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(PUC-Rio), Rio de Janeiro, Rio de Janeiro, 22453-900, Brazil
2 Departamento de F́ısica Aplicada, Universidad de Alicante, San Vicente del

Raspeig, 03690, Alicante, Spain
3 Instituto de F́ısica, Universidade Federal de Uberlândia, Uberlândia, Minas Gerais,

38400-902, Brazil
4 Instituto de F́ısica, Universidade Federal Fluminense, 24210-346 Niterói, RJ, Brazil
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Abstract. The analysis of the impact of spin-orbit coupling (SOC) on the Kondo

state has generated considerable controversy, mainly regarding the dependence of the

Kondo temperature TK on SOC strength. Here, we study the one-dimensional (1D)

single impurity Anderson model (SIAM) subjected to Rashba (α) and Dresselhaus

(β) SOC. It is shown that, due to time-reversal symmetry, the hybridization function

between impurity and quantum wire is diagonal and spin independent (as it is the

case for the zero-SOC SIAM), thus the finite-SOC SIAM has a Kondo ground state

similar to that for the zero-SOC SIAM. This similarity allows the use of the Haldane

expression for TK , with parameters renormalized by SOC, which are calculated through

a physically motivated change of basis. Analytic results for the parameters of the SOC-

renormalized Haldane expression are obtained, facilitating the analysis of the SOC

effect over TK . It is found that SOC acting in the quantum wire exponentially decreases

TK while SOC at the impurity exponentially increases it. These analytical results are

fully supported by calculations using the Numerical Renormalization Group (NRG),

applied to the wide-band regime, and the Projector Operator Approach, applied to

the infinite-U regime. Literature results, using Quantum Monte Carlo, for a system

with Fermi energy near the bottom of the band, are qualitatively reproduced, using

NRG. In addition, it is shown that the 1D SOC SIAM for arbitrary α and β displays

a persistent spin helix SU(2) symmetry similar to the one for a 2D Fermi sea with the

restriction α = β.

PACS numbers:
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1. Introduction

It is well-known that magnetic impurities, when diluted in small concentrations

in a metallic host, impart singular characteristics to its properties, most notably

its resistivity, which acquires a minimum as a function of temperature [1]. This

phenomenon, first observed in the mid 1930s [2], was given a satisfactory explanation

only in 1964 by Jun Kondo [3]: the localized magnetic moment of the impurity is

screened by the spins of the conduction electrons below a characteristic temperature,

the so-called Kondo temperature TK .

Recently, there has been much interest in the study of the Kondo regime of a

magnetic impurity coupled to a metallic substrate presenting SOC. Theoretical work

by Meir and Wingreen in 1994 [4] concluded that SOC does not suppress the Kondo

effect. This subject lay dormant for many years, until a surge in interest (see Refs. 5,6)

was stimulated by SOC’s importance for systems with spintronic applications, e.g., the

Datta-Das spin transistor [7]. Thus, SOC’s effect on the Kondo state of a magnetic

impurity, or a quantum dot, embedded in a two-dimensional (2D) system has received,

in the last decade, renewed attention [8–13]. However, less attention has been given

to an impurity coupled to a one-dimensional (1D) system [14, 15]. Nevertheless, for

either 1D or 2D, the effect SOC has on the Kondo regime became a controversial topic.

Indeed, while some theory [15] and experimental [16] groups argue that SOC suppresses

the Kondo effect, other groups arrived at the opposite conclusion, arguing that SOC

enhances TK [10, 12, 14]. Other studies predict that TK is not affected by SOC [4, 8],

while still others concluded that the effect depends upon the parameters defining the

system [9]. It is expected that in a 1D conductor, where SOC produces only forward

and backward scattering, it should have a stronger influence than in 2D systems [14].

On one hand, Sousa et al. have concluded, using a renormalization group analysis, that

SOC exponentially increases TK in 1D [14]. On the other hand, using the Hirsch-Fye

Quantum Monte Carlo simulation and a slave-boson mean-field approximation, Chen

and Han concluded that TK is reduced by SOC [15].

Here, we open a short parenthesis to mention that a related phenomenon, viz.,

Kondo effect in topological insulators (TI), bears some resemblances to the Kondo effect

discussed here, but the list of differences—e.g., in TI we have absence of spin precession,

no interband scattering, energy dependent density of states, etc. (see Ref. [17])—is too

large to warrant a direct comparison to our results.

The discussion above implies that the physics associated to the Kondo state under

the effect of SOC requires a more profound understanding, comprising an effort of

synthesis and clarification. Finally, most of the studies considered just SOC acting in

the bulk, neglecting SOC acting at the impurity itself [18].

In this work, we show that the Haldane expression for TK [1, 19, 20], originally

obtained for a zero-SOC single impurity Anderson model (SIAM), is still valid, with
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Kondo effect under the influence of spin-orbit coupling in a quantum wire 3

renormalized parameters, for a SIAM in which the Fermi sea, modeled as a 1D quantum

wire (QW) has Rashba [21] and linear Dresselhaus [22] SOC, with couplings α and

β, respectively. This occurs because the hybridization matrix, which incorporates the

coupling between impurity and Fermi sea, and thus determines the Kondo state, is

diagonal and spin independent (thus a scalar function) for both finite- and zero-SOC

models. This may seem surprising, as SOC breaks full spin SU(2) symmetry. However,

we argue that this property of the hybridization function is guaranteed, in our case,

by time-reversal symmetry, which is preserved by SOC. To illustrate that, and to find

analytical expressions for the renormalized parameters of the Haldane expression for TK ,

we perform a change of basis that places the finite-SOC SIAM Hamiltonian into a form

similar to that of the zero-SOC SIAM. This basis is then used to define a global pseudo-

spin [23] wave-vector-dependent operator, obeying an SU(2) algebra, whose components

(denoted by SSSiQ) commute with the finite-SOC SIAM Hamiltonian for arbitrary values

of α and β. This shows that the Hamiltonian has a pseudo-spin SU(2) symmetry, similar

in spirit to the persistent spin helix (PSH) SU(2) symmetry found by Bernevig et al. [24]

for a 2D model, with the restriction α = β.

We then present numerical support to the analytical results described above by

using the Numerical Renormalization Group (NRG) in two different regimes of the

SIAM: (i) a wide-band regime, i.e., where the half band-width D is much larger than

the impurity Coulomb repulsion U and its coupling to the band ∆. In that case,

the analytical results obtained through the appropriate Haldane expression for the

Kondo temperature [see Eq. [37] in Ref. 19, reproduced below as Eq. (11)], are in

excellent agreement with the NRG results, showing that, indeed, in this regime, SOC

exponentially decreases the Kondo temperature; (ii) in an intermediate regime, where

U = D > ∆, with the Fermi energy close to the bottom of the band. The motivation

for analyzing this regime is to compare the results obtained by Chen and Han [15],

using Quantum Monte Carlo (QMC) calculations, with our NRG results. Finally, the

analytical results for the Kondo temperature are compared to numerical results obtained

by the Projector Operator Approach [25, 26] (POA), for yet a third regime, that of

infinite Coulomb repulsion, and shown to be in excellent agreement.

2. Model

The system consists of a quantum wire (QW), i.e., a 1D Fermi sea (along the x-axis),

coupled to a magnetic impurity. It is modeled by a SIAM [1, 27] extension, modified

to include Rashba [21] and linear Dresselhaus [22] SOC. The Hamiltonian is given by

H = Hwire +Himp +Hhyb, where

Hwire =−
∑
k,σ

(2t cos k − µ) c†kσckσ

−
∑
k

2 sin k
(
γc†k↑ck↓ + h.c.

)
, (1)
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Kondo effect under the influence of spin-orbit coupling in a quantum wire 4
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Figure 1. (a) Quantum wire dispersion εkσ+µ for zero-SOC. Solid/dashed (red/blue)

curve for σ =↑ / ↓ (b) Dispersion εkν for |γ| = 0.5. Here, the bands are characterized by

the helicity quantum number ν: solid/dashed (red/blue) curve for ν = +/− (c) Same as

in (b), but now the bands are characterized by the quantum number σr: solid/dashed

(red/blue) curve for σr = ↑ / ↓. Wave vector Q, connecting both bands, is discussed

in the text. (d) DOS ρ (ω) = −Im∆σσ(ω)/
(
πΛ2

)
with and without SOC. The dotted

black curve corresponds to zero-SOC (|γ| = 0) and the solid/dashed (red/blue) curves

correspond to |γ| = 0.5, for σ =↑ / ↓, for an arbitrary spin quantization axis. Note

in panel (b) the definition of the SOC energy, Eγ , used in Fig. 3(a). All results are

shown for µ = 0.

Himp =
∑
σ

ε0n0σ +
∑
σ

U

2
n0σn0σ̄, (2)

Hhyb =
∑
k

[∑
σ

(
Vkc

†
kσc0σ

)
+

iγimp,kc
†
k↓c0↑ + iγ∗imp,kc

†
k↑c0↓ + h.c.

]
. (3)

In the equations above, c†kσ (ckσ) creates (annihilates) an electron with momentum

k and spin σ in the QW, which is modeled by a 1D tight-binding approximation with

nearest-neighbor hopping t, lattice parameter a = 1, and µ = εF is the chemical potential

(Fermi energy). Note that µ will be set to 0 (half-filling) for most calculations, except
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Kondo effect under the influence of spin-orbit coupling in a quantum wire 5

when we investigate the Kondo state for a Fermi energy close to the bottom of the band,

when it will be set to µ = εF = −0.8. The second term in Eq. (1) describes the SOC [28],

where γ = β + iα, i =
√
−1. The impurity is modeled by Himp, Eq. (2), where ε0 is

the impurity orbital energy and U is the Coulomb repulsion for its double occupancy.

The operator c†0σ (c0σ) creates (annihilates) an electron with spin σ at the impurity,

and n0σ = c†0σc0σ. Equation (3) represents the coupling between the impurity and the

QW, where the first term denotes the hybridization Vk, which preserves the electron

spin between the impurity and the QW, while the other term represents the spin-flip

coupling due to the local SOC at the impurity, of magnitude γimp,k [18,29]. As it is the

case for the hybridization Vk, γimp,k depends, in principle, upon the linear momentum

k. However, for simplicity, we will assume that the two parameters are k-independent,

denoted from now on as V and γimp. Note that, in the literature, a linear approximation

of the electronic dispersion, valid for small values of k [14,15], is frequently used. In the

present study, we will not make this approximation, taking k in the whole interval, i.e.,

−π ≤ k ≤ π. Finally, we note that the results shown in Figs. 1 and 4 were obtained for

t = 1 as the energy unit, while for the NRG results in Figs. 2 and 3 the half band-width

D = 1 was used as energy unit (thus, t = 1/2).

3. Spin rotation and SIAM Hamiltonian in the σr basis

Let us first analyze the decoupled (no impurity) QW. In Fig. 1(a), it is shown the

dispersion when there is no SOC, γ = 0 (solid/dashed (red/blue) curve for spin

up/down). In this case, the Hamiltonian has spin SU(2) symmetry, i.e., the spin is

a good quantum number and the energy dispersion does not depend upon it. Thus,

the eigenstates |k ↑〉 and |k ↓〉 (in the Sz basis) are degenerate and the z-axis can be

chosen to point in any direction. However, for finite-SOC, the spin angular momentum,

for an arbitrary quantization axis, is no longer a good quantum number, because of the

spin-mixing term in Eq. (1). Nonetheless, as SOC preserves time-reversal symmetry, we

can define a helicity operator h such that [h,Hwire] = 0, and whose eigenvalues ν = ±
are thus good quantum numbers for the eigenstates of Hwire. Indeed, in the helicity

basis

c†kν =
1√
2

(
c†k↑ + νske

iφc†k↓

)
, (4)

where φ = tan−1 (α/β) and sk = sgn(k), Hwire =
∑

k,ν εkνc
†
kνckν is diagonal, with a

dispersion relation

εkν = −2t cos k − 2ν|γ|| sin k|+ µ. (5)

Figure 1(b) shows εkν , for |γ| = 0.5, plotted as a function of k for each ν: the lower band

(solid (red) curve) associated to the quantum number ν = + and the upper band (dashed

(blue) curve) to ν = −. As SOC preserves time-reversal symmetry, i.e., [Θ, Hwire] = 0,

where Θ is the time-reversal operator, we have degenerate Kramers doublets [30] in the

same helicity band, εkν = ε−kν .
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Kondo effect under the influence of spin-orbit coupling in a quantum wire 6

However, as the helicity ν is not defined for the impurity, its coupling to the QW

mixes helicity channels and ν is not longer a good quantum number. We can rewrite

Hwire + Hhyb in a more convenient form by choosing another basis. The key here

is to realize that the |kν〉 = c†kν |0〉 are eigenstates of the Sr component of the spin

angular momentum pointing along the direction r̂̂r̂r ≡ [θ = π/2, φ], for sk = +, and along

the opposite direction −r̂−r̂−r̂ ≡ [θ = π/2, φ + π], for sk = −. Thus, r̂̂r̂r determines the

direction of what is conventionally called the effective “spin-orbit magnetic field” [31],

i.e., BBBeff
SOC (k) = |γ| sin (k) r̂̂r̂r [see Eq. (5)], such that when k changes to −k the effective

magnetic field points in the opposite direction, thus conserving time-reversal symmetry.

Note that, in this context, ‘up’ and ‘down’ refers to spin quantization ‘along r̂̂r̂r’, where

r̂̂r̂r lays on the xy plane, somewhere in its first quadrant, depending on the ratio α/β.

Thus, as we will see next, for finite SOC, the presence of the impurity will make it

advantageous to work in the Sr basis, with spin quantum number σr.

The ground state of the Kondo regime is a singlet formed between the impurity and

the conduction electrons, whose spins in the finite-SOC QW are good quantum numbers

when quantized along the r̂̂r̂r direction. As a consequence, it is natural to expect that

it will be advantageous to choose a quantization axis along r̂̂r̂r for the impurity as well.

Thus, if we take r̂̂r̂r ≡ [θ = π/2, φ] as the spin quantization axis for the impurity, then

the spin up (σr = ↑ ≡ +) and spin down (σr = ↓ ≡ −) impurity states are given

by c†0σr = 1/
√

2(c†0↑ + σre
iφc†0↓), where c†0σr(c0σr) creates (annihilates) an electron at the

impurity with spin σr, quantized along the r̂̂r̂r direction, with the understanding that

when σr appears as a subscript it means (↑, ↓), and when it appears in an equation it

means (+,−), respectively.

The total Hamiltonian in this new basis is written as

H =
∑
k,σr

εkσrc
†
kσr
ckσr +

∑
σr

ε0n0σr +
∑
σr

U

2
n0σrn0σ̄r

+
∑
k,σr

Λ
(
c†kσrc0σr + c†0σrckσr

)
, (6)

where n0σr = c†0σrc0σr is the impurity number operator, c†kσr(ckσr) creates (annihilates)

an electron at the Fermi sea with momentum k and spin σr and Λ = (V 2 + |γimp|2)
1/2

,

with a dispersion

εkσr = −2
√
t2 + |γ|2 cos (k − σrϕ) + µ, (7)

where ϕ = tan−1 (|γ|/t). Each one of the bands in εkσr , displaced from each other along

the k-axis by Q = 2ϕ, is associated to one of the Sr eigenvalues σr =↑, ↓, as shown in

Fig. 1(c).

4. Time-reversal and the Hybridization Function

It is well known that the hybridization function (which determines the properties of

the Kondo state [32]) for the zero-SOC SIAM is a spin-independent scalar function,

Page 6 of 16AUTHOR SUBMITTED MANUSCRIPT - JPCM-116688.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



Kondo effect under the influence of spin-orbit coupling in a quantum wire 7

denoted by ∆(ω). As the Hamiltonian shown in Eq. (6) is similar to that for the zero-

SOC SIAM, one may be led to assume that this is still the case for the finite-SOC

hybridization function. However, there is an important detail in Eq. (6): the QW

dispersion εkσr is spin dependent [see Eq. (7) and Fig. 1(c)], which may imply that the

hybridization function is spin dependent. A simple numerical calculation shows that this

is not the case [see Fig. 1(d)]. A general argument shows that time-reversal symmetry

requires the finite-SOC SIAM hybridization matrix ∆̃σσ′(ω) to be diagonal and spin-

independent for any spin orientation σ along an arbitrary quantization axis, like the one

for the zero-SOC SIAM [32]. Indeed, the matrix elements of the 2 × 2 hybridization

matrix can be written as ∆̃σσ′(ω) =
∑

k Σσσ′(k, ω), where Σσσ′(k, ω) = Λ2Gwire
σσ′ (k, ω),

and Gwire
σσ′ (k, ω) is the single-particle Green’s function for the QW. An analysis of the

expressions for the matrix elements Σσσ′(k, ω) indicates that their parity, in relation

to k, can be readily obtained from Eq. (1): no-spin-flip terms Σσσ(k, ω), produced

by the first term in Hwire, which is associated to the kinetic energy p2/2m, are

therefore even in k and spin independent, while non-diagonal spin-flip terms Σσσ̄(k, ω)

are produced by the (SOC) second term in Hwire, which, to preserve time-reversal

symmetry, has to be odd in k. Thus, integrating Σσσ′(k, ω) in k to obtain ∆̃σσ′(ω)

results in ∆̃↑↑(ω) = ∆̃↓↓(ω) = ∆̃(ω) and ∆̃↑↓(ω) = ∆̃↓↑(ω) = 0. Therefore, as previously

advertised, the spin independence of the hybridization function for the finite-SOC SIAM

(despite the broken spin SU(2) symmetry) is guaranteed by the time-reversal symmetry.

To illustrate these results, −Im∆σσ (ω) / (πΛ2) = ρ(ω) is plotted in Fig. 1(d) for finite-

SOC (solid/dashed (red/blue) curve for an arbitrary spin orientation σ = ↑ / ↓), and,

as expected, it does not depend upon the spin orientation.

5. Pseudo-spin SU(2) Symmetry

Motivated by the fact that the dispersion relation in Eq. (7) satisfies the identity

εkσr = εk+Qσ̄r , which guarantees that a 2D Fermi sea has a pseudo-spin SU(2) symmetry

(when α = β) [24], we analyze if this is the case too for our system. To accomplish

that, we generalize the problem to treat the Anderson model by introducing the spinor

operators (in the σr basis) ccc†kQ = {c†k↑ c†k+Q↓} and ccc†0 = {c†0↑ c†0↓}, and with them

construct the operators 2SSSiQ =
∑

k ccc
†
kQσσσ

iccckQ+ccc†0σσσ
iccc0, where the σσσi are the Pauli matrices

and Q = 2ϕ [see Eq. (7)]. These operators obey the angular momentum commutation

relations [SSSiQ,SSS
j
Q] = iεijlSSSlQ, where εijl is the Levi-Civita symbol. It can be shown

that the SSSiQ (for i = x, y, z) commute with the finite-SOC SIAM Hamiltonian. Note

that, as in Ref. [24], the commutation [SSSiQ, H] = 0 is satisfied because of the equality

εk+Qσr = εkσ̄r , when Q = 2ϕ [see Eq. (7) and Fig. 1(c)] showing that our Hamiltonian

is pseudo-spin SU(2) symmetric. Thus, the operators SSSiQ are the generators of the

symmetry operations connected to the PSH states [24], which the authors believe may

be associated with the structure of the Kondo cloud formed in our system, as observed

in a previous work on Topological Insulators (see Fig. 10(a) in Ref. [33]).
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Kondo effect under the influence of spin-orbit coupling in a quantum wire 8

6. Renormalized Haldane Expression

Through the application of Anderson’s poor man’s scaling approach [34] to the SIAM,

different expressions for the Kondo temperature TK can be found for a variety of

parameter regimes [1]. All of them, collectively known as Haldane expression [19, 20],

are proportional to an exponential exp (πε0(ε0+U)/2∆U) multiplied by a function of ∆, D,

ε0 and U , whose form depends on these parameters relative values. In the wide-band

limit, i.e., D � U,∆, |ε0|, Haldane obtained (see Eq. [37] in Ref. 19)

TK = 0.364 (2∆U/π)
1
2 exp

[
ε0 (ε0 + U)

2∆U/π

]
, (8)

where ∆ = πV 2ρ (εF ) and ρ (εF ) is the band DOS at the Fermi energy εF . As our

Hamiltonian [Eq. (6)] is formally equivalent to the zero-SOC SIAM Hamiltonian used

to obtain Eq. (8), the Haldane expression should be valid for our finite-SOC SIAM as

well, but with band parameters renormalized by SOC (an SOC renormalized parameter

will be denoted with a ∼ on top of it). Indeed, as illustrated in Fig. 1(d), which compares

the DOS for γ = 0.0 (dotted black line) with that for |γ| = 0.5 (solid/dashed (red/blue)

for σ = ↑ / ↓), the bulk SOC γ increases the bandwidth and thus decreases the DOS

ρ̃ (εF ), at εF = 0. Thanks to the analytical expression for εkσr [Eq. (7)], obtained

through the spin rotation, we derive simple analytical expressions for the renormalized

semi-bandwidth

D̃ = 2
√
t2 + |γ|2, (9)

as well as for the band DOS at the Fermi energy ρ̃ (0) = 1/
(

2π
√
t2+|γ|2

)
. Therefore, the

renormalized hybridization function at half filling ∆̃ = ∆̃ (0) can be written as

∆̃ = πΛ2ρ̃ (0) =
V 2 + |γimp|2

2
√
t2 + |γ|2

. (10)

Finally, replacing ∆̃ for ∆ in Eq. (8), the renormalized finite-SOC SIAM Kondo

temperature T̃K , in the wide-band limit, is given by

T̃K = 0.364
(

2∆̃U/π
) 1

2 exp

[
ε0 (ε0 + U)

2∆̃U/π

]
. (11)

In particular, if one takes the U →∞ limit, one obtains [1]

T̃K ∝
√

∆̃D̃ exp (πε0/2∆̃) , (12)

where it should be noticed that, differently from the wide-band limit [Eq. (11)], the

multiplicative constant in Eq. (12) is unknown. Through the renormalized Haldane

expressions given in Eqs. (11) and (12), one can easily analyze the SOC impact on the

Kondo temperature. The prefactor in the infinite-U regime depends only on the local

SOC term (γimp) and does not depend on the bulk SOC (γ). However, in the D � U

regime, the prefactor depends upon both parameters (γimp and γ). We do not attribute

Page 8 of 16AUTHOR SUBMITTED MANUSCRIPT - JPCM-116688.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



Kondo effect under the influence of spin-orbit coupling in a quantum wire 9

any specific relevance to this difference in behavior between the two prefactors, as it

does not impact the universality of TK , whose dominant dependence is given by the

exponential term shown in Eqs. (11) and (12). In addition (keeping in mind that, in

the Kondo regime, ε0 < µ, since εF = µ), Eq. (10), for the renormalized hybridization

∆̃, implies that the local SOC γimp, by increasing ∆̃, exponentially increases T̃K , while

the bulk SOC term γ exponentially decreases it, by decreasing ∆̃.

Next, we will numerically validate the analytical results obtained for the wide-band

regime (using NRG) and for the infinite-U regime (using POA). In addition, we will

compare our NRG results with the QMC results in Ref. 15, for the intermediate regime,

U = D > ∆, with the Fermi energy close to the bottom of the band.

7. Numerical Results

7.1. Numerical Renormalization Group Results

In Fig. 2, we show Kondo temperature results for finite-SOC, T̃K (in log10 scale), as

a function of U/∆̃, for U = 1.0 × 10−3, V = 5.5 × 10−3, 0.0 ≤ |γ| ≤ 0.5, γimp = 0.0,

µ = 0.0, at the particle-hole symmetric point ε0−µ = −U/2. The (red) squares curve was

obtained using NRG, while the (blue) circles curve was obtained analytically through

Eq. (11). We used this set of parameters for two reasons: first, the wide-band limit,

i.e., D � U, ∆̃, |ε0|, allows for a very precise determination of the prefactor to the

exponential [see Eq. (11)]. Thus, in this regime, the Haldane expression is supposed to

be the most accurate. This can be confirmed by its very good agreement with NRG,

as shown in the figure. Second, for U � ∆̃, and in the particle-hole symmetric point

ε0 − µ = −U/2 and µ = 0, one is deep into the Kondo regime, therefore, NRG is probing

the properties of the SIAM very close to its strong coupling fixed point. The very good

agreement shown by the results in Fig. 2 imply that the SOC-induced reduction of the

Kondo temperature is directly tied to the suppression of the hybridization ∆̃ at the

Fermi energy, which is caused by the widening of the band [see Fig. 1(d)], and this

effect is very accurately described by the Haldane expression, Eq. (11), giving strong

support to the analytical results presented in the previous section.

The situation is more involved for the second regime we analyzed, which we call

intermediate regime, i.e., U = D > ∆, where, in addition, we have moved the Fermi

energy close to the bottom of the band. Recent results [15], for a model very similar

to ours, obtained using QMC, have reported a polynomial dependence of the Kondo

temperature with SOC for this intermediate regime (see Fig. 3(a) in Ref. 15). Their

conclusion is similar to the one we obtained for the wide-band regime, namely, that the

reduction of the hybridization at the Fermi energy, caused by SOC, is responsible for the

decrease in the Kondo temperature. In Fig. 3(a), to compare our NRG results with the

QMC ones in Ref. 15, it is shown T̃K(Eγ)/TK(0) vs Eγ [where Eγ = 2[
√
t2 + |γ|2− t] is the

so-called SOC energy, indicated in Fig. 1(b)], for U = 1.0, V = 0.396, 0.0 ≤ |γ| ≤ 0.5,

γimp = 0.0, µ = −0.8, and two different values of ε0 − µ = −0.3 [(red) squares curve]
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Figure 2. Log-linear plot of T̃K vs U/∆̃, deep into the Kondo regime. Comparison of

NRG results [(red) squares curve] with the analytical results obtained from Eq. (11)

[(blue) circles curve], for U = 1.0× 10−3, V = 5.5× 10−3, 0.0 ≤ |γ| ≤ 0.5, γimp = 0.0,

µ = 0.0, and ε0 − µ = −U/2. The very good agreement indicates that the renormalized

Haldane expression [Eq. (11)] describes the dependence of the Kondo temperature with

SOC to high accuracy.

and −0.7 [(blue) circles curve]. For this value of chemical potential, the Fermi energy

is just 0.2 above the bottom of the band. The contrast to the results shown in Fig. 2 is

striking. Note that we have plotted (not shown) the two curves in panel (a) in log10 scale

for the vertical axis (vs U/∆̃) and the behavior is clearly not Haldane-like. In Fig. 3(b),

we show NRG results for T̃K(γ)/TK(0) vs U/∆̃ for the same parameters as in Fig. 3(a),

but for µ = 0.0 (i.e., at half-filling), using a log10 scale. It is very clear that, for the

particle-hole symmetric point, contrary to what happens when the Fermi energy is close

to the bottom of the band [Fig. 3(b)], T̃K(γ)/TK(0), plotted against U/∆̃, shows a very-close-

to exponential behavior. We do not plot results for the Haldane expression [Eq. (11)]

because, as already mentioned above, that expression compares well with the NRG

results just for the wide-band limit [35]. Nonetheless, the contrast between the results

at half-filling [µ = 0.0, panel (b)] and those for the Fermi energy close to the bottom
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Figure 3. (a) NRG results for T̃K(Eγ)/TK(0) vs Eγ (SOC energy, see main text) in the

intermediate regime, for U = 1.0, V = 0.396, 0.0 ≤ |γ| ≤ 0.5, γimp = 0.0, µ = −0.8

(thus, the Fermi energy is 0.2 above the bottom of the band), and two different values of

ε0−µ: −0.3 [(red) squares curve] and −0.7 [(blue) circles curve]. (b) Same parameters

as in (a), except for the chemical potential, now at half-filling (µ = 0.0). In addition,

the horizontal axis is now U/∆̃, instead of Eγ , and the vertical axis is in log10 scale,

showing that the Kondo temperature has an almost exponential behavior dependence

on U/∆̃, similar to the results for the wide-band limit, Fig. 2.

of the band [µ = −0.8, panel (a)], indicates that the polynomial behavior reported in

Ref. 15 is caused by the proximity of the Fermi energy, and thus the Kondo peak, to

the singularity at the bottom of the band. Indeed, as γ changes, the singularity moves

[see Fig. 1(d)], altering its effect over the impurity’s local density of states (LDOS), thus

over its Kondo peak, and, by extension, over its Kondo temperature. A similar effect

was observed for a related 2D model [9, 36]. Indeed, as shown in detail in Ref. 9 [see

its Fig. (2)], for U = D and with the Fermi energy sitting close to the bottom of the

band, as it is the case for the intermediate regime analyzed here and in Ref. 15, the

broad ε0 − µ peak in the impurity’s LDOS is strongly affected by the singularity at the

bottom of the band, and this has an effect on the width of the Kondo peak, thus in

the associated Kondo temperature, resulting in the behavior seen in Fig 3(a). None of

that is seen in Fig. 2 and very little of it in Fig. 3(b), because both the Kondo and the

ε0−µ peaks are far from the singularity and are not affected by its movement (more so

in the case of the results in Fig. 2, where, in addition, U � D). It is not noticeable in

Page 11 of 16 AUTHOR SUBMITTED MANUSCRIPT - JPCM-116688.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



Kondo effect under the influence of spin-orbit coupling in a quantum wire 12

Fig. 3(b), but the first two points (|γ| = 0 and 0.1), for both values of ε0, slightly deviate

from the exponential behavior followed by the rest of the points (at higher |γ| values).

This is consistent with our interpretation of the non-exponential behavior present for

µ = −0.8 being caused by the proximity of the bottom of the band singularity to the

Kondo peak, as the singularity moves away from it as SOC increases.

Thus, in summary, the QMC results in Ref. 15, reporting a polynomial behavior of

the Kondo temperature with SOC, in qualitative agreement with our results obtained

through NRG [see Fig. 3(a)], do not contradict our main conclusion regarding the

suitability of using Haldane’s expression [Eq. (11)] to understand the SOC effect on the

Kondo regime. The reason is clear: the influence of any structures in the hybridization

function (like the singularity at its bottom), which only manifests itself in the very

specific regime analyzed in Fig. 3(a), where the Fermi energy is close to the bottom of

the band and U = D, is irrelevant in the wide-band (or flat-band) regime, µ = 0.0 and

D � U,∆, |ε0|, for which Eq. (11) was derived. Finally, we agree with Chen and Han [15]

in their assessment that the poor man’s scaling results [14], pointing to an exponential

increase of TK with SOC in a 1D system similar to ours, is a high temperature effect,

which does not describe the properties of the Kondo ground state under the influence

of SOC, at least in regards to the Kondo temperature.

The NRG approach was performed using Wilson’s discretization parameter set to

Λ = 2.0, 2000 many-body states were kept after each NRG iteration (except for the

calculations near the bottom of the band, where it was necessary to keep 20000), and

we made use of the z-trick averaging in the discretization procedure. In addition, the

Kondo temperature was obtained through Wilson’s criterion [1]. We have used the NRG

Ljubljana open source code [37] for all NRG calculations.

7.2. Projector Operator Approach Results

In order to test the analytical results in the infinite-U regime, we use POA, which

is a numerical technique that works quite well in this regime [25, 26]. We find the

parameter dependence of T̃K by calculating the zero-temperature finite-SOC impurity

magnetic susceptibility, χ̃imp. It is obtained by numerically evaluating the impurity

magnetization, Mimp = n0↑−n0↓, due to the application of a vanishing external magnetic

field B, coupled just to the impurity and oriented along r̂̂r̂r. It is well established that, in

the strong coupling regime, χ̃imp(B = 0) = ηT̃K
−1

, where η is a constant [1]. Thus, T̃K
can be obtained (but for a multiplicative constant) through the numerical calculation

of χ̃imp for a vanishing magnetic field. The objective of these numerical calculations is

to confirm Eq. (12).

Figure 4 shows a log-linear plot of U → ∞ POA results for χ̃−1
imp/

√
∆̃D̃ vs ε0/∆̃,

either by varying −0.17 < ε0 − µ < −0.10 (for µ = 0) and keeping ∆̃ = 0.029 fixed

(red squares), or for different values of ∆̃, obtained by varying 0.10 ≤ |γ| ≤ 0.30 and

0.23 ≤ Λ ≤ 0.30, and keeping ε0 − µ = −0.15 constant (blue triangles). When ∆̃ and

D̃ are varied, an exponential behavior is only obtained after dividing χ̃−1
imp by

√
∆̃D̃,
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Figure 4. POA results for χ̃−1
imp/

√
∆̃D̃ as a function of ε0/∆̃. The (red) squares curve

was obtained by varying −0.17 < ε0 − µ < −0.10, for µ = 0, and keeping ∆̃ = 0.029

fixed, while the (blue) triangles were obtained by varying ∆̃, by varying simultaneously

0.10 ≤ |γ| ≤ 0.30 and 0.23 ≤ Λ ≤ 0.30, and keeping ε0 − µ = −0.15 constant. The

dotted black line is a fitting of the data using δ0 exp (δ1ε0/∆̃), resulting in δ1 = π/2, with

. 1% error, and δ0 = 0.699 (. 3%).

confirming the prefactor dependence shown in Eq. (12). The dotted (black) line is an

exponential fit of the data using δ0 exp (δ1ε0/∆̃), resulting in δ1 = π/2 with . 1% error,

and δ0 = 0.699 (. 3%). Therefore, Fig. 4 shows that T̃K depends exponentially on
πε0/2∆̃, thus corroborating Eq. (12).

8. Summary and conclusions

In conclusion, we have shown, through a physically motivated change of basis, that

the 1D finite-SOC SIAM Hamiltonian is similar to that for the zero-SOC SIAM. The

form of the 1D finite-SOC SIAM Hamiltonian (for both the Sz and helicity bases)

seems to be inappropriate to deal with Kondo physics, since conduction channels with
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opposite quantum numbers (either σ =↑↓ or ν = ±) are mixed (either by SOC, or by

the impurity itself). This issue can be circumvented if one exploits the fact that time-

reversal symmetry is not broken. Indeed, it is the time-reversal symmetry that renders

the finite-SOC hybridization matrix diagonal and spin-independent (in any spin basis),

thus a scalar, like the zero-SOC hybridization function. This can be seen in a more clear

way once both the impurity and the conduction electrons are rotated to the σr basis,

where it becomes clear that the spin channels are not mixed neither by SOC, nor by the

impurity, allowing a simple analytical treatment of the renormalized T̃K , through the use

of the Haldane expression, which is corroborated by NRG calculations in the wide-band

regime (D � U,∆, |ε0|) and by POA in the infinite-U regime. In addition, NRG results

for the intermediate regime (U = D > ∆, with Fermi energy close to the bottom of the

band), in qualitative agreement with QMC results presented in Ref. 15, indicate that it

is the proximity of the Fermi energy to the structure at the bottom of the hybridization

function (a singularity) that causes the divergence of the results from what one expects

from Haldane’s expression. Finally, it is shown that the 1D SOC-SIAM Hamiltonian,

for arbitrary values of α and β, has a PSH SU(2) symmetry, in contrast to the 2D SOC

Fermi sea, where the PSH state is restricted to the α = β case.

As to a possible experimental verification of our results, we note that it has been

demonstrated recently the possibility of controlling the Rashba SOC in InAs nanowires

through the use of a combination of metallic gates [38]. InAs nanowires have very strong

Rashba SOC, whose strength can be further increased (more than doubled) by the above

mentioned technique. The use of a system like that, coupled to either a quantum dot

or an adsorbed magnetic impurity could be used to detect the change in TK caused by

the Rashba SOC variation due to the electrostatic fields created by the gates.

The authors hope that the results presented here, as well as the conceptual insights,

will be helpful in clarifying the somewhat confusing state of the properties of the Kondo

regime of a quantum impurity coupled to a bath subjected to SOC.
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[37] R. Žitko, NRG Ljubljana - open source NRG code available at http://nrgljubljana.ijs.si.
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