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Abstract

In this paper we construct F2-linear codes over Fb
2 with length n

and dimension n − r where n = rb. These codes have good proper-
ties, namely cyclicity, low density parity-check matrices and maximum
distance separation in some cases. For the construction, we consider
an odd prime p, let n = p − 1 and utilize a partition of Zn. Then
we apply a Zech logarithm to the elements of these sets and use the
results to construct an index array which represents the parity-check
matrix of the code. These codes are always cyclic and the density of
the parity-check and the generator matrices decreases to 0 as n grows
(for a fixed r). When r = 2 we can prove that these codes are always
maximum distance separable. For higher r some of them retain this
property.
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1 Introduction

The class of Fq-linear codes have been widely studied [1, 3, 6, 17, 18]. They have various
applications in communication and storage systems, where the alphabet size is typically
large, to protect data against erasures [1, 3]. They can be also employed to organize
redundant data into disk arrays [2, 10].

These codes are very useful to dynamic high-speed storage applications since they have
low-complexity decoding algorithms over small fields and low update complexity when
small changes are applied to the stored data [4]. In general, Reed-Solomon codes have
none of these properties; thus, Fq-linear codes are more efficient than Reed-Solomon codes
in computational complexity terms [4]. In this article we construct F2-linear codes which
are cyclic, have low density parity check and generator matrices and in some cases are MDS
(maximum distance separable) [14]. MDS codes provide the maximum protection against
device failure for a given amount of redundancy [3]. Cyclic codes provide great advantages
such as concise representations and efficient encoding and decoding. Furthermore, if the
parity-check matrix of the code is low density, in particular if we have an upper bound on
the number of non-zero entries in each column, then the matrix can provide information
about where an error might have occurred [15].

It is possible to find some constructions of these kinds of codes in [1, 5, 8, 13, 16, 17].
In Section 2 we introduce some notation and concepts that we need to follow the paper.

In Section 3 we present the construction of an index array that represents a parity-check
matrix of Fq-linear code and in Section 4 we mention the properties of this construction.
Finally, we also introduce a decoding algorithm in Section 5.

2 Preliminaries

We start this section with the definition of Fq-linear codes [6, 13].

Definition 2.1: Let b be a positive integer. A code CFbq is said to be an FqFqFq-linear code

of length n over Fbq if it is a linear subspace of the vector space Fnbq . Equivalently it is an
Fq-linear code over Fbq if the code CFq is a linear code of length nb over Fq.

Notice that both CFq and CFbq refer to the same set of codewords, but over the alphabets

Fq and Fbq, respectively. Therefore, the codewords of CFbq of length n over Fbq can also be

viewed as codewords of length nb over Fq. It is worth pointing out that the code symbols
of CFbq can be regarded as elements in the field Fqb . However, linearity over this field is

not assumed.
Now, we analyze the relationship between the parameters of the code over Fq and the

parameters of the code over Fbq. Let [N,K,D] denote the parameters of the code CFq over

Fq. The number k = logqb
∣∣∣CFbq ∣∣∣ is the normalized dimension (or just dimension) of CFbq

over Fbq. If b divides K then k = K/b (in what follows, b divides K). Thus, the parameters
of the code CFbq are [n, k, d] over Fbq, where d is the minimum distance and n = N/b. To

define the minimum (Hamming) distance of CFbq we consider it as a code over the alphabet

Fbq. Then, the distance d is measured with respect to the symbols of Fbq (see [6]).
It is worth remembering that the code CFbq can be specified by either its parity-check

matrix H of size (n−k)b×nb or its generator matrix G of size kb×nb, both over Fq. The
matrix H (respectively, G) is said to be systematic if it contains the identity matrix of
size (n− k)b× (n− k)b (respectively, kb× kb).
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Example 1: Consider the generator matrix G given by

G =


1 0 0 0 1 1 1 1
0 1 0 0 1 0 1 0
0 0 1 0 1 1 0 1
0 0 0 1 0 1 1 0

 .
This matrix is in systematic form and is a generator matrix of a code CF2 of length 8 and
dimension 4 over F2.

We can compute the sixteen codewords of the code, and we can divide the bits of each
codeword into groups of two elements. Then if we consider the codewords over the new
alphabet F2

2, the length of each codeword is 4 and the normalized dimension of our new
code CF22 is 4/2 = 2. Then, the generator matrix can be seen as the block matrix

G =


1 0 0 0 1 1 1 1
0 1 0 0 1 0 1 0
0 0 1 0 1 1 0 1
0 0 0 1 0 1 1 0

 .
Then the length of the code CFq is 8, the dimension is 4 and the minimum distance is 3.
It is possible to check that the minimum distance of the code CF22 is also 3.

In general, the minimum distance of CFq over Fq is greater than or equal to the
minimum distance of CFbq over Fbq [7]. It is worth pointing out that though this distance

is greater it does not mean that the code is better. We cannot compare these two codes,
since both alphabets are different.

Now, we are ready to introduce the concept of MDS Fq-linear code.

Definition 2.2: An Fq-linear code with parameters [n, k, d] is MDS (maximum distance
separable) over Fbq if the Singleton bound

d ≤ n− k + 1

is attained [6].

The correcting capacity of a code depends on the minimum distance and the higher the
minimum distance is, the more errors the code can correct.

In Example 1, it is possible to check that the distances between all pairs of codewords
of the code CF22 only take the values 3 or 4 over F2

2. Thus the minimum distance of the
code is 3. Since the length is 4 and the dimension is 2, the code is an MDS F2-linear code
over F2

2.
The following theorems provide very useful characterizations in order to check whether

an Fq-linear code is MDS or not without computing the minimum distance. These theo-
rems are an extension of the characterization theorems for MDS block codes given in [14].
The first theorem can be used when we have the parity-check matrix of the code. The
second one allows us to check if the code is MDS when we have either the generator or
the parity-check matrix in systematic form.

Theorem 2.3: [6, Proposition 3.1] Let H = [H0 H1 . . . Hn−1] be an (n−k)b×nb parity-
check matrix of an Fq-linear code CFbq with parameters [n, k] over Fbq, where each Hi is an

(n− k)b× b submatrix of H. Then CFbq is MDS if and only if the (n− k)b columns of any

n− k distinct submatrices Hi form a linearly independent set over Fq.

Theorem 2.4: [6, Proposition 3.2] Let H =
[
A I(n−k)b

]
be an (n − k)b × nb systematic

parity-check matrix of an Fq-linear code CFbq with parameters [n, k] over Fbq and write

A = [Ai,j ] ∈ Mat(n−k)b×kb(Fbq), where each Ai,j is a b× b block submatrix of A. Then CFbq
is MDS if and only if every square submatrix of A consisting of full blocks submatrices
Ai,j is non-singular.
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We will use Theorem 2.4 to show that our codes for r = 2 are MDS in Section 4.2.
The next example illustrates the idea given in the previous theorems.

Example 2: We consider the code CF22 with parameters [4, 2] over F2
2, whose parity-check

matrix is

H = [A I4] =


1 1 1 1 1 0 0 0
1 0 1 0 0 1 0 0
1 1 0 1 0 0 1 0
0 1 1 0 0 0 0 1

 .
Since the matrices

A1,1 =

[
1 1
1 0

]
, A1,2 =

[
1 1
1 0

]
, A2,1 =

[
1 1
0 1

]
, A2,2 =

[
0 1
1 0

]
and A are non-singular, according to Theorem 2.4, the code is MDS over F2

2.

Next, we introduce an important theorem that implies that the Fq-dual of an Fq-linear
code is MDS if and only if the original code is MDS.

Theorem 2.5: Let C be an Fq-linear code over Fbq and C⊥ be the dual code over Fq which
is also an Fq-linear code over Fbq. Then C is MDS if and only if C⊥ is MDS.

Proof: Suppose the parameters of C over Fbq are [n, k, d] and let H = [H0 H1 . . . Hn−1]
be its (n − k)b × nb parity-check matrix over Fq. The parameters of C⊥ are [n, n − k, δ]
and H is a generator matrix for C⊥ over Fq. If C is MDS then d = n − k + 1. Suppose
that ccc is a word in C⊥ of minimum non-zero Fbq-weight δ. The Singleton bound implies
that δ ≤ n− (n− k) + 1 = k + 1. We need to show that δ ≥ k + 1. Suppose that δ ≤ k.
Thus the support of ccc is contained in the positions corresponding to the columns of no
more than k of the submatrices Hi. Let H be a set of k submatrices Hi which contain
the support of ccc. The codeword ccc is a non-trivial linear combination of the rows of H.
By Theorem 2.3 the b(n − k) × b(n − k) matrix formed from the submatrices Hi 6∈ H is
rank b(n−k). Restricting attention to just these positions in code C⊥, c is the zero vector
and is a non trivial linear combination of the rows of a full rank square matrix which is a
contradiction.

Now, we define the concept of cyclicity for Fq-linear codes.

Definition 2.6: An Fq-linear code CFbq with length n over Fbq is cyclic if [c0 c1 . . . cn−1] ∈
CFbq implies that [cn−1 c0 c1 . . . cn−2] ∈ CFbq .

It is worth pointing out that ci ∈ Fbq, for i = 0, 1, . . . , n − 1. Therefore, the code CFbq is

cyclic if and only if CFq is quasi-cyclic of index b.
Consider P the matrix which shifts the columns of the matrix H b positions to the

right. That is, if H = [H0 H1 . . . Hn−1], with Hi a block of size (n − k)b × b, then
H · P = [Hn−1 H0 H1 . . . Hn−2].

More specifically P is the nb× nb matrix given by

P =


0 Ib 0 · · · 0
0 0 Ib · · · 0
...

...
...

...
0 0 0 · · · Ib
Ib 0 0 · · · 0

 (1)

where 0 denotes the b× b zero matrix. The cyclicity of the code is related to the following
property, whose proof is straightforward.

Theorem 2.7: An Fq-linear code CFbq over Fbq with parity-check matrix H is cyclic if and

only if there exists an invertible matrix LP of size (n−k)b×(n−k)b such that H ·P = LP ·H.
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The next example helps us to understand this idea.

Example 3: Consider the parity-check matrix of a code CF22 given by

H =


1 0 0 1 0 0 1 1
1 1 1 0 0 1 0 0
0 0 1 1 1 0 0 1
0 1 0 0 1 1 1 0

 .
If we shift each block column one position to the right, wrapping the last block column

around to the first position, we obtain the following matrix

H · P =


1 1 1 0 0 1 0 0
0 0 1 1 1 0 0 1
0 1 0 0 1 1 1 0
1 0 0 1 0 0 1 1

 = LP ·H

where P is defined by (1) and LP has the form:

LP =


0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

 .
As we can see, the rows are the same, but shifted one position up and the first row

becomes the last one. As a consequence we can confirm that the code is cyclic. �

3 Construction

We introduce the concept of index array, a table that stores the positions of the non-zero
elements in a binary matrix.

Definition 3.1: Let CFb2 be an F2-linear code with parameters [n, k] over Fb2 and let

H = [hi,j ] be an (n− k)b× nb parity-check matrix of CFb2 over F2. The matrix H can be

represented by a b×n array of sets. The cell in location (i, j) contains the set {t | ht,i+bj =
1}. This array is called index array of H.

Basically, each cell of an index array represents a column of the parity-check matrix,
and inside the cell we store the position of the 1s in the corresponding column. We often
refer to an index array just with array.

Given a matrix of size m × n the numeration of rows (respectively, columns) starts
with 0 and ends with m − 1 (respectively, n − 1). The following example clarifies this
definition.

Example 4: We consider the linear code CF2 with parameters [18, 12] over F2, whose
parity-check matrix is given by

H =


1 0 0 0 1 0 0 1 0 0 0 1 0 0 0 0 0 1
0 0 1 1 0 0 0 1 0 0 1 0 0 0 1 0 0 0
0 0 0 0 0 1 1 0 0 0 1 0 0 1 0 0 0 1
0 0 1 0 0 0 0 0 1 1 0 0 0 1 0 0 1 0
0 1 0 0 0 1 0 0 0 0 0 1 1 0 0 0 1 0
0 1 0 0 1 0 0 0 1 0 0 0 0 0 1 1 0 0

 .
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Of course, this code can be also seen as an F2-linear code CF32 with parameters [6, 4]

over F3
2. We can represent the matrix H by the index array

AH =

0 1 2 3 4 5

4, 5 5, 0 0, 1 1, 2 2, 3 3, 4

1, 3 2, 4 3, 5 4, 0 5, 1 0, 2

where each cell represents each column of H and each block column of the array represents
each block of columns of H. �

Now, we need to recall the concept of Zech logarithm [9, 11].

Definition 3.2: Let α be a primitive element of Fp, with p a prime integer. The Zech
logarithm with base α is the bijective map

Zα : Zp−1 ∪ {∞} −→ Zp−1 ∪ {∞}

where α∞ = 0 by convention and αx + 1 = αZα(x).

Now, we are ready to construct an index array which represents a parity-check matrix
of an F2-linear code over Fb2. We will explore these codes properties in Section 4.

Let p be an odd prime integer, α be a primitive element of Fp and let n = p− 1 = rb.
Define u = n/2 mod b. We construct an index array corresponding to the parity-check
matrix H of an F2-linear code with parameters [n, k] over Fb2, where k = n− r.

Let
Ei = {x ∈ Zn | i = x mod b}, i = 0, 1, . . . , b− 1, (2)

which form a partition of Zn and for i 6= u let Di = Zα (Ei). Each set Ei (and Di)
contains r elements. We eliminate Eu because n/2 ∈ En/2 and Zα (n/2) = ∞ /∈ Zn. To
deal with the indexing caused by this elimination, let λ(i, u) be the indicator function of
i ≤ u and γ(i, u) be the indicator function of i ≥ u. Finally let A(p, r, α) be the b × n
index array given by

A(p, r, α)ij =

{
{j}, i = 0,

Di−λ(i,u) + j, i > 0.
(3)

This index array corresponds to the rb× nb parity check matrix H(p, r, α) defined by

H(p, r, α)ij =


1, ib = j,

1, i ∈ Dz−λ(z,u), j = `b+ z, 1 ≤ z < b, 0 ≤ ` < n,

0, otherwise.

We define C(p, r, α) to be the F2-linear code over Fb2 with H(p, r, α) as its parity check
matrix over F2. The index array A(p, r, α) is shown in Table 1.

Let G(p, r, α) be the n(b− 1)× nb matrix over F2 defined by

G(p, r, α)ij =


1, j = i+ `+ 1, i = `(b− 1) + z, 1 ≤ z < b− 1, 0 ≤ ` < n,

1, j mod b = 0, i = `(b− 1) + z, 0 ≤ z < b− 1, 0 ≤ ` < n,

and (j/b) ∈ Dz+γ(z,u) + `,

0, otherwise.

(4)

Theorem 3.3: G(p, r, α) is a generator matrix for C(p, r, α) over F2.

Proof: We use the fact that H(p, r, α) does contain an rb × rb identity matrix so it is
systematic. Let permutation π be defined by

π(i) =

{
n(b− 1) + `, if i = `b,

`(b− 1) + z − 1, if i = `b+ z, 1 ≤ z < b, 0 ≤ ` < n.
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0 1 2 · · · p− 3 p− 2

D0 D0 + 1 D0 + 2 · · · D0 + p− 3 D0 + p− 2

D1 D1 + 1 D1 + 2 · · · D1 + p− 3 D1 + p− 2
...

...
...

...
...

Du−1 Du−1 + 1 Du−1 + 2 · · · Du−1 + p− 3 Du−1 + p− 2

Du+1 Du+1 + 1 Du+1 + 2 · · · Du+1 + p− 3 Du+1 + p− 2
...

...
...

...
...

Db−1 Db−1 + 1 Db−1 + 2 · · · Db−1 + p− 3 Db−1 + p− 2

Table 1: Index array constructed in Section 3.

0 1 2 · · · p− 3 p− 2

D1 D1 + 1 D1 + 2 · · · D1 + p− 3 D1 + p− 2

D2 D2 + 1 D2 + 2 · · · D2 + p− 3 D2 + p− 2
...

...
...

...
...

Db−1 Db−1 + 1 Db−1 + 2 · · · Db−1 + p− 3 Db−1 + p− 2

Table 2: Index array representing the parity-check matrix when r = 2.

Applying π to the columns we get H in the form [H ′ I] . Thus the generator matrix is[
I −HT

]
=
[
I HT

]
because H is a matrix over F2 [14]. Applying π−1 to the columns of the above matrix
gives the matrix G(p, r, α).

The index array of the generator matrix is much simpler to describe. It has the form
given in Table 3, where

B = {j : j = `(b− 1) + z, 0 ≤ z < b− 1, 0 ≤ ` < n, 0 ∈ Dz+γ(z,u) + `}.

Formally, the index array of the generator matrix G(p, r, α), is the b × n array B(p, r, α)
given by

B(p, r, α)ij =

{
B + j(b− 1), i = 0,

{j(b− 1) + i− 1}, i > 0.
(5)

When r = 2, then u = 0 and thus the forms of the generator matrix and its index array
are simpler. The index array from Table 1 simplifies to that given in Table 2 and in the
computation of Bi, γ(z, 0) is always 1.

Example 5: Let p = 7, n = 6, r = 2, b = 3 and α = 3. The Zech logarithm table is:

x 0 1 2 3 4 5 ∞
Zα (x) 2 4 1 ∞ 5 3 0

¿From Expression (2) the sets Ei which partition Z6 are

E0 = {0, 3}, E1 = {1, 4} and E2 = {2, 5}.
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B B + (b− 1) B + 2(b− 1) B + 3(b− 1) B + 4(b− 1) · · · B + (n− 1)(b− 1)

0 b− 1 2(b− 1) 3(b− 1) 4(b− 1) · · · (n− 1)(b− 1)

1 b 2(b− 1) + 1 3(b− 1) + 1 4(b− 1) + 1 · · · (n− 1)(b− 1) + 1

2 b+ 1 2(b− 1) + 2 3(b− 1) + 2 4(b− 1) + 2 · · · (n− 1)(b− 1) + 2
...

...
... · · ·

...
...

b− 2 2b− 3 3(b− 1) − 1 4(b− 1) − 1 5(b− 1) − 1 . . . n(b− 1) − 1

Table 3: Index array representing the generator matrix computed from the
index array in Table 2.

In this case u = n/2 mod b = 0, so we eliminate the set E0 = {0, 3}. Applying the Zech
logarithm to the remaining sets we obtain

D1 = {4, 5} and D2 = {1, 3}.

Together with {0}, these sets form the 0th column of the index array, A(7, 2, 3). The
rest of the columns of the index array can be obtained from Equation (3) and from the
general form shown in Table 1; A(7, 2, 3) and H(7, 2, 3) are given in Example 4, denoted
as AH and H, respectively.

The corresponding generator matrix is

G(7, 2, 3) =



0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0
0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0
1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0
1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0
0 0 0 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0 1 0 0 0 1 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 0
1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1



.

The index array representing the generator matrix is given by:

B B + 2 B + 4 B + 6 B + 8 B + 10

0 2 4 6 8 10

1 3 5 7 9 11

=

2, 4, 7, 11 1, 4, 6, 9 3, 6, 8, 11 1, 5, 8, 10 0, 3, 7, 10 0, 2, 5, 9

0 2 4 6 8 10

1 3 5 7 9 11

.

�

4 Construction Properties

In this section we show that the codes C(p, r, α) and their duals have desirable properties:
cyclicity, MDS and low density matrices.
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4.1 Cyclicity

In this section, we prove that the codes we obtained in Section 3 are always cyclic.

Corollary 4.1: For p a prime, r dividing n = p − 1 and α primitive in Fp the code
C(p, r, α) is cyclic.

Proof: If we observe the form of the array given in Table 1 and we subtract 1 to the
elements in the sets, the last column is now the first column as we can see in Table 4.

Let P the matrix defined in (1) and

LP =



0 1 0 0 · · · 0
0 0 1 0 · · · 0
0 0 0 1 · · · 0
...

...
...

...
. . .

...
0 0 0 0 · · · 1
1 0 0 0 · · · 0


.

If we denote by H the parity-check matrix represented by the array in Table 1, we have
that H · P = LP · H and this matrix is represented by the array in Table 4. Then,
Theorem 2.7 shows that the code is cyclic.

We note that LP is always the b× b identity matrix with its columns shifted right once.

Example 6: Consider the index array in Example 4. This array represents the parity-
check matrix of an F2-linear code over F3

2 with parameters n = 6 and k = 4 (with b = 3
and r = 2). Therefore, if we subtract 1 modulo n to every element in every set of the
array AH of Example 4 we obtain the following array

5 0 1 2 3 4

3, 4 4, 5 5, 0 0, 1 1, 2 2, 3

0, 2 1, 3 2, 4 3, 5 4, 0 5, 1

which represents the matrix
0 0 1 1 0 0 0 1 0 0 1 0 0 0 1 0 0 0
0 0 0 0 0 1 1 0 0 0 1 0 0 1 0 0 0 1
0 0 1 0 0 0 0 0 1 1 0 0 0 1 0 0 1 0
0 1 0 0 0 1 0 0 0 0 0 1 1 0 0 0 1 0
0 1 0 0 1 0 0 0 1 0 0 0 0 0 1 1 0 0
1 0 0 0 1 0 0 1 0 0 0 1 0 0 0 0 0 1

 .

This matrix is obtained shifting the blocks one position to the right and moving the last
block to the beginning. At the same time, this matrix can be also obtain by H ·P = Lp ·H.
By Corollary 4.1, the code is cyclic. �

4.2 Maximum Distance Separability

When r = 2 we can show that the codes C(p, r, α) are MDS. We use Theorem 2.3 but first
we need some intermediate results.

Let p be an odd prime, n = p − 1, b = n/2 and α be primitive in Fq. Let Diffsp =
{z ∈ Zp : 1 ≤ z ≤ b}. For each i ∈ Zp let Fi = {eij = {i + j, i − j} : j ∈ Diffsp}. We
observe that Fi is a partition of Zp \ {i}. Letting logα : Zp → Zn ∪ {∞} be the discrete
logarithm with base α we see that

logα(F0) = {Ei : 0 ≤ i < b} ,

10



p− 2 0 1 2 · · · p− 3

D0 + p− 2 D0 D0 + 1 D0 + 2 · · · D0 + p− 3

D1 + p− 2 D1 D1 + 1 D1 + 2 · · · D1 + p− 3
...

...
...

...
...

Du−1 + p− 2 Du−1 Du−1 + 1 Du−1 + 2 · · · Du−1 + p− 3

Du+1 + p− 2 Du+1 Du+1 + 1 Du+1 + 2 · · · Du+1 + p− 3
...

...
...

...
...

Db−1 + p− 2 Db−1 Db−1 + 1 Db−1 + 2 · · · Db−1 + p− 3

Table 4: Index array obtained by subtracting 1 modulo n to every set in the
array given in Table 1.

where Ei are the sets introduced in Equation (2). Similarly for j ∈ Zn, and for the sets
Di = Zα (Ei), we have that

{Di + j : 0 ≤ i < b} = { {Zα (i) + j,Zα (i+ b) + j} : 0 ≤ i < b }

= { {j + logα(1 + αi), j + logα(1 + αi+b)} : 0 ≤ i < b }

= { {logα(αj + αi+j), logα(αj + αi+j+b)} : 0 ≤ i < b }

= { {logα(αj + αi+j), logα(αj − αi+j)} : 0 ≤ i < b }
= logα(Fαj ).

Finally when r = 2, u = 0 so E0 = {0, b} = logα e01 is discarded. In the place of where
D0 + j would go in A(p, 2, α) is simply the set {j} = log(e01 \ {0}) + j so it corresponds
to what D0 + j would be with the element ∞ removed. Thus the columns of H(p, 2, α)
that correspond to the jth column of the index array A(p, 2, α) are simply the incidence
vectors of log(Fαj ) ignoring log(0) =∞. Our goal is to show that the union of the n = 2b
columns in H(p, 2, α) corresponding to any two columns of A(p, 2α) are rank n. We will
work in the domain of logα which is Zp rather than in the range, Zn∪{∞}. We only need
to remember to delete the element 0 ∈ Zp.

Our first lemma determines the result of addition and multiplication on the elements
of Fi.

Lemma 4.2: For j ∈ Zp, Fi + j = Fi+j. For z ∈ Zp \ {0}, zFi = Fzi.

For the next lemma we think of the Fi as edge sets of a graph whose vertices are the
elements of Zp. With this viewpoint is is easy to check that F0 ∪ F1 is a Hamilton path
between vertices 0, 1 ∈ Zp, that is, a path in the graph that visits each vertex exactly
once. The next lemma shows that the union of any two Fi is also a Hamilton path. To
express this fact we use the symbol ∼= to mean isomorphic under either addition by an
element of Zp or multiplication by an element in Zp \ {0}.

Lemma 4.3: Fi ∪ Fj ∼= F0 ∪ F1 for any i 6= j.

Proof: By the additive transformation from Lemma 4.2 we have that

Fi ∪ Fj ∼= F0 ∪ Fj−i

and j − i 6= 0. Let b(j − i) = 1 in Zp. Then by the multiplicative transformation from
Lemma 4.2

F0 ∪ Fj−i ∼= Fb0 ∪ Fb(j−i) = F0 ∪ F1.

11



Thus Fi ∪ Fj is a Hamilton path with i and j as the end vertices. Given any path in
a graph, the matrix whose columns are the incidence vectors of the edges of the path
together with the incidence vector of one of the end-points of the path has full rank.

Lemma 4.4: The square matrix, M` = [mij ] ∈ Mat`×`(Z2) defined by

mij =

{
1, i ≤ j ≤ i+ 1,

0, otherwise,

has rank n.

Proof: Adding each column, in order along the path, to the subsequent column in the
path, transforms the matrix into the identity. Each of these is an elementary column
operation so the rank has not changed.

Theorem 4.5: Let p be an odd prime and α be primitive in Zp. The F2-linear code
C(p, 2, α) and its dual code are both MDS.

Proof: Consider the n columns of H that correspond to columns j1 and j2 of A(p, 2, α).
By Lemma 4.3, before deleting the point 0 (corresponding to ∞ in the range of log) these
columns were the incidence vectors of the edges of a Hamilton path from αj1 to αj2 . After
deleting the point 0, the columns are now the incidence vectors of the edges of two vertex-
disjoint paths, together with the incidence vectors of one endpoint from each component.
Thus after a suitable permutation of rows and columns, this n× n matrix consists of two
blocks (not necessarily of the same size) on the diagonal, each isomorphic to M` for some
`. Thus by Lemma 4.4, this matrix has rank n.

By Theorem 2.5, the dual code is also MDS.

This proof corresponds very closely to the proof that a perfect 1-factorization exists
in Kp+1 for any prime p [12]. We are currently investigating the connections between
perfect 1-factorizations and MDS F2-linear codes.

The codes constructed in Section 3 are not MDS for every value of r|n. In Table 5
we report the MDS property for C(p, r, α) for p ≤ 43 and r ≤ 15. For every prime p and
value of r, the choice of the primitive element α, did not affect the property of being MDS.
That is the code was either MDS for every α or not MDS for every α. Thus we do not
include α in our results. The symbol 4 indicates the code is MDS (and thus its dual also)
and symbol ��ZZ indicates neither code is MDS. In addition to the case r = 2, the codes
may be MDS when r = 3 and p > 7. Proving this is our primary future goal.

4.3 Low Density Matrices

The construction here presented yields F2-linear codes over Fb2 with parameters [n, n− r],
with b = n

r
. We now show that these codes have the low density parity check matrix

property.

Theorem 4.6: Let p be prime, r divide n = p− 1 and α be primitive in Zp. The number
of non-zero elements in the parity check matrix H(p, r, α) is

n(n− r + 1)

nrb2
=
nr(n− r + 1)

n3
.

Proof: The number of 1s in each row of the parity-check matrix is n − r + 1 (every
integer in Zn, representing each row, appears n− r+ 1 times in the index array). On the
other hand, there are n columns containing one 1 and the number of 1s contained in the
remaining n(b− 1) columns is r. Therefore, the average number of 1s in the parity-check
matrix is

n(n− r + 1)

nrb2
=
nr(n− r + 1)

n3
.
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p
5 7 11 13 17 19 23 29 31 37 41 43

r

2 4 4 4 4 4 4 4 4 4 4 4 4

3 ��ZZ 4 4 4 4 4

4 ��ZZ ��ZZ 4 4 ��ZZ

5 ��ZZ ��ZZ ��ZZ

6 ��ZZ ��ZZ ��ZZ ��ZZ ��ZZ

7 ��ZZ ��ZZ

8 ��ZZ ��ZZ

9 ��ZZ ��ZZ

10 ��ZZ ��ZZ

11 ��ZZ

12 ��ZZ

13
14 ��ZZ ��ZZ

15 ��ZZ

Table 5: MDS property of C(p, r, α) for different values of p and r.

This leads to the following result.

Corollary 4.7: Let r be fixed, p ≡ 1 (mod r) be prime and α be primitive in Fp. The
limit of the number of non-zero elements in H(p, r, α) as p→∞ is 0.

Thus the codes C(p, r, α) are LDPC.
In particular, when r = 2, that is when the code is proven to be MDS, the average

number of ones in the parity-check matrix is

2(n− 1)

n2
.

The generator matrices defined in Equation (4) are also low density.

Theorem 4.8: Let p be prime, r divide n = p− 1 and α be primitive in Zp. The number
of non-zero elements in the generator matrix G(p, r, α) is

(n− 1)r(r + 1)

(n− r)n2
.

Proof: For a fixed value of r, the generator matrix will have (n − r)b rows with r + 1
ones each. The average number of ones is

(n− 1)r(r + 1)

(n− r)n2
.

Corollary 4.9: Let r be fixed, p ≡ 1 (mod r) be prime and α be primitive in Fp. The
limit of the number of non-zero elements in G(p, r, α) as p→∞ is 0.

This theorem and corollary are useful because they show that the F2-dual codes of
C(p, r, α) also have the LDPC property.
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5 Decoding Algorithm with Index Arrays

In this section we introduce a decoding algorithm for the codes obtained in Section 3. We
study the MDS case, that is when r = 2. The code CFb2 is an F2-linear code with length

n, dimension n− 2, minimum distance 3, with b = n/2, and corrects one error. However,
one error in this case corresponds to b consecutive errors for the linear code CF2 over F2.

Let the index array AH given in Table 2 represent the parity-check matrix of the code.
Suppose we receive the word

x =
[

ξ0 x1,0 x2,0 · · · xb−1,0

ξ1 x1,1 x2,1 · · · xb−1,1

...
...

...
...

ξn−1 x1,n−1 x2,n−1 · · · xb−1,n−1

]
.

We superimpose the codeword on the index array, with each bit of the codeword
corresponding with a cell of the array in Table 2:

0 ξ0 1 ξ1 · · · n− 1 ξn−1

D1
x1,0 D1 + 1 x1,1 · · · D1 + n− 1 x1,n−1

D2
x2,0 D2 + 1 x2,1 · · · D2 + n− 1 x2,n−1

...
...

...

Db−1
xb−1,0 Db−1 + 1 xb−1,1 · · · Db−1 + n− 1 xb−1,n−1

We only consider the cells where the corresponding bit of the codeword is non-zero.
Now, we construct the ith component of the vector of syndromes s = (s0, s1, . . . , sn−1) in
the following way:

si =

(
n−1∑
j=0

b−1∑
k=1

xk,jN
i
k,j + ξi

)
mod 2, for i ∈ Zn, (6)

where

N i
k,j =

{
1, if i ∈ Dk + j,

0, otherwise.

Basically, si is the number of times that i ∈ Zn appears in the index array.
If sit 6= 0, for t ∈ {0, 1, . . . , `} with ` < n we know we have one error related to every

index it, that is, the index it appears too many or not enough times in the index array.
We locate these errors in one column of the array, since we can correct only one error in
the word. As every column of the index array corresponds to a symbol of the codeword,
we know which symbol of the codeword is in error. The position of the error in the symbol
depends on the position of the cell with errors in the column. Let us see an example to
illustrate this idea.

Example 7: Consider the index array given in Example 4:

0 1 2 3 4 5

4, 5 5, 0 0, 1 1, 2 2, 3 3, 4

1, 3 2, 4 3, 5 4, 0 5, 1 0, 2

This array represents the parity-check matrix of an F2-linear code of length 6, with
dimension 4 and minimum distance 3 over F3

2.
If we receive the word

x = [ 010 101 011 010 001 001 ]
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and we know there is one error, we can correct it.
We write the word on the index array and we only consider the cells with a 1:

�A0
0 1 1

�A2
0
�A3

0
�A4

0
�A5

0

4, 5 1
�A5,�A0

0 0, 1 1 1, 2 1
�A2,�A3

0
�A3,�A4

0

�A1,�A3
0 2, 4 1 3, 5 1

�A4,�A0
0 5, 1 1 0, 2 1

Now we count the number of times i appears in the array, for i ∈ Z6. If we compute
these numbers modulo 2, we obtain the vector of syndromes. On the other hand, we
can compute the components of the vector of syndromes s using expression (6). The
components of the vector of syndromes are given by,

s0 = 2 mod 2 = 0,
s1 = 4 mod 2 = 0,
s2 = 3 mod 2 = 1,
s3 = 1 mod 2 = 1,
s4 = 2 mod 2 = 0,
s5 = 3 mod 2 = 1.

The error is in one column where 2, 3 and 5 appear and the other indices are not
affected. Then, the error should be in the column:

2

0, 1

3, 5

For example, the error could not be in the column

4

2, 3

5, 1

since the error in 5 would affect 1, and we obtain no errors in 1.
Then, the error is in the 2nd symbol of the word in the 0th and 2nd position. If we

had 1 we change it by 0, and vice versa. Then, the corresponding corrected codeword is

x∗ = [ 010 101 110 010 001 001 ].

�

In this work we have studied the binary case, but it is possible to study the case where
q > 2.
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