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SCIENCE
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ABSTRACT
The island of Gran Canaria (Canary Islands, Spain) is characterized by a large variability of
volcanic rocks reflecting its volcanic evolution. The geological map provided by Geological
Survey of Spain at 1:25.000 scale shows more than 109 different lithologies and it is too
complex for environmental and engineering purposes. This work presents a simplified
geotechnical map with a small number of classes grouping up units with similar geotechnical
behaviours. The lithologies were grouped using about 350 rock samples, collected in the
seven major islands of the Archipelago. The geotechnical map was used to model rockfall
hazard in the entire island of Gran Canaria, where rockfalls are an important threat. The
rockfall map was validated with 128 rockfall events along the GC-200 road, located in the
NW sector of Gran Canaria. About 96% of the events occurred along sections of the road
where the number of expected trajectories is high or moderate.
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1. Introduction

The island of Gran Canaria (Canary Islands, Spain) is a
steep volcanic relief characterized by numerous deep
radial ravines and a very abrupt coastline with high
cliffs (Menéndez et al., 2008 and see Main Map). The
geological context of the island reflects its volcanic
evolution resulting in large variability of igneous
rocks resulting from the built-up process of an intra-
plate oceanic island (Rodriguez-Gonzalez et al.,
2018). Due to the geological and geomorphological
characteristics, rockfalls are frequent and represent
one of the most relevant natural hazards of the island
(Barredo et al., 2000; Sarro et al., 2017). The road net-
work is quite often affected by rockfalls with a high
impact on the socio-economic framework of the island
which is densely populated (866 thousand inhabitants
in 2019) and hosts a high number of visitors per year
(4.6 million visitors in 2019) (ISTAC, 2020).

Several geological maps of Gran Canaria are avail-
able at different scales. The official map (IGME,
2007) at 1:25.000 scale shows more than 109 different
lithologies in an enlarged legend. Due to its complexity,
the map is rather complex to use for some purposes,
such as environmental studies and engineering

modelling. For this reason, a simplified geotechnical
map with a smaller number of classes showing litholo-
gies with similar geotechnical behaviours represents a
more appropriate tool for many applications, including
those aimed at managing natural risks.

Because of the interest in the giant flank collapses
occurred in the Canary Islands during their evolution
as active volcanic islands, several analyses were carried
out to improve the knowledge of the geological engin-
eering properties of the volcanic deposits (Del Potro &
Hürlimann, 2008; Gonzalez de Vallejo & Ferrer, 2006;
González de Vallejo et al., 2008; Hernández-Gutiérrez,
2014; Rodríguez-Losada et al., 2009; Rodríguez-Peces
et al., 2013). A first attempt of geotechnical map for
Gran Canaria was elaborated by the regional govern-
ment (territorial information system of the Canary
Islands, available at https://visor.grafcan.es/visorweb/),
with a special focus on ground characteristics for build-
ing construction. The map was prepared considering
the geomechanical characterization of the volcanic
rocks (Hernández-Gutiérrez, 2014).

In this work, we present a new, simplified geotech-
nical map (at 1:25.000 scale) for the island of Gran
Canaria based on the geotechnical characterization of
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344 rock and soil samples collected in the seven major
islands of the archipelago. The new geotechnical map
was used to model and evaluate rockfall hazard at
regional scale for the entire island.

2. Geographical and geological setting

The Canary Islands are located in North Atlantic
Ocean, approximately 100 km away from the African
coast (Morocco) (see Main Map). They represent an
active ocean volcanic chain (800 km in length), consist-
ing of eight volcanic islands aligned along a SW-NE
direction. The structure and geodynamics of the archi-
pelago are still under considerable debate, but it has
been traditionally interpreted as a hotspot track (Angu-
ita & Hernán, 2000; Carracedo et al., 1998; Fullea et al.,
2015). This origin is supported by the volcanism age,
decreasing from the NE (68 million years in Lanzarote)
to the SW (one million years in El Hierro). The islands
are dominated by mafic rocks and comprise uplifted
submarine volcanic, subaerial shield volcanoes, and
the remains of giant lateral collapses (Troll & Carra-
cedo, 2016).

The island of Gran Canaria (1560 km2) is approxi-
mately circular in shape (with a diameter of 45 km)
with a maximum elevation of 1950 m at Pico de las
Nieves, in the middle of the island (see Main Map).
This configuration led to the formation of a set of
dense radial networks of deep ravines, forming a
rugged topography with a mean slope angle of 22°
(Rodriguez-Gonzalez et al., 2018). Large cliffs domi-
nate the coastline, highlighting the rugged south and
western coast (Figure 1). From the geological point of
view, Gran Canaria is, together with Tenerife, one of
the islands with the greatest variability of volcanic
rocks of the entire Canary archipelago. The main
reason is due to these islands had been important mag-
matic differentiation process, which range from primi-
tive basaltic to phonolite-trachyte magmas
(Schmincke, 1982). Besides the distinctive lavas of the
basanite basalt to trachyte phonolite series, Gran
Canaria presents also other types of magma, such as
tholeiitic basalts and rhyolites (Troll & Carracedo,
2016). The SW part of the island is older, formed by
Miocene volcanites, whereas the younger Plio-Qua-
ternary lavas outcrop in the NE portion where the reju-
venation volcanism, referred to the Bandama caldera
(∼2000 years old), took place. The Miocene Tejeda cal-
dera (500 km2 in surface) dominates the central-wes-
tern part of the island with a relevant volume of
associated ignimbrites (Hoernle & Carracedo, 2009;
Rodriguez-Gonzalez et al., 2018).

The island has a subtropical climate: warm tempera-
tures with small seasonal variations and average annual
precipitation of 250 mm (AEMET, 2019). The maxi-
mum precipitation takes place during the autumn
and winter months, being December the rainiest

month. Heavy storms are frequent, associated with
intense rainfall and strong winds, with events measur-
ing of up to 75 mm in 24 h (Melillo et al., 2020).
Regarding vegetation, the island is the most deforested
of the Archipelago with a predominance of scrubs well
adapted to arid conditions.

The island is frequently affected by rockfalls which
have caused significant damage, mainly along the
road network. An outstanding rockfall-prone area is
situated along the northwestern coast of the island,
where high and steep cliffs dominate the landscape
(see Detailed Map 1 in Main Map). One of the most
rockfall-hazardous roads in Europe is located on the
island, between the localities of Agaete and La Aldea
de San Nicolas, along the seashore. The GC-200 road
has a length of 34 km and follows the steep outline of
the coast. During the period 2010–2016, the local
Road Maintenance Service reported along the road
128 rockfall events, which have caused significant
damages. To reduce the rockfall hazard along the
road, a 3 km long tunnel was recently inaugurated.

3. The geotechnical map

Geotechnical information is relevant for a variety of
purposes, including civil engineering applications,
land-use planning, or natural hazards mapping
(Díaz-Díaz et al., 2017; El May et al., 2010; Valverde-
Palacios et al. 2014). Reliable geotechnical maps are
needed to represent the properties of soils and rocks,
but standardized products and comprehensive maps
are not often available. In this article, a geotechnical
map for the entire island of Gran Canaria is presented.
The text explains the approach we have used to prepare
the map combining the official geological map and the
results of laboratory and field tests of samples taken in
the field throughout the Canaries.

Hernández-Gutiérrez (2014) and Hernández-
Gutiérrez et al. (2017) grouped the 109 lithologies
reported in the official geological map (IGME, 2007)
into 11 lithotype-classes based on three criteria: lithol-
ogy, texture and void ratio (Figure 2). These authors
classified into two groups the basalt deposits (i.e.
dykes/breccias and massive basalts) and the ignimbrite
rocks (welded or not welded). Unconsolidated sedi-
ments refer to Holocene sedimentary deposits like allu-
vial, aeolian, beach and gravitational slope deposits.

In this work, the 11 lithotype-classes were geotech-
nically characterized based on laboratory tests and in
situ analyses of 344 rock and soil samples collected in
the field and coming from boreholes in the seven
major islands of the Canaries. The 87 undisturbed
samples derived from boreholes, with a depth ranging
from 1 m to 110 m, were mainly drilled by private
companies.

One hundred and four samples come from the
island of Gran Canaria; of these, eight were taken
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from boreholes (see locations in Figure 2). In a first
step, we classified each rock and soil sample in one of
the 11 lithotypes, following the criteria proposed by
Hernández-Gutiérrez (2014) and Hernández-Gutiérrez
et al. (2017). In the second step, numerous laboratory
and field tests were carried out to identify the geotech-
nical characteristics of each lithotype through the stat-
istical analysis of representative rock and soil
properties (i.e. porosity, Young modulus, and uniaxial
compressive strength).

For example, the uniaxial compressive strength of
basalts and phonolites has higher values than ignim-
brites, whereas trachytes and trachybasalts show simi-
lar values (Figure 3).

A Principal Component Analysis (PCA) was per-
formed to visualize the association of relevant geotech-
nical characteristics (i.e. uniaxial compressive strength,
porosity and Young modulus) with the lithotypes
(Figure 4). The variables were standardized before the
PCA. The plot in Figure 4 shows the distribution of
the observations along the first two principal com-
ponents. The first component represents 73.5% of the
total variance. Positive values along the x-axis are posi-
tively correlated with uniaxial compressive strength
and Young modulus, whereas negative values show a
positive relationship with porosity. A generalized align-
ment and clustering of lithotypes along the first princi-
pal component indicates the representativeness of the
classes in terms of their geotechnical properties. Ignim-
brites (IGUW and IGW) have negative scores in the
first component showing higher porosity and lower
uniaxial compressive strength and Young modulus.
Trachytes (TR) lie in the negative part of the x-axis,
but close to zero, so their relationship with these

geotechnical characteristics is weaker. Finally, phono-
lites (PHO) and massive basalts (BM) score positive
on the right side, indicating the hardness of these
rocks as measured by large uniaxial compressive
strength and Young modulus values.

Rocks can be classified based on their mechanical
properties, and the uniaxial compressive strength
value is the parameter selected by many classifications
(Singh & Goel, 2011). In this work, we have considered
the Engineering Classification of Intact Rock based on
the value of uniaxial compressive strength (USDA,
2017), since this is the only parameter available for
all the 11 lithotypes. Based on this classification, the
new geotechnical map groups the 11 lithotypes (see
Figure 2) in seven classes (Table 1), ranging from extre-
mely hard rock (dykes and breccias) to soils (unconso-
lidated pyroclastic and Holocene sediments) (See Main
Map).

4. The rockfall map

The simplified geotechnical map was used to model
and evaluate rockfall hazard at regional scale in the
Gran Canaria island (see Rockfall Modelling Map), as
the corresponding friction and energy restitution
coefficients used as inputs in the rockfall modelling
depends on the outcropping lithologies and the geome-
chanical characteristics of bedrock. We applied
STONE, a three-dimensional rock-fall simulation pro-
gram for modelling (Guzzetti et al., 2002). STONE
requires the following input: (1) the location of the
rockfalls source areas, (2) a digital elevation model,
and (3) three maps showing the numerical values of
dynamic rolling friction, the normal and the tangential

Figure 1. (a) Deep ravines in Gran Canaria (b) Panoramic view of the GC-200 road cut into steep cliffs (credits R. Sarro).
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energy restitution coefficients. The software simulates a
series of 3D rockfall trajectories and produces a raster
map showing for each pixel the count of rockfall
trajectories.

The values of the dynamic rolling friction, the
normal and the tangential energy restitution coeffi-
cients are usually obtained from the literature
(Asteriou et al., 2012; Guzzetti et al., 2003; Guzzetti
et al., 2004; Mateos et al., 2016; Santangelo et al.,
2019; Sarro et al., 2014, 2018). Since the information
the literature does not provide any reference value

Figure 2. Lithotypes map for Gran Canaria based on Hernández-Gutiérrez (2014) and Hernández-Gutiérrez et al. (2017).

Figure 3. Boxplots of the uniaxial compressive strength values
of the lithotypes shown in Figure 2. The values inside the boxes
represent the number of observations for each lithotype.

Figure 4. Biplot of the principal component analysis (PCA) of
porosity, Young modulus and Uniaxial Compressive Strength.
The axes show the percentage of variance explained by each
component. Arrows represent variable loadings and point to
the direction of the maximum correlation of the variables
with the PCA scores. Abbreviations see Figure 3.
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for volcanic materials, we have derived these par-
ameters indirectly from the geotechnical map. In
particularly, values were correlated with those
obtained by Mateos et al. (2016) in a sedimentary
environment, where the authors applied a similar
geotechnical classification based on the uniaxial
compressive strength (Table 2).

For the modelling, we used the Digital Elevation
Model (DEM) provided by the National Geographic
Institute at a 5 m × 5 m resolution (IGN-CNIG,
2019). Rockfall source areas were defined according
to the geomorphological information and the analysis

of the past rockfall events. To do geomorphological
analysis, we have applied the geomorphons method
(Jasiewicz & Stepinski, 2013), an approach for a
semi-automated classification of landform surface
into meaningful objects based on the principle of pat-
tern recognition rather than differential geometry.
The geomorphons classification contains ten types of
landforms, namely: flat, peak, ridge, shoulder, spur,
slope, hollow, footslope, valley and pit. For the analysis
of source areas in Gran Canaria, we selected four land-
forms: peak, ridge, spur and slope.

In addition, the analysis of past rockfall-events
allowed us to define a highly recurrent slope asset for
rockfalls in Gran Canaria: the source areas are often
connected to slope angle above 40° and they mainly
affected hard, very hard and extremely hard rocks.
Figure 5 summarizes input parameters.

4.1. Validation

The model used to derive the rockfall map of Gran
Canaria was validated by exploiting 128 significant
rockfalls, inventoried by the Road Maintenance Service
of Gran Canaria, which affected the GC-200 road over
the period 2010–2016 (Figure 6).

To validate the results of the model, we initially
classified the road in three classes, based on the number
of rockfall trajectories per pixel across the road
obtained with STONE: Low (0–5 trajectories, green),
Moderate (6–10 trajectories, yellow) and High (11–50
trajectories, red). Figure 7 shows the classified road:
11 km are crossed by a high number of trajectories,
11 km by a moderate number and 13 km by a low
number. Secondly, we have counted the number of
rockfall events in each class (Figure 7). About 70% of
the rockfalls affected the road in sections classified as
High; 26% in sections classified as Moderate, and
only 4% in sections classified as Low (see Detailed
Map 1 and 2).

Table 1. Geotechnical classification (USDA, 2017) of the 11
lithotypes considering the value of the uniaxial compressive
strength.

Lithotype
USDA

classification
Uniaxial compressive

strength [MPa]

Dykes and breccia Extremely hard
rock

>250

Phonolite Very hard rock 100–250
Basalt Massive; Trachyte;
Ignimbrite Welded;
Trachybasalt

Hard rock 50–100

Ignimbrite Unwelded Moderately
hard rock

12.5–50

Tuff Moderately soft
rock

5–12.5

Pyroclastic Soft rock 1–5
Unconsolidated pyroclastic;
Unconsolidated sediment

Soil <1

Table 2. Values of the coefficients used in the rockfall
modelling.

Normal
restitution

Tangential
restitution

Rolling
friction

Extremely hard
rock

64 89 0.35

Very hard rock 63 88 0.48
Hard rock 57 87 0.50
Moderately hard
rock

46 78 0.55

Moderately soft
rock

45 75 0.59

Soft rock 41 54 0.67
Soils 38 50 0.70

Figure 5. Schema of a natural rockfall scenario in Gran Canaria. The table shows the input data for the rockfall modelling.
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5. Discussion and conclusions

Since geological maps present – quite often – complex
legends and very long explanatory texts, there is an
increasing request for simple and readable maps useful
for land-use decision making. In the Canary Island, a
big effort was done to examine 344 rock and soil

samples to extract reference geomechanical properties
of the outcropping lithologies through the island.
Based on the uniaxial compressive strength value of
the intact rock, a simplified geotechnical map with
seven classes ranging from soils to extremely hard
rocks, was proposed for Gran Canaria. The most

Figure 6. Examples of rockfalls affecting the GC-200 road during the event that occurred on 9th December 2016 (credits R. Sarro
and J. Naranjo).

Figure 7. The GC-200 road classified in 3 classes based on the number of rockfall trajectories computed by STONE. The map also
shows the locations of 128 rockfalls which affected the road in the period 2010–2016.
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abundant classes are hard rocks and very hard rocks,
which represent 67% of the territory. The soft
materials, soils and soft rocks mainly outcrop in the
eastern part of the island, where recent volcanism
(Holocene) and sedimentary deposits are located
(Rodriguez-Gonzalez et al., 2018). The geotechnical
map provides a synoptic overview at regional scale;
for local and detailed studies, detailed in-situ analysis
has to be performed.

The characteristics of the bedrocks is a relevant
information to determine the parameters required for
rockfall modelling. These parameters are reported in
the literature for many lithological types, mainly for
sedimentary, metamorphic and igneous-intrusive
environments. This work attempts to fill the gaps in
the volcanic environment of Gran Canaria, where the
parameters were validated. Data and results can be
exploited to prepare rockfall modelling in other Islands
of the archipelago and in other volcanic locations.

The rockfall map obtained in this work well rep-
resents the real distribution of the rockfall-prone
areas of the island. The western part of the island is
more prone to rockfalls. This area is the oldest one
from the geological point of view and both the erosion
and the volcanic uplift have been working for a long
time leading to a steeper topography. The Tejeda Col-
lapse Caldera, with a clear step morphological features,
is also a relevant rockfall-prone area. The inspection of
the map shows a radial distribution of rockfall prone
areas located mainly on both sides of steep ravines.

To conclude, the rockfall map represents a prelimi-
nary regional hazard assessment in Gran Canaria
which has been validated along the GC-200 road.
Most of the inventoried rockfalls are located where
the road is crossed by a high number of rockfall
trajectories.

Software

STONE (Guzzetti et al., 2002) uses a ‘lumped mass’
approach to simulate rockfall processes, where the fall-
ing boulder is considered dimensionless. The input
data include the following raster layers: a Digital Ter-
rain Model; maps of the coefficients of dynamic rolling
friction, and of normal and tangential energy restitu-
tion; and a rockfall source areas, with the number of
simulations carried out from each pixel. In the island
of Gran Canaria, we used a DTM (5 m × 5 m resol-
ution) provided by the National Geographic Institute
(www.ign.es) and we selected 5 simulations from
each source pixel. STONE uses GIS technology to pro-
duce raster maps that portray for each pixel: (a) the
cumulative count of rockfall trajectories, (b) the maxi-
mum computed velocity and (c) the maximum flying
height. In this article, we show only the map of the
number of trajectories that cross each cell of the grid.
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