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ABSTRACT: Cobalt nanoparticles immobilized on magnetic chitosan (Fe3O4@CS-Co) have been prepared. They were identified
using various techniques such as Fourier-transform infrared spectroscopy, X-ray diffraction, field emission scanning electron
microscopy, energy-dispersive X-ray spectroscopy, transmission electron microscopy, thermogravimetric analysis, vibrating sample
magnetometry, X-ray photoelectron spectroscopy, and inductively coupled plasma atomic emission spectroscopy analysis and
applied efficiently as a cobalt catalyst in the cyanation and fluoride-/palladium-free Hiyama reactions of different types of aryl halides
employing K4[Fe(CN)6]·3H2O and triethoxyphenylsilane, respectively. After each reaction, the catalyst was isolated and reused for
the second run. The catalytic activity of the catalyst was not lost apparently even after five runs. No considerable changes in its
chemical structure and morphology were observed. It is worth to note that in this paper, the cobalt catalyst has been used for the first
time for the cyanation of aryl halides.

1. INTRODUCTION

Aryl nitriles are significant structural units of different
biologically active compounds, agrochemicals, dyes, and
natural products.1 Nitriles are important building blocks in
the synthesis of heterocycles as they are transformed into a
range of functional groups such as amines, carboxylic acids,
oximes, amidines, and ketones.2 The Rosenmund−von Braun
reaction, ammoxidation of toluene, and diazotization of
anilines, followed by the Sandmeyer reaction are known as
the conventional methods for the synthesis of aryl nitriles.3

The reaction of aryl halides with cyanating agents in the
presence of transition metals as catalysts are the most powerful
protocols for the synthesis of aryl nitriles.4 Along this line,
cyanation reactions have been reported in the presence of
transition metals, such as Pd,5 Ni,6 Rh,7 Ir,8 and Cu,9 using
different cyanide reagents such as copper, potassium, sodium,
and zinc cyanide, trimethylsilyl cyanide, phenyl cyanates,
acetone cyanohydrins, and benzyl thiocyanates.10 In recent
years, potassium hexacyanoferrate(II) trihydrate {K4[Fe-
(CN)6]·3H2O}, which is a nonhygroscopic, commercially
accessible, easily handled, and inexpensive cyanide source, has
been applied for the cyanation of aryl halides.11 In most cases,

a stable cyanide complex with transition metals is formed, and
it deactivates the transition-metal catalysts. However, slow in
situ generation of cyanide ions from K4[Fe(CN)6]·3H2O
improves the efficiency of the metal catalyst.12

Biaryl structures are found in numerous physiologically
active compounds including natural products, pharmaceuticals,
agrochemicals, organic materials, and organocatalysts.13

Performing reactions of aryl halides with organometallic
reagents in the presence of Pd as a catalyst is the most
attractive method for the preparation of biaryl compounds.
Organoboron (Suzuki−Miyaura), organomagnesium (Kuma-
da−Corriu), organozinc (Negishi), and organotin (Stille)
derivatives are the most general organometallic reagents that
are used for this purpose.14 However, these organometallic
compounds have intrinsic drawbacks for practical uses,
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including high toxicity, low stability, sensitivity to humidity or
water, and poor biocompatibility. In recent years, low toxic,
broadly available, low-cost, environmentally benign, and highly
stable silicon compounds have received a lot of attention as
fascinating reagents for the Hiyama reaction.15

In particular, the mostly used transition-metal catalysts for
the Hiyama cross-coupling and cyanation reactions are Pd
catalysts. However, some drawbacks of palladium-based
catalysts such as high cost, sensitivity to air, and formation
of ineffective palladium cyanide species in the cyanation
reactions encouraged the search for the C−C coupling
reactions without using palladium catalysts.16 In this regard,
cobalt-based catalytic systems, as a viable alternative to
palladium, have gained much interest in organic chemistry
because of their low cost and availability.17 Along this line, a
number of methods using cobalt catalysts for improving of
Suzuki−Miyaura, Sonogashira, and Heck−Mizoroki cross-
coupling reactions have been reported.18

During the past decades, magnetic nanoparticles (MNPs),
which have been extensively studied for different biological and
medical applications, have attracted much attention as smart
materials for supporting catalysts because of their ease of
preparation and functionalization, high surface area, and low
cost and toxicity.19 The most important feature of MNPs is
their simple magnetic separation using an external magnet,
which is an economic isolation method for industrial
applications. Magnetic separation is more valuable than time-
consuming filtration, centrifugation, or other workup techni-
ques, as it avoids loss of the nanosized catalysts and increases
the product’s purity. However, the catalytic activity of MNPs is
decreased by the agglomeration during the catalytic reaction.
Therefore, modification of MNPs by a variety of materials such
as precious metals,20 silica,21 carbon,22 and biopolymers23

could prevent them from aggregation. Chitosan as a
biopolymer has valuable properties such as hydrophilicity,
biocompatibility, and biodegradability.24 It has several amino
and hydroxyl groups, which can be used for further
modification with specific components, such as nanoparticles,
drugs, and other functional groups.25 For these reasons,
magnetic chitosan has been widely synthesized and applied in
catalytic reactions.26

In the past few years, we have been making effort in
developing heterogeneous nanocatalysts for organic reac-

tions.27 Recently, we have introduced a heterogeneous cobalt
catalytic system (mTEG-CS-Co-Schiff-base) for Hiyama,
Mizoroki−Heck, Suzuki, and Hirao cross-coupling processes.28

We have found that this catalyst was unsuccessful for the
cyanation reaction of aryl halides. To improve our ongoing
work, in this paper, we introduced cobalt nanoparticles
immobilized on magnetic chitosan (Fe3O4@CS-Co) as a new
catalyst. This catalyst was identified using a variety of methods
such as Fourier-transform infrared (FT-IR) spectroscopy,
energy-dispersive X-ray spectroscopy (EDX), field emission
scanning electron microscopy (FE-SEM), transmission elec-
tron microscopy (TEM), X-ray diffraction (XRD), vibrating
sample magnetometry (VSM), thermogravimetric analysis
(TGA), X-ray photoelectron spectroscopy (XPS), and
inductively coupled plasma atomic emission spectroscopy
(ICP−AES) analysis and used as a nanomagnetic heteroge-
neous cobalt catalyst in the cyanation and Hiyama cross-
coupling reactions. It is worth to note that here, we report for
the first time, the employment of a cobalt catalyst in the
cyanation reaction of aryl halides.

2. RESULTS AND DISCUSSION

2.1. Synthesis of Fe3O4@CS-Co. Fe3O4@CS-Co was
synthesized as outlined in Scheme 1. The Fe3O4 nanoparticles,
which were obtained by chemical coprecipitation protocol,
were coated by chitosan to obtain Fe3O4@CS. Cobalt
nanoparticles were immobilized on Fe3O4@CS by adsorption
of CoCl2 on Fe3O4@CS, followed by reduction with NaBH4.
The catalyst was characterized by FT-IR spectroscopy, XRD,
FE-SEM, EDX, TEM, TGA, VSM, XPS, and ICP−AES.
The FT-IR spectra of Fe3O4, CS, Fe3O4@CS, and Fe3O4@

CS-Co are shown in Figure 1. In the FT-IR spectrum of Fe3O4
NPs, a strong stretching absorbance peak at 573 cm−1 that
refers to Fe−O groups is observed (Figure 1a). In the
spectrum of chitosan (Figure 1b), a broad peak at 3700−3000
cm−1 can be ascribed to the stretching vibrations of O−H and
N−H bonds. The other characteristic peaks appeared at 1661,
1378, 1154, 1073, and 1033 cm−1 that corresponded to N−H
(bending), C−H (bending aliphatic), C−O−C bridge, C−O
(stretching), and C−N (stretching), respectively. In the FT-IR
spectrum of Fe3O4@CS, all characteristic peaks of Fe3O4 NPs
and chitosan exist (Figure 1c). These observations indicate
that successful coating of Fe3O4 with chitosan was achieved. In

Scheme 1. Schematic Illustration for the Synthesis of Fe3O4@CS-Co
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the case of Fe3O4@CS-Co, the entrapment of cobalt in the
chitosan matrix led to changes in the 1000−1700 cm−1 region
of the spectrum (Figure 1d). Slight shifting and changes in the
intensity of these bands may account for the interaction of
cobalt species with the O and N atoms in chitosan.
The XRD pattern of chitosan and Fe3O4@CS-Co are

depicted in Figure 2. A broad peak at 21° in the XRD pattern
of CS corresponds to the amorphous characteristic of CS
(Figure 2a). In the XRD pattern of Fe3O4@CS-Co (Figure
2b), strong diffraction peaks at 30.7, 35.75, 43.6, 53.9, 57.5,
and 62.9° were related to [2 2 0], [3 1 1], [4 0 0], [4 2 2], [5 1
1], and [4 4 0] planes of the cubic Fe3O4 lattice. Diffraction
peaks of amorphous CS and Co-NPs appeared at 21 and 75.5°,

respectively. The strength of the diffraction peaks of CS
decreased in Fe3O4@CS-Co because of the attachment of
Fe3O4 to CS through the amino and hydroxyl groups.
The nanofeature, morphology, and shape of Fe3O@CS-Co

were investigated using its TEM and FE-SEM images. The
TEM and FE-SEM images (Figure 3a,b) showed that the NPs
were spherical in shape. The mean diameter size of the NPs is
18 nm (Figure 3d). On comparison of the TEM image of
Fe3O4@CS-Co (Figure 3a) with that of Fe3O4 (Figure 3c), it
was found that Fe3O4@CS-Co dispersed considerably. The
EDX analysis ensured the existence of Fe, Co, C, N, and O
elements in Fe3O4@CS-Co (Figure 4). Elemental mapping of
Co, N, Fe, C, and O in the Fe3O4@CS-Co nanocatalyst
(Figure 5) indicated the consistent distribution of these
elements on the catalyst surface. According to the ICP−AES
analysis, the cobalt content of Fe3O4@CS-Co was calculated to
be 22.87 wt %.
The TG curve of Fe3O4@CS-Co showed a weight loss

around 40%, which corresponded to the elimination of
absorbed water and thermal decomposition of the chitosan
(Figure 6).
Magnetic properties of different steps of the catalyst

preparation were characterized by VSM. The magnetic curves
are shown in Figure 7. These curves showed that the
approximate saturation magnetization value of Fe3O4@CS is
50 emu g−1. The reduction in the saturation magnetization of
this compound compared to that in the pure MNPs (80 emu
g−1) is due to the coating of Fe3O4 by polymeric layers of CS.
An increase in the saturation magnetization of Fe3O4@CS-Co
was observed, which is a good evidence of successful
immobilization of cobalt on Fe3O4@CS.
Fe3O4@CS-Co was also characterized by XPS spectroscopy

(Figure 8). Figure 8a confirms the existence of Co, Fe, O, and
C elements in the catalyst. In the C 1s spectrum (Figure 8b),
signals of binding energies located at 284.6 (C−C and C−H),
286.03 (C−OH and C−N), and 288.2 (N−CO) eV were
observed.29 Figure 8c reveals typical cobalt (0) absorptions at
780.3 and 796.07 eV for 2p3/2 and 2p1/2, respectively.

30 The
peaks at 782.3 (2p3/2) and 798.09 eV (2p1/2) indicated that a
little amount of cobalt is in the oxidation state of II.30 The
weak satellite peaks were observed at around 785.8, 788.6,
801.3, and 803.0 eV. These satellite peaks indicated the
existence of Co3O4 on the surface of the catalyst.31

2.2. Cyanation of Aryl Halides Using K4[Fe(CN)6]·
3H2O Catalyzed by Fe3O4@CS-Co. After the structural
characterization of Fe3O4@CS-Co, its reactivity as a nano-
magnetic heterogeneous cobalt catalyst was investigated in the
cyanation reaction of aryl halides. To find the best reaction
conditions, some reactions were performed in the presence of
Fe3O4@CS-Co, using iodobenzene with variation in cyanide
sources, temperature, base, solvent, and the amount of the
catalyst (Table 1). Based on the results indicated in Table 1,
K4[Fe(CN)6]·3H2O, dimethylformamide (DMF), Et3N, 100
°C, and 5 mol % of the catalyst were chosen as the best
conditions. A similar reaction was also investigated using
CoCl2, and it was found that the desired final product was
generated in poor yield after 24 h (Table 1, entry 14).
To further investigate the scope and limitations of this

protocol, various types of aryl halides were selected and
allowed to react using the optimized reaction parameters
(Table 2). Different aryl chlorides, bromides, and iodides
underwent the cyanation reaction and produced the desired
aryl nitriles from good to high yields.

Figure 1. FT-IR spectra of (a) Fe3O4, (b) CS, (c) Fe3O4@CS, and
(d) Fe3O4@CS-Co.

Figure 2. XRD patterns of (a) CS and (b) Fe3O@CS-Co.
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With regard to the recyclability of Fe3O4@CS-Co in the
cyanation reaction of iodobenzene using K4[Fe(CN)6]·3H2O,
after completion of the reaction in the first run, the catalyst was
isolated using an external magnet (Figure S1a,b), washed with
EtOAc and EtOH (2 × 10 mL), and dried under vacuum. The

catalyst was successfully recycled five times. Loss of catalytic
activity was not considerably observed for Fe3O4@CS-Co in
these reactions (Figure S1c). Comparison of FT-IR spectrum
of the reused catalyst (Figure S1d) with that of the freshly
prepared one (Figure S1d) indicated that no significant

Figure 3. TEM images of (a) Fe3O4@CS-Co and (b) Fe3O4, (c) FE-SEM image of theFe3O4@CS-Co nanocatalyst, and (d) size distribution of
Fe3O4@CS-Co.

Figure 4. EDX analysis of Fe3O4@CS-Co.

Figure 5. Elemental mapping of Fe3O4@CS-Co.

Figure 6. TGA of Fe3O4@CS-Co.

Figure 7. Magnetic hysteresis curves of (a) Fe3O4 NPs, (b) Fe3O4@
CS, and (c) Fe3O4@CS-Co.
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changes in the chemical structure of the catalyst were observed.
Moreover, FE-SEM and TEM images illustrated that the
nanoparticles were still spherical in shape even after 5th cycle
reuse (Figure S1e,f), and the mean diameter size of the
recycled catalyst was 19 nm (Figure S1g).
The heterogeneous character of Fe3O4@CS-Co was checked

by hot filtration. For this purpose, at half time of the reaction
of iodobenzene in the presence of K4[Fe(CN)6]·3H2O (4 h
approx.), the catalyst was isolated using an external magnetic
field from the reaction mixture, and the reaction was then
allowed to continue without any catalyst. No additional
product formation was observed after 9 h, which clearly
indicated the heterogeneous character of Fe3O4@CS-Co
(Figure 9b). The heterogeneous character of Fe3O4@CS-Co
was also evaluated after a poisoning test using S8 as a metal
trap. This test was conducted for the aforementioned model
reaction in the presence of S8 (0.05 g). No considerable
changes were observed in the progress of the reaction (Figure

Figure 8. XPS deconvolutions of (a) Fe3O4@CS-Co, (b) C 1s, and
(c) cobalt.

Table 1. Optimization of the Reaction Conditions for the Cyanation Reaction of Iodobenzene

entry catalyst (mol %) source of CN base solvent T (°C) time (h) isolated yielda (%)

1 5 K4Fe(CN)6 Et3N DMF 100 8 85
2 5 KCN Et3N DMF 100 7 85
3 5 Me3SiCN Et3N DMF 100 24 c

4 5 Me3SiCN Et3N 75 5 50
5 5 K4Fe(CN)6 Et3N EtOH b 24 c

6 5 K4Fe(CN)6 Et3N H2O 90 3 35
7 5 K4Fe(CN)6 Et3N DMSO b 2 30
8 5 K4Fe(CN)6 Et3N DMF 25 7 37
9 5 K4Fe(CN)6 K2CO3 DMF 100 6 42
10 5 K4Fe(CN)6 NaOEt DMF 100 6.5 32
11 3 K4Fe(CN)6 Et3N DMF 100 9 73
12 1 K4Fe(CN)6 Et3N DMF 100 10 64
13 K4Fe(CN)6 Et3N DMF 100 24 c
14d 5 K4Fe(CN)6 Et3N DMF 100 24 20

aReaction conditions: iodobenzene (1 mmol), cyanide source (1.5 mmol), base (4 mmol), and solvent (5 mL). bUnder reflux conditions. cTrace
amount. dCoCl2·4H2O.

Table 2. Cyanation Reaction of Various Aryl Halides in the
Presence of K4Fe(CN)6·3H2O Catalyzed by Fe3O4@CS-Co.

entry Ar X time (h) yielda (%)

1 Ph I 8 85
2 4-I-C6H4 I 12 72
3 4-(MeO)-C6H4 I 10 85
4 Ph Br 9 82
5 4-(NO2)-C6H4 Br 12 73
6 4-(CN)-C6H4 Br 12 80
7 4-Me-C6H4 Br 13 64
8 4-F-C6H4 Br 15 68
9 3-pyridyl Br 11 85
10 Ph Cl 14 76
11 4-(NO2)-C6H4 Cl 13 65
12 4-(CN)-C6H4 Cl 12 71
13 4-Me-C6H4 Cl 15 60
14 4-(CHO)-C6H4 Cl 24 82

aReaction conditions: 100 °C, iodobenzene (1 mmol), K4Fe(CN)6·
3H2O (1.5 mmol), Et3N (4 mmol), and DMF (5 mL). Mean ± (1−
6%) standard deviation (replicates = 4).
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9c). The results of these two tests showed that Fe3O4@CS-Co
was truly heterogeneous in this process.
To study the synthetic applications and scope of this

protocol, the reaction of iodobenzene (50 mmol) and
K4[Fe(CN)6]·3H2O (75 mmol) was assessed under the
optimized reaction conditions, and the desired product was
isolated in 80% yield after 15 h.
2.3. Hiyama Cross-Coupling Reaction between Aryl

Halides and Triethoxyphenylsilane Promoted by
Fe3O4@CS-Co. Encouraged by the results obtained during
the cyanation of arylhalides catalyzed by Fe3O4@CS-Co and
the success of mTEG-CS-Co-Schiff base as the first cobalt
catalyst in the Hiyama reaction,30 we investigated the catalytic
reactivity of Fe3O4@CS-Co in the Hiyama cross-coupling
reaction. In this regard, one-pot reaction of iodobenzene with
triethoxyphenylsilane was selected to optimize the reaction
conditions. As the nature of the base is important for the
Hiyama reaction, some bases such as NaOH, Et3N, K2CO3,
and NaF (also as an activator of the organosilane) were tested
for this reaction in the presence of 1 mol % of Fe3O4@CS-Co
at 100 °C (Table 3, entries 1−4). Among the bases examined,
Et3N was the most appropriate base (Table 3, entry 2). When

NaF was used as the base, just a trace amount of the product
was produced (Table 3, entry 4). During the solvent screening
(Table 3, entries 5−8), we found that the best result was
obtained in DMF (Table 3, entry 2). The benchmark reaction
was performed at different temperatures (Table 3, entries 9,
10), and the best catalytic activity was detected at 100 °C
(Table 3, entry 2). The reaction was also studied using
different catalyst loadings (Table 3, entries 11 and 12),
concluding that the reaction proceeded with 2 mol % of the
catalyst (Table 3, entry 12).
The generality of this protocol for the fluoride-free Hiyama

reaction of a variety of substituted aryl halides and
triethoxyphenylsilane under the optimized reaction conditions
was investigated. As depicted in Table 4, various aryl halides

(iodides, bromides, and chlorides) having electron-with-
drawing and electron-donating groups reacted satisfactorily
with triethoxyphenylsilane, and the desired products were
obtained in 62−91% yields (Table 4, entries 1−9). Moreover,
1-chloro-4-iodobenzene, 1-bromo-4-chlorobenzene, and 1,4-
diiodobenzene chemoselectively furnished 4-chlorobiphenyl
and 4-iodobiphenyl as the only products in 74, 85, and 62%
yields, respectively (Table 4, entries 10−12).
The recyclability of the catalyst (Fe3O4@CS-Co) was

studied in the reaction of iodobenzene with triethoxyphenylsi-
lane under optimized reaction conditions. After 3 h, the
reaction mixture was cooled to ambient temperature, and the
catalyst was isolated using an external magnet, washed with
EtOAc and EtOH (2 × 10 mL), dried in vacuum, and recycled
again. As exhibited in Figure S2, the catalyst was recycled in
five consecutive runs without any important loss in activity.
The products in the present work have broad applications as

fundamental building blocks in the synthesis of various
molecules having different structures in numerous fields of
chemistry such as pharmaceuticals and materials sciences. For
instance, biaryl segments (products of Hiyama reaction) and
aryl nitriles (products of cyanation reaction) are the common
scaffold of a number of interesting drugs such as flurbiprofen
(inflammatory agent), biphenyl-4-carboxylic acid hydrazide-

Figure 9. Reaction kinetics of (a) standard reaction of iodobenzene
and K4[Fe(CN)6]·3H2O catalyzed by Fe3O4@CS-Co in DMF at 100
°C, (b) high temperature filtration test, and (c) poisoning test using
S8.

Table 3. Optimization of the Reaction Conditions for
Hiyama Cross-Coupling Reaction of Iodobenzene with
Triethoxyphenylsilane

entry
catalyst
(mol %) base solvent T (°C)

time
(h)

yielda

(%)

1 1 NaOH DMF 100 8 30
2 1 Et3N DMF 100 4.5 73
3 1 K2CO3 DMF 100 5 c

4 1 NaF DMF 100 6 c

5 1 Et3N EtOH b 4 45
6 1 Et3N EtOAc b 5 33
7 1 Et3N CH3CN

b 24 c

8 1 Et3N H2O 100 4.5 47
9 1 Et3N DMF 50 5 33
10 1 Et3N DMF r.t. 7 c

11 0.5 Et3N DMF 100 5 60
12 2 Et3N DMF 100 3 91

aIsolated yield; reaction conditions: iodobenzene (1 mmol),
triethoxyphenylsilane (1.1 mmol), base (2 mmol), and solvent (5
mL). bUnder reflux conditions. cTrace amount of the product was
obtained.

Table 4. Hiyama Cross-Coupling Reaction between Various
Aryl Halides and Triethoxyphenylsilane Promoted by
Fe3O4@CS-Co.

entry Ar X time (h) yielda (%)

1 Ph I 3 91
2 4-(MeO)-C6H4 I 7 74
3 Ph Br 5 90
4 4-(MeO)-C6H4 Br 6 85
5 4-(NO2)-C6H4 Br 4.5 89
6 4-(CN)-C6H4 Br 5 88
7 Ph Cl 7 85
8 4-(NO2)-C6H4 Cl 6 76
9 4-(CN)-C6H4 Cl 6.5 83
10 4-Cl-C6H4 I 3 74
11 4-Cl-C6H4 Br 4 85
12 4-I-C6H4 I 7 62

aReaction conditions: aryl halide (1 mmol), triethoxyphenylsilane
(1.1 mmol), Et3N (2 mmol), DMF (5 mL), and catalyst (2 mol %) at
100 °C. Mean ± (1−6%) standard deviation (number of replicates =
3).
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hydrazone (antimicrobial), letrozole as an inhibitor for the
treatment of hormonally responsive breast cancer, and
fadrozole monohydrochloride useful for the treatment of
breast cancer (Scheme 2).32

3. CONCLUSIONS
In this paper, we have synthesized Co NPs immobilized on
nanomagnetic chitosan (Fe3O4@CS-Co) and identified it
using different techniques such as FT-IR, XRD, FE-SEM,
EDX, TEM, TGA, VSM, XPS, and ICP−AES analysis. This
catalyst was efficiently used as a new nanomagnetic
heterogeneous cobalt catalyst in the cyanation reaction and
in the fluoride-free Hiyama coupling between various
substituted aryl chlorides, bromides, and iodides with K4[Fe-
(CN)6]·3H2O or triethoxyphenylsilane, respectively. The
results of hot filtration and poisoning tests revealed that the
catalyst was truly heterogeneous in nature. The catalyst was
separated using an external magnet and recycled for at least five
times without serious loss in activity. The use of an inexpensive
cobalt catalyst instead of a high-cost palladium catalyst,
without the employment of toxic ligands or fluoride ions,
with K4[Fe(CN)6]·3H2O as an inexpensive cyanide source, the
ease of recovery and reusability of the catalyst, and applicability
of the method for large-scale usage are the main advantages of
this protocol. It is worth to note that, in this paper, the cobalt
catalyst has been used for the first time for the cyanation of
arylhalides.

4. EXPERIMENTAL SECTION
4.1. General Procedure for the Synthesis of Magnetic

Chitosan (Fe3O4@CS).33 A solution of chitosan (1 g) in
acetic acid (100 mL, 2%) was sonicated for 0.5 h. Fe3O4
nanoparticles (1.7 g) were added to the sonicated solution and
stirred for 1 h. Then, the mixture was neutralized by adding
aqueous solution of NaOH (8 mL, 1.66 M) dropwise and
stirred for 1 h at ambient temperature. The resulting Fe3O4@
CS was separated using an external magnet, washed using H2O
and EtOH (3 × 20 mL), and dried under vacuum at 60 °C.
4.2. General Procedure for the Synthesis of Fe3O4@

CS-Co. Fe3O4@CS (1 g) was dispersed by sonication in H2O
(25 mL). To this mixture, an aqueous solution of cobalt(II)
chloride (25 mL, 10 M) was added dropwise under vigorous
stirring. After 2 h, an aqueous solution of NaBH4 (5 mmol in
15 mL) was added slowly to this mixture. After 20 min,
Fe3O4@CS-Co was isolated using an external magnet and
washed with H2O and EtOH (3 × 20 mL) and dried under
vacuum at 40 °C.
4.3. General Procedure for the Cyanation Reaction of

Aryl Halides with K4[Fe(CN)6]·3H2O Catalyzed by
Fe3O4@CS-Co. Fe3O4@CS-Co (5 mol %) was added to a
mixture formed by K4[Fe(CN)6]·3H2O (1.5 mmol), the aryl
halide (1 mmol), and Et3N (4 mmol) in DMF (5 mL) and

stirred at 100 °C. After the time indicated in Table 2, the
reaction mixture was cooled to ambient temperature, and
Fe3O4@CS-Co was isolated using an external magnet, washed
with H2O and EtOH (2 × 10 mL), dried in vacuum, and
recycled again. The purification of the product was done by
column chromatography on silica gel using n-hexane/EtOAc
(6:1) as the eluent.

4.4. General Procedure for the Hiyama Cross-
Coupling Reaction of Aryl Halides with Triethoxyphe-
nylsilane Catalyzed by Fe3O4@CS-Co. Fe3O4@CS-Co (2
mol %) was added to a mixture containing triethoxyphenylsi-
lane (1.1 mmol), aryl halide (1 mmol), and Et3N (2 mmol) in
DMF (5 mL), and the mixture was stirred at 100 °C. After the
time indicated in Table 4, the reaction mixture was cooled to
ambient temperature, and Fe3O4@CS-Co was isolated using an
external magnet, washed with EtOAc and EtOH (2 × 10 mL),
dried under vacuum, and recycled again. The purification of
the product was done by column chromatography on silica gel
using n-hexane/EtOAc (50:1) as the eluent.
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Giannarelli, S.; Valaśěk, M. Reduction of substituted benzonitrile
pesticides. J. Electroanal. Chem. 2008, 622, 211−218. (b) Patel, A. B.;
Chikhalia, K. H.; Kumari, P. Facile synthesis of benzonitrile/
nicotinonitrile based s-triazines as new potential antimycobacterial
agents. Eur. J. Med. Chem. 2014, 79, 57−65. (c) Fouda, A. S.; El-Azaly,
A. H.; Awad, R. S.; Ahmed, A. M. New benzonitrile azo Dyes as
corrosion inhibitors for carbon steel in hydrochloric acid solutions.
Int. J. Electrochem. Sci. 2014, 9, 1117−1131. Anbarasan, P.; Neumann,
H.; Beller, M. A novel and convenient synthesis of benzonitrililes:
electrophilic cyanation of aryl and heteroaryl bromides. Chem.Eur.
J. 2011, 17, 4217−4222.
(2) Yan, G.; Zhang, Y.; Wang, J. Recent advances in the synthesis of
aryl nitrile compounds. Adv. Synth. Catal. 2017, 359, 4068−4105.
(3) (a) Rapolu, C. S. R.; Panja, K. R. Highly selective V-P-O/γ-
Al2O3 catalysts in the ammoxidation of toluene to benzonitrile. J.
Chem. Soc., Chem. Commun. 1993, 1175−1176. (b) Koelsch, C. F.;
Whitney, A. G. The Rosenmund-von Braun nitrile synthesis. J. Org.
Chem. 1941, 06, 795−803. (c) Beletskaya, I. P.; Sigeev, A. S.;
Peregudov, A. S.; Petrovskii, P. V. Catalytic Sandmeyer cyanation as a
synthetic pathway to aryl nitriles. J. Organomet. Chem. 2004, 689,
3810−3812.
(4) Yeung, P. Y.; So, C. M.; Lau, C. P.; Kwong, F. Y. A mild and
efficient palladium-catalyzed cyanation of aryl chlorides with K4[Fe-
(CN)6]. Org. Lett. 2011, 13, 648−651.
(5) (a) Khajeh Dangolani, S.; Sharifat, S.; Panahi, F.; Khalafi-
Nezhad, A. Immobilized palladium nanoparticles on a cyclodextrin-
polyurethane nanosponge (Pd-CD-PU-NS): An efficient catalyst for
cyanation reaction in aqueous media. Inorg. Chim. Acta 2019, 494,
256−265. (b) Zou, T.; Yu, X.; Feng, X.; Bao, M. An efficient
transformation of primary halides into nitriles through palladium-
catalyzed hydrogen transfer reaction. Chem. Commun. 2015, 51,
10714−10717.
(6) Ueda, Y.; Tsujimoto, N.; Yurino, T.; Tsurugi, H.; Mashima, K.
Nickel-catalyzed cyanation of aryl halides and triflates using
acetonitrile via C−CN bond cleavage assisted by 1,4-bis-
(trimethylsilyl)-2,3,5,6-tetramethyl-1,4-dihydropyrazine. Chem. Sci.
2019, 10, 994−999.
(7) Khemnar, A. B.; Sawant, D. N.; Bhanage, B. M. Rhodium
catalyzed cyanide-free cyanation of aryl halide by using formamide as
a cyanide source. Tetrahedron Lett. 2013, 54, 2682−2684.
(8) Liskey, C. W.; Liao, X.; Hartwig, J. F. Cyanation of arenes via
Iridium-catalyzed borylation. J. Am. Chem. Soc. 2010, 132, 11389−
11391.
(9) Khemnar, A. B.; Bhanage, B. M. Copper catalyzed nitrile
synthesis from aryl halides using formamide as a nitrile source. RSC
Adv. 2014, 4, 13405−13408.
(10) (a) Arvela, R. K.; Leadbeater, N. E.; Torenius, H. M.; Tye, H.
Rapid cyanation of aryl iodides in water using microwave promotion.
Org. Biomol. Chem. 2003, 1, 1119−1121. (b) Sundermeier, M.; Zapf,
A.; Beller, M.; Sans, J. A new palladium catalyst system for the
cyanation of aryl chlorides. Tetrahedron Lett. 2001, 42, 6707−6710.
(c) Maligres, P. E.; Waters, M. S.; Fleitz, F.; Askin, D. A highly
catalytic robust palladium catalyzed cyanation of aryl bromides.
Tetrahedron Lett. 1999, 40, 8193−8195. (d) Sundermeier, M.;
Mutyala, S.; Zapf, A.; Spannenberg, A.; Beller, M. A convenient and
efficient procedure for the palladium-catalyzed cyanation of aryl
halides using trimethylsilylcyanide. J. Organomet. Chem. 2003, 684,
50−55.
(11) (a) Veisi, H. Efficient cyanation of aryl halides with
K4[Fe(CN)6] catalyzed by encapsulated palladium nanoparticles in

biguanidine-chitosan matrix as core-shell recyclable heterogeneous
nanocatalyst. Polyhedron 2019, 159, 212−216. (b) Karimi, B.;
Vafaeezadeh, M.; Akhavan, P. F. N-Heterocyclic Carbene-Pd
Polymers as Reusable Precatalysts for Cyanation and Ullmann
Homocoupling of Aryl Halides: The Role of Solvent in Product
Distribution. ChemCatChem 2015, 7, 2248−2254.
(12) Ganapathy, D.; Kotha, S. S.; Sekar, G. Stable palladium
nanoparticles catalyzed synthesis of benzonitriles using K4[Fe(CN)6].
Tetrahedron Lett. 2015, 56, 175−178.
(13) (a) Jeong, E.; Lee, W. R.; Ryu, D. W.; Kim, Y.; Phang, W. J.;
Koh, E. K.; Hong, C. S. Reversible structural transformation and
selective gas adsorption in a unique aqua-bridged Mn (II) metal
organic framework. Chem. Commun. 2013, 49, 2329−2331. (b) Goel,
R.; Luxami, V.; Paul, K. Synthesis of energy transfer cassettes via click
and Suzuki-Miyaura cross-coupling reaction. RSC Adv. 2016, 6,
37664−37671. (c) Blaser, H.-U.; Indolese, A.; Naud, F.; Nettekoven,
U.; Schnyder, A. Industrial R&D on Catalytic C−C and C−N
Coupling Reactions: A Personal Account on Goals, Approaches and
Results. Adv. Synth. Catal. 2004, 346, 1583−1598. (d) Baudoin, O.;
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