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Abstract 31 

 32 

Understanding the influence of environmental and anthropogenic factors on the distribution of species is 33 

essential for developing management in endangered ecosystems. We studied the current abundance and 34 

distribution patterns of vegetation along environmental and anthropogenic gradients in North West Algeria. We 35 

focused on the four dominant coniferous species (Pinus halepensis, Tetraclinis articulata, Juniperus oxycedrus 36 

and Juniperus phoenicea). We compiled inventories of species composition, together with 12 environmental 37 

variables in 177 sampling plots throughout the study area. Multivariate (Detrended Correspondence Analysis) 38 

and univariate (HOF models) analyses were applied to predict presence of coniferous species and to explore 39 

species-environment relationships along ecological and anthropogenic variables. We found that species 40 

segregated along environmental gradients, mainly altitude and related climatic variables (temperatures). 41 

Anthropogenic variables, like fire frequency and overgrazing, were secondary, but also significant. J. phoenicea 42 

was located exclusively in coastal areas. T. articulata had a wide distribution and was linked to coastal and 43 

inland areas, but did not arrive at more continental areas (colder and drier), where it was replaced with J. 44 

oxycedrus. P. halepensis displayed the widest distribution and was practically present throughout the study area, 45 

but its maximum abundance was in continental areas. These results indicate a possible shift of species’ potential 46 

distribution in future climatic change. Species like J. oxycedrus would be seriously threatened by niche 47 

narrowing, while P. halepensis and T. articulata could expand to a certain extent. Our results provide important 48 

inputs for optimising the management plans of coniferous species by considering environmental factors key 49 

modulators of vegetation distribution. 50 

 51 

Keywords: coniferous forest, fire frequency, global change, overgrazing, species distribution gradient. 52 

  53 
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1. Introduction  54 

 55 

In recent years, predictive modelling of species distribution has become an important tool to address ecology and 56 

biogeography issues (Franklin 2010; Acevedo et al. 2012) and, more recently, in restoration, conservation 57 

biology and climate change research  (Hannah et al. 2014). In ecological studies, species-environment 58 

relationships have been crucial for explaining the spatial structuring of natural ecosystems (Davies et al. 2007). It 59 

is essential to determine the interactions between abiotic factors that limit species existence (fundamental niche) 60 

with anthropogenic and other biotic factors constraining this existence (realized niche) (Pearman et al. 2008). 61 

Co-existing tree species have different responses to environmental factors, determined by their genetic and 62 

physiological features, as well as their relationships to physiochemical variables (fundamental niche). However, 63 

interactions with other organisms, selective management, and human-induced disturbances can vastly alter these 64 

potential plant-environment patterns (realized niche) (Nicolaci et al. 2015). Many studies relate present-day 65 

geographic distributions to climatic variables (Pliscoff et al. 2014), and then project future distributions in 66 

various climate change scenarios (Boden et al. 2010). Furthermore, climate in combination with other 67 

environmental factors, such as soil and elevation (Nicolaci et al. 2015), natural and human disturbances (e.g., 68 

fire; Baeza et al. 2007) and historical management (Urbieta et al. 2011), has been much used to explain the main 69 

vegetation patterns around the world (Schwilk and Keeley 2012). Therefore, accurate knowledge of the 70 

ecological and anthropogenic drivers that affect vegetation distribution is necessary for forest planning and for 71 

designing models of species distribution (Hörsch 2003). This information would be particularly important in the 72 

conservation of endangered ecosystems, such as some coniferous forests in the Mediterranean Basin (Rupprecht 73 

et al. 2011). 74 

Under the arid and semiarid climatic conditions that exist in the Mediterranean Basin, coniferous forests are a 75 

substantial component, with taxa of pine (to a greater extent) and cupressaceous species (to a lesser extent) found 76 

among the most dominant elements (Quézel 2000). These woodlands are of enormous ecological and economic 77 

importance since they contribute significantly to local economy, and also because of their relevance for regional 78 

biodiversity (Médail 2003) that enhances large-scale ecosystem multifunctionality (van der Plas et al. 2016). 79 

Coniferous forest distribution in Mediterranean landscapes is characterised by occupying diverse environmental 80 

conditions in relation to climate and soils, and by the frequency and intensity of disturbances (both natural and 81 

anthropogenic) (Le Houerou 1980). However, the socio-economic differences between Northern and Southern 82 

Mediterranean countries lead to different ecological and anthropogenic pressures (Chergui et al. 2018). In 83 
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Northern countries, for example, rural depopulation has promoted the expansion of conifer species and forests 84 

(mainly Pinus halepensis) in the last decades (Quézel 2004). In this case, fire occurrence is the main degradation 85 

factor as consequence of the increasing amount and connectivity of fuels (Santana et al. 2010; Chergui et al. 86 

2018). In contrast, Southern countries have a sizeable rural population growth combined with a predominantly 87 

precarious way of life (Zohry 2005). In this case fire is not the predominant degradation factor and the 88 

overexploitation of natural resources by means of agriculture, wood gathering and grazing can also be a source 89 

of degradation (Taïqui and Martin, 1997; Hadjadj Aoual 2009). In Algeria, forests have historically been 90 

subjected to disturbances, but the deforestation threat has increased in recent times as these disturbances have 91 

intensified (Dahmani-Megrerouche 2002; Hadjadj Aoual 2009). In fact, the strong human pressure on Algerian 92 

forests has diminished their extent and has changed their structure to shrublands, croplands and grasslands. 93 

Nevertheless, some specific forest types, in particular those dominated by the coniferous ones, still persist and 94 

are of conservation interest (Hadjadj Aoual 2009). Despite their considerable value, very little information on the 95 

spatial distribution of these coniferous species is available, which may hamper future conservation planning. 96 

Previous studies in north west Algeria (Dahmani-Megrerouche 2002; Hadjadj Aoual 2009; Kadik 2011) have 97 

facilitated the characterisation of the structure and floristic composition of vegetation, including coniferous 98 

formations. However, no study has attempted to assess the habitat distributions of these species along 99 

environmental gradients. Such an assessment would undoubtedly help to implement adequate conservation and 100 

sustainable development programmes to protect these endangered systems. Despite the threatened status of many 101 

coniferous species that require attention, many questions about their biogeography and ecology still remain 102 

unsolved.  103 

The present study analyses the factors that drive the distribution patterns of four coniferous species in an arid 104 

area from North West Algeria. We focused on this area because it includes a smooth biome transition between 105 

Mediterranean and arid climatic conditions, and is characterised by great climatic complexity, altitude and 106 

distance from the Mediterranean Sea. Coniferous woodland constitutes the most widely distributed vegetation 107 

types of drylands in the southern Mediterranean Basin, and studying this area can provide insights for future 108 

management plans. We focused on investigating the relationships between the abundance of these species and 109 

various key environmental (climatic and geomorphic) and anthropogenic (fire and grazing) factors. The 110 

quantification of such species-environment relationships represents the core of predictive geographical 111 

modelling in ecology (Thuiller et al. 2003). This assessment is essential for improving the use of coniferous 112 

species in afforestation programmes where their presence is endangered. To this end, it is fundamental to study 113 
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the environmental factors that determine the ecological niche of these species. Specifically this work aimed to 114 

answer three questions: (1) what is the current distribution of four dominant coniferous species along the 115 

environmental gradients in North West Algeria? (2) which environmental variables prove the most important in 116 

predicting coniferous species distribution? (3) do anthropogenic-caused disturbances, such as grazing and fire, 117 

influence species distribution?  118 

 119 

2. Material and methods 120 

 121 

2.1 Study area 122 

About 4000 plant species occur in the north African of the Mediterranean region. Of these, approximately 72 % 123 

are Mediterranean endemics, though only 20% are confined to North Africa (White 1983). Algeria includes most 124 

of this flora with 3139 species (RNE 2000). The study area is located in North West Algeria, Wilaya of Tlemcen 125 

(Fig 1), whose geomorphology reveals a wide diversity of landforms, including from north to south: coastal area, 126 

the mountains of Traras, the Tellians plains, the mountains of Tlemcen and a pre-steppe area (Fig 1). Most of this 127 

area is composed mainly of degraded and disturbed vegetation dominated chiefly by coniferous species (e.g., P. 128 

halepensis, Tetraclinis articulata, Juniperus oxycedrus and Juniperus phoenicea.). In this sense, these species 129 

and the companion flora accounts approximately 10% of Algerian flora (Ayache 2007).  130 

The area encompasses a wide elevation range from sea level to 1,180 m, characterised by an arid and 131 

semiarid climate with wide inter-annual variability. Mean annual temperatures range from 13ºC to 20°C, and 132 

annual mean rainfall varies between 254 mm and 484 mm (The National Office of Meteorology, the 1980-2011 133 

period). A detailed description of the study sites is provided in Table 1. In the study area, the wide spatial 134 

variation of the key environmental factors, as well as the heterogeneity that arises from human-produced 135 

disturbances, lead to a diverse mosaic of Mediterranean vegetation. This mosaic is composed of degraded 136 

vegetation dominated by these four coniferous species (P. halepensis, T. articulata, J. oxycedrus and J. 137 

phoenicea. Only a few of these coniferous-dominated forests remain intact, and are sometimes mixed with 138 

evergreen oaks (Quercus ilex and Quercus suber). The most common accompanying shrubs are: Quercus 139 

coccifera, Pistacia lentiscus, Rosmarinus officinalis, Olea europea, Phillyrea angustifolia, Erica multiflora, 140 

Cistus ssp., and some other communities of halophytes and psammophytes. This area has also been historically 141 

subjected to intense disturbances, e.g. overgrazing and recurrent fires, which have led to a major deforestation 142 
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threat in recent times (Meddour-Sahar 2015). Species nomenclature used in this study is based on Quezel and 143 

Santa (1962-63). 144 

The forested area occupies around 199,488 ha of a total study area that covers 901,769 ha, of which 115,500 145 

ha are dominated by coniferous species (58% of the forested area, DGFT, 2011). In this study, we focused on the 146 

distribution of the four coniferous species that are dominant in the study area: P. halepensis, T. articulata, J. 147 

oxycedrus and J. phoenicea. 148 

 149 

2.2 Sampling design 150 

Sampling was designed by considering distance from the sea, different altitudes, and presence and dominance of 151 

coniferous species (Fig 1, Table 1). Sampling also included vegetation types, where Q. ilex and Q. suber are 152 

present. Along a latitudinal transect from the coast to the pre-steppic area, 14 sites were selected as study sites, 153 

which represented the main coniferous forests for the different altitudes, aspects and substrata (Table 1). At each 154 

site, 10 to 22 plots were established randomly depending on space availability; e.g., the number of plots per site 155 

was proportional to the total area occupied by coniferous species. Vegetation sampling was conducted in the 156 

springs of 2008 and 2009 following the phytosociological method of Braun Blanquet (1952). A list of all the 157 

species present in an area of 100 m² was collected per plot. This sampling size has been considered sufficient to 158 

properly record the vegetation in our study area (Hadjadj Aoual 1995). For each plot, all the vascular species 159 

present were annotated and accompanied with an abundance-dominance index (Braun Blanquet 1952). 160 

Subsequently, the coefficients of abundance-dominance (on the 6-level scale of Braun Blanquet: +, 1, 2, 3, 4, 5) 161 

were transformed to a cover percent (0.1%, 5%, 17.5%, 37.5%, 62.5% and 87.5%) with the conversion proposed 162 

by van der Maarel (1979). The floristic composition and environmental characteristics were sampled in 177 plots 163 

distributed among the 14 sites.  164 

 165 

2.3 Explanatory variables  166 

Twelve environmental variables were considered as being explanatory for species distribution. For each plot we 167 

measured: altitude, distance from the sea, vegetation cover, slope, aspect, precipitations, the minimum 168 

temperature of the coldest month, snow, continentality and substratum type. Fire and grazing frequency were 169 

also included as anthropogenic explanatory variables. Altitude was extracted from the Z coordinate of the GPS in 170 

the field. Distance from the sea was determined from the map created by gvSIG [http://www.gvsig.org; last 171 

accessed October 2015]. Vegetation cover was considered as the percentage of vascular species coverage. Slope 172 

http://www.gvsig.org/
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and aspect (north, east, west and south) were determined in the field using a clinometer and a compass. We 173 

obtained climate data from the records of the nearest weather stations; mean annual precipitations, annual 174 

minimum temperatures and annual average of days with snowing days. Climate data encompassed the period 175 

from 1980 to 2011. Continentality was estimated according to Debrach’s Index (Debrach, 1953). This index 176 

calculates the difference between the mean daily maximum temperature of the warmest month (M) and the mean 177 

daily minimum temperature of the coldest month (m) (°C). According to this index, when M-m < 15°: Island 178 

climate, 15°C < M-m < 25°C: Coastal climate, 25°C < M-m < 35°C: semi-continental climate, M-m > 35°C: 179 

continental climate. For clarity in the data analysis, some variables were semi-quantitatively classified. Aspect 180 

was classified following an increasing gradient of aridity from 1 to 4 (1: north, 2: east, 3: west, 4: south) (Baeza 181 

et al. 2007). Disturbance caused by grazing was estimated by visual evidence, the information provided by local 182 

people and the statistics of forest services (DGFT 2011). Three grazing levels were established: 0: absent, 1: 183 

frequent, 2: overgrazing. Fire occurrence was expressed as: 0: absent, and 1: present, where plots were classified 184 

according to evidence of past fire recorded during the 1987-2011 period by the forest conservation services of 185 

Tlemcen (DGFT 2011). Soil substratum was classified as: siliceous (1) or limestone (2). As expected, climatic 186 

variables related to temperature (minimum temperature, snow and the Debrach index) were correlated among 187 

them, as well as with distance from the sea and altitude (Table S1).  Therefore, in subsequent analysis we used 188 

only elevation as descriptor of all these variables for simplicity. 189 

 190 

2.4 Data analysis 191 

The collected data yielded a matrix of 177 plots and 192 vascular species. These data were analysed by means of 192 

ordination methods to describe patterns in species composition and vegetation types in relation to the 193 

environmental and anthropogenic characteristics. For this purpose we used the “vegan” package for multivariate 194 

analyses (Oksanen et al. 2015) within the R software environment (R Development Core Team 2015, v. 3.2.2, 195 

Vienna, Austria). Firstly, vegetation data were analysed by a detrended correspondence analysis (DCA; Hill and  196 

Gauch 1980), where cover values were log(x+1) transformed and rare species were downweighted to fraction 5. 197 

Secondly, once the DCA analysis was performed, we distinguished different community types by means of a 198 

hierarchical cluster analysis of the two first axes of the sampled plots scores of the DCA (Orlóci 1978). These 199 

community types would be initially dominated by different combinations of the studied coniferous species. 200 

Thirdly, to determine the relationship of environmental variables sampled on species composition, we fitted 201 

these variables passively into the species ordination space (passive fit: function “envfit” with 1000 202 
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permutations). Aspect, grazing, fire occurrence, soil substratum were included in the passive analysis as semi-203 

quantitative variables for obtaining more visual results. Finally, the response of the four studied coniferous 204 

species was modelled according to the continuous environment variables by means of Huisman-Olf-Fresco 205 

(HOF) models (Jansen and Oksanen 2013). HOF models are a means of describing species response to 206 

environmental gradients. A hierarchical series of seven response models are fitted, ranked by their increasing 207 

complexity (Model I, no species trend; Model II, increasing or decreasing trend; Model III, increasing or 208 

decreasing trend below a maximum attainable response; Model IV, symmetrical unimodal response curve; 209 

Model V, unimodal skewed response curve; Model VI, response with two unimodal equal optima; and VII, 210 

response with two unimodal unequal optima. These models were fitted using a Gaussian error distribution, and 211 

the model with higher parsimony (lower Akaike’s information criterion, AIC) was selected. For categorical 212 

variables fire, grazing and substratum, the mean and the 95% confidence intervals were estimated by the means 213 

of bootstrapping with 999 bootstrap replicates. HOF models were fitted with the “eHOF” package (Jansen and 214 

Oksanen 2013) within the R environment, while bootstrapping was performed by means of the “boot” package 215 

(Canty and Ripley 2017).  216 

3. Results 217 

 218 

3.1 Multivariate analysis for community composition. 219 

A total of 192 species were detected in the whole study (Table S2). Vegetation cover in the sampled plots 220 

averaged 52%, but ranged from 30% to 70%. The DCA analysis produced eigenvalues (λ) of 0.42, 0.38, 0.28, 221 

0.28 and gradient lengths of 3.99, 3.97, 3.95 and 2.83 for the first four axes. The cluster analysis on the sample-222 

plots scores from the first two axes of the DCA (Fig 2) determined four different community types (Fig 3a). All 223 

environmental variables analysed showed a significant relationship with the DCA 1 or DCA 2 axes (Table 2, Fig 224 

3b).   225 

A first community type (C1) was ordinated on the lower left-hand side of the DCA plot. C1 was placed 226 

at low elevation sites, with short distances from the sea and low continentality (Fig 3a). This community was 227 

dominated mainly by J. phoenicea, accompanied by shrub species such as Erica multiflora and Pistacia lentiscus 228 

(Fig 3c). A second community type (C2) was also ordinated in the lower left-hand side of the DCA, but at less 229 

negative values of DCA 2.  This community was also placed at low elevation sites, but it was affected by a 230 

higher grazing pressure. C2 was composed mainly by Tetraclinis articulata, accompanied by Chamaerops 231 

humilis, Lavandula dentata, Cistus monspelliensis and Rosmarinus officinalis. A third community type (C3) was 232 
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observed at intermediate values of altitude, which in addition experienced the highest levels of pasture and 233 

southern aspects. This community type was dominated by Tetraclinis articulata with an important presence of 234 

Ceratonia siliqua, Cistus albidus, Olea europaea and Cistus ladaniferus. Herbaceous species, such as Bromus 235 

rubens and Plantago lagopus, also acquired relevance in C3 composition. Finally, there was depicted a fourth 236 

community type (C4) which occupied sites with the highest elevation and precipitation levels. This community 237 

was dominated by Pinus halepensis and Juniperus oxycedrus, accompanied by Quercus ilex, Quercus coccifera, 238 

Phillyrea angustifolia, Globularia alypum and Cistus villosus. Grasses as Stipa tenacissima and Ampelodesmos 239 

mauritanica were also present in C4.     240 

 241 

3.2 HOF models for coniferous species.  242 

The response to the altitude gradient showed that P. halepensis was the most widely represented, but was in 243 

lower (0-200 m) and higher areas (>1,000 m) where its full development was found (Fig 4). J. phoenicea 244 

occupied low land areas (>250 m), whereas T. articulata occupied a fringe between the coast and 400 m. J. 245 

oxycedrus showed an asymptotic response with its optimum value starting from 800 to 1,200 m.  246 

The precipitation gradient showed that P. halepensis had a wide rainfall range. This species comprised areas 247 

of annual rainfall between 250 and 500 mm, with its optimum in the areas within the 350-450 mm range (Fig 4). 248 

The optimum of T. articulata was below P. halepensis (around 350 mm), and J. phoenicea did not follow any 249 

pattern regarding to precipitation. The maximum response of J. oxycedrus was obtained in the wettest zone of 250 

the study area (> 400 mm), below which it was scarce, but could withstand arid areas with 300-350 mm. 251 

P. halepensis and J. oxycedrus were the species distributed most frequently on the steepest slopes (Fig 4), 252 

whereas J. phoenicea was the species that occupied the flattest environments. T. articulata was found at 253 

intermediate slopes (15-25°). J. oxycedrus was the species favoured xeric aspects (south and west) (Fig 4). In 254 

contrast, J. phoenicea displayed more affinity to northern aspects. P. halepensis showed affinity for eastern and 255 

western aspects, whereas any affinity was observed for T. articulata.  256 

 Fire diminished the presence of J. oxycedrus and P. halepensis, but increased that of T. articulata and J. 257 

phoenicea (Fig 5a). Overgrazing had a negative impact on all species responses, but intermediate grazing 258 

promoted their response in J. phoenicea and T. articulata (Fig 5b). Finally, J. phoenicea showed more affinity 259 

for siliceous substratum than for limestones (Fig 5c). 260 

  261 

4. Discussion 262 
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4.1 Environmental and anthropogenic vegetation drivers 263 

Coniferous species and their associated communities segregate mainly along the altitudinal gradient depicted for 264 

our study in North West Algeria, a gradient that is highly correlated to continentality (distance to the sea). This is 265 

in accordance with other studies into coniferous formations (Boden et al. 2010; Rupprecht et al. 2011; Urbieta et 266 

al. 2011; Serra-Diaz et al. 2013; Nicolaci et al. 2015), which have shown that both degree of continentality and 267 

altitude are the two environmental factors that strongly modulate coniferous vegetation distribution. Similarly, 268 

other vegetation types have also been limited by these gradients (Sanders et al. 2014). 269 

Continentality was one of the main controlling factors for vegetation growth and distribution in our study. In 270 

fact, in coastal areas, with lower thermal amplitude where snow is an exceptional phenomenon, the shrublands of 271 

J. phoenicea were abundant, but well-localised. These maritime Juniperus strongly compete with more 272 

widespread species; e.g. P. halepensis and T. articulata. Indeed the coastal area is occupied mainly by this 273 

community type where P. halepensis and T. articulata are also present. It is worth noting that P. halepensis 274 

forests have been widely promoted by extensive plantation along the coast in Algeria since the 20th century 275 

(Kadik 2011), which would partially explain the wide distribution of this species. After this initial coastal 276 

vegetation type, the landscape went on to be dominated by T. articulata. This species avoids sand dunes where 277 

salt spray has damaging effects and gives way to J. phoenicea, which is more resistant (Fennane and Barbero 278 

1984).  T. articulata was found to be related to coastal and semi-continental areas because the effects of 279 

prolonged winter frosts in the more continental areas eliminates this species, which is relegated by J. oxycedrus 280 

and P. halepensis that better tolerate these conditions (Hadjadj Aoual 1995; Dahmani-Megrerouche 2002). 281 

Thermophyllus species like P. lentiscus and C. humilis (Baeza et al. 2007) were also found in the lower areas 282 

accompanying these community types dominated by either J. phoenicia or T. articulata. Distance from the sea 283 

generates a cooler climate suitable for J. oxycedrus and P. halepensis occurrence, and eliminates T. articulata 284 

and the maritime J. phoenicea. The optimum of J. oxycedrus occurs under these conditions, and can be mixed 285 

with Q. ilex, Q. coccifera and P. angustifolia (Dahmani-Megrerouche 2002). These results are interesting 286 

because they denote that climatic factors other than aridity (precipitation) play a preponderant role in vegetation 287 

distribution in drylands. In our study, precipitation had some effect on coniferous distribution, but was less 288 

important compared to temperature factors (altitude and the correlated minimum temperature, Debrach’s Index, 289 

snow). P. halepensis displayed a relative wide annual precipitation range, whereas J. phoenicea did not show 290 

any precipitation effect. 291 
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Despite these two factors (altitude and precipitation) being the most important, geomorphological variables 292 

(aspect and slope) also influence vegetation distribution locally (Baeza et al. 2007); e.g., J. oxycedrus was the 293 

species that better supported xeric aspects (south and west), whereas J. phoenicea displayed more affinity to 294 

northern aspects. Similarly, J. oxycedrus was able to withstand the highest slopes, while J. phoenicea preferred 295 

flat environments. These results are in accordance with other studies performed in different Mediterranean 296 

communities (Carmel and Kadmon 1999; Sternberg and Shoshany 2001), where geomorphological variables are 297 

determinant. 298 

 The current distribution patterns of coniferous species in our study area are largely defined by environmental 299 

variables but anthropogenic activity, as grazing and fire, also affect in some way vegetation composition. This 300 

finding agrees with those found by recent studies, which have examined the relationship between species 301 

occurrence and species’ ability to recover after disturbances (Màrcia et al. 2006; Angert et al. 2011). Indeed in 302 

our study area, which is affected by irregular grazing and recurrence fire, we observed that vegetation 303 

corresponds to fire-prone shrub communities and mixed scrubland in different degradation stages (with the 304 

significant presence of T. articulata). Many plant species in highly disturbed areas have life-history traits that 305 

determine their post-fire establishment patterns (Syphard and Franklin 2010); e.g., the fire-surviving strategy of 306 

P. halepensis is characterised by its stand resilience and its post-fire seeding from serotinous cones, while T. 307 

articulata adapts a post-fire dual strategy by both resprouting and seedling germination from soil seed banks 308 

(López Hernández et al. 1995). This could have favoured these two species in fire-prone areas over the maritime 309 

J. phoenicea species, which show lower post-fire survival (Rupprecht et al. 2011). Fire has a contrasting effect 310 

on species according to its intensity and frequency. High fire frequency might limit the presence of P. 311 

halepensis, but promotes T. articulata (Màrcia et al. 2006). It is well-known that P. halepensis regenerates well 312 

after fire, but its regeneration can be threatened if the time between fires is shorter than the time needed to 313 

replenish its seed bank (Baeza et al. 2007). We also found accompanying shrubs typical of vegetation types 314 

resulting from fire recurrence; e.g., Cistus albidus, C. monspelliensis, C. ladanifer, E. multiflora and R. 315 

officinalis (Santana et al. 2010). These are seeding species characterised by a persistent soil seedbank that 316 

experience a flush of germination and establishment after fire (Santana et al. 2013).  It is noteworthy that we 317 

found the maximum J. phoenicea distribution in areas where fire is present, despite this species being considered 318 

poorly fire-resilient (Lloret and Vilà 2003). This species does not regenerate by either resprouting or seeding 319 

after fire, but its regeneration depends on bird-dispersed seeds from unburned patches (Lloret and Vilà 2003). 320 

This is surprising, but could be explained by the coincidence of its optimal habitat with the area where 321 
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anthropogenic fires are more frequent (i.e., close to the sea where the population is larger). If fires are not large 322 

and catastrophic in dimension, this species may persist by colonising from neighbouring unburned patches. 323 

Finally, grazing pressure was also a determinant factor in vegetation composition. Overgrazing decreased the 324 

presence of all coniferous species studied; however, grazing at intermediate values enhanced J. phoenicea and T. 325 

articulata. Some herbaceous species like B. rubens and P. lagopus were also favoured by this disturbance. This 326 

results are in line with “Intermediate Disturbance Hypothesis” (Connell, 1978), where too little disturbance leads 327 

to low diversity through competitive exclusion and too much disturbance eliminates species incapables of rapid 328 

re-colonization (Wilkinson 1999). Therefore, it is important to be able to estimate the thresholds under which 329 

grazing may be applied without causing degradation, taking also into account that it can synergistically act as 330 

degradation factor in combination with fire (Calvo et al. 2012). For example, it is well documented in other 331 

Mediterranean countries, such as Greece and Israel, that fire is used by shepherds as a tool for improving pasture 332 

lands (Perevolotsky et al. 2002; Papanastasis 2004). However, the abuse of this technique can lead to soil and 333 

vegetation degradation problems (Calvo et al. 2012). It is fundamental, thus, to ascertain if these anthropic 334 

degradation loops are present in Algerian ecosystems as well as to design sustainable management actions.  335 

It should be borne in mind that the present coniferous distribution may sustain modifications in future climate 336 

scenarios, where warmer and drier environmental conditions are predicted for the Mediterranean Region (IPCC 337 

2014). Future warming and less rainfall may affect the vegetation in this region and displacements will probably 338 

take place, but also because forest fires are likely to intensify (Angert et al. 2011). The range of the studied 339 

coniferous species is predicted to intensely and rapidly reduce, and will probably migrate in both altitude and 340 

latitude (Keenan et al. 2011). The species with the most continental distribution, e.g., J. oxycedrus, would be 341 

seriously threatened by niche narrowing. However, those with narrower continental ranges (P. halepensis and T. 342 

articulata) might be capable of maintaining some of their distribution area, and even with a certain degree of 343 

expansion (Esteve-Selma et al. 2012). This is in line with a study performed about the distribution of Iberian tree 344 

species, which predicted that P. halepensis would be capable of increasing its occupied area in 2020 (Benito 345 

Garzón et al. 2008). 346 

 347 

4.2 Management implications 348 

Coniferous distribution in drylands is affected by both ecological and anthropogenic factors. Climate is the main 349 

driver of the studied coniferous species, while geomorphic gradients (slope) and disturbance (fire and grazing) 350 

are secondary, but important. The complexity of the inter-relations between these factors and coniferous species 351 
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demands further research, including long-term monitoring, to assess the vegetation dynamics and transitions 352 

from one vegetation type to another. The relict coniferous forests in the southern Mediterranean Basin are 353 

subjected to deforestation as a result of anthropogenic pressure, and in situ conservation is hence required. This 354 

research establishes that most coniferous species (T. articulata, J. oxycedrus and J. phoenicea) are characterised 355 

by very disjunctive areas. This regional distribution is known in only a few areas of Algeria and the 356 

Mediterranean Basin, and therefore highlights the importance of this study to be extrapolated to other degraded 357 

areas. In fact, regression in the availability of these species’ natural habitat has led them to be considered 358 

endangered in Algeria. For this reason, protection by proper legislation of these species and associated 359 

ecosystems in Algeria, along with the development of effective management plans, should be made a priority. 360 

Unfortunately in the present-day, these species do not occupy a prominent place in forestry interventions as 361 

ongoing projects in this region focus mainly on P. halepensis, which have shown a low success rate, or even 362 

centre on species that are not native to the Mediterranean Basin (Eucalyptus, sp, Cupressus sp.). Our results 363 

could be used to propose management guidelines for the conservation of locally threatened coniferous species 364 

and to encourage their reforestation. In short, we describe optimal environmental conditions and areas to develop 365 

these management plans for each individual species. Our study also shows that vegetation drivers may differ 366 

between Northern and Southern Mediterranean countries. While in Northern countries fire is an important 367 

degradation factor (Santana et al. 2010), in the case of Northern Algeria other factors related to the 368 

overexploitation of natural resources such as intense agriculture, wood gathering and grazing can also be a 369 

source of degradation (Taïqui and Martin, 1997; Hadjadj Aoual 2009). 370 
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TABLES: 521 

Table 1. Study sites in North West Algeria ordinated depending on distance to the Mediterranean Sea. The table 522 

includes a description of sampling sites, including: Alt: altitude, DS: distance from the sea, VC: vegetation cover, 523 

Slp: slope, Asp: aspect (1: north, 2: east, 3: west, 4: south); P: average annual precipitation, M: minimum 524 

temperature of the coldest month, Sn: snow (0: absent, 1:1-3 days, 2: 3-7 days, 3: >7 days), DI: Debrach’s index, 525 

Fire (0: absent, 1: frequent), Graz: Grazing (0: absent, 1: frequent, 2: overgrazing), Sub: substratum (1: siliceous, 526 

2: limestone). 527 

 528 

Site 
Alt 

(m) 
DS 

(km) 
VC 

(%) 
Slp 

(º) 
Asp P 

(mm) 
M 

(ºC) 
Sn  

(days y-1) 
DI 

(ºC) 
Fire Graz Sub 

Rechgoun 190 0.02 40 10 1 350 10.04 0 21.21 1 1 1 
Beni saf 150 0.2 30 15 1 350 10.04 0 21.21 0 2 1 
Marsat Ben M'hidi 80 0.6 60 25 1 340 10.93 0 19.57 1 1 1 
Ghazaouet 190 2.7 70 20 4 332 8.4 1 24.12 1 1 1 
Honaine 100 4.2 40 15 2 350 7.9 1 21.9 0 1 2 
OuedSbaa 300 11.8 70 25 1 360 6.26 1 19.94 1 1 1 
Nedroma 480 12.4 50 15 1 380 6.12 2 21.08 1 1 1 
Maghnia 370 29.5 30 25 2 288 1.92 1 34.3 1 2 2 
Hafir 1160 46 70 30 4 484 3.2 3 28.7 1 0 1 
Tlemcen 1050 48 70 35 1 460 4.8 3 29.4 0 0 2 
OuedLakhdar 800 55.5 50 20 1 320 4.4 2 32.6 0 2 2 
OuledMimoun 710 60.5 40 15 2 254 4.2 2 34.8 1 2 2 
Sebdou 1130 70 40 15 3 295 2.6 3 28.1 0 2 1 
OuedSlissen 1180 73 50 25 3 316 3.5 2 28.7 1 1 1 

 529 
 530 

 531 

 532 

 533 

 534 

 535 

 536 

 537 

 538 

 539 

 540 

 541 

 542 

 543 

 544 

 545 

 546 

 547 

 548 

 549 

 550 
 551 
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Table 2. Environmental variables fitted passively to the two first axes of the DCA ordination. Correlation with 552 

the first two axes, squared correlation coefficient (R2) and P-value are shown for each variable.  553 

 554 
 555 

 556 

 557 

 558 

 559 

 560 

 561 

 562 

 563 

 564 

 565 

 566 

 567 

 568 

 569 

 570 

 571 

 572 

 573 

 574 

 575 

 576 

 577 

 578 

 579 

 580 

 581 

 582 

 583 

 584 

 585 

 586 

 587 

 588 

Variables DCA 1 DCA 2 R2 P 
Grazing -0.191 0.981 0.18 <0.001 
Elevation 0.981 0.191 0.55 <0.001 
Slope 0.999 0.038 0.08 0.002 
Fire    -0.977 -0.212 0.13 <0.001 
Precipitation 0.880 -0.475 0.09 <0.001 

Aspect 0.360 0.932 0.08 <0.001 
Substratum 0.617 0.786 0.11 <0.001 
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FIGURES: 589 

 590 

 591 

 592 

Fig 1. Localisation of the different sampling sites and major place names in the study area (Wilaya of Tlemcen, 593 
North West Algeria). 594 
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 609 

 610 
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 612 

 613 

 614 

 615 

 616 

 617 

 618 

 619 

 620 

Fig 2. Community type classification derived after cluster analysis on the sample-plots scores of the first two 621 

DCA axes. Four main community types are depicted for the 177 study sites in North West Algeria. 622 

 623 

 624 

 625 
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 626 

 627 

Fig 3. DCA ordination plots showing: (a) the position of the 177 sampling plots within the described community 628 

types. Each community is defined by the convex hull formed by sites composing them and their corresponding 629 

centroid.  (b) Environmental variables fitted passively to the two first DCA axes. Longer vector lines represent 630 

stronger correlations. (c)  Most frequent species found in the study area. Species code: ammr= Ampelodesmus 631 

mauritanica, brrb= Bromus rubens, cial= Cistus albidus, cesi= Ceratonia siliqua, cild= Cistus ladaniferus, civl= 632 

Cistus villosus, clvl= Calicotome villosa, chhu= Chamaerops humilis, cimn= Cistus monspeliensis, clar= 633 

Cladanthus arabicus, erml= Erica multiflora, glal= Globularia alypum, juox= Juniperus oxycedrus, juph= 634 

Juniperus phoenicea, lvst= Lavandula stoechas, lvdn= Lavandula dentata, oleu= Olea europaea, parg= 635 

Paronychia argentea, pllg= Plantago lagopus, pnhl= Pinus halepensis, phng= Phillyrea angustifolia, psln= 636 
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Pistacia lentiscus, qril= Quercus ilex, qrco= Quercus coccifera, rotr= Rosmarinus tournefortii, rsof= Rosmarinus 637 

officinalis, stte= Stipa tenacissima, tear= Tetraclinis articulate, ulpr= Ulex parviflorus. 638 

 639 

 640 

 641 

 642 

 643 

 644 

 645 

 646 

 647 

 648 

 649 

 650 

 651 



25 

 

 652 

Fig 4. Huisman-Olf-Fresco (HOF) models for the four dominant coniferous species in relation to the most 653 

relevant environmental variables. juox = J. oxycedrus, juph = J. phoenicea, pnhl = P. halepensis and tear = T. 654 

articulata. Aspect shows an increasing gradient of aridity (1: north, 2: east, 3: west, 4: south). 655 

 656 

 657 

 658 

 659 

 660 
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 661 

Fig 5. Species response to (a) fire and (b) grazing pressure and (c) substratum. Error lines indicate the 95% 662 

confidence interval assessed by bootstrapping. 663 
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