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Abstract: The application of satellite single-pass interferometric data to crop-type mapping
is demonstrated for the first time in this work. A set of nine TanDEM-X dual-pol pairs of images acquired
during its science phase, from June to August 2015, is exploited for this purpose. An agricultural site
located in Sevilla (Spain), composed of fields of 13 different crop species, is employed for validation.
Sets of input features formed by polarimetric and interferometric observables are tested for crop
classification, including single-pass coherence and repeat-pass coherence formed by consecutive images.
The backscattering coefficient at HH and VV channels and the correlation between channels form the set
of polarimetric features employed as a reference set upon which the added value of interferometric
coherence is evaluated. The inclusion of single-pass coherence as feature improves by 2% the overall
accuracy (OA) with respect to the reference case, reaching 92%. More importantly, in single-pol
configurations OA increases by 10% for the HH channel and by 8% for the VV channel, reaching
87% and 88%, respectively. Repeat-pass coherence also improves the classification performance, but
with final scores slightly worse than with single-pass coherence. However, it improves the individual
performance of the backscattering coefficient by 6–7%. Furthermore, in products evaluated at field level
the dual-pol repeat-pass coherence features provide the same score as single-pass coherence features
(overall accuracy above 94%). Consequently, the contribution of interferometry, both single-pass
and repeat-pass, to crop-type mapping is proved.

Keywords: TanDEM-X; agriculture; classification; SAR; interferometry; polarimetry

1. Introduction

Data acquired by the TanDEM-X mission [1] have been used not only for the generation of a global
digital elevation model (DEM) of the Earth’s surface [2], which is its main objective, but for many
other scientific purposes, such as forest parameter estimation [3,4], global forest mapping [5], glacier
changes monitoring [6], measurement of lava discharge rate in volcanoes [7], and many others. In this
work, a different application of these data is investigated: the generation of crop-type maps from time
series of TanDEM-X data takes.

Crop classification is one of the earliest applications of satellite remote sensing. It has contributed
to the improvement of the agricultural statistics, as well as to the mapping of the areas and production
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of the world’s major crops. Crop-type maps are exploited for market predictions, insurance claims,
payment of subsidies, etc., and also for hydrological and ecological purposes, due to the effect of crops
on water demand, use of pesticides, preservation of biodiversity, etc. For instance, the recent integration
of satellite data into the mandatory checks of the European Common Agricultural Policy, which
is required for the allocation of subsidies targeting specific crops, is another example of the advantages
of accurately identifying crop types.

The exploitation of synthetic aperture radar (SAR) data for agricultural applications is based
both on the capability of radars to acquire images at any daytime and independently of weather
conditions, hence providing consistent time series of data, and on the sensitivity of microwaves
to the architecture of crop canopies [8,9]. One of the most successful applications of SAR in agriculture
is crop classification based on time series of spaceborne images, which has been proved in many
studies [10–12]. Regarding the use of series of X-band data for crop-type mapping, the earliest example
corresponds to an airborne experiment carried out back in 1988 [13], but most studies exploit data
from the TerraSAR-X satellite mission, launched in 2007, and its twin satellite TanDEM-X launched
three years later.

To date, time series of dual-pol SAR images acquired by TerraSAR-X and TanDEM-X have been
successfully applied for crop classification by exploiting either the backscattering coefficient at the two
channels [14–16] or sets of polarimetric features [17–20] as inputs to the classifier. An intercomparison
is complicated due to the specific conditions of each experiment, in terms of the crop types present
in the study sites and the available sets of images. However, the best reported overall accuracies
are around 70–80% when only backscattering coefficient features are employed, and they reach 95%
in the best case when also polarimetric features are added and the evaluation is done at field level [19].

This work is aimed at exploring the added value of the interferometric products that can
be derived from TanDEM-X data for classification of agricultural crops. For this purpose, two different
types of interferometric combinations are investigated: single-pass and repeat-pass. Single-pass
interferometry consists in combining two images acquired simultaneously over the same scene,
whereas repeat-pass interferometry is the combination of images acquired on different dates
by the same satellite. It is important to note that TanDEM-X is a unique radar sensor in space
because it is currently the only one providing pairs of images acquired simultaneously by two
satellites (TerraSAR-X and TanDEM-X), hence enabling single-pass interferometry, whereas repeat-pass
is the common interferometric mode for all radar satellites.

The expected contribution from single-pass interferometric to crop-type mapping relies on
the sensitivity of coherence to the height and structure of the plants, which are attributes specific of each
crop species and also evolve with time along the growing season. The use of single-pass interferometric
coherence for classification purposes is rather scarce, with only a few examples in the literature, apart
from the forest/non-forest global map generated from TanDEM-X data [5]. Interferometric coherence
acquired by airborne sensors with negligible temporal decorrelation, i.e., equivalent to single-pass, was
used in the past for classifying forest types according to their different structures and heights [21–23],
for which polarimetry and interferometry were exploited simultaneously. Similarly, a study on urban
land cover classification using polarimetric SAR interferometry (PolInSAR) was carried out in [24].
Therefore, to the authors’ knowledge the present study on crop classification is original in the use
of this type of data as input features.

As for repeat-pass interferometry, the changes produced in the scene between the acquisition dates
generate a decrease in the interferometric coherence known as temporal decorrelation. Provided that
these changes are associated with specific crop types and/or at particular dates along the growing
cycle, repeat-pass coherence should provide information useful for crop classification. In a broader
context, repeat-pass interferometry was tested in the past for land cover mapping by making use
of time series of ERS tandem data [25,26], with 1 day revisit time, and more recently with Sentinel-1
data [27,28], with 6 days revisit time. The revisit time of the TanDEM-X mission is 11 days, so areas with
vegetation are expected to decorrelate significantly due to the presence of wind (and other weather
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events) and also due to the changes in the scene induced by the vegetation itself (e.g., crop growth
during vegetative phases). Contrarily, bare surfaces usually keep a high coherence over longer periods.
As a result, the absence of vegetation, especially at the beginning of the season and after harvest,
is expected to be detected by repeat-pass interferometry over agricultural areas. This detection would
provide information related to the crop calendar, which normally depends on the crop type, hence
being useful for crop-type mapping [11,12,29,30]. The influence of the wavelength or frequency
band on temporal decorrelation is also an important aspect to be considered in this context [31,32].
In general, a shorter wavelength (higher frequency) decorrelates faster than a longer wavelength (lower
frequency). Repeat-pass coherence from TerraSAR-X was tested for the first time for crop classification
in [18], but results were inconclusive about the contribution of this feature for crop-type mapping.
The coherence values reported in that paper are compared to the ones found in this work in Section 3.

In the present work we quantify the added value of interferometric coherence as input
feature for crop classification. In order to carry out this measurement, we first consider the use
of dual-polarimetric features as the reference case, but the results obtained by individual backscattering
coefficient of the two channels are also studied to test whether any improvement is provided
by interferometry in the single-pol case or not. Moreover, results are evaluated both at pixel and field
levels to check whether the contribution of interferometry depends on the spatial level of the products.
In addition, the polarimetric and interferometric data are also evaluated when expressed in the Pauli
basis, the most common in PolInSAR, to check the potential benefit of this alternative formulation.

A set of nine TanDEM-X data takes gathered from June to August 2015 over an agricultural area
in Spain is analysed. A widely used supervised classification method (random forest) is employed
to evaluate different sets of input features and to compare their impact both at global level and for
different crop species.

2. Material and Methods

2.1. Reference Data

The study site is located in Sevilla (Spain), centred at 37 N, 6.1 W. It is composed by an agricultural
area named BXII Sector, and part of a rice cultivation area. Figure 1 shows the corresponding crop-type
map with all fields available in the reference data, which corresponds to the year 2015. During the
observation period, from June to August, the weather was very dry and hot in this area, with only two
light rain events (less than 2 mm) on June 12 and August 8.

The number of fields per crop and the total area of each crop are summarised in Table 1.
There is a total of 15 crops and some parcels marked as fallow. The dominant crops are rice and cotton,
followed by sugar beet, tomato, corn and wheat. All crops are distributed over the whole site except
rice, which is only present in the upper left corner.

The crop calendar of all crops in this area is shown in Figure 2. The different stages defined for each crop
are ’Preparation’, ‘Seeding’, ‘Growing’, ‘Harvesting’ and ’Post harvest’. The cropping pattern is a diverse
mixture representative of most of the field crops and vegetable grown in the Guadalquivir valley.
It includes winter (sugar beet, wheat, quinoa) and spring crops (rice, cotton, tomato, corn) whose
growth cycles last until the end of spring or the end of summer, with maximum vegetation cover
in June–July. It also includes short-cycle vegetables grown during the winter, being carrot the most
relevant. All crops but alfalfa are annual crops (i.e., one cultivation per year), whereas the cultivation
of alfalfa lasts several years. In the reference data, all the alfalfa fields were sown in 2015.
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Figure 1. Crop-type map with all fields available in the reference data.

Table 1. Table of number of fields and total area per crop type in the study site.

Crop type Total number of fields Area (ha)
Alfalfa 18 68
Wheat 62 217
Cotton 409 1521
Corn 122 342

Sugar beet 232 658
Tomato 205 622

Sunflower 30 86
Fallow 11 7
Beans 9 13
Quinoa 41 124
Carrot 30 63

Cauliflower 4 9
Chickpea 11 9

Onion 16 26
Pea 11 30
Rice 283 2243
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Figure 2. Crop calendar in 2015. The two red vertical lines denote the starting and final dates
of the available TanDEM-X acquisitions.

The two red vertical lines overlaid to the crop calendar define the available period of observation
with TanDEM-X data, from beginning of June to end of August, which is detailed in Section 2.2.
We can easily appreciate that the satellite data cover only partially the cultivation cycle of the crops,
and in some cases the whole life cycle is outside the temporal interval under investigation. Crops like
wheat, chickpea, onion and pea are only covered in their harvesting stage, while others like carrot
and cauliflower are completely out of the observed period.

Since these two last crops were harvested before the satellite acquisition dates, the radar data
do not provide information about them, so both will be removed from the classification dataset.
Those crops whose life cycle is only partially covered by the satellite data will be not removed from
the dataset, but it is expected that the classification results obtained for them will not be satisfactory.
Another land cover class which will be removed is fallow, since it is not really a crop type and may
be subject to different practices during the observed period. Consequently, the total number of crops
considered in the experiment is 13.

2.2. TanDEM-X Data

TanDEM-X (TerraSAR-X add-on for digital elevation measurement) is the name of TerraSAR-X’s
twin satellite, and also the name of the mission flying the two satellites in a closely controlled formation,
with typical distances between 250 and 500 m [1]. The SAR instruments operate at a central frequency
of 9.6 GHz (3.1 cm wavelength), flying at altitude of 514 km. Images can be acquired with different
modes that provide a range of resolutions and coverages. Moreover, both single- and dual-polarimetric
modes are standard acquisition modes. The prime objective of this mission is the generation of digital
elevation models with global coverage and high accuracy. Beyond that, TanDEM-X provides a highly
reconfigurable platform for the demonstration of new SAR techniques and applications.

In the standard acquisition mode of the TanDEM-X mission, one satellite acts as a transmitter
and the two of them as receivers, hence producing a monostatic image and a bistatic image over
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the same scene. These two images are co-registered and delivered in a common product format called
coregistered single-look slant-range complex (CoSSC).

The interferometric combination of the two images correspond to single-pass interferometry, for which
temporal decorrelation is null. The most relevant term affecting the single-pass interferometric coherence
in vegetated areas is the so-called volume decorrelation, which stands for the coherence loss due
to the presence of scatterers at different heights inside the resolution cell. In fact, volume decorrelation
is the key driver for the estimation of vegetation height from TanDEM-X interferometric coherence,
since it depends directly on vegetation height [33,34]. The sensitivity of the coherence to vegetation
height and structure is controlled by the height of ambiguity (HoA) of the interferometric configuration.
HoA is the height difference that generates a change of 2π in the interferometric phase, and is inversely
proportional to the spatial baseline (separation of the two satellites) at the time of acquisition. In this
regard, the typical values of HoA for TanDEM-X during its normal operation are from 30 to 80 m,
which are optimised for the global DEM generation. These values are also well suited for forest studies,
but they are too large for field crops, since plants are much shorter than trees, and InSAR phase is not
sensitive to such a low vegetation. However, during the science phase of TanDEM-X, from April
to September 2015, the spatial baseline was increased to 2–3 km, hence providing HoA values of a few
meters and, consequently, interferometric sensitivity to short crops.

The list of TanDEM-X CoSSC products employed in this study is shown in Table 2. They were
acquired from 4 June to 31 August 2015, i.e., inside the science phase, with an incidence angle around
23 degrees and providing a HoA around 2.5 m. All the images correspond to a dual-pol mode with
the two copolar channels: HH and VV. The same dataset was previously used in [35] for the retrieval
of rice height by using PolInSAR. The spatial resolution of these CoSSC products is 6.6 m in azimuth
and 3.1 m in ground-range, while the pixel spacing (pixel size) is 2.4 m in both coordinates.

Table 2. List of TanDEM-X data takes (CoSSC products).

Date Master/Slave Incidence Angle (Degrees) HoA (m)

4 June 2015 TDX/TSX 22.71 2.53
15 June 2015 TDX/TSX 22.71 2.53
26 June 2015 TDX/TSX 22.73 2.53
7 July 2015 TDX/TSX 22.73 2.54

18 July 2015 TDX/TSX 22.73 2.53
29 July 2015 TDX/TSX 22.74 2.53

9 August 2015 TDX/TSX 22.73 2.52
20 August 2015 TDX/TSX 22.73 2.53
31 August 2015 TDX/TSX 22.73 2.53

For the objective of this work, three different sets of observables, to be used as input features
for classification purposes, were computed: polarimetric features (backscattering coefficient and correlation
between channels), interferometric coherence in single-pass mode, and interferometric coherence
in repeat-pass mode. The processing of the data required for each one of these sets is slightly different,
so it is described separately in the following subsections.

2.2.1. Polarimetric Data

All the single-look complex (SLC) images of the master acquisitions were pre-processed with
the following steps: (1) subset of the region of interest, (2) calibration, (3) formation of polarimetric
covariance matrices, (4) speckle filtering using a 9 × 9 boxcar filter, (5) computation of observables,
and (6) geocoding. The geocoding step, which is common to all observables in this study, was carried
out to a common UTM grid with 2 m pixel spacing in both coordinates.
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As for the formation of the polarimetric covariance matrix, in the HHVV dual-pol case it results in:

[C] =

[
|SHH |2 SHH · S∗VV

SVV · S∗HH |SVV |2

]
(1)

where SPP denotes the complex amplitude of the image obtained by transmitting and receiving
polarisation P = {H, V}.

Once [C] is properly estimated with the speckle filter, the backscattering coefficient values at HH
and VV correspond directly to the diagonal entries, C(1, 1) and C(2, 2), respectively. The normalised
complex correlation between the two channels is defined as,

ρHHVV =
C(1, 2)√

C(1, 1) · C(2, 2)
(2)

where |ρHHVV | is the correlation (or coherence) between HH and VV, and arg(ρHHVV) = arg(C(1, 2))
is the phase difference between both channels.

From the four features that can be extracted directly from the covariance matrix, we will employ
in this study the backscattering coefficient in the two available polarisation channels and the normalised
correlation between the two channels, since the performance for crop-type mapping of the phase
difference between HH and VV was found to be poor with respect to the other features [20].

In addition to the observables computed directly in the linear basis, i.e., defined for channels
HH and VV, some tests are also carried out at the end of this study using two polarimetric channels
of the Pauli basis to define all observables. The first Pauli channel corresponds to HH+VV, i.e., the
coherent addition of the SLC images at HH and VV channels, whereas the second Pauli channel
corresponds to HH-VV, i.e., the subtraction of HH and VV. These two Pauli channels, hereafter denoted
as P1 and P2, are easily interpretable in terms of the scattering mechanisms present in the scene [23,33]:
P1 is high in presence of surface scattering, whereas P2 is characteristic of double-bounce scattering.
Besides an easier interpretation, we showed in [20] that using only the backscattering coefficient of P1
and P2 provided almost the same classification accuracy as the three mentioned features in the linear
basis. In addition, the Pauli basis is the most commonly employed in PolInSAR when applied
in single-pass mode for studies over vegetated areas [33].

As it is outlined in the Introduction, other polarimetric features could be used as inputs
for the classifier, as they have been tested at X band in [17–20]. However, we have not included
them in this work because the main focus is placed on the contribution of the interferometric coherence
provided by TanDEM-X, which has not been studied elsewhere.

2.2.2. Single-Pass Interferometric Data

The second set of observables is composed of the single-pass interferometric coherence at
the two copolar channels, HH and VV. The CoSSC products provide the master and slave images
already coregistered, so the processing steps required in this case were: (1) subset of the region
of interest, (2) range spectral filtering, (3) removal of flat Earth and topographic phase components,
(4) computation of coherence using a 9 × 9 boxcar filter, and (5) geocoding.

The common range spectral filtering is required to compensate for the geometrical or baseline
decorrelation, due to the different incidence angle in the master and slave images. This term is specially
important for data acquired during the science phase of TanDEM-X, since the large baseline yields
important shifts in the wavenumber, producing values of coherence below 0.8.

After the range filtering we removed the flat Earth and topographic phase terms from
the interferograms, so the remaining interferometric phase only contains topographic information
with respect to the DEM employed in the processing. The removal of these phase components is also
necessary for a good estimation of the coherence, since the presence of phase ramps would decrease it.
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Finally, the interferometric coherence at both HH and VV channels were computed using a 9 × 9
multi-look filter filter.

2.2.3. Repeat-Pass Interferometric Data

The third set of features corresponds to the repeat-pass interferometric coherence, also at HH
and VV channels, obtained by combining images acquired in consecutive passes. In order to obtain
coherence estimates, the starting data are the master images present in all CoSSC products, since their
original orbital information is available and is equivalent to any conventional TerraSAR-X product.
From the nine master images, eight interferometric pairs are formed, as listed in Table 3. Compared
to the single-pass products, the heights of ambiguity are now much higher thanks to the short spatial
baselines produced by the orbits of the satellite.

Table 3. List of repeat-pass interferograms.

Master Date Slave Date HoA (m) Baseline (m)

4 June 2015 15 June 2015 1526 5
15 June 2015 26 June 2015 40 168
26 June 2015 7 Jule 2015 47,730 1
7 July 2015 18 July 2015 450 16

18 July 2015 29 July 2015 69 97
29 July 2015 9 August 2015 101 61

9 August 2015 20 August 2015 164 41
20 August 2015 31 August 2015 127 53

In this case, the processing steps required to obtain the repeat-pass interferometric coherence
were: (1) subset of the region of interest, (2) coregistration of the SLC images, (3) removal of flat
Earth and topographic phase components, (4) computation of coherence using a 9 × 9 boxcar filter,
and (5) geocoding. The coregistration was carried out first by taking into account the orbital information
and using a backgeocoding algorithm. Then, a refinement was applied based in isolated point scatterers.
The common band range spectral filtering was applied but it had almost no effect since the spatial
baselines were really short, so we have not included it here as a required step.

2.2.4. Interpretation of the Interferometric Coherences

The measured coherence depends on a number of aspects related to the sensor configuration
and to the scene properties. In order to interpret this dependence in the observed interferometric
coherence and to understand their influence on the crop-type mapping application, coherence can
be expressed as a product of decorrelation terms, bounded between 0 and 1, as follows [36,37]:

γ = γtemp · γgeom · γvol · γSNR · γproc · γBAQ (3)

where all terms are described next:

• γtemp is the temporal decorrelation due to changes in the scene occurred during the acquisition
times of both images. In single-pass interferometry this term can be neglected, i.e., γtemp = 1.

• γgeom is the decorrelation due to the spatial baseline, also named as geometric decorrelation, which
causes a wavenumber shift, i.e., a change in the band occupied by the range coordinate spectrum
of both images [38]. This term is cancelled in the pre-processing by filtering the master and slave
images to the common frequency band in the range dimension, as it is explained in Section 2.2.2.
This filtering entails a loss of spatial resolution in the range coordinate, which may compromise
the output product in applications in which very fine resolution needs to be maintained.

• γvol is the coherence due to the vertical distribution of scattering properties of the scene, usually
named as volume decorrelation because it is always present whenever there is vegetation volume
in the scene.
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• γSNR denotes the decorrelation due to thermal noise in the sensor, which depends on the signal-to-noise
ratio (SNR) at each pixel. The decorrelation due to SNR can be estimated and compensated
as explained in [3,35], but we decided not to compensate it to keep the data processing as
simple as possible and because it would be only required in quantitative studies, e.g., vegetation
height estimation.

• γproc includes any decorrelation due to the signal processing steps, in which the most important
is usually the one due to errors in the coregistration of the images. In our case we consider
it is negligible, i.e., γproc = 1.

• γBAQ is the loss of coherence due to the quantisation of the data with less bits than in the original
raw data. Its effect is extensively discussed in [39]. Attending to the 8:3 block adaptive quantisation
employed in the products (at both TanDEM-X and TerraSAR-X images) and the type of scene
observed (agricultural crops), the average value of decorrelation is around 3.5 %, i.e., γBAQ ≈ 0.965.
This decorrelation term could be compensated for by dividing the measured coherence by this
value, but it has not been done in this work because it will not affect the classification performance.

From the definition of these terms it is clear that volume and temporal decorrelation will
be the main drivers of the single-pass and repeat-pass coherence, respectively, that will be observed
over agricultural crops. This is commented in Section 3 when interpreting the coherence features
and the classification results obtained with them.

2.3. Classification Method and Evaluation

Classification was carried out with the random forest (RF) classifier [40] using the implementation
provided by the scikit-learn package in python [41,42]. The classifier was run with the default
parameters, and they were fixed for all the classification tests described in next section. The required
split between training and testing sets was carried out by means of the strategy described
in the following paragraph.

First of all, it is important to clarify that due to the spatial filtering employed in the data
pre-processing (boxcar of size 9 × 9) the values of the features at every pixel are correlated with those
of adjacent pixels. Therefore, to avoid its influence on the classifier, an initial split was performed at field
level: for each test, 50% of the fields of each crop type were selected for training and the remaining 50%
of the fields were left for testing. Secondly, the strong imbalance in the number of pixels of the crop
types present in the scene (proportional to the area shown in Table 1) would affect the classifier
by favouring the major classes. To solve this issue, the number of pixels per class finally employed
for training was restricted to the lowest value. In other words, the number of pixels of each class used
for training was equal for all classes, chosen randomly from the set of available pixels (within the fields
initially selected for training) but for the class with least pixels, for which all pixels of the training
fields were employed. It must be clarified that the pixels used for training in the classes with least
pixels correspond also to half of the total fields (i.e., the initially selected ones), not to the total number
of pixels of these classes. This strategy ensures an equitable or balanced training for the random
forest algorithm.

For each test, once the training is carried out, the evaluation is carried over the whole set of testing,
which is formed by all pixels of the fields initially selected for testing (50% of the total fields). From the
results obtained over the pixels in the testing data, the confusion matrix is computed and some
metrics are derived [43]: overall accuracy (OA), Kappa coefficient, producer’s accuracy (PA) and user’s
accuracy (UA).

Finally, to reduce the potential particularities of the initial split of fields, the whole procedure
is repeated 10 times and the final accuracy metrics are averaged. After this number of iterations
we observed that the results were stable, with very small variations around the averages.

The classification results are evaluated in two different ways: at pixel level and at field level.
In the second case, after the classification is carried out at pixel level, the mode (most frequent value)
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of the classes present at each field is assigned as the class of that field. Then, the confusion matrix
and the derived metrics for assessment are computed from the sets of fields instead of the sets of pixels.

The objective of evaluating the results at both pixel level and field level is two-fold. In first place,
from the point of view of the objective of this work, i.e., demonstrating the contribution of TanDEM-X
coherence to crop classification, we want to show whether this contribution is consistent or it depends
on the spatial level of the classification (pixel-based or field-based). In second place, both levels have
their own relevance from the end-user perspective.

In many final applications, a field-based classification map is the typical product, e.g., for agencies
and regional institutions which need to check or update their databases. However, the final product
of crop classification is not necessarily a parcel map, and therefore the conversion from pixel classes
to field classes is not always carried out. For instance, in order to obtain crop acreage statistics
(i.e., amount of surface cultivated per crop type) for an irrigation area, a basin, or a county, information
at pixel level would suffice. Another example in which pixel information is relevant is when
the crop-type maps are used as input data to irrigation or water consumption models. Most of these
models work with information in raster format, not with field polygons, so the conversion to parcel
maps is not required. Finally, the parcel scale is required mainly for farm management and survey,
and it requires an extra work because it needs the parcel maps, e.g., LPIS, which may change from year
to year. In many occasions these parcel inventories are not available from one campaign to the next
(because they change), hence the conversion from the pixel-level information to a field-level database
demands extra processing (segmentation, filtering, etc.). For all these reasons, it is convenient
to evaluate both types of results.

The methodology explained in this section is applied in the next section to different sets of input
features in order to assess the contribution of the different radar observables provided by TanDEM-X
for crop-type mapping.

3. Results

3.1. Inspection of the Features

3.1.1. Images of Features

In order to provide a first impression about the radar observables which have been used as input
features for the classifier, some of them are represented in Figure 3.

(a) (b) (c)

Figure 3. Images of some observables that are used for classification: (a) RGB polarimetric composite
(Red = P1, Green = VV, Blue = P2) on 7 July 2015, (b) Single-pass coherence at HH channel on 7 July
2015, (c) Repeat-pass coherence at HH channel between 7 July 2015 and 18 July 2015.

The first image in Figure 3 corresponds to a false colour composite of the backscattering coefficient
values at channels VV (green), P1 (blue) and P2 (red), obtained from the image acquired at 7 July 2015.
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This channel combination is similar to the typical Pauli RGB images, but the cross-polar channel (not
available in these data) has been substituted by the VV channel. We can easily identify the rectangles
of the agricultural area with different blueish and grey colours, as well as the rice fields in pink colour
in the upper part of the site. At the bottom right corner we can easily identify a bright grey area that
corresponds to the town of Lebrija. From the point of view of crop classification, the observed colour
diversity is a good sign.

The other two images in Figure 3 represent the interferometric coherence at the HH channel
obtained at the same date (single-pass coherence shown in Figure 3b) and by combining this date
with the next one (repeat-pass coherence shown in Figure 3c). The two coherence values are similar
over some areas and different over other locations in the study site, which constitutes an indication
of their complementarity.

3.1.2. Time Series

The temporal evolutions of all the radar observables derived from the linear basis (HH, VV), which
will be used as input features for classification, are shown in Figures 4–6 for all thirteen crop types.
For all features, the mean value and standard deviation are computed from all pixels of the same
crop type. In first place, the HH and VV backscattering coefficient (in dB) and the normalised
correlation between them, defined in (2), are represented in Figure 4 at the nine acquisition dates.
The single-pass interferometric coherence of both HH and VV channels is displayed in Figure 5,
while the repeat-pass coherence of the same channels is illustrated in Figure 6. For this, the resulting
repeat-pass coherence values are represented at the dates of the master acquisitions.
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Figure 4. Temporal evolution of the backscattering coefficient at HH (blue) and VV (red) channels
and their correlation (black) for all crop types. Dots represent the average values and the error bars
denote the standard deviation of the estimates.

The backscattering coefficient values are quite stable along time for some crop types (e.g., alfalfa
and wheat), whereas they show large variations for other crops (e.g., rice, sunflower, cotton, and onion)
at least in part of the observation period. The potential causes of change in the radar response along
time are multiple: crop growth or development, agricultural practices, and weather events (e.g.,
rain), from which we can discard weather events due to the stable dry condition maintained along
the observation period, as introduced in Section 2.1. In fact, it is important to take into account
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the cultivation calendar of each crop type, shown in Figure 2, to understand the observed responses.
For instance, rice, cotton and sunflower were being cultivated along the whole observation period
and show strong variations with time, whereas peas were harvested at the beginning of the observation
period, hence showing less changes. However, alfalfa is also being cultivated but, due to its uniform
morphology along time, does not exhibit changes in its radar response. Other crops, like corn
and quinoa, show only slight changes in their backscattered intensity.

Regarding the normalised correlation between the copolar channels, ρHHVV , it is expected to be 1
for bare surfaces (HH and VV arrive in phase because are generated at the same point in the scene),
and it would be equal to 1/3 is the scene were formed by an ideal random volume only. The temporal
evolutions of this feature (black curves in Figure 4) show a narrow excursion for most crops, with all
the values in the interval between 0.6 and 0.75. This can be interpreted as a balanced response from both
soil and vegetation volume, which is expected for these data: the steep incidence angle (22.7 degrees)
favours the soil contribution, whereas the acquisition frequency (X band) provides a significant
backscatter from the aboveground volume even from short crops. The crops with most noticeable
changes in the correlation between channels are rice, at all dates, and wheat, sugar beet, and tomato
at some specific dates. The radar response of rice at X band, including its polarimetric features
and its evolution along the growing season, has been described in previous studies, e.g., [44]. Rice
shows a very particular behaviour due to a unique characteristic of its cultivation: the soil is flooded
(or saturated by water in the worst case) all along the growing season. Therefore, the response from
the ground is dominated by the double-bounce scattering mechanism, and there is no influence of soil
roughness or moisture.
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Figure 5. Temporal evolution of the single-pass interferometric coherence at HH (blue) and VV (red)
channels for all crop types. Dots represent the average values and the error bars denote the standard
deviation of the estimates.

The interpretation of the single-pass coherence shown in Figure 5 is provided by the decorrelation
sources (see Equation (3)) present in this interferometric configuration. In absence of temporal
decorrelation, and thanks to the large baselines available (i.e., short HoA values), volume decorrelation,
γvol , is the dominating decorrelation source [45] and provides sensitivity to vegetation height
and structure. Volume decorrelation has been exploited in applications of TanDEM-X for vegetation
height retrieval, both in forests [3,34,46,47] and crops [35,48]. As the vegetation height increases,
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volume scattering effects result in a larger coherence loss, and other structural changes produce also
variations in coherence. Besides volume decorrelation, an overall effect of signal-to-noise ratio (SNR)
is present in most crops because the noise equivalent sigma zero (NESZ) of TanDEM-X is around
−20 dB for these scenes, i.e., around 10 dB below the observed backscattering coefficient (see Figure 4).
A 10 dB SNR produces a coherence around 0.9, so we cannot expect coherence values greater than
this value, as confirmed by the plots shown in Figure 5. However, the effect of SNR decorrelation
is quite homogeneous along time and for most crops, so consequently it is not expected to contribute
significantly to crop classification.

The four crop types with higher dynamic range in the single-pass coherence are rice, corn, quinoa
and sunflower, all of them characterised by tall plants. Moreover, the main part of the growing
period of these crops is included in the observation period, hence favouring the detection of changes
in the time series. In these four cases there is also a clear difference between the HH and VV channels
at some dates, which suggest their suitability for methods based on PolInSAR data to estimate crop
structural variables (e.g., height) [35]. From the classification point of view, the worst scenario
corresponds to alfalfa, sugar beet, beans, chickpea, and onions, because they show an almost
constant high value of coherence during the whole observation period. A high single-pass coherence
is characteristic of a bare surface or a very short crop, so for these five crop types the cause is either
the crop calendar (they are harvested or just emerging, hence resembling a bare surface) or the short
plant height specific of some crop types.
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Figure 6. Temporal evolution of the repeat-pass interferometric coherence at HH (blue) and VV (red)
channels for all crop types. Dots represent the average values and the error bars denote the standard
deviation of the estimates.

Regarding the repeat-pass coherence displayed in Figure 6, we expect temporal decorrelation
to be the most relevant term affecting the coherence (see Equation (3)). The source of temporal
decorrelation over agricultural areas is two-fold: first, vegetation is affected by wind, which changes
the position of the scatterers in the plants from the master to the slave acquisition and hence decreases
the coherence, and second, crops grow and develop new parts during their cultivation, which changes
their shape and size in temporal scales from days to weeks, hence producing important changes that
drastically reduce the coherence values. It must be pointed out that the coherence is estimated using
a finite spatial filter (9 × 9 boxcar) which is a biased estimator that overestimates more the lower
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values of coherence than the higher ones [49]. As a result, we cannot obtain coherence estimates below
some level (around 0.2 in this case). In this regard, the repeat-pass coherence values reported in [18]
for a similar crop classification experiment with TerraSAR-X data were estimated with a much smaller
kernel size (not indicated in the manuscript) because their lowest level was 0.4. Consequently, a key
part of the dynamic range of the coherence was not available in the features, and hence the coherence
features did not demonstrate a consistent contribution to the classification performance in that work.

The inspection of Figure 6 provides some interesting insights which are complementary
to the other two sets of observables. For instance, there is no noticeable difference between the two
polarimetric channels for any crop type, but for rice during the second half of the observation period.
This general coincidence between channels is most likely due to the effect of temporal decorrelation,
since it affects equally all the polarisations. Furthermore, we can distinguish different temporal
evolutions and trends in the average values for the different crops. Some crops exhibit increasing trends,
other ones show decreasing trends, and some of them show changes in the trend along time. Coherence
is overall quite low, with only some particular cases over 0.5. The highest values of repeat-pass
coherence are observed in wheat after the second date (probably due to the post-harvest bare condition
of the fields) and in beans in the five intermediate dates (due the bare surface before the crop starts
to grow, since it was sown in June–July). Finally, in most cases there is a large variability (large error
bars) at all dates, which means that this observable is noisier than others and, unfortunately, may
be of limited use as an input feature for classification purposes.

3.2. Classification Results

The analysis of the obtained results is divided into several subsections, which correspond
to different sets of input features and to the evaluation at pixel or at field level. In order to simplify
the text, the notation employed for all features is the following one:

CC Backscattering coefficient at the CC channel.
CCDD_Corr Normalised correlation between channels CC and DD.
Coh_sp_CC Single-pass interferometric coherence at the CC channel.
Coh_rp_CC Repeat-pass interferometric coherence at the CC channel.

where CC and DD correspond to HH, VV, P1 or P2, which are defined in Section 2.2.1.

3.2.1. Results at Pixel Level with HH and VV Channels

To begin with, the classification results obtained at pixel level with HH and VV channels
are illustrated in Table 4. As it will be done in the rest of the cases, we have divided all the results into
3 different sub-tables. The first sub-table shows the general assessment of the results, hence showing
the OA and the Kappa score. Then, the second and third sub-tables show the PA and UA of each crop
type, respectively, which provides detailed information about the performance of the classification
for each crop type.

Each row in the tables corresponds to a different set of input features. To facilitate the reading
of the tables, each one is subdivided in four groups of rows, each group shaded with a different colour.
The cases with only polarimetric features (backscattering coefficient values and correlation between
channels) are shaded in blue. The sets of features concerning the single-pass interferometric coherence
are shaded in pink, whereas the ones including the repeat-pass interferometric coherence are shaded
in green. It must be noted that we have carried out tests with sets formed by coherence and backscatter
information gathered at the same channel (e.g., HH or VV) because this type of data is available
in single-pol acquisitions, which are the most common in TanDEM-X. The last case, shaded in grey
colour, gathers the classification results obtained when all the seven features are jointly used,
i.e., backscattering coefficient values at both channels, correlation between channels, single-pass
coherence at both channels, and repeat-pass coherence at both channels. The same colour coding
is employed in the rest of tables. In addition, the OA values are represented with a bar chart in Figure 9a
at the end of Section 3.
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Table 4. Classification scores at pixel level with HH and VV channels. Shading colour: blue
for polarimetric features, pink for single-pass interferometric coherence features, green for repeat-pass
interferometric coherence features, and grey for all features.

Features OA Kappa
HH 77.4 0.71
VV 80.5 0.75

HH + VV 84.0 0.80
HH + VV + HHVV_Corr 90.5 0.88

Coh_sp_HH 70.1 0.63
Coh_sp_VV 68.4 0.61

Coh_sp_HH + HH 87.5 0.84
Coh_sp_VV + VV 88.5 0.85

Coh_sp_HH + Coh_sp_VV + HH + VV 90.2 0.87
Coh_sp_HH + Coh_sp_VV + HH + VV + HHVV_Corr 92.7 0.91

Coh_rp_HH 35.6 0.25
Coh_rp_VV 28.0 0.17

Coh_rp_HH + HH 84.2 0.80
Coh_rp_VV + VV 86.5 0.83

Coh_rp_HH + Coh_rp_VV + HH + VV 88.6 0.85
Coh_rp_HH + Coh_rp_VV + HH + VV + HHVV_Corr 92.1 0.90

All 7 features 93.2 0.91

Overall Accuracy & Kappa Score

Crop Alfalfa Wheat Cotton Corn Sugar beet Tomato Sunflower Beans Quinoa Chickpea Onion Pea Rice
HH 51.4 45.5 93.1 57.8 67.7 61.2 71.7 18.6 37.5 11.2 24.5 7.1 85.3
VV 50.6 48.6 93.3 62.9 66.8 69.3 72.2 19.1 46.7 10.4 21.8 10.0 89.9

HH + VV 61.0 57.8 95.1 68.2 76.0 75.9 73.5 19.7 49.5 10.2 25.6 8.1 91.4
HH + VV + HHVV_Corr 76.7 82.0 96.3 80.3 89.4 91.2 84.2 33.7 67.6 33.1 34.6 14.5 93.0

Coh_sp_HH 30.2 54.3 82.2 81.3 37.2 47.5 70.9 9.1 55.4 7.2 32.8 20.3 81.6
Coh_sp_VV 33.3 61.0 77.8 83.9 37.4 45.4 63.8 14.3 56.5 7.5 29.8 23.2 79.6

Coh_sp_HH + HH 67.1 80.0 96.6 88.1 78.7 79.1 85.4 23.7 70.1 16.5 33.3 20.3 90.6
Coh_sp_VV + VV 68.2 80.4 96.5 89.7 78.3 80.4 85.3 20.8 70.8 12.6 29.3 24.6 92.7

Coh_sp_HH + Coh_sp_VV + HH + VV 74.5 83.4 97.0 90.2 84.2 85.1 85.5 22.5 72.9 13.6 34.8 23.0 93.1
Coh_sp_HH + Coh_sp_VV + HH + VV + HHVV_Corr 89.1 88.1 97.3 92.5 90.6 92.3 86.5 35.3 77.9 35.9 39.8 26.7 93.8

Coh_rp_HH 50.8 34.7 37.2 55.2 22.5 8.0 19.7 7.7 19.6 8.8 20.5 22.3 44.7
Coh_rp_VV 41.9 37.7 35.1 53.1 24.7 7.9 32.1 10.1 23.1 11.2 21.4 21.2 24.6

Coh_rp_HH + HH 62.7 67.2 95.2 78.2 75.5 65.0 74.1 12.1 58.8 12.0 26.8 10.5 91.8
Coh_rp_VV + VV 69.7 70.7 95.3 79.6 75.5 72.8 74.1 17.1 61.6 13.0 24.2 13.0 94.8

Coh_rp_HH + Coh_rp_VV + HH + VV 74.4 72.3 96.3 83.5 80.3 77.0 74.9 17.8 64.5 12.3 26.3 11.5 96.0
Coh_rp_HH + Coh_rp_VV + HH + VV + HHVV_Corr 86.6 83.8 97.1 87.8 88.6 89.4 84.5 23.2 71.9 27.2 33.0 14.2 95.7

All 7 features 92.8 88.1 97.5 93.5 90.1 90.6 86.6 25.4 77.6 31.2 39.1 21.1 95.6

Producer's Accuracy (%)

Crop Alfalfa Wheat Cotton Corn Sugar beet Tomato Sunflower Beans Quinoa Chickpea Onion Pea Rice
HH 20.9 37.9 96.6 51.9 81.3 70.5 55.0 3.0 21.9 1.4 8.2 1.6 99.0
VV 27.2 41.0 97.9 60.5 83.1 78.7 55.1 3.4 28.1 1.4 5.3 2.5 99.4

HH + VV 34.9 50.4 97.9 65.1 85.9 81.4 59.8 4.7 32.2 2.1 11.2 2.9 99.5
HH + VV + HHVV_Corr 50.3 71.7 98.0 74.3 94.1 91.7 78.8 16.3 55.4 16.7 17.3 7.6 99.6

Coh_sp_HH 7.8 41.5 89.8 79.9 60.0 55.4 49.0 0.8 35.9 0.6 4.1 4.3 97.4
Coh_sp_VV 7.1 47.3 88.5 76.6 60.5 56.7 40.6 1.2 34.9 0.7 3.5 4.9 95.8

Coh_sp_HH + HH 41.5 63.1 97.8 81.3 85.3 84.4 85.2 5.7 51.5 3.3 12.4 11.7 99.5
Coh_sp_VV + VV 45.1 64.1 98.1 83.9 86.2 86.7 86.7 5.9 55.0 2.9 8.6 14.2 99.7

Coh_sp_HH + Coh_sp_VV + HH + VV 56.8 66.8 98.1 84.6 88.0 89.0 87.0 7.4 57.6 4.4 15.9 16.3 99.8
Coh_sp_HH + Coh_sp_VV + HH + VV + HHVV_Corr 75.4 73.1 98.1 86.1 94.3 93.4 87.2 17.7 63.0 19.9 20.3 19.4 99.9

Coh_rp_HH 3.0 40.7 59.3 28.3 45.6 21.1 3.8 2.9 8.7 0.6 3.5 3.1 80.8
Coh_rp_VV 2.0 44.1 48.1 27.6 49.0 19.9 7.9 3.5 12.1 1.0 4.0 2.8 59.9

Coh_rp_HH + HH 24.7 64.2 97.4 66.9 81.1 73.3 68.7 6.2 42.8 3.4 14.5 4.1 99.4
Coh_rp_VV + VV 45.1 64.1 98.1 83.9 86.2 86.7 86.7 5.9 55.0 2.9 8.6 14.2 99.7

Coh_rp_HH + Coh_rp_VV + HH + VV 39.2 70.4 97.8 76.6 84.4 82.4 74.9 8.5 53.5 5.4 15.8 7.1 99.7
Coh_rp_HH + Coh_rp_VV + HH + VV + HHVV_Corr 53.9 72.4 98.0 83.4 91.5 91.6 86.6 16.3 66.8 16.9 21.6 10.8 99.7

All 7 features 73.2 76.9 98.1 86.3 91.9 93.2 90.2 22.8 63.2 21.1 28.6 19.5 99.8

User's Accuracy (%)

The results of the tests with HH, VV and HHVV_Corr, i.e., by only using radiometric
and polarimetric information, show that the joint use of both backscattering coefficient features
outperforms the individual ones (OA increases by 4–7%), and the addition of the correlation between
both channels, available in this acquisition mode of TerraSAR-X and TanDEM-X, adds another 6%
to OA, which reaches 90%. The contribution of the coherent acquisition of HH and VV is noticeable at
all crops, since PA and UA of all crops are improved, in most cases more than 10%, when HHVV_Corr
is included as an input feature.

Regarding the values of PA and UA obtained for each crop type with this feature set,
the best classified ones are rice, cotton, sugar beet, tomato and sunflower, with values above 80%.
However, very poor results are achieved for four specific crops: onion, pea, chickpea, and beans. This
low performance was expected because the time interval observed by the TanDEM-X data is mostly
out of their cultivation cycle. Figure 2 shows that onion, pea and chickpea are harvested in June,
whereas beans start to grow in August. Therefore, the timing of the satellite dataset is not suitable
for the classification of these crop types. However, keeping them in the analysis allowed us to identify
the limits and potential of a narrow data time window, such as that of the TanDEM-X products during



Remote Sens. 2020, 12, 1774 16 of 28

the science phase. Wheat constitutes a particular case in which, even though it is in the harvesting stage
at the beginning of the acquisition period, its PA and UA increase by 25% and 21% when HHVV_Corr
is added as a feature, reaching values above 80% and 70% respectively. We can observe in Figure 4 that
the evolution of the normalised correlation between channels is very different for wheat with respect
of the rest of crops. It seems that wheat was harvested between the first and the second TanDEM-X
acquisition and, after harvest, the condition of all fields, covered by stubble, was extremely stable.
Other crops show also stable values of this feature along time, such as cotton and beans, but wheat
is the only one with a low value at the first date and then a high and stable value at the rest of dates.

The second set of input features includes the single-pass interferometric coherence and,
consequently, constitutes an original contribution of this study. The first two rows shaded in pink
in Table 4 show the classification scores when the single-pass coherence is employed separately as
the only features. OA is around 70% for both channels, with PA slightly above 80% only for a few
crops and low UA for all crops but for rice and cotton. It must be highlighted that for corn and quinoa
the PA and UA provided separately by Coh_sp_HH and Coh_sp_VV are 15–30% greater than
the accuracies provided by HH and VV. These are tall crops which show a large coherence excursion
along the observed period (see Figure 5). On the other hand, the use of the backscatter information
clearly outperforms the coherence in the accuracies obtained for sugar beet and tomato.

Next, in order to evaluate the contribution of single-pass coherence we compare classification
scores before and after adding the coherence to the backscattering coefficient features. The third
and fourth rows shaded in pink in Table 4 correspond to the combination of backscatter and single-pass
coherence at the HH and VV channels, respectively. When compared with the first and second rows
shaded in blue (i.e., HH and VV alone), the improvement is evident. OA increases by 10% for the HH
channel and by 8% for the VV channel, reaching 87% and 88%, respectively. This overall improvement
is produced by significant increases in PA and UA for many crop types: alfalfa, wheat, corn, sugar
beet, tomato, sunflower, and quinoa. It is convenient to remind that these pairs of features, HH +
Coh_sp_HH, and VV + Coh_sp_VV are available in all TanDEM-X data acquired in single-pol mode,
which is the default mode of this mission. Unfortunately, the typical baselines are shorter than the ones
provided during the science phase, so the single-pass coherence is not sensitive to the characteristics
of short vegetation, i.e., crops.

As an additional comparison, when the two channels are jointly employed in the feature set,
such as HH + VV + Coh_sp_HH + Coh_sp_VV, the OA is equal to the one provided by HH + VV
+ HHVV_Corr, just above 90%, and the PA and UA of the crops with good results are very similar,
too. Therefore, single-pass interferometry provides similar amount of information as polarimetry
for the data set investigated in this work. Finally, when the normalised correlation between channels
is added to the single-pass observations, i.e., we exploit the five features, results improve even more.
The final OA is 92.7%, Kappa reaches 0.91, and there are remarkable values of PA and UA for all crops
except beans, chickpea, pea and onion, which are improved but remain under 40%. This set of five
features provides the best results so far, so the contribution of TanDEM-X single-pass interferometry
in crop-type mapping is demonstrated.

The third set of classification tests, whose scores are shown in the rows shaded in green colour
in Table 4, corresponds to the introduction of repeat-pass coherence as input feature. In first
place, the exploitation of the repeat-pass coherence alone does not provide good classification
results (OA are 35% and 28% at HH and VV, respectively), in contrast with the good performance
of the single-pass coherence analysed previously (OA were 70% and 68% at HH and VV, respectively).
Clearly, the scene properties that drive repeat-pass coherence (temporal decorrelation at 11 days)
are less suited for crop classification than those exploited in single-pass coherence (volume
decorrelation). This result was expected from the inspection of the time series of these features
(Figures 5 and 6), since the repeat-pass coherence is noisier than the single-pass one.

Despite the poor performance of the repeat-pass coherence by itself, its addition
to the backscattering coefficient contributes to a clear improvement of the overall classification result
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for both channels: OA goes from 77% to 84% at HH and from 80% to 86% at VV. Therefore, it provides
complementary information with added value for the classifier in these two single-pol configurations.

In addition, the combination of the two channels available in dual-pol acquisitions,
i.e., Coh_rp_HH + Coh_rp_VV + HH + VV produces also better crop-type maps than in the case
of using only HH + VV. OA reaches 88%, instead of 84%, and PA and UA are above 70% for all classes
except for the crops which are not full covered by the satellite observation period. Just to provide some
detailed values, the following crops increase their PA by a value between 13% and 15%: alfalfa, wheat,
corn, and quinoa.

The next comparison is by taking into account the normalised correlation between channels,
i.e., we compare Coh_rp_HH + Coh_rp_VV + HH + VV + HHVV_Corr with HH + VV +
HHVV_Corr. The inclusion of the repeat-pass coherences improves slightly the OA, which passes
from 90.5% to 92.1%. This improvement is not consistent for all crop types, since the PA of seven
of them is improved but the other ones degrade their scores. The best contribution is found for alfalfa
and corn, with an upgrade of around 10% when the repeat-pass coherence is added.

The last test corresponds to the joint use of the seven features studied throughout this
section, i.e., all observables derived from polarimetry, single-pass interferometry, and repeat-pass
interferometry. The classification scores are shown in the grey shaded row in Table 4. The obtained OA
is the best absolute value among all the sets, 93.2%, but the increment with respect to the cases using
only one type of coherence (single-pass or repeat-pass) is very small (0.5% and 1.1%, respectively).
The resulting value of Kappa is 0.91, so no improvement is found in this score. Regarding
the performance for specific crop types, in terms of PA and UA, the only significant improvement
in PA is for alfalfa (+3.7% with respect to the previous best cases), and the clear improvements in UA
are for wheat (+3.8%) and sunflower (+3%).

Besides the overall scores and the class-level accuracy (PA and UA) shown in Table 4, it is worth
to inspect which classes are misclassified with which other classes. To this aim, the confusion
matrix obtained with the set of seven features is shown in Figure 7. The numbers that appear
in this confusion matrix correspond to the values accumulated after the 10 repetitions of the whole
classification procedure, which are carried out to avoid particularities in the initial split at field level,
as it is mentioned in Section 2.3.

Alfalfa Wheat Cotton Corn Sugar beet Tomato Sunflower Beans Quinoa Chickpea Onion Pea Rice
True label

Alfalfa

Wheat

Cotton

Corn

Sugar beet

Tomato

Sunflower

Beans

Quinoa

Chickpea

Onion

Pea

Rice

Pr
ed

ic
te

d 
la

be
l

768250 25930 51191 3103 13288 90627 1291 163 42201 5487 178 6899 42141

1279 2369109 60680 1020 73898 7486 27638 12736 52334 13413 21856 14411 564184

493 48413 18703120 67431 48789 31487 1428 1061 9685 4462 389 137781 11056

3364 3936 134022 3986765 45119 51698 22611 17 136239 2 0 8253 232466

383 14921 20951 268 7511407 422279 19474 24631 25293 23066 74387 403 36239

52045 5885 13906 4655 359706 6896435 4798 94 16177 15663 27310 322 4373

239 1968 7770 20375 18370 34352 983771 13 8032 204 314 465 13791

21 9681 5400 102 42338 3526 24 35290 1626 1035 12546 41076 8899

2030 102814 30921 165970 46540 19981 71609 1229 1200035 1678 80 26579 253901

1995 17630 8923 788 14931 36101 7817 3606 6444 34613 1903 20012 15596

352 19740 4745 4 157273 16308 2596 20990 1472 4160 94765 1414 19253

362 43252 145686 10807 1319 2774 60 32533 42578 6071 1645 68362 8552

523 30342 831 3141 3606 867 3 37 5002 50 101 2190 26064811

Figure 7. Confusion matrix for the set of 7 features at HH and VV channels at pixel level.
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We notice that, obviously, a large amount of pixels of the classes with lowest scores are wrongly
assigned to other classes. For instance, a significant amount of beans pixels are classified as pea,
sugar beet, and onion. Notably, for pea, the number of pixels that are wrongly classified as cotton
is twice the number of pixels correctly classified. Regarding chickpea, most of the misclassified pixels
are assigned to sugar beet, tomato, and wheat. As for onion, most of its misclassified pixels go
to sugar beet. As it was already commented, the interval of acquisition dates of the satellite images
does not fit the calendar of these four crops, hence these poor classification results were expected.
It is also interesting to see that some crop types form couples, i.e., their misclassification is mainly
bidirectional. This is the case of corn and quinoa, for which, despite they are quite well classified,
the second class in number of classified pixels is the other one.

Finally, in order to inspect visually the results obtained, Figure 8 shows the crop-type maps
resulting from the classification with three of the input feature sets studied in this section. These maps
correspond to the class prediction at pixel level provided by the classifier over the test area (i.e., half
of the total fields per class) at one of the iterations carried out, as it is explained in Section 2.3. To ease
the comparison, the map associated with the reference data is also shown for the same set of fields.

The three resulting maps are similar in general and resemble the map based on the reference
data (Figure 8a). Careful observation of the maps allows us to distinguish some differences between
the maps and some noisy areas, which are mostly concentrated in specific fields. The pixels of these
specific fields with wrong results (compared to the reference data) are the ones producing a decrease
in accuracy in their respective crop types, as it has been quantified and analysed all along this section.

(a) (b)

Figure 8. Cont.
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(c) (d)

Figure 8. Maps with results of classification over the test areas. (a) Ground-truth data. (b) Crop-type
map using only the polarimetric features: HH + VV + HHVV_Corr. (c) Crop-type map using
the polarimetric features and the single-pass coherence: Coh_sp_HH + Coh_sp_VV + HH + VV
+ HHVV_Corr. (d) Crop-type map using the polarimetric features and the repeat-pass coherence:
Coh_rp_HH + Coh_rp_VV + HH + VV + HHVV_Corr.

3.2.2. Results at Field Level with HH and VV Channels

The evaluation at field level usually provides higher accuracies than at pixel level because
in many cases the misclassified pixels are a minority within each field. The scores obtained at field
level are shown in Table 5 using the same sets of features and the same colour coding of Table 4.
The resulting OA values are represented with a bar chart in Figure 9b. Compared with the pixel
level assessment, there is a general improvement of the accuracy levels. Regardless of the feature set,
the scores are always enhanced when evaluating at field level for the same analogous sets.

Regarding the contribution of specific features, there are some details which deserve our attention.
The normalised correlation between HH and VV channels, denoted as HHVV_Corr, keeps a notable
impact in the results obtained with polarimetric features (rows shaded in blue) and with repeat-pass
coherences (rows shaded in green), adding 4% and 3% to OA, respectively. However, when
the single-pass coherence is exploited jointly with the backscattering coefficient (rows shaded in pink)
the improvement produced in OA by including HHVV_Corr in the feature set is just 1%. In addition,
results in terms of OA are nominally equal (just above 93%), and Kappa improves only from 0.92 to 0.93,
for both single-pol cases with single-pass interferometry (HH + Coh_sp_HH, and VV + Coh_sp_VV)
and with the use of the four features (HH + Coh_sp_HH + VV + Coh_sp_VV). Consequently,
single-pol single-pass interferometry is demonstrated as a powerful feature to improve crop-type
mapping. Indeed, the OA provided by Coh_sp_HH and Coh_sp_VV when used as single features
are the same as the corresponding backscattering coefficient (86–88%), which is a remarkable result
for the objective of this work.

The use of an evaluation at field level entails some benefit also for particular crop types.
Notably, PA and UA of the four crops with worst scores are clearly improved in some cases.
For instance, for chickpea the UA passes from 21% to 77% and the PA from 31% to 46%, whereas
for onions and beans their UA increase from 28% to 55% and from 22% to 40%, respectively.
Anyway, these final values are still significantly lower than those obtained for the rest of crops.
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Table 5. Classification scores at field level with HH and VV channels. Shading colour: blue
for polarimetric features, pink for single-pass interferometric coherence features, green for repeat-pass
interferometric coherence features, and grey for all features.

Features OA Kappa
HH 88.2 0.86
VV 87.5 0.87

HH + VV 90.0 0.89
HH + VV + HHVV_Corr 93.9 0.93

Coh_sp_HH 86.4 0.85
Coh_sp_VV 87.9 0.85

Coh_sp_HH + HH 93.3 0.92
Coh_sp_VV + VV 93.3 0.92

Coh_sp_HH + Coh_sp_VV + HH + VV 93.2 0.93
Coh_sp_HH + Coh_sp_VV + HH + VV + HHVV_Corr 94.3 0.94

Coh_rp_HH 44.2 0.39
Coh_rp_VV 33.4 0.28

Coh_rp_HH + HH 90.1 0.88
Coh_rp_VV + VV 91.1 0.89

Coh_rp_HH + Coh_rp_VV + HH + VV 91.7 0.90
Coh_rp_HH + Coh_rp_VV + HH + VV + HHVV_Corr 94.6 0.93

All 7 features 94.9 0.94

Overall Accuracy & Kappa Score

Crop Alfalfa Wheat Cotton Corn Sugar beet Tomato Sunflower Beans Quinoa Chickpea Onion Pea Rice
HH 82.2 73.9 97.8 84.6 92.0 85.1 86.0 25.0 47.0 8.0 33.3 4.0 96.6
VV 85.6 79.7 98.0 80.8 89.6 87.8 86.7 27.5 59.5 4.0 23.3 8.0 98.4

HH + VV 86.7 85.5 98.3 85.7 94.2 89.4 86.7 25.0 63.0 4.0 30.0 4.0 98.6
HH + VV + HHVV_Corr 97.8 94.8 98.8 90.8 97.1 94.2 92.0 65.0 74.0 44.0 38.3 14.0 99.0

Coh_sp_HH 47.8 67.1 96.8 90.7 79.7 88.3 87.3 5.0 66.5 0.0 51.7 16.0 97.8
Coh_sp_VV 66.7 79.7 96.0 92.6 81.4 84.9 82.7 17.5 68.5 0.0 41.7 20.0 97.7

Coh_sp_HH + HH 90.0 88.1 98.7 93.8 96.2 90.6 92.0 42.5 80.0 26.0 40.0 16.0 98.5
Coh_sp_VV + VV 95.6 89.7 98.7 94.3 96.3 90.5 91.3 35.0 82.0 16.0 31.7 24.0 99.1

Coh_sp_HH + Coh_sp_VV + HH + VV 93.3 89.0 98.7 94.1 96.9 91.0 91.3 40.0 81.0 18.0 36.7 18.0 99.1
Coh_sp_HH + Coh_sp_VV + HH + VV + HHVV_Corr 100.0 93.2 98.7 93.8 97.2 95.1 92.0 60.0 85.0 50.0 43.3 24.0 99.1

Coh_rp_HH 100.0 41.3 44.5 87.0 27.0 3.5 23.3 10.0 20.0 10.0 23.3 30.0 81.7
Coh_rp_VV 100.0 47.4 50.0 87.4 31.8 4.4 53.3 10.0 26.0 14.0 23.3 24.0 4.5

Coh_rp_HH + HH 88.9 77.1 98.4 92.3 90.1 82.7 88.0 12.5 71.0 10.0 25.0 6.0 99.0
Coh_rp_VV + VV 88.9 80.3 98.3 92.6 90.5 85.2 88.0 20.0 71.0 16.0 25.0 10.0 99.4

Coh_rp_HH + Coh_rp_VV + HH + VV 90.0 81.3 98.4 94.3 91.6 86.9 88.0 20.0 72.0 12.0 23.3 8.0 99.5
Coh_rp_HH + Coh_rp_VV + HH + VV + HHVV_Corr 100.0 91.9 98.8 94.6 95.8 93.3 91.3 27.5 79.5 40.0 31.7 10.0 99.5

All 7 features 100.0 93.5 98.8 94.8 96.3 93.7 92.0 27.5 86.0 46.0 38.3 14.0 99.4

Producer's Accuracy (%)

Crop Alfalfa Wheat Cotton Corn Sugar beet Tomato Sunflower Beans Quinoa Chickpea Onion Pea Rice
HH 52.9 67.0 97.1 85.8 90.6 86.2 75.8 20.4 51.7 14.8 47.9 7.0 99.9
VV 75.0 67.1 97.6 86.3 89.9 87.9 77.1 24.5 65.5 4.6 21.2 11.7 99.9

HH + VV 74.1 75.6 97.6 88.7 90.5 88.8 75.6 26.8 71.3 12.5 51.8 12.5 99.9
HH + VV + HHVV_Corr 73.0 87.4 97.7 91.5 94.6 96.2 81.0 65.3 84.5 93.3 59.3 32.3 99.9

Coh_sp_HH 31.3 93.9 95.1 91.2 85.3 78.4 85.5 1.9 68.6 0.0 39.8 21.9 99.1
Coh_sp_VV 33.8 91.8 95.5 93.0 86.1 81.4 83.0 8.1 74.2 0.0 45.8 22.7 98.1

Coh_sp_HH + HH 77.1 88.5 97.6 93.0 90.8 94.9 92.0 25.3 83.0 54.2 57.0 23.5 99.9
Coh_sp_VV + VV 78.6 89.6 97.7 93.7 90.4 95.4 92.0 27.8 86.6 45.0 43.7 31.7 99.9

Coh_sp_HH + Coh_sp_VV + HH + VV 86.6 89.7 97.7 93.1 89.8 95.5 92.0 33.3 85.0 48.3 54.7 24.0 100.0
Coh_sp_HH + Coh_sp_VV + HH + VV + HHVV_Corr 91.2 89.0 97.6 94.6 94.3 97.7 92.0 57.4 83.7 89.3 55.5 43.2 100.0

Coh_rp_HH 4.3 42.7 91.0 45.7 58.4 31.7 21.1 9.0 21.0 18.4 11.1 28.8 87.8
Coh_rp_VV 2.9 45.5 88.8 52.4 62.1 38.0 23.9 12.0 31.8 7.0 12.5 25.7 83.5

Coh_rp_HH + HH 53.4 73.4 97.5 89.5 87.2 89.5 82.0 13.3 69.5 31.7 32.3 13.3 99.9
Coh_rp_VV + VV 58.6 74.7 97.6 89.0 86.0 90.3 87.7 25.7 83.4 59.2 24.9 25.0 99.9

Coh_rp_HH + Coh_rp_VV + HH + VV 71.7 76.4 97.6 89.4 87.1 90.7 84.1 21.7 82.0 46.7 30.3 25.0 99.9
Coh_rp_HH + Coh_rp_VV + HH + VV + HHVV_Corr 78.0 82.8 97.7 93.9 92.3 96.4 86.4 40.3 87.0 80.0 48.4 21.7 99.9

All 7 features 85.4 88.1 97.6 95.1 91.9 97.4 92.0 40.0 84.3 77.8 55.8 28.7 100.0

User's Accuracy (%)

3.2.3. Results at Pixel Level with Pauli Channels

Thanks to the coherent acquisition of the two co-polar channels, HH and VV, by the TerraSAR-X
and TanDEM-X satellites, it is possible to change the polarimetric basis to the Pauli one. In the Pauli
basis the covariance matrix in (1) is called coherency matrix, which is widely used in studies based
on polarimetric data because of its easier interpretation in terms of scattering mechanisms present
in the scene [23,33]. From the co-polar channels we obtain the first two channels of the Pauli basis:
HH+VV and HH-VV, denoted as P1 and P2 hereafter. Consequently, we applied the same classification
tests where all features included in the input set were derived from P1 and P2. The classification scores
obtained are presented in Table 6, using the same scheme as in previous results, and the OA values
are represented with a bar chart in Figure 9c. The main differences with respect to the results based on
HH and VV channels are described in this subsection.
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Table 6. Classification scores at pixel level with Pauli channels. Shading colour: blue for polarimetric
features, pink for single-pass interferometric coherence features, green for repeat-pass interferometric
coherence features, and grey for all features.

Features OA Kappa
P1 78.1 0.72
P2 82.3 0.77

P1 + P2 90.6 0.88
P1 + P2 + P1P2_Corr 91.1 0.88

Coh_sp_P1 72.3 0.65
Coh_sp_P2 67.6 0.60

Coh_sp_P1 + P1 88.0 0.85
Coh_sp_P2 + P2 89.1 0.86

Coh_sp_P1 + Coh_sp_P2 + P1 + P2 93.1 0.91
Coh_sp_P1 + Coh_sp_P2 + P1 + P2 + P1P2_Corr 93.2 0.91

Coh_rp_P1 35.3 0.25
Coh_rp_P2 27.1 0.16

Coh_rp_P1+ P1 85.1 0.81
Coh_rp_P2 + P2 85.2 0.81

Coh_rp_P1 + Coh_rp_P2 + P1 + P2 92.5 0.90
Coh_rp_P1 + Coh_rp_P2 + P1 + P2 + P1P2_Corr 92.9 0.91

All 7 features 94.0 0.92

Overall Accuracy & Kappa Score

Crop Alfalfa Wheat Cotton Corn Sugar beet Tomato Sunflower Beans Quinoa Chickpea Onion Pea Rice
P1 50.0 51.4 93.5 62.5 64.8 58.3 76.5 16.6 51.6 8.8 22.9 8.0 86.4
P2 49.1 62.0 90.4 62.3 82.0 83.0 54.5 25.7 50.4 24.9 26.0 8.5 87.5

P1 + P2 71.5 81.1 96.5 81.8 90.5 92.8 84.4 36.8 66.4 38.8 34.2 16.2 92.5
P1 + P2 + P1P2_Corr 72.6 82.1 96.7 82.2 90.6 92.9 84.5 36.3 66.3 39.3 34.3 16.1 93.3

Coh_sp_P1 44.3 61.5 86.2 83.7 37.9 55.7 69.8 11.9 59.0 10.4 29.5 23.8 80.2
Coh_sp_P2 42.2 51.4 53.5 78.9 66.5 69.1 51.3 15.5 40.3 29.5 27.2 16.4 81.7

Coh_sp_P1 + P1 70.6 80.2 96.8 89.8 76.5 79.5 85.7 20.6 71.5 13.8 32.5 23.8 91.6
Coh_sp_P2 + P2 88.3 77.2 94.6 87.3 87.0 90.7 79.1 26.6 69.1 36.1 29.3 23.7 90.3

Coh_sp_P1 + Coh_sp_P2 + P1 + P2 91.2 87.8 97.5 93.8 91.7 93.9 86.7 39.1 79.2 44.8 38.1 27.2 93.7
Coh_sp_P1 + Coh_sp_P2 + P1 + P2 + P1P2_Corr 92.0 88.4 97.6 93.5 91.7 93.9 86.7 39.4 78.8 44.9 38.4 27.2 93.8

Coh_rp_P1 50.7 38.2 37.9 57.0 26.9 8.6 27.5 9.4 23.8 9.1 20.6 22.4 40.7
Coh_rp_P2 32.2 21.2 26.0 37.1 8.0 7.9 10.1 15.8 8.2 7.3 15.6 12.4 40.1

Coh_rp_P1+ P1 63.1 72.2 95.5 79.0 75.2 66.0 78.5 14.9 63.7 11.6 25.3 12.3 92.6
Coh_rp_P2 + P2 62.0 72.4 92.6 73.7 83.1 82.9 53.8 22.2 52.8 27.0 26.6 12.4 90.2

Coh_rp_P1 + Coh_rp_P2 + P1 + P2 85.3 84.9 97.3 89.5 90.6 92.1 84.7 29.3 71.8 38.7 31.6 15.0 95.0
Coh_rp_P1 + Coh_rp_P2 + P1 + P2 + P1P2_Corr 85.8 84.9 97.4 89.6 90.8 92.1 84.7 29.6 71.5 39.5 32.2 14.3 95.7

All 7 features 94.9 89.0 97.7 94.4 92.0 93.4 86.8 32.7 78.9 48.1 38.0 22.4 95.5

Producer's Accuracy (%)

Crop Alfalfa Wheat Cotton Corn Sugar beet Tomato Sunflower Beans Quinoa Chickpea Onion Pea Rice
P1 23.9 41.0 97.8 52.2 82.1 70.7 60.9 2.5 28.1 1.1 6.5 1.8 99.2
P2 25.2 56.8 93.8 61.9 93.0 86.8 31.7 7.9 39.2 6.9 6.5 2.0 98.7

P1 + P2 49.3 70.5 98.0 71.3 95.0 92.7 83.7 18.9 57.6 19.9 16.5 8.5 99.5
P1 + P2 + P1P2_Corr 49.0 70.1 98.1 74.1 94.9 93.1 83.6 19.4 58.5 21.5 17.1 9.4 99.7

Coh_sp_P1 11.4 49.2 91.8 78.0 61.9 61.0 49.6 1.1 37.6 1.0 4.3 5.5 96.5
Coh_sp_P2 8.5 27.7 89.2 82.8 75.3 69.5 29.1 1.2 24.7 3.0 4.6 2.4 98.4

Coh_sp_P1 + P1 49.2 63.6 98.0 81.3 84.8 84.4 86.4 5.5 55.1 3.3 10.5 13.7 99.6
Coh_sp_P2 + P2 58.0 60.5 96.6 84.8 93.5 90.7 75.6 10.5 55.3 13.7 9.8 9.4 99.5

Coh_sp_P1 + Coh_sp_P2 + P1 + P2 75.9 72.6 98.2 86.5 95.4 94.2 88.7 20.9 64.6 28.7 21.3 20.2 99.9
Coh_sp_P1 + Coh_sp_P2 + P1 + P2 + P1P2_Corr 76.1 71.9 98.2 87.1 95.4 94.6 88.6 21.0 64.5 30.0 21.7 21.5 99.9

Coh_rp_P1 2.7 45.6 56.3 31.0 50.3 23.1 6.3 3.9 11.9 0.8 3.9 3.3 75.3
Coh_rp_P2 2.4 13.1 50.9 19.5 21.7 14.1 2.1 1.8 3.5 0.2 1.3 1.4 78.6

Coh_rp_P1+ P1 27.5 68.9 97.8 65.8 81.3 73.7 77.2 8.4 45.2 3.8 12.8 5.4 99.5
Coh_rp_P2 + P2 31.7 60.8 95.4 73.8 92.8 87.8 33.3 8.0 43.7 9.4 8.0 3.4 99.0

Coh_rp_P1 + Coh_rp_P2 + P1 + P2 54.9 70.7 98.1 82.0 94.1 93.0 88.1 21.3 68.2 28.5 22.9 12.0 99.7
Coh_rp_P1 + Coh_rp_P2 + P1 + P2 + P1P2_Corr 55.0 71.2 98.1 84.2 94.1 93.2 88.1 20.1 69.3 29.2 24.0 12.2 99.7

All 7 features 77.3 74.7 98.2 87.4 94.8 94.6 90.8 27.0 66.7 39.9 29.8 22.0 99.8

User's Accuracy (%)

The first noticeable difference with respect to Table 4 is the low contribution of P1P2_Corr
to the classification performance. In all three groups of feature sets (polarimetric, single-pass
interferometric and repeat-pass interferometric), the addition of this feature improves OA less than 0.5%
and provides the same Kappa, whereas the contribution of HHVV_Corr increased the overall accuracy
by 3–4% when HH and VV were used as input channels. For the tests based only on polarimetric
data (rows shaded in blue colour), this effect was already observed in [20], but it is also evident
for the interferometric data sets. As a result, the classification scores produced by the use of the two
Pauli channels are the best ones and their normalised correlation is of no use in this application.

It is also interesting to see that P1 and P2, when exploited alone, are complimentary with
their coherence features, both single-pass and repeat-pass. The results provided by the backscattering
coefficient and the coherence of the same channel are much higher than the one of the backscattering
coefficient alone and, notably, coincide for both channels. The resulting OA reach 88–89% for single-pass
and 85% for repeat-pass, respectively.

In addition, the joint use of both channels (backscattering coefficient and coherence) improves
the final OA by 4% in single-pass and by 7% in repeat-pass, reaching an OA equal to 93% in both cases.
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As a final comment, the OA obtained with the whole set of features in the Pauli basis is 94%,
which is the best result found and is approximately 1% better than the maximum OA produced
by the HH and VV channels (see Table 4). Regarding the final PA and UA, every crop gets its best
accuracy also in this case, so we can conclude that, at least for the available data set, the conversion
from linear to the Pauli basis is convenient for crop-type mapping with this sort of polarimetric
and interferometric data.

3.2.4. Results at Field Level with Pauli Channels

The scores of the evaluation at field level of the classification tests run with P1 and P2 channels
are shown in Table 7, and the OA values are also represented with a bar chart in Figure 9d.
As in the case of HH and VV channels, the results exhibit an overall improvement with respect
to the evaluation at pixel level, reaching OA values above 95% and Kappa equal to 0.95 for some
feature sets in the Pauli basis.

Table 7. Classification scores at field level with Pauli channels. Shading colour: blue for polarimetric
features, pink for single-pass interferometric coherence features, green for repeat-pass interferometric
coherence features, and grey for all features.

Features OA Kappa
P1 86.9 0.87
P2 92.1 0.91

P1 + P2 94.7 0.94
P1 + P2 + P1P2_Corr 94.7 0.94

Coh_sp_P1 87.8 0.85
Coh_sp_P2 84.9 0.85

Coh_sp_P1 + P1 93.1 0.92
Coh_sp_P2 + P2 94.0 0.94

Coh_sp_P1 + Coh_sp_P2 + P1 + P2 95.0 0.95
Coh_sp_P1 + Coh_sp_P2 + P1 + P2 + P1P2_Corr 95.3 0.95

Coh_rp_P1 45.2 0.39
Coh_rp_P2 30.9 0.27

Coh_rp_P1+ P1 90.4 0.88
Coh_rp_P2 + P2 92.9 0.92

Coh_rp_P1 + Coh_rp_P2 + P1 + P2 94.9 0.94
Coh_rp_P1 + Coh_rp_P2 + P1 + P2 + P1P2_Corr 94.7 0.94

All 7 features 95.6 0.95

Overall Accuracy & Kappa Score

Crop Alfalfa Wheat Cotton Corn Sugar beet Tomato Sunflower Beans Quinoa Chickpea Onion Pea Rice
P1 76.7 83.2 98.1 81.3 89.1 86.8 89.3 22.5 66.0 2.0 30.0 4.0 96.5
P2 60.0 81.6 98.3 91.5 95.9 94.9 88.0 47.5 75.0 22.0 23.3 6.0 97.0

P1 + P2 93.3 94.2 98.8 92.1 97.6 96.9 91.3 57.5 73.5 54.0 40.0 14.0 99.0
P1 + P2 + P1P2_Corr 93.3 94.5 98.7 92.3 97.6 96.7 92.0 57.5 73.5 52.0 41.7 16.0 99.0

Coh_sp_P1 77.8 82.3 97.0 92.5 76.2 85.4 86.7 17.5 70.0 2.0 38.3 20.0 97.1
Coh_sp_P2 75.6 80.6 87.0 92.1 92.6 93.4 71.3 25.0 51.5 36.0 35.0 18.0 96.9

Coh_sp_P1 + P1 91.1 89.0 98.7 94.3 95.6 90.4 92.0 35.0 83.0 18.0 41.7 20.0 99.0
Coh_sp_P2 + P2 100.0 90.6 98.7 93.8 96.9 96.6 94.7 37.5 82.0 40.0 25.0 24.0 98.4

Coh_sp_P1 + Coh_sp_P2 + P1 + P2 100.0 92.6 98.8 95.4 97.2 97.5 92.0 55.0 87.0 58.0 40.0 26.0 99.0
Coh_sp_P1 + Coh_sp_P2 + P1 + P2 + P1P2_Corr 100.0 92.6 98.8 95.2 97.2 97.5 92.0 55.0 86.0 58.0 41.7 28.0 99.1

Coh_rp_P1 100.0 44.2 47.9 86.1 34.7 4.5 38.7 15.0 26.0 10.0 21.7 24.0 69.3
Coh_rp_P2 98.9 35.2 18.0 82.3 5.7 0.6 4.0 30.0 4.0 6.0 16.7 10.0 85.2

Coh_rp_P1+ P1 86.7 82.6 98.3 91.5 88.9 84.0 88.7 20.0 74.0 10.0 26.7 6.0 98.6
Coh_rp_P2 + P2 88.9 87.7 98.3 94.1 94.8 94.2 86.7 32.5 73.5 34.0 23.3 8.0 99.0

Coh_rp_P1 + Coh_rp_P2 + P1 + P2 100.0 92.9 98.6 95.4 95.9 96.6 92.0 37.5 77.0 52.0 30.0 12.0 99.4
Coh_rp_P1 + Coh_rp_P2 + P1 + P2 + P1P2_Corr 98.9 93.2 98.7 95.4 96.3 96.6 92.0 35.0 76.0 54.0 31.7 12.0 99.4

All 7 features 100.0 92.6 98.8 95.6 97.1 97.3 92.0 35.0 85.0 62.0 36.7 18.0 99.3

Producer's Accuracy (%)

Crop Alfalfa Wheat Cotton Corn Sugar beet Tomato Sunflower Beans Quinoa Chickpea Onion Pea Rice
P1 77.6 70.8 97.6 83.5 90.9 83.5 75.6 23.6 66.1 3.3 39.4 10.0 99.7
P2 68.9 83.3 94.9 84.5 95.1 95.7 84.5 63.0 80.1 70.0 48.9 13.3 99.3

P1 + P2 75.4 87.1 97.7 90.8 95.9 97.0 84.4 65.5 84.2 97.5 78.7 29.8 99.6
P1 + P2 + P1P2_Corr 70.9 87.1 97.7 91.0 96.1 97.1 83.5 64.9 85.0 97.5 78.7 39.8 99.9

Coh_sp_P1 39.6 92.3 96.3 93.6 85.7 81.2 83.2 6.1 73.5 5.0 27.3 25.4 98.5
Coh_sp_P2 36.5 61.2 95.3 89.8 92.8 93.5 69.6 13.5 64.1 58.2 39.3 16.4 99.5

Coh_sp_P1 + P1 85.2 91.1 97.4 93.2 89.7 95.3 92.0 27.3 86.0 46.7 49.1 27.3 99.9
Coh_sp_P2 + P2 93.0 79.3 96.6 95.4 95.4 96.3 93.6 46.6 85.2 91.7 61.7 32.5 99.6

Coh_sp_P1 + Coh_sp_P2 + P1 + P2 92.2 89.8 97.7 95.2 95.8 96.9 92.0 62.0 86.3 100.0 68.0 38.5 100.0
Coh_sp_P1 + Coh_sp_P2 + P1 + P2 + P1P2_Corr 91.2 89.3 97.7 95.0 95.9 97.3 92.0 62.0 86.3 100.0 62.8 45.0 100.0

Coh_rp_P1 4.2 44.1 89.0 50.8 61.3 40.1 24.4 18.3 27.1 9.4 11.0 26.5 88.7
Coh_rp_P2 3.0 35.3 76.0 36.8 65.7 8.5 9.3 20.4 9.8 8.7 7.2 18.0 77.9

Coh_rp_P1+ P1 65.8 77.3 97.5 87.9 84.9 87.4 84.3 23.2 80.0 42.0 33.4 20.0 100.0
Coh_rp_P2 + P2 68.4 80.9 95.9 92.4 95.1 96.4 82.4 29.7 81.0 79.2 36.7 16.7 99.4

Coh_rp_P1 + Coh_rp_P2 + P1 + P2 71.8 82.3 97.8 93.8 95.1 97.2 86.4 50.0 85.1 95.0 51.2 26.7 100.0
Coh_rp_P1 + Coh_rp_P2 + P1 + P2 + P1P2_Corr 71.3 82.1 97.8 94.2 95.2 97.4 85.3 49.2 85.1 95.0 55.3 21.7 100.0

All 7 features 88.5 85.8 97.7 95.2 94.9 97.4 92.0 43.0 85.9 100.0 61.7 34.0 100.0

User's Accuracy (%)
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The values of PA and UA for individual crops are also significantly improved in some cases
with respect to HH and VV and with respect to the pixel-level evaluation. It is worth mentioning
that chickpea, one of the crop type with low scores in all previous tests, reaches UA = 100% and PA
= 62%, hence becoming much better classified, when the set of seven features is used. Moreover,
in the best experiments with single-pass coherence (rows shaded in pink colour), the PA and UA
values of the crop with worst results are not as extremely low as in other cases, since a sort of balance
is achieved. For instance, with P1 + Coh_sp_P1 + P2 + Coh_sp_P2 + P1P2_Corr beans and chickpea
exhibit UA and PA above 50%, and the values for onion and pea are also increased notably.

As a summary of the overall results, Figure 9 shows bar charts of the values of OA for all
the sets of input features, from the HH and VV channels and the Pauli channels, and evaluated both
at pixel and field level. The ordering and the colour coding employed for the bars is the same as
in the previous tables. In these charts we can easily appreciate that the relative increment in OA
provided by the interferometric coherence is larger when the evaluation is carried out at pixel level
than when it is done at field level. In addition, it is evident that the highest improvements provided
by coherence are reached when a single polarimetric channel is used.
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Figure 9. Graphical representation of the OA values obtained by all sets of input features.
Bar colour: blue for polarimetric features, pink for single-pass interferometric coherence features,
green for repeat-pass interferometric coherence features, and grey for all features. (a) Pixel level. HH
and VV channels. (b) Field level. HH and VV channels. (c) Pixel level. Pauli channels. (d) Field level.
Pauli channels.

4. Discussion

The classification results shown in this work can be compared with those obtained in previous
experiments with time series of X-band SAR data, e.g., [14,18–20], but always taking into account that
each study about crop classification has unique features, including the number and specificity of crop
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species present, and the SAR data available. This complicates comparison in absolute terms and has
to be considered to draw right conclusions. For instance, the time span covered by the satellite images
in this work is only 3 months and corresponds to summer, like in [19], whereas in other works there
were images covering 5 to 7 months [14,18,20].

However, since the objective of this work is to assess the contribution of TanDEM-X interferometric
products, it is important to quantify the added value of the sets of input features that include
interferometric coherence with respect to those that do not consider them. To measure that added
value, we defined as baseline cases the classification experiments based on polarimetric features,
because they have demonstrated [19,20] to outperform the results based only on backscattering
coefficient features [14]. For the particular dataset at hand, the OA obtained by the polarimetric features
is 90–91% at pixel level and 93–95% at field level, depending on whether the linear channels (HH,VV)
or the Pauli channels (P1,P2) are employed. These values are similar to the best results obtained
in the literature with X-band data [19], despite they were obtained over different crop types and with
different radar data. Moreover, results based on the exploitation of single polarimetric channels (HH or
VV) are of interest because single-pol images exhibit better spatial resolution and double coverage with
respect to the HHVV dual-pol mode. Therefore, single-pol results could offer a good crop mapping
product wherever spatial resolution is important, e.g., in intensive farming areas with small parcels.

The overall classification score obtained by including the dual-pol single-pass coherence values as
input features improves by 2% with respect to the dual-pol baseline case, reaching 92%. More notably,
in single-pol mode the increase in OA is 10% for the HH channel and 8% for the VV channel,
reaching 87% and 88%, respectively. The improvement is more significant over tall crops, like corn
and quinoa in the studied site, because in these cases single-pass interferometry provides sensitivity
to the vertical structure of the plants. The main drawback of single-pass interferometry for crop-type
mapping is the requirement of a large baseline (spatial separation between the two satellites), which
in TanDEM-X is normally much shorter than the one exploited in this experiment. As a result, for the
moment this result is of limited applicability in other scenarios.

Regarding repeat-pass interferometry, the tests carried out at pixel level using consecutive
TanDEM-X images, i.e., acquired with a separation of 11 days, provide OA values slightly below
the ones provided by single-pass coherence (OA 1–3% lower). However, the repeat-pass coherence
values at HH and VV channels are clearly complementary to the backscattering coefficient, since their
addition improves the individual performances by 6–7%. Furthermore, in the tests evaluated at field
level the dual-pol results provide the same score as with single-pass coherences (OA above 94%).
Compared to a past study on the contribution of X-band repeat-pass coherence for crop-type
mapping [18], in which it was unclear, here we have demonstrated its added value when compared
to the backscattering coefficient in single-pol cases, and also providing classification scores very
close to those achieved by using polarimetric features from dual-pol data. Contrarily to single-pass,
repeat-pass interferometry can be applied with time series of images acquired by a single satellite,
so it is not restricted to the TanDEM-X mission. Consequently, this technique may constitute
a very good complement to all the efforts performed so far with time series of SAR images
for crop classification.

5. Conclusions

The tests carried out in this work have demonstrated the suitability of interferometric data,
acquired at X band by the TanDEM-X sensor, to classify crop types. Both single-pass coherence
and repeat-pass coherence have shown their added value as input features for the classifier with
respect to the backscattering coefficient and other polarimetric features.

In the case of single-pass interferometry, which has been tested for the first time in this work
for crop classification, coherence contributes to improve the classification accuracy in both the dual-pol
and the single-pol cases. This contribution, which is more notable over tall crops, requires that
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the interferometric baseline is large enough to guarantee sensitivity to short vegetation, as it was
during the science phase of TanDEM-X in 2015.

Repeat-pass interferometry has been also tested in this work by combining consecutive
TanDEM-X images. The overall classification scores are slightly below the ones provided by single-pass
coherence, but repeat-pass coherence is clearly complementary to the backscattering coefficient at both
HH and VV channels. In fact, when evaluated at field level, results are coincident for both single-pass
and repeat-pass cases.

Finally, we have also observed that the representation of the dual-pol data in the Pauli basis
improves slightly the performance of the classifier, producing the absolute best scores.

All these results are encouraging despite the present work is obviously partial (not all crop types
are present) and, hence, can not be generalised to any dataset. In particular, the available satellite
observation interval only lasted 3 months (June to August) and hence covered partially the calendar
of some of the crops, for which indeed the classification performed worst. Therefore, a more complete
experiment covering the whole calendar of the crops in the observed scene would be recommended
to fully evaluate the contribution of the interferometric coherence, both single-pass and repeat-pass.
In addition, attending to the observed seasonal variation of interferometric and polarimetric features,
a future investigation on the impact of acquisition time on classification accuracy would be of interest,
especially if conducted to optimise the acquisition schedule and to reduce the data requirements.

Regarding the use of other products, besides the coherence, derived from single-pass
interferometry by TanDEM-X, the interferometric phase, once converted to DEM, could provide also
a valuable information related to the plants type and height, so it could contribute to crop-type mapping.
Examples of vegetation height estimates obtained over agricultural crops by TanDEM-X can be found
in [50,51]. Therefore, future works should consider the application of TanDEM-X-derived vegetation
height for crop-type mapping.

From the point of view of the sensor complexity, single-pass interferometry is the most demanding
technique employed here, because it requires two synchronised satellites flying in close formation,
whereas repeat-pass interferometry only needs a single satellite. In this sense, the use of repeat-pass
coherence in single-pol data (i.e., only one polarimetric channel, HH or VV) improves the OA
by 6–7% with respect to the individual backscattering coefficient, which constitutes a remarkable result
and exhibits an important future potential because of the simple acquisition scheme that is required
(time series of single-pol radar images) and the advantages of spatial resolution and coverage
of single-pol images. In this context, the potential use of the cross-polarimetric channel (VH) and its
associated coherence and backscatter, either alone or in conjunction with one co-polar channel, should
be analysed in the future, since that channel is known to be dominated by the presence of volume
scattering from vegetation and it usually outperforms other channels in crop-type mapping.

In the current Earth observation context, in which the Sentinel-1 constellation is providing
wide-coverage C-band radar images every 6 days, the potential specific contribution of these X-band
satellites, like TerraSAR-X, TanDEM-X and PAZ, would be their capability to classify crops with finer
spatial resolution. This would help to solve, at least partially, the limitation found in recent crop-type
mapping experiments with Sentinel-1 due to the small size of the fields [29,30].
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