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Abstract: Childhood anterior cruciate ligament (ACL) injuries—which can pose a major risk to a
child’s sporting career—have been on the rise in the last few decades. Dynamic knee valgus (DKV)
has been linked to an increased risk of ACL injury. Therefore, the aim of this study was to analyze the
acute effects of an ACL injury prevention protocol (ACL-IPP) and a soccer-specific fatigue protocol
(SSFP) on DKV in youth male soccer players. The research hypothesis was that DKV would be
reduced by the ACL-IPP and increased by the SSFP. Eighteen youth male soccer players were divided
according to baseline DKV. Those with moderate or large DKV performed a neuromuscular training
protocol based on activation of the abductor and external rotator hip muscles. Those with little or no
DKV performed a soccer-specific fatigue protocol. DKV was assessed using the single-leg squat pre-
and post-protocols in both legs. The ACL-IPP significantly decreased DKV during single-leg squat
(p < 0.01, effect size = 1.39), while the SSFP significantly increased baseline DKV in the dominant
leg during single-leg squat (p = 0.012; effect size = 1.74). In conclusion, the ACL-IPP appears to
acutely reduce the DKV in youth male soccer players, and the SSFP seems to acutely increase the
DKV in those players who showed a light or no DKV in a non-fatigue situation. By using the SSFP,
it may be possible to determine which players would benefit from injury prevention programs due
to increased DKV during game scenarios, while hip abductor and external rotator neuromuscular
training may be beneficial for players who have moderate and severe DKV during single-leg squat
under non-fatigued scenarios.
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1. Introduction

Jumping is one of the most common actions in sports. The vast majority of sports practices require
jumps and explosive movements in the execution of their main sporting gestures. Thus, these skills
can be considered as performance factors [1]. However, the landing pattern seems to influence to a
great extent the forces received by the joints involved, especially the vertical forces [2] and therefore
the risk of injury [3]. The type of injury in each sport varies, although particularly in soccer, the lower
body is by far the most affected in all age ranges and performance levels [4,5]. The knee and the ankle
appear to be the areas with the highest prevalence of injury in this sport [6] and nearly one-third of
these injuries have been reported to be due to poor knee function [7]. In fact, between a third and a
quarter of the soccer injuries occur without contact [7,8], which is quite worrying.

The anterior cruciate ligament (ACL) rupture is one of the most severe and prevalent injuries in
soccer and ball sports [9], occurring mostly in noncontact situations [10,11]. Furthermore, ACL rupture
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in soccer becomes even more important, as it seems to be one of the most complex injuries to treat
and the one which disables the athlete the longest [12–14]. In addition, even after a proper ACL
reconstruction and rehabilitation, individuals often have impaired strength, proprioception, stability,
balance and neuromuscular control [15], as well as an increased risk for ACL re-injury [16]. Aside from
this increased re-injury risk, 59–70% of injured soccer players appear to develop knee osteoarthritis,
with total knee arthroplasty required in 15% of those cases [17,18]. In fact, many of the injured players
are not able to return to their pre-injury level of performance [19], which is extremely relevant.

Therefore, it is obvious that the ACL injury affects not only the performance or the quality of life
of those involved, but also the economic burden on health systems, with estimated costs of around
US$26 billion per year in the United States, including the treatments dedicated to reconstruction and
rehabilitation [18,20]. Furthermore, it should also be noted that the number of ACL injuries in children
and adolescents has increased considerably in the last years [21,22]. Due to the musculoskeletal
immaturity of this population it seems that even more attention should be paid than in adults, since an
injury at such a young age could have unexpected complications and even drastically limit the child’s
future sports career [23].

Multiple theories regarding ACL injury (e.g., quadriceps shear force, axial loading or knee
hyperextension) have been proposed in previous literature, although it is currently stated that the
main mechanism of injury involves more than one plane of movement [24]. Thus, different studies
have showed that knee valgus and the tibial rotation could be the main causes of ACL injury [24,25].
They are caused mainly in landings or abrupt changes of direction, in which the reaction forces with
the ground may be five to seven times the body weight [26]. Dynamic knee valgus (DKV) is a modified
pattern of movement or alteration in the alignment of the lower limb, mainly observed in the frontal
plane [27] and with knee abduction load predicting 70–80% of ACL injury risk [3]. It should be noted
that the occurrence of DKV is more pronounced in the female gender [28], although this does not mean
that there is no risk in the male population [29]. Several factors have been analyzed as triggers of this
alteration in knee movement, but two of the recent factors that have shown some evidence have been a
reduced ankle dorsiflexion [30] and a deficit of strength or impaired activation of the abductor and
adductor hip muscles, in particular a weakness in the abductors and external rotators of the hip [31,32].
Recent evidence suggests that knee and ankle bracing may reduce DKV [33,34].

The literature has demonstrated certain benefits and a reduced risk of ACL injury using ACL
injury prevention programs [35]. Specifically, programs focusing on neuromuscular and proprioceptive
enhancement have been shown to reduce the risk of ACL injury by 51–88% [36–38]. However, to the
best of our knowledge, all preventive training programs proposed in the existing literature have
been based on treatments lasting from several weeks to an entire season. Specific warm-up exercises
have been shown to be effective in tolerating greater demands or requirements in sports practice and
reducing the risk of injury [39]. Indeed, strengthening the hip abductor muscles has been proposed in
several ACL injury prevention programs [40,41], although always in conjunction with other exercises
and never in isolation. A recent study has shown that weakness of the hip abductor musculature
(e.g., gluteus medius) predicts knee abduction moment and thus the risk of ACL injury [42]. Therefore,
we hypothesized that a specific neuromuscular training of the hip abductor muscles during the
warm-up would be capable to acutely decrease the knee abduction and the DKV during sports practice.
This would be of great practical relevance in terms of reducing the risk of injury in the short term,
without prejudice to the absolute importance of continuing to carry out, simultaneously, a long-term
injury prevention program.

It is also widely recognized that most injuries, not only those related to the ACL, occur in the final
stages of sports performance, which coincides with the presence of muscle fatigue [43]. Since muscles
contribute to joint stability, neuromuscular fatigue has also been proposed as another risk factor for
non-contact ACL injuries [44–46]. However, a recent review has concluded that the fatigue protocols
published in the literature do not uniformly alter lower extremity biomechanical factors, due in part to
the heterogeneity of the protocols and tasks proposed and suggests further research in this regard [47].
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In addition, the few studies that have analyzed the effect of fatigue on DKV in pre-pubertal male
children have used a bipodal drop–jump task as assessment method [48,49], while some studies have
shown that one-leg tasks (e.g., such as a single leg squat) may be more useful in discriminating DKV
because it requires greater stability and neuromuscular control [50,51]. Therefore, the objective of
this study was to analyze the acute effects of an ACL injury prevention protocol (ACL-IPP) and a
soccer-specific fatigue protocol (SSFP) on DKV in youth male soccer players. The research hypothesis
was that DKV would be reduced by the ACL-IPP and increased by the SSFP.

2. Materials and Methods

2.1. Participants

A convenient sample of 18 youth male soccer players (age: 12.51 ± 0.87 years; weight:
48.72 ± 9.71 kg; height: 159.34 ± 9.74 cm; BMI: 19.12 ± 2.30 kg/m2), from categories U11 and U13,
was recruited for this study. All had at least 6 years of training experience in amateur competitive
level, training 3–4 days per week. To be included in the study, participants should have not suffered
musculoskeletal injuries in the last six months. Parents or guardians signed an informed consent form
detailing the purpose of the study and the protocols and procedures to be used. All the procedures were
in accordance with the Declaration of Helsinki (ethical approval number: UA-2018-11-15, Research
Ethics Committee of the University of Alicante).

2.2. Procedures

Before the pre-intervention evaluations, a standardized and guided warm-up was performed,
consisting of joint mobility, light continuous running and dynamic stretching. Evaluations were
conducted on an individual basis. The frontal plane of the single-leg squat (SLS) test on both
legs—dominant and non-dominant—was recorded at different times during the intervention, with a
high-definition camera with 4 K recording technology. The camera was placed 3 m away from the
athlete and at the height of the subject’s knee above the ground, using a tripod. Prior to the recordings,
three anatomic landmarks were bilaterally identified on athlete’s lower limbs with 2-cm-diameter
markers. Afterwards, the videos were analyzed by two specialists with the 2D motion analysis software
Kinovea v.0.8.15 (Kinovea open source project under GPLv2), which has demonstrated its validity and
reliability in the literature for measuring angles and distances [52].

First, an ACL injury prevention protocol (ACL-IPP) with elastic bands was performed, focusing
on neuromuscular and proprioceptive function of the gluteus medius. Five minutes before and after
the protocol, the performance of the SLS test was recorded to analyze the pre–post-ACL-IPP differences.
Second, and on a different day, participants who did not show DKV performing the SLS test participated
in a soccer-specific fatigue protocol (SSFP), expressly designed for the study. Before the fatigue protocol
and after reaching a fatigue level between 9–10 in the CR 0–10 scale [53], they performed the SLS,
which was recorded to analyze the pre–post-SSFP differences.

2.2.1. Single-Leg Squat (SLS) Test

The SLS was the chosen method for evaluation, as some authors have suggested that one-leg
methods are better than two-leg ones at discriminating DKV [50,51]. The evaluation of each leg
consisted of 3 trials, obtaining the average of the three with a variation coefficient of less than 10% [54].
Intraclass correlation coefficients (with 95% confidence limits) were calculated for each observer,
and these demonstrated high and excellent values of relative reliability (0.902, 0.896 and 0.857, for DKV
basal values, post-ACL-IPP and post-SSFP, respectively). Markers were placed in the anatomic areas of
interest (i.e., anterior superior iliac spine; the midpoint of the tibiofemoral joint, on the patella; and the
talocrural joint, on the frontal ankle area, at the level of the malleolus) for subsequent video analysis.
The frontal-plane projection angle of the knee valgus was defined by the angle formed from a linear
line that connects the anterior superior iliac spine with the midpoint of the tibiofemoral joint and a
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second line connecting the midpoint of the tibiofemoral joint and the talocrural joint. The maximum
degree of DKV was evaluated, analyzing the maximum tibiofemoral angulation (frontal plane) in
relation to the Q-angle, which is defined as the angulation in the anatomic reference position [55].
The difference (δ) between these two variables was used as the dynamic value of each participant,
measured in degrees [31]. To stratify the sample according to the level of DKV presented in the
basal situation, the total angulations were divided into three proportional ranges. Thus, participants
were classified according to the following criteria: null or light DKV (0◦ ≤ δ ≤ 16.2◦); moderate DKV
(16.3◦ ≤ δ ≤ 32.4◦); severe DKV (δ ≥ 32.5◦).

Prior to the SLS test, the participants performed a bilateral knee flexion from the standing position
until they reached 60◦ of knee flexion, measured by a digital goniometer (Digital Baseline Absolute +

Axis Goniometer, Model 12–1027, version 7–08, Fabrication Enterprises, Inc., White Plains, New York,
NY, USA). In that position, a string was placed in contact with the knee, which was the reference depth
that the participant had to reach in the SLS test. From a one-leg standing position with arms crossed
on the chest, the participant was instructed to perform the SLS, doing a knee and hip flexion, trying to
keep the trunk upright. The depth of the squatting position was individually standardized using the
string barrier placed previously [56]. In order to homogenize the performances, the athletes did not
receive any information regarding the horizontal displacement of the knee in the execution of the test,
beyond keeping the whole foot in contact with the ground, the arms crossed on the chest and the trunk
as straight as possible.

2.2.2. ACL Injury Prevention Protocol (ACL-IPP)

Only participants previously listed as moderate or severe DKV were included in this
protocol (n = 10; age: 12.68 ± 0.86 years; weight: 45.57 ± 7.44 kg; height: 157.83 ± 7.14 cm;
BMI: 18.31 ± 2.43 kg/m2). With the objective of analyzing the acute effect that neuromuscular and
proprioceptive exercises focused on the hip abductors could have on the DKV of the knee, an ACL-IPP
developed specifically for this study was carried out. The exercises were always performed in the
same order, with a single series of each exercise, with a one-minute recovery between exercises.
Ten repetitions of the knee band squat exercise, 10 repetitions for each side of the side-steps exercise
and 5 repetitions each leg in the Bulgarian split squat exercise were performed.

Knee-Band Squat Exercise

To standardize the squatting depth, each athlete was previously asked to perform a squat slowly,
until he reached a knee angle of 90◦, measured by the digital goniometer. Taking that measurement as a
reference, a bench was placed at this height and they had to touch the bench in each repetition. An elastic
band was placed around the knees of the participant, who had to perform the squatting exercise
keeping the hip, knee and ankle aligned, preventing the elastic band from pulling the knees inward.

Side-Steps Exercise

With a rubber band around the knees and in a standing position and the knees semi-flexed,
the participants performed lateral displacements, causing tension in the knee against the movement.
The participants had to keep their hips, knees and ankles aligned, preventing the elastic band from
pulling the knees inward.

Bulgarian Split-Squat Exercise

The starting posture was a one-leg standing position with this leg on the floor and the other
supported behind, on a bench at a previously defined height by the length of the participant’s
tibia (e.g., distance between the lateral malleolus and the external femoral condyle). From that
position—and with an elastic band around the knee of the supporting leg—the participant had to
perform the movement up to a knee flexion of 90◦, measured by the digital goniometer, avoiding the
displacement of the knee inwards produced by the band.
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2.2.3. Soccer-Specific Fatigue Protocol (SSFP)

Only participants previously categorized as light or no DKV were included in this protocol (n = 8;
age: 12.73 ± 0.95 years; weight: 54.40 ± 13.25 kg; height: 164.04 ± 9.47 cm; BMI: 19.86 ± 2.55 kg/m2).
To analyze whether fatigue could increase levels of DKV, a soccer-specific fatigue protocol developed
explicitly for this study was carried out. The protocol consisted of a ball possession between two teams
formed by two players each one, in a limited area of 15 × 15 m. One team had to keep possession of
the ball, while the other had to avoid it. Every minute and by means of a whistle, all the players left
the ball and performed a sprint up to a certain previously established point (with a cone), located 15 m
away from the playing area. Then, they continued with the ball possession, following this procedure
uninterruptedly until each individual athlete reached a fatigue level between 9–10 in the CR 0–10 scale.
Figure 1 shows an example diagram of this protocol.
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2.3. Statistical Analysis

The descriptive data of the study (age, weight, height and BMI) are shown as the mean ± standard
deviation. The normality of the sample was checked by the Shapiro–Wilk test. Since the assumption of
normality was not met in all variables, Wilcoxon test was used to check for differences. The effect size
(ES) was calculated by the Hedges’ g, by means of the formula: g = M1−M2

SD∗ , where SD* is the pooled
and weighted standard deviation. Due to the small sample size, the Hedges equation was corrected and

multiplied by
[(

N−3
N−2.25

)√
N−2

N

]
. Pre–post protocols differences (∆) in each protocol and differentiated by

leg dominance, were calculated in percentage values. Spearman correlation coefficients were calculated
to analyze the relationships between age/anthropometric variables and all performance variables in the
tests and protocols performed. All the analyses were performed using SPSS, v.25 (IBM Corp., Armonk,
N.Y., USA). A value of p < 0.05 was established to determine statistical significance. Post hoc power
analysis was conducted where significant differences were found between interaction effects [57].
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3. Results

Table 1 shows the average pre–post intervention values of the two protocols performed (ACL-IPP
and SSFP), differentiated by leg dominance. No statistically significant differences were found between
dominant (DL) and non-dominant leg (NDL) in the pre and post-ACL-IPP assessments (p = 0.260,
p = 0.721, respectively). No statistically significant differences between dominant and non-dominant
leg were found in the post-SSFP assessments (p = 0.674), although they were found in the pre-SSFP
assessments (p = 0.028).

Table 1. Average pre–post intervention data in the protocols differentiated by leg dominance.

Test n pre (◦)
(Mean ± SD)

post (◦)
(Mean ± SD)

95% CI
p-Value

LL UL

ACL-IPP DL 10 32.67 ± 9.39 12.23 ± 13.91 11.04 29.82 0.007 **

ACL-IPP
NDL 10 28.93 ± 7.04 13.50 ± 10.53 8.36 22.50 0.005 **

SSFP DL 8 3.11 ± 1.93 14.20 ± 6.52 6.15 16.03 0.012 *

SSFP NDL 8 8.37 ± 3.71 12.50 ± 6.00 1.18 9.43 0.123

Note: CI—confidence interval; LL—lower limit; UL—upper limit; ACL-IPP—ACL injury prevention protocol;
SSFP—soccer-specific fatigue protocol; DL—dominant leg; NDL—non-dominant leg. * p < 0.05; ** p < 0.01.

Figure 2 shows the effect sizes (ES) of the two protocols (ACL-IPP and SSFP) differentiated by leg
dominance, as well as the pre–post differences (∆) in percentage. According to Rhea [58], the following
criteria of the effect size interpretation were followed: g < 0.25 as trivial; 0.25 < g < 0.50 as small;
0.50 < g < 1.0 as moderate; and g > 1.0 as large. The values obtained in the post hoc power analysis
were: 0.992 to ACL-IPP DL and NDL, 0.997 to SSFP DL and 0.475 to SSFP NDL.
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Tables 2 and 3 show the correlations between age/anthropometric variables and pre–post-ACL-IPP
and SSFP, respectively, both in DL and NDL.



Int. J. Environ. Res. Public Health 2020, 17, 5608 7 of 13

Table 2. Correlations among age/anthropometric variables and ACL-IPP in DL and NDL.

Variables Age Weight Height BMI pre-ACL-
IPP DL

pre-ACL-
IPP NDL

post-ACL-
IPP DL

post-ACL-
IPP NDL

Age r 1 0.617 0.845 ** 0.286 −0.778 ** 0.029 −0.267 0.465
p – 0.058 0.002 0.423 0.008 0.937 0.456 0.175

Weight r 1 0.462 0.903 ** −0.419 0.043 −0.139 0.225
p – 0.179 0.000 0.228 0.907 0.701 0.532

Height r 1 0.195 −0.546 0.116 −0.140 0.332
p – 0.590 0.103 0.750 0.700 0.348

BMI
r 1 −0.158 −0.103 −0.224 −0.158
p – 0.663 0.776 0.533 0.663

pre-ACL-
IPP DL

r 1 0.049 0.395 −0.457
p – 0.894 0.258 0.184

pre-ACL-
IPP NDL

r 1 0.796 ** 0.470
p – 0.006 0.171

post-ACL-
IPP DL

r 1 0.383
p – 0.275

post-ACL-
IPP NDL

r 1
p –

Note: BMI—body mass index; ACL-IPP—ACL injury prevention protocol; DL—dominant leg; NDL—non-dominant
leg. ** p < 0.01.

Table 3. Correlations among age/anthropometric variables and SSFP in DL and NDL.

Variables Age Weight Height BMI pre-SSFP
DL

pre-SSFP
NDL

post-SSFP
DL

post-SSFP
NDL

Age r 1 0.789 * 0.667 0.717 * 0.652 −0.049 0.927 ** −0.210
p – 0.2 0.071 0.046 0.079 0.907 0.001 0.618

Weight r 1 0.910 ** 0.898 ** 0.476 0.252 0.922 ** 0.252
p – 0.002 0.002 0.233 0.548 0.001 0.548

Height r 1 0.667 0.359 0.452 0.810 * 0.333
p – 0.071 0.382 0.26 0.015 0.42

BMI
r 1 0.407 0.095 0.833 * 0.167
p – 0.317 0.823 0.01 0.693

pre-SSFP
DL

r 1 0.275 0.587 −0.156
p – 0.509 0.126 0.713

pre-SSFP
NDL

r 1 0.095 0.667
p – 0.823 0.071

post-SSFP
DL

r 1 0.048
p – 0.911

post-SSFP
NDL

r 1
p –

BMI—body mass index; SSFP—soccer-specific fatigue protocol; DL—dominant leg; NDL—non-dominant leg.
* p < 0.05; ** p < 0.01.

Figure 3 shows the statistically significant correlations found between: (a) age and pre-ACL-IPP
DL; (b) age and post-SSFP DL; (c) weight and post-SSFP DL; (d) height and post-SSFP DL. In addition,
a significant correlation was found between BMI and post-SSFP DL. No statistically significant
correlations were found between other variables related to age/anthropometric variables and
ACL-IPP/SSFP (p > 0.05).
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4. Discussion

ACL injury prevention is especially important in soccer, where many players fear ACL
tears [9,12–14], its complications and injury recurrence [15–19]. One of the most important findings of
the present study is that ACL-IPP significantly decreases the DKV similarly on both legs during the SLS
test performance (62.57% and 53.34%, in dominant and non-dominant leg, respectively). This finding
could be a contributing factor for decreasing the risk of ACL injury in sports related to landings and
sudden changes of direction [2,3,24–26].

To date, the literature has only shown results from long-term ACL injury prevention programs
in youth athletes, which have lasted between 4–10 weeks. These have reported from 18% to 67%
reductions in DKV in youth male and female players of different ball sports [37,47,59–65]. However,
the current study is based on an acute intervention as part of the specific warm-up. This makes our
results highly relevant in practice, since using the ACL-IPP as part of the warm-up would be able to
significantly decrease the risk of ACL injury in training or competition in the short term. This does not
mean that a longer-term injury prevention program should be discontinued, but rather that the two
could be perfectly compatible, with the advantages of both short-term and long-term prevention.

On the other hand, several studies have shown a 23.24% to 389.47% increase in DKV following
different fatigue protocols [66–72]. These variable results seem to be due to the great heterogeneity of
the fatigue protocols, as well as the DKV evaluation technique [73]. In reference to this heterogeneity,
it was suggested that the level of fatigue [70,74] and the specificity of the fatigue exercise [75] can
influence the kinematics and DKV. That is why our SSFP was designed for being as specific, intense and
similar to real competition situations as possible, increasing DKV in both the DL and NDL (356.59%
and 49.34%, respectively). Remarkably, it should be indicated that these increases were obtained in
participants who did not have a small DKV at rest. Thus, the DKV presented by the athlete after
the SSFP, could probably be very similar to the presented in a competition match, which seems to
be far from the value in non-fatigue situations. Therefore, it seems that the assessment of DKV in
male youth soccer players should not only be carried out in a non-fatigue situation, but also in fatigue
situations [68]. This would provide a more accurate understanding of the player’s actual risk of
suffering an ACL injury, which would be of great practical relevance in the area of injury prevention.
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The greatest increase in the DL compared to NDL may be due to the type of activity-specific fatigue
protocol applied. Since the SSFP is intended to simulate real competition, it is likely that participants
will tend to use their DL to a greater extent, causing increased fatigue in this limb. This selective
or localized fatigue is unlikely to occur with nonspecific soccer fatigue protocols. This may support
the results of Daneshjoo and Mohseni [76], in which they also observed an increased DKV in the DL
following a soccer-specific fatigue protocol in youth male. Therefore, it would probably be advisable
to work on the improvement and prevention of DKV unilaterally and independently [77]. Since it
seems that the values of DKV differ between both legs, it would be suggested that the dynamics of
each leg should be considered individually in male youth soccer players.

In addition, our results seem to indicate an inverse significant correlation between the DKV
presented in the dominant leg before the ACL-IPP and age. This may suggest an increased risk
of injury at early ages, which has also been previously suggested [78]. Our study has also found
direct correlations between weight, height and BMI with DKV in the dominant leg after fatigue.
This may suggest that lower height and weight at early ages may reduce the risk of ACL injury [79].
This is probably not comparable to other age ranges, since the increase in muscle mass as maturation
progresses causes body composition to vary [80].

To the authors’ knowledge, this is the first study focusing into the analysis of the acute effects of
an ACL injury prevention program through a specific warm-up of the hip abductor muscles to reduce
the DKV in male youth soccer players. Although our data are quite promising, it should be noted that
our sample size was limited. However, our study was not performed with an a priori power analysis
and was likely underpowered. It is proposed that future research will be able to confirm and reinforce
our results using a larger sample size and an a priori power analysis, as well as analyze whether the
ACL-IPP could have long-term effects. It is also suggested that future lines of research try to elucidate
whether these benefits are equally applicable in the female gender and/or in other age groups. It is
finally suggested that future research should examine whether the joint implementation of the ACL-IPP
as part of a specific warm-up and a long-term injury prevention program may achieve better results
than both performed separately. This would help to extend the range of practical application of ACL
injury prevention programs, including ideally a combination of short- and long-term approaches.

5. Conclusions

The use of an ACL injury prevention program (based on hip abductor and external rotator
neuromuscular training) as part of a soccer-specific warm-up appears to acutely reduce DKV in male
youth soccer players with increased baseline DKV values during a single-leg squat. The use of a
soccer-specific fatigue protocol resulted in larger baseline DKV values (especially in the dominant
leg) and further validation studies may help to establish it as a protocol to detect players that
require additional neuromuscular training for the prevention of DKV during game scenarios.
Therefore, detection and appropriate prevention of DKV through sport-specific exercise may hold
promise as a means of preventing knee injuries in male youth soccer players.
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