/blue)
for 0 =71/ 1), the bulk SOC # increases the,bandwidth and thus decreases the DOS
p(er), at e = 0. Thanks to the analytical expression for €, [Eq. (7)], obtained
through the spin rotation, we derive simple analytical expressions for the renormalized
semi-bandwidth

D =28+ |7, (9)
as well as for the band DOS at"the Fermi energy p (0) = 1/(2r\/©+121?). Therefore, the

renormalized hybridization funetion at half filling A = A (0) can be written as
N
4 V2 + [impl?
A =mA\5(0) = ——2 10
0= (10
Finally, replacing Awfor A 4n Eq. (8), the renormalized finite-SOC SIAM Kondo
temperature Ty, in the wide-band limit, is given by

€o (€o +U)] '

5 " 1
Ty = 0.364 (2AU/x) ? exp [ 250

(11)
In partiéular, if ‘one takes the U — oo limit, one obtains [1]
Tk o< VAD exp (7<0/24) (12)

where, it should be noticed that, differently from the wide-band limit [Eq. (11)], the
multiplicative constant in Eq. (12) is unknown. Through the renormalized Haldane
expressions given in Eqs. (11) and (12), one can easily analyze the SOC impact on the
Kondo temperature. The prefactor in the infinite-U regime depends only on the local
SOC term (7imp) and does not depend on the bulk SOC (). However, in the D > U
regime, the prefactor depends upon both parameters (7, and 7). We do not attribute
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any specific relevance to this difference in behavior between the two prefactofs,; asit
does not impact the universality of Tk, whose dominant dependence is givén by the
exponential term shown in Egs. (11) and (12). In addition (keeping in mind that.in
the Kondo regime, ¢y < pu, since e = p), Eq. (10), for the renormalized,hybridization
A, implies that the local SOC Vimp, DY increasing A, exponentially incteases T, while
the bulk SOC term ~ exponentially decreases it, by decreasing A.

Next, we will numerically validate the analytical results obtained for the wide-band
regime (using NRG) and for the infinite-U regime (using POA)-"In addition, we will
compare our NRG results with the QMC results in Ref. 15, for/the ifitermediate regime,
U =D > A, with the Fermi energy close to the bottom of the band.

7. Numerical Results

7.1. Numerical Renormalization Group Results

In Fig. 2, we show Kondo temperature resultsffor finite-SOC, Ty (in log,, scale), as
a function of U/A, for U = 1.0 x 1073, V = 5.5 X 10772, 0.0 < |y < 0.5, Yimp = 0.0,
i = 0.0, at the particle-hole symmetric point.eq — p'=-=Y/2. The (red) squares curve was
obtained using NRG, while the (blue) circles eurve was obtained analytically through
Eq. (11). We used this set of parameters for, two reasons: first, the wide-band limit,
e, D> UA, leg|, allows for a very preeise determination of the prefactor to the
exponential [see Eq. (11)]. Thus, in this regime, the Haldane expression is supposed to
be the most accurate. This canibe confirmed by its very good agreement with NRG,
as shown in the figure. Second; for'.>> A, and in the particle-hole symmetric point
€0 — = ~U/2 and p = 0, one igideep into the Kondo regime, therefore, NRG is probing
the properties of the STAM ver?close to its strong coupling fixed point. The very good
agreement shown by the results in Fig. 2 imply that the SOC-induced reduction of the
Kondo temperaturdiis dircetly-ticd to the suppression of the hybridization A at the
Fermi energy, which is @aused by the widening of the band [see Fig. 1(d)], and this
effect is very accurately described by the Haldane expression, Eq. (11), giving strong
support to the analytical results presented in the previous section.

The situation is more involved for the second regime we analyzed, which we call
intermediate regime, i.e., U = D > A, where, in addition, we have moved the Fermi
energy close to the'bottom of the band. Recent results [15], for a model very similar
to ours, obtained using QMC, have reported a polynomial dependence of the Kondo
temperature with SOC for this intermediate regime (see Fig. 3(a) in Ref. 15). Their
conclusiondis similar to the one we obtained for the wide-band regime, namely, that the
reduetion of the hybridization at the Fermi energy, caused by SOC, is responsible for the
decrease in the Kondo temperature. In Fig. 3(a), to compare our NRG results with the
QMC6nes in Ref. 15, it is shown Tx(By)/1(0) vs E, [where E, = 2[\/t2 + |y|> —t] is the
so-called SOC energy, indicated in Fig. 1(b)], for U = 1.0, V' = 0.396, 0.0 < |y| < 0.5,
Yimp = 0.0, 4 = —0.8, and two different values of ¢y — u = —0.3 [(red) squares curve]
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Figure 2. Log-linear plot of Tx vs U/A, deep into the Kondo regime. Comparison of
NRG results [(red) squaresicurve] with the analytical results obtained from Eq. (11)
[(blue) circles curyé], for U = 1.0 x 1073, V = 5.5 x 1072, 0.0 < || < 0.5, Yimyp = 0.0,
1= 0.0, and € r = 7U/2. The very good agreement indicates that the renormalized
Haldane expressioniEq. (11)] describes the dependence of the Kondo temperature with
SOC to high accuracy.

and —0.7 [(blue) circles gurve]. For this value of chemical potential, the Fermi energy
is just 0.2 above the bottom of the band. The contrast to the results shown in Fig. 2 is
striking. Notethat we have plotted (not shown) the two curves in panel (a) in log,, scale
for the yertical axis (vs U/A) and the behavior is clearly not Haldane-like. In Fig. 3(b),
we show. NRG results for Tx()/1y(0) vs U/A for the same parameters as in Fig. 3(a),
butdfor ;=100 (i.e., at half-filling), using a log,, scale. It is very clear that, for the
particle-hole symmetric point, contrary to what happens when the Fermi energy is close
to the'bottom of the band [Fig. 3(b)], Tx (/1% (0), plotted against U/A, shows a very-close-
to.cxponential behavior. We do not plot results for the Haldane expression [Eq. (11)]
because, as already mentioned above, that expression compares well with the NRG
results just for the wide-band limit [35]. Nonetheless, the contrast between the results
at half-filling [¢ = 0.0, panel (b)] and those for the Fermi energy close to the bottom
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Figure 3. (a) NRG results for,7x (E5)/T; (0) vs E., (SOC energy, see main text) in the
intermediate regime, for U = 1.0V = 0.396, 0.0 < || < 0.5, Yimp = 0.0, p = —0.8
(thus, the Fermi energyis 0.2 above the bottom of the band), and two different values of
eo— p: —0.3 [(red) squaresicurve] and —0.7 [(blue) circles curve]. (b) Same parameters
as in (a), except for the chemieal potential, now at half-filling (1 = 0.0). In addition,
the horizontal axis iﬁnow U/A, instead of E,, and the vertical axis is in log;, scale,
showing that/the Kondo temperature has an almost exponential behavior dependence
on U/A, similar to the results for the wide-band limit, Fig. 2.

of the band [z = <0.8; panel (a)], indicates that the polynomial behavior reported in
Ref. 15 is caused by the proximity of the Fermi energy, and thus the Kondo peak, to
the singularitysat- the bottom of the band. Indeed, as 7 changes, the singularity moves
[see Fig. 1(d)], altering its effect over the impurity’s local density of states (LDOS), thus
over its Kondo' peak, and, by extension, over its Kondo temperature. A similar effect
was obsgerved for a related 2D model [9,36]. Indeed, as shown in detail in Ref. 9 [see
its Fig.(2)], for U = D and with the Fermi energy sitting close to the bottom of the
baud, as it is the case for the intermediate regime analyzed here and in Ref. 15, the
broad ¢y —p peak in the impurity’s LDOS is strongly affected by the singularity at the
bottomiof the band, and this has an effect on the width of the Kondo peak, thus in
thesassociated Kondo temperature, resulting in the behavior seen in Fig 3(a). None of
that is seen in Fig. 2 and very little of it in Fig. 3(b), because both the Kondo and the
€0 — pu peaks are far from the singularity and are not affected by its movement (more so
in the case of the results in Fig. 2, where, in addition, U < D). It is not noticeable in
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Fig. 3(b), but the first two points (|| = 0 and 0.1), for both values of €y, slightly‘deviate
from the exponential behavior followed by the rest of the points (at higher |3} values):
This is consistent with our interpretation of the non-exponential behavior present,for
i = —0.8 being caused by the proximity of the bottom of the band singularity to the
Kondo peak, as the singularity moves away from it as SOC increases.

Thus, in summary, the QMC results in Ref. 15, reporting a polymoemial behavior of
the Kondo temperature with SOC, in qualitative agreement with our results obtained
through NRG [see Fig. 3(a)], do not contradict our main comelusion regarding the
suitability of using Haldane’s expression [Eq. (11)] to understand the SOC effect on the
Kondo regime. The reason is clear: the influence of any stru¢tures in the hybridization
function (like the singularity at its bottom), which only manifests itself in the very
specific regime analyzed in Fig. 3(a), where the Fermi energy is close to the bottom of
the band and U = D, is irrelevant in the wide-band (or flat-band) regime, 1 = 0.0 and
D > U, A, |¢l, for which Eq. (11) was derived. Finally, we agree with Chen and Han [15]
in their assessment that the poor man’s scaling xésults [14], pointing to an exponential
increase of Tk with SOC in a 1D system similar to ours,’ls a high temperature effect,
which does not describe the properties ofithe Kondo ground state under the influence
of SOC, at least in regards to the Kondo temperature.

The NRG approach was performed using Wilson’s discretization parameter set to
A = 2.0, 2000 many-body states were kept. after each NRG iteration (except for the
calculations near the bottom of the band, where it was necessary to keep 20000), and
we made use of the z-trick averaging in the discretization procedure. In addition, the
Kondo temperature was obtained through Wilson’s criterion [1]. We have used the NRG
Ljubljana open source code [37] for all NRG calculations.

N
7.2. Projector Operator ApproachiResults

In order to test the analytical'results in the infinite-U regime, we use POA, which
is a numerical techmique that works quite well in this regime [25,26]. We find the
parameter dependence of Ty by calculating the zero-temperature finite-SOC impurity
magnetic susceptibility, Ximp. It is obtained by numerically evaluating the impurity
magnetization, M, = no+—"noy, due to the application of a vanishing external magnetic
field B, coupled just to the impurity and oriented along 7. It is well established that, in
the strong coupling regime, X;m,(B = 0) = an_l, where 7 is a constant [1]. Thus, Ty
can be‘obtained (but for a multiplicative constant) through the numerical calculation
of Xgmp for awanishing magnetic field. The objective of these numerical calculations is
tolconfirm Eq. (12).

Figuré 4 shows a log-linear plot of U — oo POA results for )Z;?}Lp/ \/E vs /A,
either by varying —0.17 < €9 — u < —0.10 (for o = 0) and keeping A = 0.029 fixed
(ted squares), or for different values of A, obtained by varying 0.10 < |y| < 0.30 and
0.23 < A < 0.30, and keeping €y — = —0.15 constant (blue triangles). When A and

D are varied, an exponential behavior is only obtained after dividing X;nip by VAD,
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Figure 4. POAsresults for )Z;ip/\/ﬁ as a function of €o/A. The (red) squares curve
was obtained by varying —0.17 < ¢y — p < —0.10, for g = 0, and keeping A = 0.029
fixed, while the,(blue) triangles were obtained by varying A, by varying simultaneously
0.10 <'y] < 0.307and 0.23 < A < 0.30, and keeping ¢g — u = —0.15 constant. The
dotted black line is a fitting of the data using g exp (91€0/A), resulting in 6; = 7/2, with
< 1% errorpand dg = 0.699 (< 3%).

confirming the prefactor dependence shown in Eq. (12). The dotted (black) line is an
exponential fit 6f the data using 0y exp (91¢0/A), resulting in 6; = 7/2 with < 1% error,
and 6y = 0.699%(<"3%). Therefore, Fig. 4 shows that Tk depends exponentially on
meo/24A, thus corroborating Eq. (12).

8. Summary and conclusions

In conclusion, we have shown, through a physically motivated change of basis, that
the 1D finite-SOC SIAM Hamiltonian is similar to that for the zero-SOC SIAM. The
form of the 1D finite-SOC SIAM Hamiltonian (for both the S, and helicity bases)
seems to be inappropriate to deal with Kondo physics, since conduction channels with
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opposite quantum numbers (either o =t or v = +) are mixed (either by SO, or by
the impurity itself). This issue can be circumvented if one exploits the fact that time-
reversal symmetry is not broken. Indeed, it is the time-reversal symmetry that renders
the finite-SOC hybridization matrix diagonal and spin-independent (in amy spin basis);
thus a scalar, like the zero-SOC hybridization function. This can be seefiin a more clear
way once both the impurity and the conduction electrons are rotated to the o, basis,
where it becomes clear that the spin channels are not mixed neither by SO@; nor by the
impurity, allowing a simple analytical treatment of the renormalizéd Tiy through the use
of the Haldane expression, which is corroborated by NRG calclatiofs m the wide-band
regime (D > U, A, |¢|) and by POA in the infinite-U regiménln addition, NRG results
for the intermediate regime (U = D > A, with Fermi energy closéito the bottom of the
band), in qualitative agreement with QMC results presented.in Ref. 15, indicate that it
is the proximity of the Fermi energy to the structure at the.bottom of the hybridization
function (a singularity) that causes the divergence 6f the results from what one expects
from Haldane’s expression. Finally, it is shownhat,the.1D SOC-SIAM Hamiltonian,
for arbitrary values of a and 3, has a PSH SU(2) syinmetry, in contrast to the 2D SOC
Fermi sea, where the PSH state is restrigted to the a = [ case.

As to a possible experimental verificationm,of our results, we note that it has been
demonstrated recently the possibility of controllingythe Rashba SOC in InAs nanowires
through the use of a combination of metallig.gates [38]. InAs nanowires have very strong
Rashba SOC, whose strength can be further increased (more than doubled) by the above
mentioned technique. The userof a system like that, coupled to either a quantum dot
or an adsorbed magnetic impurity ¢ould be used to detect the change in Tk caused by
the Rashba SOC variation due to the electrostatic fields created by the gates.

The authors hope thatsthe sesults presented here, as well as the conceptual insights,
will be helpful in clarifying the somewhat confusing state of the properties of the Kondo
regime of a quantum impurity coupled to a bath subjected to SOC.
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