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Abstract In this paper we, �rstly, review the main known results on sys-
tems of an arbitrary (possibly in�nite) number of weak linear inequalities
posed in the Euclidean space Rn (i.e., with n unknowns), and, secondly,
show the potential power of this theoretical tool by developing in detail two
signi�cant applications, one to computational geometry: the Voronoi cells,
and the other to mathematical analysis: approximate subdi¤erentials, recov-
ering known results in both �elds and proving new ones. In particular, this
paper completes the existing theory of farthest Voronoi cells of in�nite sets
of sites by appealing to well-known results on linear semi-in�nite systems.

Key words Linear inequality systems �Computational geometry �Voronoi
cells �"�subdi¤erentials.

Mathematics Subject Classi�cation (2010) 15A39, 68U05, 51M20

1 Introduction

Linear systems theory is a powerful theoretical tool which has been inten-
sively applied up to now in the semi-in�nite programming framework. In
recent times, new applications to other �elds have emerged, e.g., robust
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linear and conic programming, polarity or moment problems. The aim of
this paper is, �rstly, to review the main known results on systems of an
arbitrary (possibly in�nite) number of weak linear inequalities posed in the
Euclidean space Rn; i.e., the so-called linear semi-in�nite systems (LSIS in
brief), and, secondly, to show the potential power of this theoretical tool
by developing in detail two signi�cant applications, one to computational
geometry: the Voronoi cells, and the other to approximate subdi¤erentials.
We now brie�y describe the main contributions to these research �elds and
the link between them.
During the 1960s, Charnes, Cooper and Kortanek ([19], [20], [21]) ex-

tended the linear programming duality theory to linear optimization prob-
lems posed in Rn with in�nitely many constraints, calling linear semi-in�nite
programming (LSIP) this type of optimization problems, without paying
special attention to their constraint systems. The �rst known results on
LSIS were the �nite dimensional versions of the existence theorem and the
non-homogeneous Farkas lemma proved in 1965 by a Chinese mathemati-
cian whose family name has been transcribed as Chu (by MathScinet) or as
Zhu (by ZentralblatMath). An English version of that work was published
in 1966 [22]. Later, Ky Fan gave a variant of the existence theorem [32].
The next two papers on LSIS theory were published by Ulrich Eckhardt,
who gave dimension formulas for the solution set [28] and analyzed redun-
dancy phenomena for LSIS [29]. Bruno Brosowsky and his collaborators ([8],
[35], [9]) analyzed at the beginning of the 1980s the behavior of the solu-
tions set of continuous LSIS under di¤erent types of perturbations. These
and other theoretical aspects of LSIS were tackled by Marco A. López and
his collaborators, among them the authors of this paper, along the 1980s
(e.g., [48] and [44], on deterministic LSIS) and the 1990s ([45], [49], [50],
extending to arbitrary LSIS the existing stability theory). The chapters de-
voted to LSIS in the monograph [46] on LSIP describe the state-of-the-art
on LSIS at the end of the 20th Century. The few papers on deterministic
LSIS published since 1998 deal with the representation of closed convex sets
by means of particular types of LSIS ([1], [40], [60], [37]), while the many
contributions to uncertain LSIS in this period cover a variety of topics, as
the continuity properties of the solution set and associated maps ([14], [51],
[42], [43]), formulas involving error bounds and di¤erent types of distances
and Lipschitz-like moduli ([13], [10], [15], [12], [11], [16], [17], [18], [61]), as
well as radius of robust feasibility [38].
Regarding numerical methods for LSIS, it is worth mentioning the lin-

ear semi-in�nite feasibility problem, which consists in �nding a solution
of a given LSIS (see [34] and references therein). Such kind of problem
arises in practice in statistics [4], when one tries to solve a given linear
or quadratic semi-in�nite optimization problem by means of some feasible
direction method (see, e.g., [47] and [26], respectively), in variational in-
equalities [33] and in image recovery problems [23]. Puri�cation methods,
in turn, provide an extreme point of the solution set of a given LSIS from
any solution (i.e., they are phase I for primal LSIP simplex methods); there
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exist puri�cation methods for particular types of LSIS, analytic and LOP,
to be de�ned in Section 2 ([3], [40], [2]).
The recent survey [47] updates the known connections between LSIP and

LSIS theories, and sketches some applications of both disciplines, in the case
of LSIS to the computation of the radii of robust feasibility for uncertain
linear and conic optimization problems, to polarity of closed convex sets
[60] and to moment problems [66], [64], among others. Generally speaking,
these applications use the LSIS machinery to prove some results in an easy
way, but they do not exploit this tool systematically.
The �rst published book on computational geometry, due to Preparata

and Shamos [65], popularized the nearest Voronoi cells (usually called Voronoi
cells) in Rn; �rst used by Descartes (for n = 2), Dirichlet (for n = 3) and
Voronoi (for any n 2 N), and introduced the farthest Voronoi cells, in both
cases for �nite sets of sites in Rn; n 2 N: These concepts have been typically
treated via constructive geometry, using ruler and compass when n = 2 and
intersections of spheres and a¢ ne manifolds when n � 3: Voronoi�s student
Delaunay introduced in 1934 [27] Voronoi cells of in�nite discrete sets in
the framework of crystallography by using the same tools. The �rst paper
to use an LSIS argument to prove a result was [70], while [56], [57] and [55]
systematically applied the theory and methods of linear inequality systems
to study nearest Voronoi cells for arbitrary set of sites. The case of farthest
Voronoi cells of in�nite sets of �xed sites is discussed in [54], where almost
all proofs are based on convex analysis arguments.
The subdi¤erential of a convex function was introduced by Jean-Jacques

Moreau and Ralph T. Rockafellar in 1963 ([63], [68]) and the "-subdi¤erential
(under the name of "approximate subgradients�) by Arne Brøndsted and
Rockafellar in 1965 [7]. Subdi¤erentials and "-subdi¤erentials are basic tools
in the famous textbooks on convex analysis and convex optimization due to
Rockafellar [69] and to Jean-Baptiste Hiriart-Urruty and Claude Lemarechal
[59], respectively. A recent work by G. Beer, M. J. Cánovas, M. A. López,
and J. Parra presents a linear semi-in�nite approach to uncertain subdi¤er-
entials ([5, Section 2.3]). They revise the stability of the subdi¤erential for
general �nite valued convex functions from the LSIS point of view and, in
particular, they analyze the calmness property of these subdi¤erentials.
The aim of this paper is to show that linear inequality systems theory

is a powerful instrument in order to obtain geometric information on deter-
ministic Voronoi cells in Rn; n 2 N; when the set of sites is in�nite and to
analyze robustness and stability issues regarding uncertain Voronoi cells of
�nitely many sites. As far as we know, there is no antecedent on uncertain
farthest Voronoi cells of arbitrary sets. Furthermore, we also show that the
main known properties about "-subdi¤erentials of convex functions can be
obtained easily from the LSIS theory, and that we can extend some of these
properties for not necessarily convex functions as well.
The paper is organized as follows. Section 2 introduces the necessary

notation and provides a brief review on LSIS theory in order to make the
paper self-contained and help the researchers to develop future applications
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of this useful theory. The next two sections are devoted to the study of
nearest and farthest Voronoi cells when the sites remain �xed (Sections 3)
and when the sites are subject to perturbations (Section 4), respectively.
For comparative purposes, we study both types of Voronoi cells in parallel,
giving simpler proofs of known results together with new ones. The study
of the theory of "-subdi¤erentials is addressed in Section 5, considering
some general functions, not only convex ones. Finally, Section 6 provides
the conclusions.

2 Preliminaries on LSIS theory

We �rst introduce the necessary notation. Recall that we focus our study
in the Euclidean space Rn: Here the scalar product of any x; y 2 Rn is
designated by x0y, the Euclidean norm of x by kxk :=

p
x0x; the Euclid-

ean distance between x and y by d (x; y) = ky � xk ; the zero vector by
0n, and the closed unit ball by Bn: For any subset X 6= ;, we use the
notation spanX, a�X, convX; coneX, X� := fz 2 Rn : x0z � 0 8x 2 Xg
and X? := fz 2 Rn : x0z = 0 8x 2 Xg for the linear span of X, the a¢ ne
manifold spanned by X, the convex hull of X; the convex conical hull of
X [ f0ng, the polar of X; and the orthogonal subspace to X, respectively.
We also denote by intX; clX, bdX, rbdX and rintX the interior, the
closure, the boundary, the relative boundary, and the relative interior of X
(relative means with respect to the topology of a�X). Finally, dimX stands
for the dimension of a convex set X (i.e., the dimension of a�X) and linX
for the lineality space of a convex cone X (i.e., the largest linear subspace
contained in X).
If X is a convex set, 0+X denotes the recession cone, and

NX (a) :=
�
y 2 Rn : (x� a)0 y � 0 for all x 2 X

	
is the normal cone to X at x; respectively. It is easy to see that NX (a) is
a linear subspace of Rn whenever a 2 rintX:
The two basic results in LSIS with �xed data are the �nite dimensional

versions of the existence theorem and the non-homogeneous Farkas lemma.
Direct proofs of these results in a �nite dimensional setting were given in
[48].

Theorem 1 (Existence theorem) ([22, Theorem 1], [32, Theorem 1],
[46, Corollary 3.1.1]) Let S be the solution set of the system � = fa0tx � bt; t 2 Tg :
Then

S 6= ; ,
�
0n
�1

�
=2 cl cone

��
at
bt

�
; t 2 T ;

�
0n
1

��
,
�
0n
�1

�
=2 cl cone

��
at
bt

�
; t 2 T

�
:
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Theorem 2 (Non-homogeneous Farkas lemma) ([22, Theorem 2], [46,
Corollary 3.1.2]) Let S 6= ; be the solution set of the system � = fa0tx � bt; t 2 Tg

and let
�
a
b

�
2 Rn+1: Then,

S � fx 2 Rn : a0x � bg

,
�
a
b

�
2 cl cone

��
at
bt

�
; t 2 T ;

�
0n
1

��
:

When S 6= ;; � is said to be consistent. In that case, if S � fx 2 Rn : a0x � bg ;
we say that a0x � b is a linear consequence of � = fa0tx � bt; t 2 Tg : So,
Theorem 2 characterizes the linear consequences of a consistent system �:
In the in�nite dimensional version of Theorems 1 and 2, the solution set S
is contained in a locally convex space X with topological dual X� while the
cones are contained in the product space X� � R: For this reason, we can
interpret the above theorems as providing dual characterizations of consis-
tency and linear consequences, respectively.
The reference cone of a nonempty closed convex set X is de�ned as

K (X) =
�
(a; b) 2 Rn+1 : a0x � b for all x 2 X

	
;

So, Theorem 2 can be reformulated as asserting that, ifX 6= ; is the solution
set of fa0tx � bt; t 2 Tg ; then

K (X) = cl cone

��
at
bt

�
; t 2 T ;

�
0n
1

��
: (1)

which shows that K (X) is a closed convex cone.
The following result can be straightforwardly derived from the above

implication:

Corollary 1 (Dual characterization of the inclusion) Given two non-
empty closed convex sets X;Y � Rn; X � Y if and only if K (Y ) � K (X) :
Hence Y = X if and only if K (Y ) = K (X) :

The next four results also follow from Theorem 2. The �rst one character-
izes the homogeneous inequalities which are consequence of an homogeneous
system.

Corollary 2 (Homogeneous Farkas lemma) Let S0 be the solution set
of the homogeneous system �0 = fa0tx � 0; t 2 Tg and let a 2 Rn: Then,

S0 � fx 2 Rn : a0x � 0g , a 2 cl cone fat; t 2 Tg :

A well-known consequence of Corollary 2 is that K�� = clK for any
convex cone K:
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Corollary 3 (Boundedness) [46, Theorem 9.3] Let S be the solution set
of the consistent system � = fa0tx � bt; t 2 Tg, with reference cone K (S) :
Then the following statements are equivalent:
(i) S is bounded.
(ii) The unique solution of fa0tx � 0; t 2 Tg is 0n; i.e., 0+S = f0ng :

(iii)

�
0n
1

�
2 intK (S) :

(iv) cone fat; t 2 Tg = Rn:

We now state a duality formula for dimS:

Corollary 4 (Dimension) [46, Theorem 5.8] Let S be a nonempty closed
convex set with reference cone K (S) : Then

dimS = n� dim linK (S) :

The next result gathers together characterizations, through the prop-
erties of the corresponding reference cones, of 11 classes of closed convex
sets, some of them playing important roles in optimization and geometry,
as the polyhedral convex sets (polyhedra in brief, which are the feasible and
optimal sets in linear programming), the sums of compact convex sets with
closed convex cones (calledMotzkin decomposable in [36], whose correspond-
ing functions, also called Motzkin decomposable, attain their minima when
they are bounded from below [53]), the sums of compact convex sets with
linear subspaces (the typical structure of the optimal set in convex program-
ming, see [52] and references therein, subfamily of Motzkin decomposable
sets without speci�c name to the best of our knowledge), the k�simplices
(the basic tool of the celebrated Nelder and Mead Method for optimiza-
tion without derivatives), the sums of n segments whose directions form
a basis of Rn (called Voronoi parallelotopes, or just parallelotopes, in [24],
whose volumes can be computed via Gram determinants), the convex hulls
of the union of a pair of parallel a¢ ne manifolds of dimension k� 1 (called
k�sandwiches, which were studied in [41] in the framework of illumination
of convex bodies), etc. Lemma 1 below characterizes two other types of
closed convex sets.

Corollary 5 (Dual characterizations of some families of sets) ([46,
Theorem 5.13], [41]) Let S be a nonempty closed convex set with reference
cone K (S) : Then the following statements hold:
(i) S is a singleton , K (S) is a halfspace.
(ii) S is a polyhedron , K (S) is a polyhedron.
(iii) S is an a¢ ne manifold , K (S) \ (linK (S))? = cone f(0n; 1)g :
(iv) S is full-dimensional , K (S) is pointed.
(v) S is compact , (0n; 1) 2 intK (S) :
(vi) S is a polytope , K (S) is a polyhedron and (0n; 1) 2 intK (S).
(vii) S is the sum of a compact convex set with a linear subspace, (0n; 1) 2
rintK (S).
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(viii) S is Motzkin decomposable , There exist two closed convex cones
C � Rn+1 and L � Rn such that K (S) = C \ (L� R) ; (0n;�1) =2 C and
(0n; 1) 2 intC:
(ix) S is a k�simplex , (0n; 1) 2 intK (S) ; dim linK (S) = n�k; and the
pointed cone of K (S) has k + 1 extreme rays.
(x) S is a k�sandwich , K (S) is K (S) = C +W , where C is a pointed
closed convex cone andW is a linear subspace such that dimC = 2, dimW =
n� k, (0n; 1) 2 rintC; and C \ (W + span f(0n; 1)g) = cone f(0n; 1)g :
(xi) S is a parallelotope , K (S) = cone

n�
ai
�i

�
; i 2 I; �

�
ai
�i

�
; i 2 I;

�
0n
1

�o
;

with I = f1; : : : ; ng, fai; i 2 Ig linearly independent, and �i < �i for i 2 I:

In the following we make also use of two types of closed convex sets
which do not belong to the families listed in the previous corollary, one
of them are the coradiant sets and the other one are the pointed convex
cones. Recall that a nonempty set C is said to be coradiant with respect to
s 2 Rn if, whenever x 2 C and � � 1; then (1� �) s + �x 2 C: Examples
of coradiant sets are the translates of cones by the vector s, that we call
cones with apex s. Obviously, any cone with apex s 2 Rn is coradiant with
respect to (w.r.t. in brief) s while the converse is not true (for instance,
C := fx 2 Rn : kxk � 1g is coradiant w.r.t. 0n; but it is not a cone with
apex 0n).

Lemma 1 (Dual characterizations of coradiant sets and cones) Let
S 6= ; be the solution set of � = fa0tx � bt; t 2 Tg and s 2 Rn: Then, the
following statements hold true:
(i) S is coradiant w.r.t. s if and only if�

at
0

�
2 cl cone

��
at

bt � a0ts

�
; t 2 T;

�
0n
1

��
;8t 2 T: (2)

Moreover, if
a0ts � bt;8t 2 T; (3)

then S is coradiant w.r.t. s; and the converse holds whenever T is �nite and
each ray R+at de�nes a di¤erent edge of cone fat; t 2 Tg ; t 2 T:
(ii) S is a cone with apex at s if and only if

cl cone

��
at

bt � a0ts

�
; t 2 T;

�
0n
1

��
= cl cone fat; t 2 Tg � R+: (4)

A su¢ cient condition is that a0ts = bt for all t 2 T; and the converse holds
under the same conditions as in (i):

Proof. Let K := cone

��
at

bt � a0ts

�
; t 2 T;

�
0n
1

��
along the proof.

(i) It is easy to see that the convex solution set S is coradiant w.r.t.
0n if and only if S � 0+S: So, S is coradiant w.r.t. s if and only if S �
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s � 0+ (S � s) = 0+S: Since S � s = fx : Rn : a0t (x+ s) � bt; t 2 Tg and
0+S = fx : Rn : a0tx � 0; t 2 Tg ; by Corollary 1, S is coradiant w.r.t. s if
and only if

cl cone fat; t 2 Tg � R+ � clK;

if and only if (2) holds.
Assuming (3), one has�

at
0

�
=

�
at

bt � a0ts

�
+ (a0ts� bt)

�
0n
1

�
;8t 2 T;

so that (2) holds.
We now assume that (2) holds, T is �nite and each ray R+at de�nes

a di¤erent edge of cone fat; t 2 Tg ; t 2 T: The �niteness assumption en-
tails the closedness of K and of cone fat; t 2 Tg : Fixing t 2 T; there is a
unique way of writing at as nonnegative linear combination of the vectors of
fat; t 2 Tg ; at = 1at; so that (2) implies the existence of some nonnegative
scalar �t such that �

at
0

�
=

�
at

bt � a0ts

�
+ �t

�
0n
1

�
;

which entails bt � a0ts = ��t � 0:
(ii) S is a cone with apex s if and only if S � s = 0+ (S � s) = 0+S; if

and only if (4) holds. The rest of the proof is as the one of (i). �

To go further with the obtaining of information on S from the data (the
coe¢ cients of �), one needs some data quali�cations (conditions involving
the coe¢ cients of the system).
A vector bx 2 Rn is called a Slater point of � = fa0tx � bt; t 2 Tg if a0tbx <

bt for all t 2 T; in which case we say that � satis�es the Slater condition.
Following [67], we say that a consistent system � = fa0tx � bt; t 2 Tg is
locally Farkas-Minkowski (LFM in brief) if every linear consequence of �
determining a supporting hyperplane to S is also the consequence of a �nite
subsystem of �: Su¢ cient conditions for a system � = fa0tx � bt; t 2 Tg

to be LFM is the closedness of cone
��

at
bt

�
; t 2 T ;

�
0n
1

��
; which holds

whenever � satis�es the Slater condition and it is continuous (i.e., T is
compact and the function t 7�! (at; bt) is continuous on T ). In particular,
any �nite system is LFM.
Given a consistent system � = fa0tx � bt; t 2 Tg with solution set S; we

say that an index t 2 T is carrier whenever a0tx = bt for all x 2 S: We
denote by T= := ft 2 T : a0tx = bt;8x 2 Sg the set of carrier indices of �:
The exposed face of S associated with index t 2 T is the closed convex set
St := fx 2 S : a0tx = bt g :

Theorem 3 (Geometry of the solution set) [67] Let � = fa0tx � bt; t 2 Tg
be LFM with solution set S: Then the following statements hold:
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(i) dimS = n� dim span fat; t 2 T=g :
(ii) rbdS = [fSt : t 2 TnT=g :
(iii) bdS = [fSt : at 6= 0n; t 2 Tg :
In particular, if T= = ;; dimS = n and

rintS = intS = fx 2 Rn : a0tx < bt; t 2 Tg

is the set of Slater points of �:

Given x 2 S, A (x) := cone fat : a0tx = bt; t 2 Tg is the so-called ac-
tive cone at x, which plays a crucial role in LSIP. Following [1], � =
fa0tx � bt; t 2 Tg is called locally polyhedral (LOP in short) whenever A (x)

�

is the cone of feasible directions to S at x for all x 2 S, and, following [3], it
is called analytic whenever T is a compact one-dimensional interval and the
n+ 1 components of the function t 7�! (at; bt) are analytic in the variable
t: If � is LOP, then its solution set is a quasipolyhedron (i.e., its nonempty
intersections with polytopes are polytopes).
The next result characterizes the faces of S in terms of a linear subspace

L (x) associated with each x 2 S which is de�ned di¤erently for LOP and
analytic systems:

� If � is LOP, L (x) := span fat : a0tx = bt; t 2 Tg.
� If � is analytic, L (x) := span fat; t 2 Tg if a0tx = bt for all t 2 T ;
otherwise, L (x) is the linear span of the union of the sets of successive

derivatives
n
at;a

(1)
t ; :::; a

(d(t))
t

o
at those indices t 2 T which are roots

(with order of multiplicity d (t) + 1) of the slack function at x; t 7�!
a0tx� bt:

Theorem 4 (Facial structure of the solution set) [40, Corollary 2.1]
Let � be a LOP or an analytic linear representation of S; and let G be a
nonempty closed convex subset of S such that dimG = k. Then, G is a face
of S if and only if dimL (x) = n � k for certain (every) x 2 rintG and
dimL (x) > n� k for every x 2 rbdG:

This result allows to obtain characterizations of the extreme points and
the edges of S:

Corollary 6 (Extreme points and edges) ([1, THeorems 9.1 and 9.2],
[3], [40]) If � is either LOP or analytic with solution set S, then the follow-
ing statements hold:
(i) x 2 S is an extreme point of S if and only if L (x) = Rn;
(ii)

�
x1; x2

�
is an edge of S if and only if x1 and x2 are extreme points of

S and dimL (x) = n� 1 for a certain (every) x 2
�
x1; x2

�
;

(iii) fx+ �y : � � 0g is an edge of S if and only if x is an extreme point
of S and dimL (x+ �y) = n� 1 for certain (every) � > 0;
(iv) fx+ �y : � 2 Rg is an edge of S if and only if x 2 S; �y 2 0+S and
dimL (x+ �y) = n� 1 for certain (every) � 2 R:
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We now suppose that not all data of the given LSIS, the so-called nomi-
nal system � =

�
a0tx � bt; t 2 T

	
; are �xed. In that case, we say that we are

dealing with an uncertain system � = fa0tx � bt; t 2 Tg whose coe¢ cients
are the result of perturbing those of �: We denote by S and S the solution
sets of � and �; which are deterministic and uncertain sets, respectively.
Uncertain systems can be approached from di¤erent perspectives, e.g., the
robust and the parametric ones.
The robust approach associates to �; assumed to be consistent, a robust

counterpart system �R consisting in the aggregation to � of all admissible
perturbed constraints (see, e.g., [6]). We denote by SR the solution set of
�R, called robust solution set. If we admit too many perturbed constraints,
�R is no longer consistent. So, the main objective of this approach is to
force the consistency of �R by controlling the admissible perturbations.
Assume that, for each t 2 T; the admissible perturbations of a0tx � bt

have the form a0x � b; with (a; b) 2 Ut =
�
at; bt

�
+ rtBn+1; with rt 2 R+:

Since the uncertainty sets Ut are balls, this framework is called ball uncer-
tainty. Obviously, rt = 0 means that the coe¢ cients of the corresponding
inequality a0tx � bt are deterministic (this is typically the case of the sign
constraints in many decision problems). We associate with each � 2 R+ the
system

��R :=
�
a0tx � bt; (at; bt) 2

�
at; bt

�
+ �Bn+1; t 2 T

	
;

whose correspondent solution set we denote by S�R: The radius of feasibility
of � is de�ned as

�(�) := sup f� 2 R+ : S�R 6= ;g : (5)

Since the balls
�
at; bt

�
+ �Bn+1 intersect the ray R+ (0n;�1) for � su¢ -

ciently large, we have �(�) < +1 by Theorem 1. Formulas for �(�) for T
arbitrary have been obtained from the LSIS stability theory (e.g., [38, The-
orem 2.5]) and for T �nite in a direct way [39, Theorem 4]. These formulas
involve the so-called epigraphical set (term introduced in [15]):

E(�) := conv
��
at; bt

�
; t 2 T

	
+ R+ f(0n; 1)g : (6)

In general, E(�) is a convex set, but it is a polyhedron whenever T is �nite.

Theorem 5 (Radius of feasibility) ([38, Theorem 2.5])The radius of fea-
sibility for ball uncertainty is

�(�) = d (0n+1; E(�)) :

Since d (0n+1; E(�)) is nothing else than the minimum value of k�k on
E(�); when T is �nite �(�) can easily be computed by solving a convex
quadratic program. By the very de�nition of �(�);

sup
t2T

rt < �(�) =)
(
x 2 Rn : a0x � b; (a; b) 2

[
t2T

Ut

)
6= ;: (7)
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The parametric approach, in the LSIS setting, consists in embedding
the nominal system � into a space of systems, 
; representing the results
of perturbing the coe¢ cients of � but preserving the number of variables
and the index set. The elements of 
; called parameters, are here systems
of the form � = fa0tx � bt; t 2 Tg ; also represented as � = (a�; b�) ; with
a� : T �! Rn and b� : T �! R such that a (t) = at and b (t) = bt;

t 2 T; so that 
 = (Rn)T � RT : It is worth observing that, in certain
circumstances, the admissible perturbations may a¤ect only part of the
coe¢ cients of � (e.g., the right-hand side bt) or the coe¢ cients may depend
on some parameter (as it happens with the Voronoi cells, which are solution
sets of linear systems involving the sites), in which case the parameters are
the uncertain elements in � (e.g., the uncertain sites in the case of uncertain
Voronoi cells).
The solution set map S : 
 � Rn is the multifunction (or set-valued

mapping) that associates to each � 2 
 its solution set S (�) = S. The do-
main of S is domS = f� 2 
 : S (�) 6= ;g : A vector bx 2 Rn is strong Slater
point of � = fa0tx � bt; t 2 Tg if there exists " > 0 such that a0tbx � bt�" for
all t 2 T; in which case we say that � satis�es the strong Slater condition.
To analyze the continuity properties of S we must de�ne a topology on 
:
Since we are assuming here that all coe¢ cients of � can be arbitrarily per-
turbed, we assume that 
 is equipped with the pseudonorm of the uniform
convergence on T; e.g.,

k� � �k1 = sup
t2T

�atbt
�
�
�
at
bt

� :
Stability of a given system � intuitively means that its solution set S does

not change abruptly under small perturbations of the coe¢ cients (preserving
n and T ) producing a perturbed system � = fa0tx � bt; t 2 Tg with solution
set S: For the sake of completeness, we recall now the stability concepts
for set-valued mappings introduced by Bouligand and Kuratowski that we
shall consider in this paper. Let 
 and X be two metric spaces and let
A : 
 � X be a set-valued mapping, then:
A is closed at ! 2 domA if for all sequences f!rg � 
 and fxrg � X

satisfying xr 2 A(!r) for all r 2 N, !r ! ! and xr ! x0 2 X, one has
x0 2 A(!).
A is lower semicontinuous at ! 2 
 (the nominal parameter) in the

Berge sense (lsc, in brief) if, for each open setW � X such thatW\A(!) 6=
;, there exists an open set V � 
, containing !, such thatW \A(!) 6= ; for
each ! 2 V .
A is upper semicontinuous at ! 2 
 in the Berge sense (usc, in brief)

if, for each open set W � X such that A(!) �W , there exists an open set
V � 
, containing !, such that A(!) �W for each ! 2 V .
It is well known that a set-valued mapping A is usc at a point in its

domain whenever it is closed and locally bounded at that point.
Related to the solution set map S; the basic result, for arbitrary per-

turbations of all the coe¢ cients, involves a parameter space 
 where �
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moves and the solution set multifunction S : 
 � Rn associating to each
system � its corresponding solution set S (�) : There exist many stability
concepts, the main ones being equivalent to the lower semicontinuity of S
at � according to the next basic result.

Theorem 6 (Lower semicontinuity of the solution set mapping) [46,
Theorem 6.1] Let � 2 domS: The following statements are equivalent :
(i) S is lsc at �:
(ii) � 2 int domS; i.e., su¢ ciently small perturbations of � preserve its
feasibility.
(iii) � satis�es the strong Slater condition.
(iv) 0n+1 =2 cl conv

�
(at; bt); t 2 T

	
:

When T is �nite, one can replace �strong Slater�by just �Slater�in (ii)
and eliminate �cl�in (iv). Many other equivalent conditions appear in [46,
Theorem 6.1], [42] and [43].

Theorem 7 (Upper semicontinuity of the solution set mapping)
[46, Corolary 6.2.1] Let � 2 domS: If S (�) is bounded, then S is usc at �:
The converse holds whenever T is �nite.

A hardly checkable characterization of the upper semicontinuity of S for
arbitrary index sets was given in [13].

3 Deterministic Voronoi cells

The set of Voronoi sites is a given nonempty set T � Rn: The nearest
Voronoi cell, or just Voronoi cell, of the generator s 2 T; VT (s), consists of
all points in Rn closer to s than to any other site t 2 T , i.e.,

VT (s) = fx 2 Rn : kx� sk � kx� tk ; t 2 T� fsgg : (8)

Analogously, the farthest Voronoi cell of s 2 T , FT (s), is the set of all those
points in Rn which are farther from the site s than to any other t 2 T , i.e.,

FT (s) = fx 2 Rn : kx� sk � kx� tk ; t 2 T� fsgg : (9)

Both types of cells, (8) and (9), can be expressed as the feasible set of par-
ticular linear inequality systems. Indeed, after straightforward calculations,
we have

VT (s) =
n
x 2 Rn : 2 (t� s)0 x � ktk2 � ksk2 ; t 2 T� fsg

o
(10)

and

FT (s) =
n
x 2 Rn : �2 (t� s)0 x � ksk2 � ktk2 ; t 2 T� fsg

o
: (11)

Notice that for an in�nite set of sites, e.g., when T is a curve or an in�nite
discrete set, the systems in (10) and (11) are LSIS. These two systems
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are crucial in obtaining geometric properties of VT (s) and FT (s), such as
boundedness, polyhedrality, facial structure, and extreme points and edges.
The reference cones of VT (s) and FT (s) are

K (VT (s)) = cl cone

��
2 (t� s)
ktk2 � ksk2

�
; t 2 T ;

�
0n
1

��
and

K (FT (s)) = cl cone

��
�2 (t� s)
ksk2 � ktk2

�
; t 2 T ;

�
0n
1

��
;

respectively.
The Voronoi cell VT (s) is always nonempty, but it is not the case for

the farthest Voronoi cell FT (s). Indeed, [54] employs the linear representa-
tion (11) and the existence Theorem 1 for LSIS to establish the following
existence theorem for farthest Voronoi cells:

FT (s) 6= ; ()
�
0n
�1

�
=2 cl cone

��
�2 (t� s)
ksk2 � ktk2

�
; t 2 T

�
: (12)

From Corollary 4,

dimVT (s) = n� dim linK (VT (s))

and, assuming that FT (s) 6= ;;

dimFT (s) = n� dim linK (FT (s)) :

The Voronoi diagram and the farthest Voronoi diagram of T are the
families of sets fVT (s) ; s 2 Tg and fFT (s) ; s 2 Tg, respectively. If T is a
singleton, both diagrams trivially coincide with fRng : So, we can assume
that T contains at least two di¤erent sites.
It follows immediately that

VT (s) = s+ VT�s (0n) and FT (s) = s+ FT�s (0n) : (13)

Thus, it is possible just to assume s = 0n and consider the cones

K (VT (0n)) = cl cone

��
2t

ktk2
�
; t 2 T ;

�
0n
1

��
and

K (FT (0n)) = cl cone

��
�2t
�ktk2

�
; t 2 T ;

�
0n
1

��
;

respectively.

Proposition 1 (Basic properties of cells) Let T � Rn and s 2 T: Then
the following statements hold:
(i) VT (s) and FT (s) are closed convex sets.
(ii) If FT (s) 6= ;; then FT (s) is coradiant with respect to s, T is bounded
and s is an extreme point of conv T:
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Proof. (i) follows from (10) and (11).
(ii) Assume that FT (s) 6= ;: We prove the coradiant property of FT (s)

appealing to Lemma 1. Since FT (s) is the solution set of the system

fa0tx � bt; t 2 T� fsgg ;

with at = �2 (t� s) and bt = ksk2 � ktk2 ; t 2 T� fsg ; the su¢ cient
condition (3) holds as

bt � a0ts = ksk
2 � ktk2 + 2 (t� s)0 s = �kt� sk2 � 0;8t 2 T� fsg :

We conclude that FT (s) is coradiant w.r.t. s.
For the rest of the proof we can assume without loss of generality

(w.l.o.g.) that s = 0n 2 T .
If T is unbounded, we can take a sequence ftkg � T such that ktkk �!

+1: Since 1
ktkk2

�
�2tk
�ktkk2

�
�!

�
0n
�1

�
; it follows that

�
0n
�1

�
2 cl cone

��
�2t
�ktk2

�
; t 2 T

�
and FT (s) = ; by (12). So, FT (s) 6= ; entails the boundedness of T:
If 0n is not an extreme point of conv T; then there exist t1; :::; tm 2

T� f0ng and �1; :::; �m > 0 such that
mP
i=1

�iti = 0n and
mP
i=1

�i = 1: Then

0@ 0n

�
mP
i=1

�i ktik2

1A =
mX
i=1

�i

�
�2ti
�ktik2

�
2 cone

��
�2t
�ktk2

�
; t 2 T

�
;

with
mP
i=1

�i ktik2 > 0: So, again by (12), FT (0n) = ;: Hence, FT (s) 6= ;

implies that s is an extreme point of conv T: �

Remark 1We can also prove the coradiant property of FT (s) 6= ; with very
elementary tools, based on the properties of the (not necessarily Euclidean)
norm. This is simpler than the proof of [54, Theorem 22]. Let x 2 FT (s) ;
take any � � 1; and put z := s+ � (x� s) : Then, for any t 2 T;

kz � tk = ks+ � (x� s)� tk
= k(�� 1) (x� s) + (x� t)k
� (�� 1) k(x� s)k+ kx� tk
� � kx� sk
= kz � sk :

Hence z 2 FT (s) :
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Statement (ii) was proven in [54] geometrically. The necessary condition
for FT (s) 6= ; in Proposition 1(ii) is not su¢ cient when T is in�nite. Indeed,
according to [54, Theorem 22], this condition is also su¢ cient for FT (s) 6= ;
when one replaces the set of extreme points of conv T by a particular class
of exposed points of cl conv T called boundedly exposed.
We now analyze the existence of cells belonging to the special types of

closed convex sets considered in Corollary 5. To do this we must replace in
the latter result, �rstly, S by VT (s), andK (S) byK (VT (s)) ; and, secondly,
S by FT (s), and K (S) by K (FT (s)) : However, there is a substantial dif-
ference between both types of cells regarding their possible membership to
the families of closed convex sets involved in Corollary 5 (e.g., VT (s) = fsg
if and only if K (VT (s)) is a halfspace while FT (s) 6= fsg in any case).

Proposition 2 (Existence of special types of cells) Given n 2 N; it
holds:
(i) For each of the 11 families of sets characterized at Corollary 5 there
exist a set T � Rn and an element s 2 T such that VT (s) belongs to that
particular family of sets.
(ii) For each of the three families of sets described at statements (ii), (iv) and
(viii) of Corollary 5, but not to those described at the remaining statements,
there exist a set T � Rn and an element s 2 T such that FT (s) belongs to
that particular family of sets.

Proof. (i) According to [56, Theorem 2] (whose proof is also based on
Theorem 2), given an arbitrary s 2 Rn and any closed convex set C such
that s 2 C; there exists a set T � Rn such that C = VT (s) : So, the 11 cases
considered in Corollary 5 are possible.
(ii) We shall use the following characterization of the farthest Voronoi

cells [54, Theorem 29]: for any nonempty set C  Rn; one has C = FT (s)
for some T � Rn containing s if and only if it is convex, closed, coradiant
with respect to s; and does not contain s:
Since any FT (s) 6= ; is coradiant w.r.t. s, FT (s) is unbounded and so

the cases (i), (v), (vi), (ix) and (xi) of Corollary 5 cannot occur.
Since the class of sets described in cases (iii) and (x) of Corollary 5 are

contained in that of case (vii), we can preclude the three cases showing, by
contradiction, that a farthest Voronoi cell cannot be decomposed as the sum
of a compact convex set with a linear subspace. We may assume w.l.o.g. that
s = 0n does not belong to the given closed convex set C = D+L; where D
is a compact convex set and L is a linear subspace, with C coradiant w.r.t.
0n; i.e., C � 0+C: Then, D + L = C � 0+C = L; which implies D � L;
so that 0n 2 D + L = C (contradiction). So, a farthest Voronoi cell cannot
belong to the families of sets corresponding to cases (iii), (vii) and (x) of
Corollary 5.
For the remaining cases of Corollary 5 we must provide the corresponding

examples. Since any polyhedron is Motzkin decomposable while the full
dimensionality is an independent property, it will be su¢ cient to give a
unique example of a full dimensional polyhedron which is farthest Voronoi
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cell. In fact, it is easy to see that C = Rn++f(1; 1; :::; 1)g is a full dimensional
polyhedron such that C � 0+C; i.e., C is coradiant w.r.t. 0n =2 C: This
completes the proof. �

Observe that Lemma 1 can be interpreted as providing characterizations
of closed convex coradiant sets and cones to be aggregated at the list of
Corollary 5. Example 13 in [54] shows the existence of T � Rn and elements
s; s0 2 Rn such that FT (s) is a non-singleton closed convex cone with apex
s0 (so, coradiant w.r.t. s0 too).
The detection of the boundedness (i.e., compactness), the polyhedrality,

the conicity, and the quasipolyhedrality of the cells has deserved particular
attention of the previous works on Voronoi cells of in�nite sets. The next
lemma characterizes the recession cones of both types of Voronoi cells. The
recession cone of VT (s) was not explicitly given in [56] while the expression
of the recession cone of FT (s) appeared at [54, Proposition 17], but the
proof below is much simpler.

Lemma 2 (Recession cones of cells) For T � Rn and s 2 T; it holds
that

0+VT (s) = Nconv T (s)

and,
0+FT (s) = �Nconv T (s);

whenever FT (s) 6= ;.

Proof. From the linear representations (10) and (11) it follows immedi-
ately that

0+VT (s) =
�
x 2 Rn : (t� s)0 x � 0; t 2 T

	
= Nconv T (s)

and

0+FT (s) =
�
x 2 Rn : � (t� s)0 x � 0; t 2 T

	
=
�
�x 2 Rn : (t� s)0 x � 0; t 2 T

	
= �Nconv T (s):

�

Proposition 3 (Conicity of cells) For T � Rn and s 2 T; the following
statements hold:
(i) If T is convex, then VT (s) is a cone with apex s:
(ii) If VT (s) is a cone with apex s; then VT (s) = s+Nconv T (s):
(iii) FT (s) cannot be a cone with apex s:

Proof. (i) comes from [56, Proposition 18]. Observe that VT (s) = fsg
whenever s 2 intT; which is a translate of the trivial cone f0ng :
(ii) VT (s)�s is a closed convex cone if and only if VT (s)�s = 0+ (VT (s)� s) =

0+VT (s); with 0+VT (s) = Nconv T (s) by Lemma 2. �
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Proposition 4 (Boundedness of cells) For T � Rn and s 2 T; the
following statements hold:
(i) VT (s) is bounded () s 2 int conv T;
(ii) VT (s) is unbounded () s 2 bd conv T;
(iii) FT (s) is either empty or unbounded.

Proof. (i) It follows from Corollary 3 that VT (s) is bounded if and only if
0+VT (s) = f0ng ; and, in view of Lemma 2, this is equivalent to Nconv T (s) =
f0ng which is also equivalent to s 2 int conv T:
(ii) It is immediate from (i) because s 2 T:
(iii) From Proposition 1(ii), FT (s) is either empty or coradiant w.r.t. s

(and so unbounded). �

Statement (iii) above also follows from Proposition 1(ii): if FT (s) 6=
;, then s is an extreme point of conv T and then f0ng  �Nconv T (s) =
0+FT (s); which gives the unboundedness of FT (s).
From Proposition 4(i) and Proposition 1(ii) one concludes that VT (s)

bounded entails FT (s) = ;: The converse is true when bd conv T is the set of
boundedly exposed points of cl conv T , as it happens when T is an ellipsoid
(in particular, an Euclidean closed ball).
We now give a second formula for dimFT (s) which is also based on

Lemma 2, together with the next lemma, which was shown in [54] using
convex analysis tools.

Lemma 3 For T � Rn and s 2 T; one has

FT (s) ( s�Nconv T (s): (14)

Proof. From Proposition 1 FT (s) is coradiant w.r.t. s. Then,

FT (s)� s � 0+FT (s): (15)

Since 0+FT (s) = �Nconv T (s) from Lemma 2, the inclusion (14) follows. The
inclusion in (15) is strict since FT (s) cannot be a cone with apex s: �

Proposition 5 (Dimension of cells via normal cones) If T � Rn and
s 2 T are such that FT (s) 6= ;; then

dimFT (s) = dimNconv T (s): (16)

Proof. Take x 2 FT (s): From Lemma 2 and Lemma 3, we have

x�Nconv T (s) � FT (s)�Nconv T (s)
= FT (s) + 0

+FT (s)

= FT (s)

� s�Nconv T (s):

So, dimFT (s) = dimNconv T (s). �

The following necessary condition for the cells to be polyhedral, which
subsumes [56, Proposition 8], admits a conjoint proof.
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Proposition 6 (Polyhedrality of cells) For T � Rn and s 2 T; the
following statements hold:
(i) If T is �nite, then VT (s) and FT (s) are polyhedra.
(ii) When either VT (s) or FT (s) is a polyhedron, then cl cone (T � s) is
polyhedral.

Proof. (i) follows from (10) and (11).
(ii) We can assume w.l.o.g. that s = 0n: The assumption implies that ei-

ther K (VT (0n)) or K (FT (0n)) is �nitely generated, i.e., there exist vectors
(ai; bi) 2 Rn+1; i = 1; :::;m; such that

cl cone

�
�
�
2t

ktk2
�
; t 2 T ;

�
0n
1

��
= cone

��
ai
bi

�
; i = 1; :::;m

�
; (17)

where the sign of
�
2t; ktk2

�
is positive (negative, respectively) when VT (s)

(FT (s)) is a polyhedron. It is easy to see that in the �rst case,

cl coneT = cone fai; i = 1; :::;mg : (18)

and in the second case,

cl coneT = cone f�ai; i = 1; :::;mg ; (19)

which proves that cl coneT is �nitely generated and so polyhedral in either
case. �

The next example shows that the converse of Proposition 6(ii) does not
hold.

Example 1 Let s = 02 and T� fsg = f1g�R: Then, cl coneT = cone f(1; 0) ;� (0; 1)g
is polyhedral. However, since s is not even extreme point of cl conv T =
[0; 1] � R; it holds that FT (s) = ;: Observe that s 2 bd conv T; so that
VT (s) is unbounded. In fact, according to (10),

VT (s) =
�
x 2 R2 : 2x1 + 2ux2 � u2 + 1; u 2 R

	
;

which coincides with the convex hull of the envelope to the bunch of straight
lines 2x1 + 2ux2 = u2 + 1; u 2 R; i.e.,

VT (s) =
�
x 2 R2 : 2x1 + x22 � 1

	
;

whose boundary is the parabola x22 = 1 � 2x1: Thus, neither VT (s) nor
FT (s) is polyhedron.

The application of Theorem 3 to both types of cells requires the ful�ll-
ment of the LFM quali�cation condition by their respective linear repre-
sentations. Observe that the closedness conditions (3) and (2) are su¢ cient
conditions for the systems in (10) and (11) to be LFM.
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Proposition 7 (Locally Farkas-Minkowski property) If T is closed
and s is an isolated point of T; then the systems in (10) and (11), provided
that FT (s) 6= ;; are LFM. In that case,

n = dimVT (s) + dim span (T
=
V � s) = dimFT (s) + dim span (T=F � s) ;

where T=V and T=F are the sets of carrier indices for the corresponding sys-
tems.

Proof. Assume that T is closed and s = 0n is an isolated point of T:

(i) Under the assumptions on T and s = 0n, cone
��

2t

ktk2
�
; t 2 T ;

�
0n
1

��
is closed [56, Prop. 15(ii)], which entails that (10) is LFM.
(ii) Now, T closed and FT (s) 6= ; give that T is compact by Proposition

1(ii). Since s is an isolated point of T; T� f0ng is compact too, as well as
the set

X :=

(
1

ktk2
�
�2t
�ktk2

�
; t 2 T� f0ng

)
;

by a continuity argument. It is easy to see that 0n+1 =2 convX: So, R+ convX
is closed as well. Furthermore, from FT (s) 6= ; Theorem 1 entails that�

0n
�1

�
=2 cone

��
�2t
�ktk2

�
; t 2 T� f0ng

�
= R+ convX:

Finally,

cone

��
�2t
�ktk2

�
; t 2 T� f0ng ;

�
0n
1

��
= R+ convX + cone

��
0n
1

��
is closed by [69, Corollary 9.1.3]. Then the system (11) is LFM.
The formulas for dimVT (s) and dimVF (s) hold from Theorem 3(i). �

The application of Theorem 3 to Example 1 is as follows. Since s =
(0; 0) is a strict solution of the system � =

�
2x1 + 2ux2 � u2 + 1; u 2 R

	
;

there is no carrier index, which gives that dimVT (s) = 2 and intVT (s) =�
x 2 R2 : 2x1 + 2ux2 < u2 + 1; u 2 R

	
is the set of Slater points of �:

Regarding the facial structure of the cells, to apply Theorem 4 or Corol-
lary 6, one needs either the analyticity or the ful�llment or the LOP quali-
�cation of their linear representations given by (10) and (11).
One has analytic representations of both types of cells when T is the

image of some compact interval I � R by some (componentwise) analytic
function g : I ! Rn and s = g (y0) for some y0 2 I. In fact, (10) and (11)
are equivalent ton

2 (g (y)� s)0 x � kg (y)k2 � ksk2 ; y 2 I
o

(20)

and to n
�2 (g (y)� s)0 x � ksk2 � kg (y)k2 ; y 2 I

o
; (21)
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respectively. So, the set L (x) involved in Theorem 4 and Corollary 6 is the
same for (20) and for (21). In the non-trivial case that the slack function

at x; the analytic function z (y) := �
�
2 (g (y)� s)0 x� kg (y)k2 + ksk2

�
;

is not identically null on I, to identify L (x) one must compute all zeros of
z on I and, for any zero, say y; whose order of multiplicity we denote by
d (y) + 1; calculate the successive derivatives dz

dy (y) ; :::;
d(d(y))z
dy(d(y))

(y) :

Regarding the LOP data quali�cation, [56, Lemma 21] shows that it
is satis�ed by (10) whenever T is discrete, in the sense that it has no ac-
cumulation point, which allows to assert that VT (s) is a quasipolyhedron.
Unfortunately, we cannot provide a farthest counterpart for this result as
FT (s) 6= ; implies that T is bounded, and, since the only discrete bounded
sets in Rn are the �nite ones, FT (s) turns out to be a polyhedron.

4 Uncertain Voronoi cells

In many practical applications of Voronoi cells, the position of the gener-
ator is accurate (or deterministic) while the positions of some other sites
are approximately known (uncertain) due to measurement errors, prediction
errors, or to the presence of random factors. For the sake of simplicity we
consider in this section �nite sets of sites where the generator s is deter-
ministic while the remaining m sites are uncertain, with nominal positions
t1; ::; tm 2 Rn: We denote by T =

�
t0 := s; t1; ::; tm

	
the nominal set of

sites and by T = ft0 := s; t1; ::; tmg the generic result of perturbing the
sites ti 2 T ; i = 1; :::;m:
We are interested in guaranteeing the consistency of the robust cells and

checking the continuity properties of the multifunctions V and F assigning
to each (t1; ::; tm) 2 Rn�m the cells VT (s) and FT (s) ; respectively. We refer
the reader to [57] in order to �nd an extensive discussion of the stability of a
given Voronoi cell VT (s) under di¤erent situations of uncertainty, e.g. small
perturbations of s in Rn, global perturbations of some subset P � T�fsg,
and individual perturbations of the elements of the subset P:

4.1 Existence of robust farthest Voronoi cells

Since the nearest Voronoi cells always satisfy s 2 VT (s) ; for any s and
any T � Rn such that s 2 T; arbitrary perturbations of t1; ::; tm preserve
the non-emptiness of the cell. So, this subsection only considers farthest
Voronoi cells under perturbations of the sites preserving the generator. Here
the nominal system

� =
n
�2
�
ti � s

�0
x � ksk2 �

ti2 ; i = 1; :::;mo ; (22)
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is assumed to have non-empty solution set, FT (s) 6= ;; where T =
�
t0 := s; t1; ::; tm

	
:

Recall that the epigraphical set of � is

E(�) = conv

�� �2
�
ti � s

�
ksk2 �

ti2
�
; i = 1; :::;m

�
+ R+

��
0n
1

��
;

which is closed as it is the sum of a polytope with a ray.

Proposition 8 (Positiveness of d (0n+1; E(�))) If FT (s) 6= ;; then
d (0n+1; E(�)) > 0:

Proof. Assume that FT (s) 6= ;; and d (0n+1; E(�)) = 0: This means that
0n+1 2 E(�) and, so,

0n 2 conv
��
ti � s

�
; i = 1; :::;m

	
;

which yields that s 2 conv
�
ti; i = 1; :::;m

	
; i.e., s is not an extreme point

of conv T . Proposition 1(ii) provides the contradiction FT (s) = ;. �

Corollary 7 The radius of feasibility for ball uncertainty of non-empty far-
thest Voronoi cells is always positive.

Proof. It is an straightforward application of Theorem 5 and Proposition
8. �

We now assume ball uncertainty sets for the perturbable sites, i.e., un-
certainty sets of the form Ti (ri) = ti + riBn; with ri � 0; i = 1; :::;m:
Obviously, ri = 0 means that the corresponding site is deterministic (i.e.,
that only ti = ti can occur) as well as the corresponding inequality of �.

Denoting r := (r1; ::; rm) and T (r) := fsg [
mS
i=1

Ti (ri) ; the robust farthest

Voronoi cell is the set of all those points in Rn which are farther from
the generator s than to any other conceivable perturbations of t1; ::; tm;
mS
i=1

Ti (ri) ; i.e.,

FT (r) (s) =
n
x 2 Rn : �2 (t� s)0 x � ksk2 � ktk2 ; t 2 T (r)� fsg

o
;

where t 2 T (r) can be replaced by t 2
mS
i=1

Ti (ri) :

We need an upper bound for the size of the perturbation of the vector�
2 (t� s)
ktk2 � ksk2

�
when t is perturbed by a vector �t: Assume that ktk � �

and k�tk � 1: Then� 2 (t+�t� s)
kt+�tk2 � ksk2

�
�
�

2 (t� s)
ktk2 � ksk2

�2 = � 2�t

kt+�tk2 � ktk2
�2

= 4 k�tk2 +
�
2t0�t+ k�tk2

�2
� 4

�
1 + �2

�
k�tk2 + 4� k�tk3 + k�tk4

�
�
4�2 + 4�+ 5

�
k�tk2
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and, so,� 2 (t+�t� s)
kt+�tk2 � ksk2

�
�
�

2 (t� s)
ktk2 � ksk2

� �p4�2 + 4�+ 5 k�tk : (23)

Observe that this bound is sharp by considering any t with ktk = � and
taking �t = 1

� t .

Proposition 9 (Existence of robust farthest Voronoi cell) Assume

that
ti � �; i = 1; :::;m; and let T (r) = fsg [

mS
i

�
ti + riBn

�
; with ri 2

[0; 1] ; i = 1; :::;m: Then,

max
i=1;:::;m

ri <
d (0n+1; E(�))p
4�2 + 4�+ 5

=) FT (r) (s) 6= ;: (24)

Proof. If ti 2 ti + riBn; we can write ti = ti+ �ti with
ti � � and

k�tik � ri � 1: Then, by (23),�
2 (ti � s)
ktik2 � ksk2

�
2
�

2
�
ti � s

�ti2 � ksk2
�
+
p
4�2 + 4�+ 5 riBn+1;

with
p
4�2 + 4�+ 5 ri < d (0n+1; E(�)) : The conclusion follows from The-

orem 5 and (7). �

Actually the bound in (24) is quite conservative, as the following simple
example shows. The problem of �nding a tight upper bound for the size of
the perturbations which preserve the non-emptiness of the farthest Voronoi
cells remains open.

Example 2 The following particularly simple case shows that the bound pro-
vided by Proposition 9 is very conservative. Let s = (0; 0) ; t = (0; 1) ; and
T =

�
s; t
	
in R2. We can handle this problem geometrically, considering

the ball of radius r centered at t: The generator s is an extreme point of
the convex hull of T (r) = fsg [ (f(0; 1)g+ rB2) whenever 0 � r � 1:
Now, FT (s) = f(x1; x2) : 2x2 � 1g ; and FT (1) (s) = f(0; 1)g + R+ f(0; 1)g ;
which gives that FT (r) (s) 6= ; for any r; 0 � r � 1: (See Fig. 1). Moreover,
FT (r) (s) = ; for r > 1 because then s is not an extreme point of the convex
set T (r) : So, sup

�
r : FT (r) (s) 6= ;

	
= 1: On the other hand, given that

E (�) =

8<:
0@ 0
�2
�1

1A9=;+ R+
8<:
0@00
1

1A9=; ;
then d (03; E (�)) is obtained as the square root of the optimal value of the
quadratic optimization problem

P : min f (x) = x21 + x
2
2 + x

2
3

s.t. x1 = 0;
x2 = �2;
�x3 � 1:
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The optimal solution of P is x = (0;�2; 0) ; with optimal value 4, so that
� (�) = d (03; E(�)) = 2: For

� := k(0; 1)k = 1;

(24) becomes

max r <
2p
13
' 0:5547 =) FT (r) (s) 6= ;:

Since sup
�
r : FT (r) (s) 6= ;

	
= 1, we can see that the bound in Proposition

9 is far to be tight.

Fig. 1 Robust farthest Voronoi cells

4.2 Continuity properties of the Voronoi cell mappings

This �nal subsection deals with the conditions guaranteeing that VT (s) and
FT (s) do not change abruptly when T moves close to a nominal set of sites
T =

�
t0 := s; t1; ::; tm

	
: We associate with T two nominal systems,

�V =
n
2
�
ti � s

�0
x �

ti2 � ksk2 ; i = 1; :::;mo
and

�F =
n
�2
�
ti � s

�0
x � ksk2 �

ti2 ; i = 1; :::;mo
representing VT (s) and FT (s) ; respectively, that we can identify with their
respective sets of vectors of coe¢ cients,��

2
�
ti � s

�ti2 � ksk2
�
; i = 1; :::;m

�
and

�� �2
�
ti � s

�
ksk2 �

ti2
�
; i = 1; :::;m

�
:
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We denote by 
 the class of linear systems � = fa0ix � bi; i = 1; :::;mg
with the same number of variables and constraints as �V and �F : We

identify � with the set
��

ai
bi

�
; i = 1; :::;m

�
� Rn+1; and consider 


endowed with the topology of the uniform convergence: In other words,

 = R(n+1)�m is equipped with the norm

k�k = max
i=1;:::;m

�aibi
� ;

and the corresponding metric

d (�; e�) = k� � e�k = max
i=1;:::;m

�aibi
�
�
�eaiebi

� ;
for any e� = nea0ix � ebi; i = 1; :::;mo :
We consider small perturbations of t1; ::; tm; say t1; ::; tm; which pre-

serve its cardinality. In order to avoid repetitions of sites at the admissible
perturbations of T , we can assume w.l.o.g. thatti � ti < �;8i = 0; 1; :::;m;
where

� :=
1

2
min

�ti � tj : i < j; i; j = 1; :::;m	 :
So, we de�ne another parameter space for the perturbations of the uncertain
sites,

� :=
�
(t1; ::; tm) 2 Rn�m :

ti � ti < �; i = 1; :::;m	 ;
equipped with the metric

d
�
(t1; ::; tm) ;

�et1; ::;etm�� = (t1; ::; tm)� �et1; ::;etm� := max
i=1;:::;m

ti � eti
for any pair (t1; ::; tm) ;

�et1; ::;etm� 2 �, and consider the ordinary mappings
hV ; hF : � �! 
 such that

hV (t1; ::; tm) =
n
2 (ti � s)0 x � ktik2 � ksk2 ; i = 1; :::;m

o
(25)

and

hF (t1; ::; tm) =
n
�2 (ti � s)0 x � ksk2 � ktik2 ; i = 1; :::;m

o
; (26)

respectively. It is clear that hV and hF are continuous functions.
Let S : 
 � Rn be the solution set mapping introduced in Section 2.

We are interested in the continuity properties of the composite mappings
V;F : � � Rn such that V = S�hV and F = S�hF ; i.e.,

V (t1; ::; tm) =
n
x 2 Rn : 2 (ti � s)0 x � ktik2 � ksk2 ; i = 1; :::;m

o
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and

F (t1; ::; tm) =
n
x 2 Rn : �2 (ti � s)0 x � ksk2 � ktik2 ; i = 1; :::;m

o
;

for each (t1; ::; tm) 2 �: Observe that domV = �.
The following proposition summarizes the stability properties of the

mapping V: Even though parts (ii) and the "if" part in (iii) can be ob-
tained as an application of [57, Theorem 3 ] with P = T� fsg ; we prefer to
include direct proofs in the spirit of showing applications of the theory of
LSIS. Notice that the property that V usc at

�
t1; ::; tm

�
implies that VT (s)

to be bounded in (iii) is not a direct application of Theorem 7, because of
the speci�c kind of perturbations that are allowed here.

Proposition 10 (Stability of the nearest Voronoi cells) Let T =�
t0 := s; t1; ::; tm

	
: Then the following statements hold:

(i) V is closed:
(ii) V is lsc at

�
t1; ::; tm

�
:

(iii) V is usc at
�
t1; ::; tm

�
if and only if VT (s) is bounded:

Proof. (i) This follows from the fact that V is the composition of a
continuous function with a closed multifunction.
(ii) It follows in a similar vein as the proof of Theorem 6. Assume that

W is any open set in Rn such that VT (s) \W 6= ; and let z 2 VT (s) \W:
Observe that s 2 intVT (s) ; because T is �nite, hence by the accessibility
lemma we may consider w.l.o.g. that z is also an interior point of the Voronoi
cell VT (s) : Moreover, we can �nd " > 0 such that 2

�
ti � s

�0
z �

ti2 �
ksk2 � " for i = 1; :::;m: Now,

2 (ti � s)0 z = 2
�
ti � s

�0
z + 2

�
ti � ti

�0
z

�
ti2 � ksk2 � "+ 2ti � ti kzk

� ktik2 � ksk2 ;

for any i = 1; :::;m, whenever
(t1; ::; tm)� �t1; ::; tm� is small enough so

that ti � ti < "

4 (1 + kzk) and
ti2 � ktik2 < "

2
; i = 1; :::;m:

Then, de�ning T = ft0 := s; t1; ::; tmg ; we have z 2 VT (s)\W; which gives
VT (s) \W 6= ;: Therefore V is lsc at

�
t1; ::; tm

�
:

(iii) Assume that VT (s) is bounded. From Theorem 7, which holds for
any type of perturbations of the coe¢ cients in (10), it follows that V is
usc at

�
t1; ::; tm

�
: For the converse, assume the upper semi-continuity of V

at
�
t1; ::; tm

�
and suppose that VT (s) is not bounded. Since VT (s) 6= Rn;

we may consider, as in [25, Theorem 3.6], an unbounded sequence fxkg �
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bdVT (s) with kxkk ! 1; and take u = limk!1
�1
kxkkxk, by passing to a

subsequence if necessary. Then we have that kuk = 1 and

lim
k!1

u0xk = �1:

Put M = max
�ti ; i = 1; :::;m	 and observe that the set

U = fx 2 bdVT (s) : u
0x � �Mg ;

is unbounded. Take a sequence fzkg � U such that kzkk + 1 < kzk+1k ;
then, for each i = 1; :::;m; one has

2

�
ti +

1

k
u� s

�0
zk = 2

�
ti � s

�0
zk+

2

k
u0zk �

ti2�ksk2�2M
k
<

ti + 1

k
u

2�ksk2 ;
and we may consider an open neighborhood of zk, Uk � zk +

1
kBn; such

that Uk � VTk (s) with Tk =
�
t0 := s; t1 +

1
ku; :::; tm +

1
ku
	
: Now, since

zk 2 bdVT (s) we can take

yk 2 Uk�VT (s) � VTk (s)�VT (s) :

Hence fykg is an unbounded sequence with no accumulation point and so
W = Rn� fy1; y2; :::g is an open set that contains VT (s) but VTk (s) * W;
which is a contradiction with V being usc at

�
t1; ::; tm

�
: Therefore VT (s) is

bounded. �

Proposition 11 (Stability of the farthest Voronoi cells) Let T =�
t0 := s; t1; ::; tm

	
be such that FT (s) 6= ;: The following statements hold:

(i) F is closed:
(ii) If intFT (s) 6= ;; then F is lsc at

�
t1; ::; tm

�
:

(iii) F is not usc at
�
t1; ::; tm

�
:

Proof. (i) and (ii) It is similar to the proof of Proposition 10, just re-
placing hV by hF . In the proof of (ii) consider any x 2 intFT (s) instead of
the site s:
(iii) Recall that FT (s) is always unbounded when it is not empty by Propo-
sition 4. The proof is similar to the one given in the "only if" part of Propo-
sition 10(iii). �

Example 3 Let T =
�
s; t1; t2; t3

	
with s = (0; 0), t1 = (2; 0) ; t2 = (0:2) ; t3 =

(2; 2) : Since VT (s) = ]�1; 1]
2 and FT (s) = [1;+1[

2
; V and F are lsc be-

cause intVT (s) and intFT (s) are nonempty. Notice that both cells are un-
bounded with 0+VT (s) and 0

+FT (s) being right angles while, replacing the
set of sites T = f(0; 0) ; (2; 0) ; (0; 2) ; (2; 2)g by T" = f(0; 0) ; (2; ") ; ("; 2) ; (2; 2)g ;
" > 0 su¢ ciently small, 0+VT" (s) and 0

+FT" (s) are angles whose measures
increase with ". Thus, neither V nor F are usc at

�
t1; t2; t3

�
:
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Remark 2 In the case that FT (s) = ;; the mapping F is usc at
�
t1; ::; tm

�
if and only if F is also empty in some neighborhood of

�
t1; ::; tm

�
. This

is the case, for example, when s 2 int conv T : Now, if s 2 bd conv T then
F is not usc at

�
t1; ::; tm

�
: Indeed, for FT (s) 6= ; it is just Proposition

11(iii). In the case that FT (s) = ;; it is always possible to perturb the
set T� fsg in such a manner that FT (s) 6= ;. For example one can take
a supporting hyperplane of conv T at s, with an orthogonal vector w of
norm 1 such that

�
ti � s

�0
w � 0; i = 1; :::;m: Then, for " > 0 given, de�ne

ti = ti + "w; i = 1; :::;m. In this way, for some M > 0 large enough we
obtain that z = s+Mw 2 FT (s) : Therefore, F is not usc at

�
t1; ::; tm

�
.

5 Subdi¤erentials

The e¤ective domain, the graph, and the epigraph of f : Rn ! R [ f+1g
are

dom f := fx 2 Rn : f(x) < +1g;

gph f := f(x; f (x)) 2 Rn � R : x 2 dom fg ;

and
epi f := f(x; ) 2 Rn � R : x 2 dom f; f(x) � g;

respectively, whereas the conjugate function of f; f� : Rn ! R [ f+1g, is
de�ned by

f�(v) := supfv0x� f(x) : x 2 dom fg:

It is well-known that f� is also a proper lower semicontinuous (lsc, in brief)
convex function, and that its conjugate, denoted by f��, coincides with f
provided that f is a proper lsc convex function.
We denote by �X the indicator function of X � Rn (�X (x) = 0 if x 2 X

and �X (x) = +1 otherwise) and by �X the support function of X

�X (x) := supfu0x : u 2 Xg: (27)

Obviously, �X = �
�
X : Both functions �X and �X are proper, lsc, and convex

whenever X is closed and convex. Moreover in this case the reference cone
of X is epi�X ([36, Proposition 8]); i.e.,

K(X) = epi�X (28)

Given " � 0; the "-subdi¤erential of f at a 2 dom f is

@"f (a) := fu 2 Rn : f (x) � f (a) + u0 (x� a)� "; x 2 dom fg :

The "-subdi¤erential is commonly used in convex optimization, but it is
also useful to get global optimality conditions for di¤erence-of-convex opti-
mization problems, which includes nonconvex quadratic optimization prob-
lems (for example, see [58]). In particular, @0f (a) is the so-called Fenchel
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(or convex) subdi¤erential of f at a; usually denoted by @f (a) : The "-
subdi¤erentials @"f (a) are also called approximate subdi¤erentials when
" > 0. Clearly, @"f (a) is the solution set of the linear inequality system,
with unknown u 2 Rn and index set dom f ,�

(x� a)0 u � f (x)� f (a) + "; x 2 dom f
	
: (29)

Thus, @"f (a) is a closed convex set. When @"f (a) 6= ;; its recession cone is
the solution set of the homogeneous system of (29), i.e.,

0+@"f (a) =
�
u 2 Rn : (x� a)0 u � 0; x 2 dom f

	
= Ndom f (a) : (30)

Observe that we also have that 0+@"f (a) = (cone (�a+ dom f))
�
:

It is well known that most relevant information on @"f (a) is captured by
its reference cone K (@"f (a)), which in this case, due to (1), is the closure
of the characteristic cone of the system (29):

K" (f; a) = cone f(x� a; f (x)� f (a) + ") ; x 2 dom f ; (0n; 1)g
= cone f[gph f � (a; f (a)� ")] [ f(0n; 1)gg ;

i.e.,K (@"f (a)) = clK" (f; a). Sometimes we writeK (f; a) instead ofK0 (f; a) :
It is known that @f (a) =

T
">0 @"f (a) : Similarly,[

">0

K" (f; a) � K (f; a) � cl
[
">0

K" (f; a) :

Given a 2 dom f and " � 0; we will consider the auxiliary function

g (x) := f (x+ a)� f (a) + "; (31)

which is slightly di¤erent to the h function that appears in [69, Section 23].
Obviously, g : Rn ! R [ f+1g is convex (lsc, proper) if and only if f is
convex (lsc, proper, respectively). Moreover, g (0n) = "; dom g = (dom f)�
a; @"g (0n) = @"f (a) ; gph g = gph f � (a; f (a)� ") ; and K" (g; 0n) =
K" (f; a) ; so that we can assume w.l.o.g. that f (0n) = " in some proofs. It
is easy to see that epi g = epi f � (a; f (a)� ") ; so that

K" (f; a) = cone epi g: (32)

Furthermore,
K" (f; a) = cone gph g; for " > 0: (33)

In the particular case that f is convex, (32) yields K" (f; a) = R+ epi g:
Then, taking " = 0 we get

K (f; a) = cone [epi f � (a; f (a))] = D (epi f ; (a; f (a))) ;

which is the so-called cone of feasible directions of epi f at (a; f (a)) :
Now, if f is a quasipolyhedral function (i.e., the nonempty intersections

of its epigraph with polytopes are polytopes, see [30] and [31]), then K (f; a)
is a polyhedral convex cone for any a 2 dom f: This is obviously the case
when f is polyhedral.
First, we consider the existence of subgradients. The next result is a

straightforward consequence of Theorem 1.
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Proposition 12 (Existence of "-subdi¤erential (I))
Let f : Rn ! R[f+1g ; a 2 dom f; and " � 0: Then the following

statements are equivalent:
(i) @"f (a) 6= ;:
(ii) (0n;�1) =2 clK" (f; a) :
(iii) clK" (f; a) 6= cl cone (dom f � a)� R:
From this result one gets well-known results about the subdi¤erentials

of convex functions. First we state a proposition for not necessarily convex
functions.

Proposition 13 (Existence of "-subdi¤erential (II))
Let f : Rn ! R[f+1g and a 2 dom f: If a 2 rint conv dom f and

(a; f (a)) 2 rbd conv epi f , then @"f (a) 6= ; for all " � 0:
Proof. It is enough to show that @f (a) 6= ; because @f (a) � @"f (a)

for " � 0: Hence, we can assume that " = 0 and, w.l.o.g., that a = 0n
and f (0n) = 0 (by considering the function g in (31) for " = 0 if neces-
sary). Thus clK (f; a) = clR+ conv epi f; with 0n 2 rint conv dom f and
(0n; 0) 2 rbd conv epi f .
Suppose that @f (a) = ;: An application of Proposition 12 gives that
(0n;�1) 2 clK (f; a) = clR+ conv epi f: Taking anyM > 0 so that (0n;M) 2
rintR+ conv epi f we obtain, by the accessibility lemma, that (0n; 0) 2
rintR+ conv epi f a contradiction with (0n; 0) 2 rbd conv epi f: Therefore
we get the result @f (a) 6= ;. �

Proposition 14 (Existence of "-subdi¤erential (III)) Let f : Rn !
R[f+1g be a proper convex function and let a 2 rint dom f: Then @"f (a) 6=
; for all " � 0:
Proof. It follows immediately from Proposition 13 because dom f and

epi f are convex and (a; f (a)) 2 rbd epi f . �

Proposition 15 (Existence of "-subdi¤erential (IV))
([59, Theorem XI.1.1.2]) Let f : Rn ! R[f+1g be a proper lsc convex

function and let a 2 dom f: Then @"f (a) 6= ; for all " > 0:
Proof. Take " > 0 and consider the function g as in (31). Then g (0n) = "

and dom g = �a+dom f: Suppose that (0n;�1) 2 clK" (f; a) = clR+ epi g:
Take a convergent sequence f�k (xk; k)g in R+ epi g with �k � 0; xk 2
dom g; k � g (xk) ; such that

lim�k (xk; k) = (0n;�1) :
From here �kxk ! 0n and �kk ! �1: In particular we get that g (xk) �
k < 0 for k large enough. Now, if lim inf �k = 0; we can suppose w.l.o.g.
that �k 2 [0; 1] ; so �kxk = �kxk + (1� �k) 0n 2 dom g; thus

" = g (0n) � lim inf g (�kxk) � lim inf �kg (xk) + (1� �k) g (0n)
� lim inf �kk + " = �1 + " < ";
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a contradiction. Hence lim inf �k > 0; which yields that xk ! 0n: Then

" = g (0n) � lim inf g (xk) � lim inf k � 0;

another contradiction. Therefore, (0n;�1) =2 clK" (f; a) : Finally, an appli-
cation of Proposition 12 gives the result @"f (a) 6= ;. �

Remark 3 The standard proof for Proposition 15 (see [59, Theorem XI.1.1.2])
is simple and it is based on separation of convex sets by hyperplanes. The
proof we provide here is focussed in showing that (0n;�1) =2 clK" (f; a)
as an application of Proposition 12, with no further appealing to convex
analysis.

Example 4 Consider f (x) = �
p
1� x2 when x 2 [�1; 1] and f (x) = +1

otherwise, and take a = 1, to get @f (a) = ;. Hence the condition a 2
rint dom f is not super�uous in Proposition 14, and we cannot replace " > 0
just by " � 0 in Proposition 15.

Now we consider the inverse problem consisting of associating with a
given closed convex set F a proper lsc convex function f such that @"f (a) =
F:

Proposition 16 (Inverse problem for "-subdi¤erential (I)) [59, Ex-
ample XI.1.2.5] For any nonempty closed convex set F and for any a 2 Rn;
@f (a) = F whenever f (x) = �F (x� a) for all x 2 Rn:

Proof. Observe that @f (a) = fu 2 Rn : u0x � �F (x) ;x 2 dom�F g =
@�F (0). Then both sets have the same reference cone,

K (@f (a)) = K (@�F (0n)) = clK (�F ; 0n) = cl epi�F = epi�F ;

since the epigraph of �F is a closed convex cone. Thus, by (28),K (@f (a)) =
epi�F = K (F ), which yields @f (a) = F: �

Proposition 17 (Inverse problem for "-subdi¤erential (II)) For any
nonempty closed convex set F; a 2 Rn; and " > 0; there exists a proper lsc
convex function f such that @"f (a) = F:

Proof. First assume that F is a full dimensional closed convex set. Let
x 2 intF: Then 0n 2 int (F � x) ; and so the reference cone K (F � x) �
Rn � R++ [ f0n+1g : For " > 0; consider the closed and convex set C =
fx 2 Rn : (x; ") 2 K (F � x)g. Let g := �C + "; whose epigraph is epi g =�
(x; ) 2 Rn+1 : x 2 C;  � "

	
: Then we have K (F � x) = cl cone epi g:

The function h = �C+a satis�es g (x) = h (x+ a) � h (a) + ": We have,
by (32) K (@"h (a)) = clK" (h; a) = cl cone epi g. Thus @"h (a) = F � x:
Let f (x) = h (x) + hx; xi ; then, by straightforward calculations, we

obtain @"f (a) = @"h (a) + x = F:
Now, for a non full dimensional F; we can apply this result to a� F; which
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w.l.o.g. we may suppose to be some Rk�f0n�kg � Rn with a 2 Rk�f0n�kg.
Then, get a proper lsc convex function h : Rk � f0n�kg ! R[f+1g with
@"h (a) = F: Finally, extend h as +1 on the rest of Rn to obtain a proper
lsc convex function f : Rn ! R[f+1g such that @"f (a) = F: �

In the following example we will use the fact thatK (F � x) =MK (F ) ;

with M =

�
In 0n
�x0 1

�
to produce the function f such that @"f (a) = F:

Example 5 Take F = [0; 2]� R and x = a = (1; 1) : Then

K (F ) = cone f(�1; 0; 0) ; (1; 0; 2)g ; M =

24 1 0 0
0 1 0
�1 �1 1

35 ; and so K (F � x) =
cone f(�1; 0; 1) ; (1; 0; 2)g : Thus, C =

�
(�"; 0) ;

�
"
2 ; 0
��
; h (x) = 0 when x 2�

(1� "; 1) ;
�
1 + "

2 ; 1
��
and h (x) = +1 otherwise, and f (x) = x1+x2 when

x = (x1; x2) 2
�
(1� "; 1) ;

�
1 + "

2 ; 1
��
and f (x) = +1 otherwise.

We �nish this section with some geometrical results on "-subdi¤erentials.
Indeed, from Corollary 5, we can address geometrical properties of @"f (a)
by analyzing the cone K (@"f (a)) = clK" (f; a) : We will state only few of
them (e.g. Propositions 22 and 23) in order to keep simplicity. Thus, we
limit ourselves to discuss some results mostly obtained from other known
properties of LSIS theory, such as dimension, interior and compactness of
@"f (a).
The next dimension formula follows from Corollary 4.

Proposition 18 (Dimension of "-subdi¤erentials) Let f : Rn ! R[f+1g ;
" � 0; and a 2 dom f be such that @"f (a) 6= ;: Then

dim @"f (a) = n� dim linK (@"f (a)) :

In particular, @"f (a) is a singleton if and only if

dim lin clK" (f; a) = n:

Theorem 3 gives important properties about the dimension, the interior,
the boundary, and the relative boundary of solution sets of LSIS. However,
we need no assure that the de�ning linear semi-in�nite system is LFM. The
following lemma is referred for the "-subdi¤erential case.

Lemma 4 (Locally Farkas-Minkowski property) Let f : Rn ! R[f+1g
be a function with compact domain. If f is continuous, and a 2 dom f is
such that @f (a) 6= ;, then the system (29) de�ning @"f (a) is LFM for
" > 0.

Proof. Under the hypothesis on f; the system (29) is continuous. Take
any u 2 @f (a) 6= ;; then for all x 2 dom f and any " > 0, we have

(x� a)0 u � f (x)� f (a) < f (x)� f (a) + ":
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So u is a Slater point of the system (29). Therefore this system is LFM. �

Observe that Propositions 13 and 14 are very useful in order to apply
the previous lemma.

Proposition 19 (Interior of "-subdi¤erentials) Let f : Rn ! R[f+1g
be a continuous convex function with compact domain. Let a 2 rint dom f:
Then for " > 0 it holds:
(i) dim @"f (a) = n;
(ii) int @"f (a) =

�
u 2 Rn : (x� a)0 u < f (x)� f (a) + ";8x 2 dom f

	
:

In particular,
@f (a) � int @"f (a) :

Proof. An application of Lemma 4 and Proposition 14 give that the
system (29) is LFM. Theorem 3 completes the proof. �

The following lemma will be used in order to show that @"f (a) is com-
pact for rather general functions f whenever a 2 int conv dom f:

Lemma 5 Let ; 6= X � Rn: Then, (coneX)� = f0ng if and only if 0n 2
int convX:

Proof. Assume that (coneX)� = f0ng : Thus cl coneX = f0ng� = Rn:
If 0n =2 int convX; then there exists a a hyperplane H containing 0n such
that cl convX is contained in one of the half-spaces determined by H: This
half-space contains also coneX and its closure cl coneX = Rn; this is a
contradiction. Thus 0n 2 int convX:
Conversely, assume that 0n 2 int convX: Let " > 0 be such that B (0n; ") �
convX: Then,

Rn = coneB (0n; ") � cone convX = coneX:

Therefore, (coneX)� = f0ng. �

Proposition 20 (Compactness of "-subdi¤erentials (I)) Let f : Rn !
R[f+1g ; a 2 dom f , and " � 0 be such that @"f (a) 6= ;: Then, @"f (a) is
compact if and only if a 2 int conv dom f .

Proof. Since @"f (a) is always closed, @"f (a) being compact is equiva-
lent to being a bounded set, i.e., from Corollary 3 to f0ng = 0+@"f (a) =
Ndom f (a) = (coneX)

� for X = �a+dom f: From Lemma 5 this is equiv-
alent to 0n 2 int convX = �a+ int conv dom f; which holds if and only if
a 2 int conv dom f . �

Corollary 8 (Compactness of "-subdi¤erentials (II)) Let f : Rn !
R[f+1g be a proper lsc convex function and let a 2 dom f: Then, for all
" > 0, @"f (a) is compact if and only if a 2 int dom f .
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Proof. Proposition 15 gives that @"f (a) 6= ;. Hence, Proposition 20
applies. �

Proposition 21 (Motzkin decomposition of "-subdi¤erentials (I))
Let f : Rn �! R[f+1g be a function, " � 0; and a 2 dom f such that
@"f (a) 6= ;: Then @"f (a) is the sum of a compact convex set and a linear
subspace for any " � 0 if and only if (0n; 1) 2 rintK (@"f (a)) :

Proof. It is a straightforward application of Corollary 5(vii). �

Proposition 22 (Motzkin decomposition of "-subdi¤erentials (II))
Let f : Rn �! R[f+1g be a proper convex function. Then, a 2 rint dom f
if and only if @"f (a) is the sum of a nonempty compact convex set and a
linear subspace for any " � 0:

Proof. Let " � 0: First, suppose that a 2 rint dom f: Then, the assump-
tions on f and Proposition 14 guarantee that @"f (a) 6= ;: On the other
hand, a 2 rint dom f implies that 0n 2 rint dom g where g is the function de-
�ned in (31) with g(0n) = ". Thus, (0n; 1) 2 rint cone epi g = rintK (@"f (a))
and, by Proposition 21, @"f (a) is the sum of a compact convex set with a
linear subspace.
Conversely, if @"f (a) 6= ; is the sum of a compact convex set and a linear
subspace for any " � 0, then Proposition 21 gives that (0n; 1) 2 rintK (@"f (a))
= rint cone epi g; which implies that 0n 2 rint dom g; equivalently a 2
rint dom f: �

The particular case " = 0 is [53, Corollary 7].

Proposition 23 (Polyhedrality of "-subdi¤erentials)
Let f : Rn �! R[f+1g be a quasipolyhedral convex function and let

a 2 dom f: Then @"f (a) is a nonempty polyhedral convex set for any " � 0:

Proof. If f is a quasipolyhedral convex function, then epi f � (a; f (a))
is a polyhedral convex set containing (0n; 0) : Thus, the convex cone gener-
ated by epi f�(a; f (a)) is polyhedral and so it is closed. ThenK (@"f (a)) =
cone (epi f � (a; f (a))) is polyhedral and (0n;�1) =2 K (@"f (a)). Thus @"f (a) 6=
; and, by Corollary 5(ii), it is a polyhedral convex set. �

The facial structure of @"f (a) can be analyzed using Theorem 4 or Corol-
lary 6 as it was already established in Section 3 regarding the facial structure
of Voronoi cells. One needs either the analyticity or the ful�llment or the
LOP quali�cation of a linear representation of @"f (a). In a similar way as
for Voronoi cells, one has an analytic representation of @"f (a) when dom f
is the image of some compact interval I � R by some (componentwise)
analytic function g : I ! Rn. In fact, (29) is equivalent to�

(g (y)� a)0 u � f (g (y))� f (a) + "; y 2 I
	

(34)
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So, to identify the set L (u) involved in Theorem 4 and Corollary 6 one must
consider the slack function at u; z (y) := (g (y)� a)0 u�f (g (y))+f (a)�";
y 2 I: Since z (y) = �" when g (y) = a; z is not identically null on I. Thus,
to describe L (u) one must compute all zeros of z on I and, for any zero, say
y; with order of multiplicity d (y) + 1; calculate the successive derivatives
dz
dy (y) ; :::;

d(d(y))z
dy(d(y))

(y) :

Finally, notice that we can also apply Theorems 6 and 7 to analyze the
stability of @"f (a) under perturbations of the function f measured by the
pseudometric of the uniform convergence (see, e.g., [62]), in a similar way
as we did in Section 4 concerning the Voronoi mappings V and F : One can
obtain stability results for the set-valued mapping f 7�! @"f (a) such as
closedness, lower semi-continuity and upper semi-continuity.

6 Conclusions

The algebraization of geometry (and all of mathematics) started in the 17th
Century with Descartes�Dioptrique (1637), where he reformulated geomet-
ric problems related with triangles, until then solved with ruler and compass,
in terms of algebraic equations to be solved in radicals. Despite the criti-
cisms of some of his contemporaries, as Jean-Baptiste Morin and Pierre de
Fermat, Descartes� algebraic view of mathematics has advanced in many
�elds along the last four centuries, the paradigm being the algebraic refor-
mulation of geometrical problems involving the zeros of multivariate poly-
nomials, allowing to apply algebraic techniques (in particular, commutative
algebra). Even though for many respectable lovers of the constructive geo-
metric methods this phenomenon is nothing else than the result of the �ght
of �the devil of abstract algebra�against �the angel of geometry�(Hermann
Weyl dixit), we think that the algebraization of geometry has practical ad-
vantages, as it allows the obtention of new results and the simpli�cation of
previous proofs.
This paper pretends to be a modest step forward in the (linear) alge-

braization of computational geometry and mathematical analysis, trying to
illustrate how useful can be the theory of linear semi-in�nite systems in the
study of Voronoi cells of arbitrary sets and "�subdi¤erentials. It can be
objected that these simple proofs are possible after obtaining the necessary
algebraic tools, but these tools can be used in di¤erent settings. For in-
stance, our straightforward proof that any farthest Voronoi cell is coradiant
in Proposition 1 is based on the dual characterization of the coradiant sets
in Lemma 1, a result which has potential applications in other �elds.
However, we do not claim that all known results on Voronoi cells and

"�subdi¤erentials can be obtained this way. For instance, since no dual
characterization of the boundedly exposed points of closed convex sets is
available for the moment, the nonempty farthest Voronoi cells have not
been characterized here (the proof in [54, Theorem 22] is based on analytic
arguments).
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In summary, it would be unrealistic to claim at present that the theories
of Voronoi cells and "�subdi¤erentials are mere consequence of the existing
theory of linear semi-in�nite systems. On the contrary, we strongly believe
that Voronoi cells of arbitrary sets and "�subdi¤erentials will walk a long
time on two legs: mathematical analysis and LSIS.
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