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Abstract 

1. The importance of soil phosphorus (P) is likely to increase in coming decades due to 

the growing atmospheric nitrogen (N) deposition originated by industrial and 

agricultural activities. We currently lack a proper understanding of the main drivers of 

soil P pools in coastal dunes, which rank among the most valued priority conservation 

areas worldwide.  

2. Here we evaluated the joint effects of biotic (i.e. microbial abundance and richness, 

vegetation and cryptogams cover) and abiotic (i.e. pH and aridity) factors on labile, 

medium-lability and recalcitrant soil P pools across a wide aridity gradient in the 

Atlantic coast of the Iberian Peninsula.  

3. Climate determined the availability of medium-lability, recalcitrant and total P, but 

had a minor net effect on labile P, which was positively and significantly related to 

the presence of plants, mosses and lichens. Medium-lability P was significantly 

influenced by soil bacterial richness and abundance (positively and negatively, 

respectively).  

4. Our results suggest that microorganisms transfer P from medium-lability pool to more 

labile one. At the same time, increases in bacterial richness associated to biofilms 
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might be involved in the thickening of the medium-lability P pool in our 

climosequence.  

5. These bacterial-mediated transfers would confer resistance to the labile P pool under 

future climate change and uncover an important role of soil microorganisms as 

modulators of the geochemical P cycle. 

Keywords: biofilms, climosequence, coastal dunes, global change, medium-lability 

phosphorus, microbial transfer model, phosphorus pools 

Resumen 

1. Es probable que la importancia del fósforo (P) del suelo aumente en las próximas 

décadas debido a la creciente deposición atmosférica de nitrógeno (N) originada por 

las actividades agrícolas e industriales. Actualmente no tenemos un conocimiento 

adecuado de los principales factores que controlan las fracciones de P del suelo en 

dunas costeras, las cuales se encuentran entre las áreas de conservación prioritaria 

más valoradas en todo el mundo.  

2. Aquí, evaluamos los efectos conjuntos tanto de factores bióticos (es decir, abundancia 

y riqueza de microorganismos y cobertura de vegetación y criptógamas) como 

abióticos (es decir, pH y aridez) sobre las fracciones de P lábil, de labilidad media y 

recalcitrante a lo largo de un amplio gradiente de aridez en la costa atlántica de la 

Península Ibérica.  

3. El clima determinó la disponibilidad del P de labilidad media, recalcitrante y total, 

pero tuvo un efecto neto menor en el P lábil, el cual fue positivamente relacionado 

con la presencia de plantas, musgos y líquenes. El P de labilidad media fue 

positivamente y negativamente influenciado por la riqueza y la abundancia bacteriana 

del suelo, respectivamente.  

4. Nuestros resultados sugieren que los microorganismos transfieren P de labilidad 

media a fracciones más lábiles. Al mismo tiempo, incrementos en la riqueza de 

bacterias asociadas a biofilms podrían estar involucrados en el engrosamiento de la 

fracción de P de labilidad media en nuestra secuencia climática.  

5. Estas transferencias mediadas por bacterias le conferirían resistencia al P lábil bajo un 

escenario de cambio climático futuro y revelaría el importante papel de los 

microorganismos del suelo como moduladores del ciclo geoquímico del P.  A
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Palabras claves: biofilms, secuencia climática, dunas costeras, cambio global, fósforo de 

labilidad media, modelo de transferencia microbiana, fracciones de fósforo. 

 

1. Introduction 

Phosphorus (P) and nitrogen (N) are traditionally considered the most limiting nutrients in 

terrestrial ecosystems, but the global increase of atmospheric N deposition is expected to 

intensify P limitation (Peñuelas et al., 2013; Yue et al., 2016). As a result, a growing attention 

has been paid to understand the P cycle as a regulator of key ecological processes (Feng et 

al., 2016; Hou, Chen, et al., 2018; Turner, Wells, & Condron, 2014) . However, the role of 

climate — including its indirect effect through biotic and abiotic drivers — on the availability 

of P remains largely unexplored and little understood. In the soil, P interacts with minerals, 

dead organic matter, microbes, and plants, and is regulated by climate, which makes 

particularly challenging to fully understand its cycle (Ruttenberg, 2003). The dynamics and 

bioavailability of soil inorganic and organic P forms are predominantly controlled by 

geochemical but also by biological processes. Soil P is associated to mineral fractions that are 

mostly unavailable for organisms on the short term (Shafqat, Shahid, Eqani, & Shah, 2016). 

Thus, depending on soil chemical conditions (e.g. pH), soluble phosphate can precipitate, 

forming insoluble minerals with Ca, Fe or Al, adsorbed by sesquioxides (Weng, Van 

Riemsdijk, & Hiemstra, 2012), or be incorporated into soil organic matter and other soil 

colloids (Lambers, Raven, Shaver, & Smith, 2008). Under biological control, the P is linked 

to plant production and to microbial immobilization and mineralization. Thus, vascular plants 

influence soil P directly (litterfall) and indirectly, since they are able to develop efficient P 

uptake mechanisms (e.g. mycorrhizal symbioses) (Belnap, 2011; Lajtha & Schlesinger, 

1988). Cryptograms (mosses and lichens) along with soil microbes also have a key role in 

controlling soil P availability through secretion of organic acids, which solubilize bound P 

(Jones & Oburger, 2011), and respiration (excretion of H
+
), which diminishes soil pH and 

releases P bound to carbonate (Belnap, 2011).   

 Both geochemical and biological controls on soil P cycling are ultimately dependent 

on climate (Belnap, 2011; Hou, Chen, et al., 2018) since it determines both geochemical 

weathering and biological activity (Chadwick, Kelly, Hotchkiss, & Vitousek, 2007). For 

instance, increases in temperature have been shown to increase occluded P by favoring 

geochemical processes such as P sorption on secondary minerals (Hou, Chen, et al., 2018), A
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and to reduce P availability due to the effect of drier conditions on biological activity 

(Belnap, 2011). Precipitation can influence P losses through chemical weathering of primary 

mineral P (Walker & Syers, 1976) followed by surface runoff (Sims, Simard, & Joern, 1998). 

Also, increases in aridity have important effects on P biogeochemistry, by inducing nutrient 

unbalances and changes in P pools (Delgado-Baquerizo et al., 2013; Feng et al., 2016; Jiao et 

al., 2016), which are also affected by variations in soil organic matter (OM), microbial 

communities or pH (Hou, Wen, et al., 2018; Jones & Oburger, 2011; Shen et al., 2011). For 

example, microbial abundance and activity are strongly affected by soil pH (Aciego Pietri & 

Brookes, 2008; Hou, Chen, et al., 2018; Maestre et al., 2015), which at the same time drives 

organic P mineralization and solubilization of fixed P (Shen et al., 2011).  

Current climatic models forecast widespread aridity increases in terrestrial ecosystems 

worldwide (Huang, Yu, Guan, Wang, & Guo, 2016). Climate change is also likely have 

major impacts on the P cycle (Belnap, 2011; Hou, Chen, et al., 2018), but we do not know 

how changes in aridity will influence the availability of different soil P fractions with 

different lability, particularly in coastal dune areas. Dunes rank among the most valued 

priority conservation areas worldwide because of their high biodiversity (Acosta, Carranza, & 

Izzi, 2009; Lomba, Alves, & Honrado, 2008; Maltez-Mouro, Maestre, & Freitas, 2010; 

Mikkonen & Moilanen, 2012). Moreover, they have a critical role in mitigating the impacts 

of extreme weather events (Bellard, Bertelsmeier, Leadley, Thuiller, & Courchamp, 2012; 

Jentsch et al., 2011), such as hurricanes, which are likely to become more frequent in the 

future because of climate change (Diffenbaugh et al., 2017; Harley et al., 2006; Knutson et 

al., 2010). Understanding how climate change affects soil P pools in coastal dunes is essential 

to better understand its impacts on these key ecosystems. Doing so is also important to inform 

on potential conservation strategies, as primary production in dune areas is frequently limited 

by P (Kachi & Hirose, 1983), and vegetation plays a critical role stabilizing the dune 

substrate and protecting inland areas from extreme events (Silva, Martínez, Odériz, Mendoza, 

& Feagin, 2016). 

Herein, we studied a climosequence composed of 24 areas in the Atlantic-

Mediterranean coastline of the Iberian Peninsula to evaluate both the effects of geochemical 

and biological drivers on different soil P pools varying in their stability (i.e. labile, medium-

lability, recalcitrant and total P). We hypothesized that: i) increases in aridity will be directly 

linked to lower soil P pools (Belnap, 2011; Feng et al., 2016; Hou, Chen, et al., 2018), which, 

in turn, will be positively affected by increases in, organic matter content, microbial diversity 

and abundance and changes in soil pH (Hou, Wen, et al., 2018; Jones & Oburger, 2011; Shen 
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et al., 2011); and that ii) labile P fractions will be mainly affected by biological processes, 

while more stable P fractions will be mainly controlled by geochemical processes, which are 

strongly influenced by climate (Condron, Turner, & Cade-Menun, 2005; Cross & 

Schlesinger, 2001).  

 

2. Material and methods 

2.1.Study area and climatic data 

We carried out this study in 24 coastal dune ecosystems located along a ~1500 km, 

northwest-to-southeast climosequence across the Iberian Peninsula (Table S1, Figure S1). 

Their climate ranged from Mediterranean with oceanic influences to Mediterranean dry 

(Köppen-Geiger Classification; Kottek et al., 2006). Mean annual precipitation (MAP) and 

temperature (MAT), annual potential evapotranspiration (PET) and aridity index (UNEP, 

1992) for each sampling site were extracted from WorldCLIM 2.0 (Fick & Hijmans, 2017) 

and Global Aridity and PET (CGIAR-CSI) datasets (Trabucco & Zommer, 2019) 

respectively, using R version 3.5.1. (rgdal and raster packages; R Core Team, 2018, Vienna, 

Austria). Climate data was averaged for the reference period 1970-2000. MAP and MAT 

ranged from 1441 mm/year and ~13.8ºC, respectively, in the north-west, to 225 mm/year and 

~18ºC, respectively, in the south-east. Aridity was determined based on the UNEP Aridity 

Index (AI), following the equation:  

𝐴𝑟𝑖𝑑𝑖𝑡𝑦 = 1 − (𝐴𝐼), 𝑤ℎ𝑒𝑟𝑒𝐴𝐼 =
𝑀𝐴𝑃

𝑃𝐸𝑇
   (1) 

Our climosequence covered a wide aridity gradient, as it ranged from -0.28 to 0.86 from 

north-west to south-east (see AI in Figure S1). Aridity was highly correlated with both MAP 

and MAT along the gradient surveyed (Figure S2). 

Soils were classified as Arenosols derived from aeolian sands (IUSS Working Group 

WRB, 2014). Stabilized dunes (i.e. the last stage of dune systems development, which allows 

colonization of perennial plant species) along the climosequence were well conserved and the 

sandy substrate fixed by scrubs, shrubs and arboreal vegetation. Dominant perennial plant 

species were mainly Ammophila arenaria (L) Link, Helichrysum picardii (Boiss. & Reuter), 

Crucianella marítima (L.), among others (see Table S1 for a full list of species and climate 

characteristics of each plot).  A
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The features of the studied sites, which show large differences in climate and 

photosynthetic cover (from 20% to 100%) but share the same soil type, minimize the usual 

soil type-related confounding factors in observational studies carried out over large areas, 

which facilitates the study of the effects of climate. We identified three microsites with 

different prevalence along the climosequence: plant (areas under the canopy of vascular 

plants), cryptogams (areas under mosses and lichens) and bare soil (areas without any visible 

photosynthetic cover). For some of the analyses, the plots along the aridity gradient were 

divided in three groups based on the local heterogeneity of microsites. The first group 

("Humid sites"), included those plots (n=9) which were located in the north part of the 

gradient (Figure S1), and was characterized by the absence of bare soil areas, so the entire 

plot surface was covered either by plants or cryptogams (mostly mosses). The second group 

("Mesic sites") was defined by those plots where the three microsites were clearly identified 

and covered a significant part of the plot. These plots (n=4) were located in the mid part of 

the aridity gradient. Finally, the third group ("Dry sites") included those plots (n=11) having 

only plant and bare soil microsites, which were located in the southern and eastern part of the 

gradient. 

2.2.Field survey and soil samples processing 

We sampled our study sites in July 2016. For each site, we established a 30 × 30 m plot 

parallel to the coastline. We used the line-point intercept method for estimating both biotic 

cover and plant community composition in each plot (Brun & Box, 1963). In total, we 

sampled 4 transects of 25 m of length in each plot. Data of species was noted every 20 cm 

along each transect. As most of the sites had a patched vegetation cover intermixed with bare 

soil and cryptogamic patches, we carried out a stratified soil sampling in the three main 

microsites described above (plants, cryptogams and bare soil). For each microsite, we 

collected five, randomly located soil samples from the top 10 cm of the soil profile using a 10 

× 10 × 10 cm square sampler. We pooled soil samples of each microsite to make composite 

samples. Visible roots and stones were carefully removed from all soil samples before sieving 

(2 mm mesh). Soil samples were collected in the dry season  

to reduce bias between aridity gradient sites as a result of seasonal changes in the soil 

variables studied (Delgado-Baquerizo et al., 2016), air dried in the lab for one month and 

stored in polyethylene bags until analyses. We also kept a set of field-moist subsamples at -

20ºC for microbiological analysis. Soil pH was measured with a pH meter, in a 1:2.5 A
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(mass:volume, soil:water) suspension. Soil organic matter content was determined by loss on 

ignition at 450 °C for 4 h (Nelson & Sommers, 1996). 

2.3.Phosphorus fractionation 

We quantified both labile and more stable P fractions using a modified sequential extraction 

method by Tiessen & Moir, 1993, which is based on the Hedley fractionation technique 

(Hedley, Stewart, & Chauhan, 1982) (Figure S3). This method estimates different P fractions 

of decreasing bioavailability. Inorganic P (Pi) extracted with ion exchange resins (Resin Pi) 

represents the most bioavailable P pool, which is absorbed on surfaces of soil crystalline 

compounds. Bicarbonate-extractable P is weakly absorbed by soil colloids, and is still 

available for plant uptake. Both Pi and organic P (Po), extracted with NaOH, are strongly 

chemisorbed by Fe-Al components within the soil, and are considered medium term plant-

available P. Finally, the procedure ends with the extraction of the most stable forms of P, 

HCl-extractable Pi, which is typically associated to Ca in soils, and residual P, which 

represents the pool from the primary mineral such as apatite (Hedley et al., 1982; Tiessen, 

Stewart, & Cole, 1984).  

In short, 0.5 g of soil samples were placed in 50 mL polyethylene centrifuge tubes 

together with 30 mL of demineralized water and two 4 × 2 cm anion-exchange membranes 

(AMI-7001S, Membranes International Inc., New Jersey). After tubes were shaken, resins 

were removed and placed in clean 50 mL tubes adding 0.7M NaCl to extract PO4
-
. Then, soil 

samples were sequentially extracted with 30 mL aliquots of 0.5M NaHCO3 (adjusted to pH 

8.5), 0.1M NaOH, 1M HCl, and 0.5M H2SO4 after 550 °C of soil combustion (Figure S3).  

For each extraction, tubes were shaken for 16 hours and then centrifuged at 900 g for 30 

minutes (Guppy, Menzies, Moody, Compton, & Blamey, 2000). The concentration of PO4
3-

-P 

in the supernatant was used to estimate Pi associated to each P fraction. We estimated Po 

fractions by subtracting Pi from the total P obtained after digesting the Po into Pi in the 0.5M 

NaHCO3, and 0.1M NaOH extracts. We used an alkaline digestion with 0.148M K2S2O8 and 

3M NaOH for the NaHCO3 extract (NaHCO3-Pt), and an acid digestion with (NH4)2S2O8 and 

0.9M H2SO4 for the NaOH extract (NaOH-Pt). Both digestions were made in the autoclave at 

121 ℃ for 1 h and 1h 30 min, respectively (Tiessen & Moir, 2006). For the determination of 

residual P, soil samples were heated in a furnace at 550 ºC for 1h. Then, the burned soil 

residue was extracted with 5 mL of 0.5M H2SO4, shaken for 1h, filtered and the PO4
3-

 

concentration measured in this extract (Chen et al., 2015). We used the Malachite Green A
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Method (Fernández et al., 1985; modified from Hess & Derr, 1975) to estimate PO4
3-

-P 

concentration in the extracts. Malachite green has been found to be the most sensitive basic 

dye for phosphate determination (Itaya & Ui, 1966; Rahutomo, Kovar, & Thompson, 2019). 

The pH of the extracts was adjusted to neutral pH to reach a correct colour development of 

samples as necessary. The absorbance of samples was measured at 655 nm wavelength by 

triplicate in a microplate reader (Jupiter, Asys Hitech GmbH).  

The different P fractions were grouped in categories according to temporary P 

availability. We estimated labile P (PL, i.e. short-term bioavailable P) pool as the sum of 

Resin Pi and NaHCO3 Pt, whereas medium-lability P (PML) pool was defined as the sum of 

NaOH Pt and HCl Pi. Recalcitrant P (PR) pool was the residual P fraction derived from 

primary minerals as apatite and long-term bioavailable P (Cross & Schlesinger, 1995; Hedley 

et al., 1982; Tiessen et al., 1984; Walker & Syers, 1976). Finally, Total P (PT) was calculated 

as the sum of all the extracted P fractions.  

2.4.Bacterial and fungal abundance 

Soil total metagenomic DNA was extracted from 0.5 g of frozen soil using the PowerSoil 

DNA isolation kit (MOBIO Laboratories, Inc. Carlsbad, CA, USA) following the 

manufacturer’s protocol, except for modifications in the lysis step [we used a tissue 

homogeniser (Precellys 24-dual, Bertin technologies, Montigny-le Bretonneux, France) at 

4500 rpm for 45 s, twice]. The abundance of total soil fungi and bacteria was determined with 

real-time quantitative PCR (q-PCR) using 96-well plates on an ABI 7300 Real-Time PCR 

(Applied Biosystems, Foster City, CA. USA). Total fungal 18S and bacterial 16S r-RNA 

genes abundances were quantified in duplicate and then pooled using primer pairs ITS1F/5.8s 

and Eub338/Eub518, respectively (Evans & Wallenstein, 2012; Maestre et al., 2015). The 

reaction mixture contained 2 µl of DNA template (4 ng/µl), 5 µl of PowerUpTM SYBR 

Green Master Mix (2x) (Applied Biosystems, Foster City, CA, USA), 0.3 µl of each primer 

(0.4 mM) and 0.4 µl of BSA (0.4 mg/ml) in a total volume of 10 µl. 

2.5.Bacterial and fungal richness – high throughput sequencing and bioinformatics 

DNA extractions were frozen and delivered to the Next Generation Genome Sequencing 

Facility of the University of Western Sydney (Australia) for amplicon sequencing using 

Illumina Miseq platform. Richness of soil bacteria and fungi were derived from the amplicon 

sequencing on the bacterial 16S rRNA gene and fungal Internal transcribed spacer (ITS) 

sequence, respectively. Primer pair 341F/805R was used for bacterial 16S rDNA v3-v4 
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region (Herlemann et al., 2011); primer pair FITS7/ITS4 was used for fungal ITS sequence 

(Ihrmark et al., 2012).  Raw reads were quality-controlled and merged using USEARCH 

(Edgar, 2010), and merged reads with expected error lower than 0.5 were filtered.  Error 

correction on amplicons were performed using UNOISE3 (Edgar, 2016), with 100% identity 

for Operational Taxonomic Unit determination (i.e. zOTU). Bacterial and fungal richness 

were calculated from the zOTU table at a resampling depth of 14187 and 18924 reads per 

sample, respectively. 

2.6.Statistical analysis  

Regression analyses were carried out to test linear and polynomial relationships between 

aridity and the concentrations of the different P pools. The appropriate model selection was 

based on AIC values. Previously to calculate plot-level concentration of each P pool, we 

calculated the weighted average of the three microsites taking into account the area of the 

plot covered by each of them (Durán et al., 2018; Maestre et al., 2012). For each site (humid, 

mesic and dry), we performed linear mixed model with microsite as fixed factor and plot as 

random factor to explore the influence of microsite on the different P pools, as well as post-

hoc tests, lsmeans package (Lenth, 2016), to compare the different microsites in each type of 

plots. Data were transformed to logarithm when necessary to normalize their distribution.   

We used structural equation modelling (SEM; Grace, 2006) to evaluate the direct and 

indirect effects of aridity, microsite (bare soil/photosynthetic cover) and soil properties (pH, 

organic matter content, bacterial and fungal abundance and richness) on the concentration of 

the different P pools (see Figure S4 for our priori model). Based on the the chi-squared test 

(χ
2
; the model has a good fit when χ

2
/df is ≤ 2, and P is > 0.05), the root-mean-square error of 

approximation (RMSEA; the model has a good fit when RMSEA is indistinguishable from 

zero, and P is > 0.05), as well as the Bollen-Stine bootstrap tests (Hooper, Coughlan, & 

Mullen, 2008; Schermelleh-Engel, Moosbrugger, & Müller, 2003) we tested the overall 

goodness of fit of our SEM. After verifying the adequate fit of our model, we interpreted the 

path coefficients of the model and their associated P-values. A path coefficient is analogous 

to the partial correlation coefficient or regression weight, and describes the strength and sign 

of the relationships between two variables (Grace, 2006). As our data were not always 

normally distributed we used bootstrap tests to assess whether the probability that a path 

coefficient differs from zero (Kline, 2011; Schermelleh-Engel et al., 2003). We calculated the 

standardized total effects of all drivers on the selected P fractions. The net influence that one A
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variable had upon another was calculated by summing all direct and indirect pathways 

(effects) between two variables.  

Regression analyses and mixed-effect models, nlme package (Pinheiro, Bates, 

DebRoy, Sarkar, & R Core Team, 2019) were conducted with the software R, version 3.5.1. 

(R Core Team, 2018, Vienna, Austria). All SEM analyses were conducted using the software 

AMOS 24.0 (IBM SPSS, Chicago, IL, USA).  

 

3. Results 

 Across the gradient, most of the total P (ca. 72%) was found in the medium-lability P pool 

(Table 1). The remaining total P was distributed in similar amounts between labile and 

recalcitrant P. The labile P pool comprised ca. 1/3 of resin-P and 2/3 of NaHCO3-P. The 

majority (ca. 80%) of the medium-lability P was composed by the HCl-Pi fraction, whereas 

similar amounts of organic and inorganic P were found in the less abundant NaOH fraction. 

Soil concentrations of medium-lability P (PML), recalcitrant P (PR) and total P (PT) 

were negatively related to aridity (F (PML)= 8.17; F (PT)= 8.7; F (PR)= 8.69, respectively; df= 

22 and p<0.01 for all cases) (Figure 1b, 1c and 1d; see Table S2 and S3 for F-and p-values of 

the relationships among climatic variables and all P pools/fractions, respectively). 

Conversely, labile P (PL) was not significantly related to aridity (Figure 1; see Figure S5 for 

regressions between MAT, MAP and all P pools). 

 Our SEM explained 73% of the variation in soil total P (Figure 2a). Soil total P was 

significantly and negatively influenced by aridity and bacterial abundance, but positively by 

pH, organic matter (OM) and bacterial richness. We did not find significant relationships 

among fungal abundance or richness and any variable included in our SEMs, so both were 

discarded from the SEMs analysis. We also found negative indirect effects of aridity (through 

reductions in bacterial richness), positive indirect effects of pH (through increases in bacterial 

richness), and negative indirect effects of OM (through increases in bacterial abundance) on 

soil total P. The standardized total effects (sum of direct and indirect effects) indicated that 

aridity and pH were the most important predictors of soil PT, with a negative and positive 

influence, respectively. In contrast to soil PT, our SEM only explained 37% of the soil PL 

variation (Figure 2b). Soil PL was positively and significantly related to soil OM, suggesting 

an important biologic origin of this pool. We did not find a significant direct effect of aridity 

on soil PL. The standardized total effects showed that the main drivers of soil PL were OM 

and pH, both with a positive influence. Our SEM was able to explain 68% of the variation in 
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the PML (Figure 2c). Soil pH, OM and bacterial richness showed a positive direct effect on the 

mid-term available P, while bacterial abundance and aridity showed a negative direct 

influence. Our results also showed negative indirect effects of aridity (through reductions on 

bacterial richness), pH (through increases in bacterial richness), and OM (through its positive 

effect on bacterial abundance) on this P pool. The negative direct effect of microbial 

abundance on soil medium-lability P unveil a microbial transfer of medium-lability to labile 

P as shown in Figure 3. The most important predictors of PML were aridity and pH, with a 

negative and positive influence, respectively. Finally, our SEM was only able to explain 47 % 

of the variation in soil PR, and we only found a positive direct effect of aridity on this P pool 

(Figure 2d).  

In dry sites, the effect of microsite was significant for PL and PT, which were higher 

under the canopy of vascular plants than in bare ground soils (F = 6.31, p<0.05; F = 5.26, 

p<0.05, respectively; Figure 4a and 4d), suggesting that the short-term availability of P is 

biologically driven. The differences in PL were due to the higher amounts of resin P found 

under vegetation (F=10.45, p<0.01), whereas higher NaOH Pi concentration (F= 8.57, 

p<0.05) at this microsite contributed to the higher Pt as compared with bare ground soils. In 

humid sites, we detected significant higher amounts of resin P under vascular plants than 

under cryptogams (mosses) (F= 12.68, p<0.001), reflecting the dominance of mineralization 

over immobilization by microorganisms under vascular plants (but not under mosses). We 

did not find significant differences among microsites in mesic sites for any P fraction (See 

Table 1 for means and standard errors of the different P pools/fractions concentrations).  

  

4. Discussion 

Our study provides new insights on soil homeostasis of the most available P pool along an 

aridity gradient, giving support to the hypothesis of the decoupling of N and P cycles with 

increasing aridity described by Delgado-Baquerizo et al. (2013). Further, it may also help to 

explain the more general balance of the N and P cycles predicted under global change 

scenarios (Peñuelas et al., 2013). Delgado-Baquerizo et al. (2013) suggested that a higher 

mechanical weathering rate may be behind the relative higher P availability compared to C 

and N observed under high aridity conditions in global drylands. Our results suggest an 

additional mechanism mediated by microorganisms (bacterial abundance) that would transfer 

P from medium-lability pool to more labile one (Figure 3) contributing to the thickening of 

this bioavailable soil P pool. This mechanism would confer resistance to the P labile pool to 
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changes in aridity, and may be a complementary mechanism explaining the relatively high P 

availability respect to N with increasing aridity (Delgado-Baquerizo et al., 2013). More 

generally, this resistance of the labile P pool based on the multiple biological and 

geochemical interactions may determine P availability under scenarios of increasing N 

deposition.  

We hypothesized that all P pools should be influenced by aridity. However, 

significant negative slopes were only found between aridity and medium-lability P, 

recalcitrant P, and total P indicating lower weathering rates as aridity increases. Higher 

precipitation should enhance greater chemical weathering rates throughout its effects on both 

soil properties and biotic communities (Dixon, Chadwick, & Vitousek, 2016; White & Blum, 

1995), resulting in the accumulation of the stable forms of P in the soil profile until leaching 

does not overcome weathering rates. Hou et al. (2018), using a global dataset of 96 published 

articles including a wide range of precipitation (31-6000 mm/yr), found that some P fractions 

(available P, primary mineral P and soil total P) were negatively affected by mean annual 

precipitation as an effect of the leaching of the weathered minerals with high precipitation 

(Hou, Chen, et al., 2018). In the precipitation range studied here (225-1441 mm/yr), leaching 

intensity of weathered minerals should be less relevant (Austin & Vitousek, 1998). Thus, the 

balance of P as a result of geochemical processes (i.e. weathering and/or dust deposition rates 

vs. leaching and/or erosion rates) may be negative in more humid biomes (e.g. tropical 

systems), but positive in dryland ecosystems (Turner, Wells, Andersen, & Condron, 2018; 

Vitousek & Chadwick, 2013). Indeed, changes in P pools along a climosequence induced by 

the effect of precipitation on geochemical and physical processes were also found by Feng et 

al. (2016). These authors described that total P decreased with increasing aridity, but this 

tendency reverted in sites with aridity values > 0.8 due to P accumulation.  

Interestingly, we expected that climate controls on stable P were mirrored by labile P 

pool, but the lack of any significant relationship between labile P and aridity suggested, as 

indicated above, a high resistance for this pool, with important implications for the ongoing 

environmental global change. Thus, if available P stays stable with aridity, the unbalance in 

the C, N and P bioavailability will be driven by relative increases in C and N availability 

(Delgado-Baquerizo et al., 2013; Menge, Hedin, & Pacala, 2012), which may exacerbate the 

P demand by organisms (Peñuelas et al., 2013; Vitousek, Porder, Houlton, & Chadwick, 

2010). In any case, our results suggest that, because of the rapid turnover rate of labile P pool 

(Shafqat et al., 2016), available P would be more dependent on mechanisms such as P uptake 
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by plant roots, the rapid sorption of P in occluded mineral forms, and microbially related 

processes (mineralization, immobilization and solubilization) than on long-term 

macroclimatic effects (Austin & Vitousek, 1998; Belnap, 2011; Castenholz & Garcia-pichel, 

2012; Verrecchia et al., 1995). Indeed, both the significance change of plant community 

cover and our explicit consideration of the different microsites present along the 

climosequence (i.e. plant- and cryptogam-covered areas as well as bare soil areas without any 

visible photosynthetic cover) add support to the idea that inorganic anions, secreted by plant 

roots or derived from OM mineralization, could compete for adsorption sites of calcium 

carbonate minerals increasing the availability of P under vegetation and also highlight the 

contribution of litter to soil P content (Cross & Schlesinger, 2001; Shen et al., 2011). Thus, 

we could highlight the important role of the spatial distribution of the vegetation cover in 

both labile and total P.  

In turn, our results show that changes in soil pH affected medium-lability P, 

underlining the influence of pH on P availability (Shen et al., 2011). Alkaline soils, 

characterized by a major content of calcium cations, promotes the precipitation of inorganic 

phosphorus as calcite or di-calcium phosphates (Belnap, 2011).   Therefore, the high content 

of calcium carbonates (CaCO3) from seashells on coastal soils could explain the highest 

concentrations of calcium phosphates (Cross & Schlesinger, 2001; Staunton & Leprince, 

1996), which represents approximately 80% of medium-lability P in our dune climosequence.   

We found a strong association between bacteria and medium-lability P, with bacterial 

abundance and bacterial richness having opposed effects. While the capacity of bacteria to 

solubilize P from minerals is well known (Shrivastava, Srivastava, & D’Souza, 2018) and 

may explain a bacterial abundance-mediated transfer from medium-lability P to labile P, the 

possibility that bacteria (and its richness) could increase this (mostly) mineral pool 

(adsorption of P in soil surfaces mediated by bacteria) is, to the best of our knowledge, 

largely unknown for terrestrial soils. However, microbial-mediated P adsorption has been 

described in marsh and wetland soils (e.g. Rejmánková & Komárková, 2000; Scinto & 

Reddy, 2003) and has been recognized as one of the most important mechanisms involved in 

the withdrawal of available P in sewage treatment plants (De-Bashan & Bashan, 2004; Lu, 

Yang, Shabbir, & Wu, 2014). The mechanism involves the adsorption of large amounts of P 

in the extracellular polymeric substances (EPS) secreted by biofilms. We believe that this 

mechanism may also explain the positive effects of bacteria richness on medium-lability P 

because: first, increasing evidence shows that biofilms are the predominant mode of life for 
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soil microorganisms (Flemming & Wuertz, 2019; Gutiérrez Castorena et al., 2016; Kuzyakov 

& Blagodatskaya, 2015); second, soil biofilms are directly related with bacterial diversity 

(Wu et al., 2019); and finally, significant amounts of EPS are found in aerobic soils (Wang et 

al., 2019). Thus, beyond the well-known microbial control of the biological cycle of soil P, 

we suggest that the geochemical cycle may also be, at least partially, under biological control. 

Our findings provide novel insights on how biotic and abiotic factors affect different 

P pools in stabilized dune ecosystems. The results obtained emphasize the negative effect that 

climate change can have on the total reserves and on the less labile fractions of P in coastal 

dune soils. Likewise, they highlight the higher resistance of the most labile P fractions, which 

provides a better understanding of the imbalance of P availability regarding their N and C 

counterparts with increasing aridity. Interestingly, they also uncover a mechanism not 

described so far about bacterial-mediated P transfers between different P fractions, which 

directly attributes an important modulator role of soil microorganisms on the geochemical P 

cycle in terrestrial ecosystems.   
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Tables and figures 

 

Table 1. Concentration (mean + SE) of fractions/pools P (mg/kg) along the climosequence studied. Weighted (taking into account the proportion 

of each microsite within the plot, N=25) and microsite-level values are presented. P fractions grouped by lability: PL (labile P), PML (medium-

lability P), PR (recalcitrant P) and PT (total P). Average percentage for P fractions grouped by lability are in brackets. 
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P fractions Weighted plot 
Microsites 

Humid sites (N = 9) Mesic sites (N = 4) Dry sites (N = 11) 

 Cryptogam Vegetation Bare soil Cryptogam Vegetation Bare soil Vegetation 

Resin P 4.6 (0.4) 4.4 (0.5) 5.4 (0.5) 4.6 (0.5) 2.4 (0.5) 3.6 (1.0) 3.9 (0.6) 6.2 (1.0) 

NaHCO3 Pi 8.5 (0.9) 9.6 (1.5) 11 (1.6) 5.1 (1.4) 5.4 (1.6) 5.1 (1.7) 8.1 (1.9) 8.0 (1.4) 

NaHCO3 Po 4.9 (0.5) 4.5 (1.2) 6.0 (2.2) 7.4 (1.5) 6.9 (1.2) 5.7 (1.5) 4.0 (0.7) 7.0 (1.5) 

NaHCO3 Pt 13.3 (0.9) 14.2 (1.7) 17.0 (2.1) 12.5 (0.7) 12.2 (1.4) 10.9 (0.9) 11.2 (1.3) 15.0 (2.1) 

NaOH Pi 6.1 (0.8) 6.1 (1.6) 6.8 (1.6) 9.4 (1.1) 7.8 (1.4) 9.0 (1.9) 3.6 (0.7) 5.6 (0.9) 

NaOH Po 5.9 (0.6) 7.0 (0.9) 6.4 (0.6) 9.7 (1.9) 9.0 (2.2) 7.6 (1.9) 3.8 (0.9) 4.8 (0.8) 

NaOH Pt 12.0 (1.2) 13. (2.3) 13.1 (2.1) 19.0 (1.4) 16.9 (1.9) 16.6 (1.4) 7.4 (1.1) 10.3 (1.2) 

HCl Pi 84.6 (8.8) 119.6 (10.0) 116.4 (9.7) 76.7 (9.4) 67.9 (6.8) 91.3 (16.3) 57.6 (12.9) 57.4 (12.6) 

Residual P 18.8 (1.8) 23.4 (3.8) 22.4 (3.0) 20.3 (4.4) 20.9 (3.5) 20.1 (3.8) 15.6 (1.3) 15.0 (1.3) 

P fractions grouped by lability 

PL(16%) 17.9 (1.2) 18.6 (2.2) 22.3 (2.3) 17.0 (1.0) 14.7 (1.8) 14.5 (1.4) 15.1 (14.6) 21.2 (2.9) 

PML (68%) 96.5 (9.0) 132.6 (9.6) 129.4 (9.4) 95.7 (8.9) 84.7 (4.9) 107.9 (15.9) 65.0 (1.6) 67.7 (12.5) 

PR (16%) 18.8 (1.8) 23.4 (3.8) 22.4 (3.0) 20.3 (4.4) 20.9 (3.5) 20.1 (3.8) 13.6 (12.9) 15.0(1.3) 

PT 133.2 (10.6) 174.6 (10.8) 174.2 (12.2) 133.1 (13.6) 120.3 (6.6) 142.45 (18.9) 93.6 (14.6) 103.5 (14.8) 
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Figure captions 

Figure 1. Relationship between aridity and labile, medium-lability, recalcitrant and total P 

(mg/kg soil). Black circles, solid lines and asterisk represent each sampling point (n=24), the 

fitted linear regressions and significance of P < 0.05, respectively.  

 

 

Figure 2. Effects of aridity, bacterial abundance (BA), bacterial richness (BR), organic 

matter (OM) and pH on total (a), labile (b), medium-lability (c) and recalcitrant (d) soil P 

pools. Right panels show the total (direct plus indirect) effects derived from the structural 

equation modelling. Numbers on arrows and width of lines are indicative of the effect size of 

the relationship. Continuous and dashed arrows indicate significant and not significant 

relationships, respectively. Positive and negative relationships are represented in red and blue 

lines, respectively. Significance levels are as follows: 
.
, P < 0.10; *, P < 0.05; **, P < 0.01.  

 

Figure 3. Microbial transfer model between medium-lability P and labile P mediated by 

bacterial abundance and bacterial richness. Bacterial abundance would transfer P from 

medium-lability to more labile pool and bacterial richness would have opposed effects 

increasing mostly mineral P pool through adsorption of P.  

 

Figure 4. Differences between microsites (vascular vegetation and cryptogams and bare 

ground areas) in labile, medium-lability, recalcitrant and total P in humid (n=9), mesic (n=4) 

and dry (n=11) sites. Differences between microsites (p < 0.05) are indicated by different 

lowercase letters.  
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Figure 3 
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