

Trabajo Fin de Grado

Autor:
Lourdes Mas Lillo

Tutor:
Francisco Antonio Pujol López

Junio 2020

Identification and

Monitoring of Violent

Interactions in Video

Grado en Ingeniería Informática

Index

1 Tables ... 1

2 Figures .. 3

3 Special Thanks ... 9

4 Keywords ... 10

5 Abstract .. 10

6 Introduction .. 11

7 Motivation .. 11

8 Plan of Action .. 12

8.1 Goal and Objectives ..13

8.2 Task Organization ...14

8.2.1 Organization ... 15

8.2.2 System Preparation ... 15

8.2.3 Datasets .. 15

8.2.4 Training Comparative Studies .. 16

8.2.5 Alarm System ... 16

8.2.6 Project Documentation ... 17

9 State of the Art ... 17

9.1 Computer Vision Techniques ..17

9.1.1 OViF ... 17

9.1.2 IFV ... 18

9.1.3 STIP .. 18

9.2 Neural Networks ...18

9.2.1 DNN ... 20

9.2.2 CNN ... 20

9.2.3 RNN ... 21

9.2.4 LeNet5 .. 24

9.2.5 AlexNet .. 24

9.2.6 MobileNet... 25

9.2.7 SqueezeNet ... 25

9.2.8 VGG16 ... 25

9.2.9 LSTM ... 25

9.2.10 Stacked LSTM .. 26

9.2.11 Convolutional LSTM ... 27

9.3 Training Details .. 27

9.3.1 Validation Style .. 27

9.3.2 Optimizers .. 29

9.3.3 Activation Function .. 31

9.3.4 Loss Functions .. 37

9.3.5 Epochs .. 40

9.3.6 Batch Size ... 40

9.3.7 Time Steps .. 41

9.3.8 Training Host .. 41

9.3.9 Dropout ... 41

10 Methodology .. 42

10.1 Sensor Input Data ... 42

10.2 Datasets .. 42

10.3 Violence Detection ... 44

10.3.1 Computer Vision Techniques ... 45

10.3.2 Neural Networks ... 46

10.3.3 Learning Style .. 48

10.3.4 Pretraining .. 49

10.4 Tool Selection... 49

10.4.1 Machine Learning Libraries ... 50

10.4.2 Language .. 50

10.5 Training Methodology .. 51

10.5.1 Normalization ... 51

10.5.2 Dataset .. 51

10.5.3 Choosing Optimizer ... 53

10.5.4 Choosing an Activation Function ... 54

10.5.5 Choosing a Loss Function .. 55

10.5.6 Interpreting the Accuracy and Loss .. 56

10.5.7 Choosing Number of Epochs, Batch Size and Time Steps 59

10.5.8 Choosing a Training Host .. 60

10.5.9 Computer Characteristics ... 60

10.5.10 Spatial and Computing Adaptations ... 61

10.6 Alarm System ..62

10.7 Summary ...63

11 System Description .. 63

11.1 Used Software ...64

11.2 Training Comparative Studies ...64

11.2.1 Models .. 64

11.2.2 ModelType Enumerator ... 68

11.2.3 Trainer .. 68

11.2.4 Custom data generators .. 71

11.2.5 Other Generators .. 73

11.2.6 Frames Provider ... 73

11.2.7 List ID Dictionary .. 74

11.2.8 Video Provider ... 75

11.3 Alarm System ..76

12 Experimentation and Discussion .. 77

12.1 Training Comparative Studies ...77

12.1.1 Datasets .. 78

12.1.2 Image Processing .. 82

12.1.3 Video Processing .. 83

12.1.4 Validations ... 97

12.1.5 Pretrain the Model .. 99

12.1.6 The Best Approximations ... 99

12.2 Alarm System ... 104

12.2.1 Optimization of the Alarm System ... 104

12.2.2 Timing .. 105

12.2.3 Accuracy Evaluation with a Custom Dataset ... 105

13 Review and Conclusion .. 106

13.1 Tasks Review ... 107

13.2 Project Review ... 107

13.3 Conclusion .. 109

14 Future Work ... 109

15 References .. 111

16 Annex ... 116

16.1 Gannt Diagram ... 116

16.2 Detailed Task Review .. 125

16.2.1 Organization ... 125

16.2.2 System Preparation ... 125

16.2.3 Datasets .. 125

16.2.4 Training Comparative Studies .. 126

16.2.5 Alarm System ... 126

16.2.6 Project Documentation ... 126

16.3 UML ... 128

Lourdes Mas Lillo Identification and Monitoring of Violent Interactions in Video

1

1 Tables

Table 1: Logic steps to fulfil the objectives of this project, own elaboration 14

Table 2: Indicators used to rate the value of a project task, own elaboration 14

Table 3: Indicators used to rate the expected effort to achieve a project task, own elaboration 14

Table 4: How to interpret the priority value of a task, own elaboration .. 15

Table 5: Priority of tasks required for the organization of the project, own elaboration 15

Table 6: Priority of tasks required for the system preparation of the project, own elaboration 15

Table 7: Priority of tasks related with the datasets of the project, own elaboration 15

Table 8: Priority of tasks required for the training comparative studies of the project, own elaboration

 .. 16

Table 9: Priority of tasks required for the alarm system of the project, own elaboration 16

Table 10: Priority of tasks required for the documentation of the project, own elaboration............ 17

Table 11: Input and output size possible for a LSTM layer, own elaboration based on the LSTM

structure .. 27

Table 12: Some examples of human action detection datasets and the references of their work, own

elaborated list of remarkable datasets .. 43

Table 13: INRIA IXMAS labels, own elaboration based on the IXMAS label content 43

Table 14: UT-interaction labels, own elaboration based on the UT label content 44

Table 15: Characteristics of the chosen datasets, own elaboration .. 44

Table 16: Deep Learning frameworks of interest for the project and characteristics of them, own

elaboration .. 50

Table 17: Characteristics of the possible programming languages to use in this project, own

elaboration .. 50

Table 18: Analysis of the different styles to process the validation dataset, own elaboration 53

Table 19: List of Keras optimizers with their main characteristics, own elaboration 53

Table 20: Summary of the activation function characteristics, own elaboration 54

Table 21: Summary of loss function characteristics, own elaboration ... 55

Table 22: Tools to interpret the results of the learning on a NN, own elaboration 56

Table 23: Characteristics of the computer used during the training, own elaboration 60

Table 24: Options proposed to solve the lack of memory to load the dataset while training problem,

own elaboration .. 62

Table 25: Layers size output of the LSTM NN, own elaboration .. 67

Table 26: Layers size output of the ConvLSTM NN, own elaboration ... 67

Table 27: Matrix of applied dataset modifications, own elaboration ... 78

Table 28: Calculation of required training times with UT and IXMAS datasets, own elaboration . 78

Table 29: Results of the image-based models used in this project, own elaboration 83

Identification and Monitoring of Violent Interactions in Video Lourdes Mas Lillo

2

Table 30: Accuracies obtained using data normalization with the IXMAS dataset, own elaboration

 .. 84

Table 31: Different accuracies obtained using data normalization with the IXMAS dataset, own

elaboration .. 84

Table 32: Accuracies obtained using Adam instead of Adamax when the model converges, own

elaboration .. 93

Table 33: Results during training of the models with the best outcome with an independent test, own

elaboration .. 100

Table 34: The two best models obtained, and a given code to identify them, own elaboration 104

Table 35:Noise saved regarding violence in the frames for the LSTM model, own elaboration ... 105

Table 36:Noise saved regarding violence in the frames for the ConvLSTM model, own elaboration

 .. 105

Table 37: System speed to detect violence in a bunch of 20 frames, own elaboration 105

Table 38: Testing used in the Alarm System, own elaboration .. 106

Table 39: Results of the test done on the alarm system for the best models created, own elaboration

 .. 106

Table 40: General assessment of the project tasks, own elaboration ... 107

Table 41: Priority of tasks required for the organization of the project, own elaboration 125

Table 42: Priority of tasks required for the system preparation of the project, own elaboration ... 125

Table 43: Assessment of tasks related with the datasets of the project, own elaboration 125

Table 44: Assessment of tasks required for the training comparative studies of the project, own

elaboration .. 126

Table 45: Assessment of tasks required for the alarm system of the project, own elaboration 126

Table 46: Assessment of tasks required for the documentation of the project, own elaboration ... 126

Lourdes Mas Lillo Identification and Monitoring of Violent Interactions in Video

3

2 Figures

Figure 1: PDCA cycle, the basic structure of the worldwide most applied quality standard EN ISO

9001, own elaboration based on (4) ... 13

Figure 2: Deep learning from a macro perspective, own elaboration based on the artificial intelligence

and deep learning dependency ... 18

Figure 3: Unsupervised learning style, own elaboration .. 19

Figure 4: Supervised learning style, own elaboration .. 20

Figure 5: Reinforcement learning style, own elaboration .. 20

Figure 6: Example of matrix multiplication on a convolution to calculate a pixel value applying a

filter, own elaboration based on a filter application ... 21

Figure 7: Deep CNN structure, own elaboration based in (10) .. 21

Figure 8: Diagram with the RNN structure, own elaboration based on (10) 22

Figure 9: Scheme of the fundamental RNN functionality, own elaboration based on (10) 23

Figure 10: RNN structure in detail, own elaboration based on (10) .. 23

Figure 11: The recursivity in a RNN diagram, own elaboration based on (12) 24

Figure 12: Diagram visualizing simplified the LSTM structure, own elaboration based on (10) ... 26

Figure 13: LSTM diagram: own elaboration based on the LSTM mechanism explanations found at

(12) ... 26

Figure 14: Cross-validation structure, own elaboration based on the cross-validation technique ... 28

Figure 15: One step ahead cross-validation structure, own elaboration based on the proposal at (20)

 .. 29

Figure 16: Momentum and Nesterov behaviour, own elaboration based on (26) 31

Figure 17: Identity function graphic representation, own elaboration using MATLAB 32

Figure 18: Binary step, own elaboration using MATLAB ... 32

Figure 19: Sigmoid function graphic representation, own elaboration using MATLAB 33

Figure 20: tanh function graphic representation, own elaboration using MATLAB 33

Figure 21: arctan function graphic representation, own elaboration using MATLAB 34

Figure 22: ReLU function graphic representation, own elaboration using MATLAB 35

Figure 23: Leaky ReLU function graphic representation, own elaboration using MATLAB 35

Figure 24: Parametric ReLU function graphic representation, own elaboration using MATLAB .. 36

Figure 25: ELU graphic representation, own elaboration using MATLAB 36

Figure 26: ReLU-6 function graphic representation, own elaboration using MATLAB 37

Figure 27: Softmax function graphic representation, own elaboration using MATLAB 37

Figure 28: Frames from the IXMAS dataset that belong to a kick labelled video 45

Figure 29: Human shape, own elaboration using as background a frame from the UT dataset 47

Identification and Monitoring of Violent Interactions in Video Lourdes Mas Lillo

4

Figure 30: A video frame shown in RGB colour and in greyscale, taken from the UT dataset and

edited .. 52

Figure 31: Accuracy evolution of a non-learning model, created using matplotlib 57

Figure 32: Loss evolution of a non-learning model, created using matplotlib 57

Figure 33: Accuracy of a validation set unrepresentative during the training of a ConvLSTM NN,

created using matplotlib during the tests made in this project ... 59

Figure 34: Loss of a validation set unrepresentative during the training of a ConvLSTM NN, created

using matplotlib during the tests made in this project .. 59

Figure 35: Behaviour of the alarm system, own elaboration .. 63

Figure 36: The stacked LSTM model network structure created, own elaboration 65

Figure 37: The ConvLSTM model network structure created, own elaboration 67

Figure 38: Screenshot that shows the indexes that point to the batches made for the training, taken

during a program run .. 72

Figure 39: Console application menu for executing the alarm system, screenshot of the program run

 .. 76

Figure 40: Alarm System running during a violent situation, screenshot of the program run 76

Figure 41: Alarm System running after a violent situation, screenshot of the program run 77

Figure 42: Screenshot of frames from a UT dataset video, extracted from the UT dataset 79

Figure 43: Screenshot of frames from the UT dataset that show that there are video frames where

there is not the action labelled happening, approximately the first 25 frames of this video express no

movement, extracted from the UT dataset ... 80

Figure 44: Screenshot of frames from the UT dataset that show that the frames placed on the middle

of a video express the labelled action, extracted from the UT dataset ... 80

Figure 45:Model accuracy graphic for LSTM with binarized IXMAS dataset, created using

matplotlib during the tests made in this project.. 81

Figure 46: Model loss graphic for LSTM with binarized IXMAS dataset, created using matplotlib

during the tests made in this project ... 81

Figure 47: Results obtained training a model with a binarized dataset, screenshot from a program run

 .. 82

Figure 48:Mistaken frames while binarization from the IXMAS dataset, extracted from the IXMAS

dataset ... 82

Figure 49: Stacked LSTM model accuracy with MSE loss and a learning rate of 1e-3, created using

matplotlib during the tests made in this project.. 85

Figure 50: Stacked LSTM model loss with MSE loss and a learning rate of 1e-3, created using

matplotlib during the tests made in this project.. 85

Figure 51: Stacked LSTM model accuracy for 20 time steps and a learning rate of 1e-3, created using

matplotlib during the tests made in this project.. 86

Lourdes Mas Lillo Identification and Monitoring of Violent Interactions in Video

5

Figure 52: Stacked LSTM model loss for 20 time steps and a learning rate of 1e-3, created using

matplotlib during the tests made in this project ... 87

Figure 53: Stacked LSTM model accuracy for 10 time steps, batch size of 20 and a learning rate of

1e-3, created using matplotlib during the tests made in this project ... 88

Figure 54: Stacked LSTM model loss for 10 time steps, batch size of 20 and a learning rate of 1e-3,

created using matplotlib during the tests made in this project ... 88

Figure 55: Stacked LSTM model accuracy for 10 time steps, batch size of 80 and a learning rate of

1e-3, created using matplotlib during the tests made in this project ... 89

Figure 56: Stacked LSTM model loss for 10 time steps, batch size of 80 and a learning rate of 1e-3,

created using matplotlib during the tests made in this project ... 89

Figure 57: Screenshot that shows the predictions for each possible label for a frame from the UT

dataset, screenshot from a program run ... 90

Figure 58: Model accuracy graphic for leaky ReLU model using an alpha of 0.01 with Adamax and

1e-3 learning rate, created using matplotlib during the tests made in this project 91

Figure 59: Model loss graphic for leaky ReLU model using an alpha of 0.01 with Adamax and 1e-3

learning rate, created using matplotlib during the tests made in this project 91

Figure 60: Model accuracy graphic for leaky ReLU model using an alpha of 0.05 with Adamax and

1e-3 learning rate, created using matplotlib during the tests made in this project 92

Figure 61: Model loss graphic for leaky ReLU model using an alpha of 0.05 with Adamax and 1e-3

learning rate, created using matplotlib during the tests made in this project 92

Figure 62: Model accuracy graphic for leaky ReLU model using an alpha of 0.05 with Adam and 1e-

3 learning rate, created using matplotlib during the tests made in this project 94

Figure 63: Model loss graphic for leaky ReLU model using an alpha of 0.05 with Adam and 1e-3

learning rate, created using matplotlib during the tests made in this project 94

Figure 64: Stacked LSTM model accuracy with five layers of deepness and sigmoid final layer

activation, created using matplotlib during the tests made in this project .. 95

Figure 65: Stacked LSTM model loss with five layers of deepness and sigmoid final layer activation,

created using matplotlib during the tests made in this project ... 95

Figure 66: Stacked LSTM model accuracy with three layers of deepness and softmax final layer

activation, created using matplotlib during the tests made in this project .. 96

Figure 67: Stacked LSTM model loss with three layers of deepness and softmax final layer activation,

created using matplotlib during the tests made in this project ... 96

Figure 68: Accuracy in the last fold of a cross-validation using the complete IXMAS dataset and the

ConvLSTM model, created using matplotlib during the tests made in this project 98

Figure 69: Loss in the last fold of a cross-validation using the complete IXMAS dataset and the

ConvLSTM model, created using matplotlib during the tests made in this project 99

Identification and Monitoring of Violent Interactions in Video Lourdes Mas Lillo

6

Figure 70: Stacked LSTM model accuracy for 10 time steps and a learning rate of 1e-3, created using

matplotlib during the tests made in this project.. 100

Figure 71: Stacked LSTM model loss for 10 time steps and a learning rate of 1e-3, created using

matplotlib during the tests made in this project.. 101

Figure 72: ConvLSTM model accuracy with 0.5 dropout, created using matplotlib during the tests

made in this project .. 102

Figure 73: ConvLSTM model loss with 0.5 dropout, created using matplotlib during the tests made

in this project .. 102

Figure 74:ConvLSTM model accuracy with 0.75 dropout, created using matplotlib during the tests

made in this project .. 103

Figure 75: ConvLSTM model loss with 0.75 dropout, created using matplotlib during the tests made

in this project .. 103

Figure 76:Legend of the color code used in the Gannt Diagram, own elaboration 116

Figure 77: Gannt diagram for the month of October 2019, own elaboration 117

Figure 78: Gannt diagram for the month of November 2019, own elaboration 118

Figure 79: Gannt diagram for the month of December 2019, own elaboration 119

Figure 80: Gannt diagram for the month of January 2020, own elaboration 120

Figure 81: Gannt diagram for the month of February 2020, own elaboration 121

Figure 82: Gannt diagram for the month of March 2020, own elaboration 122

Figure 83: Gannt diagram for the month of April 2020, own elaboration 123

Figure 84: Gannt diagram for the month of May 2020, own elaboration 124

Figure 85: Trainers UML, own elaboration ... 128

Figure 86: VideoProvider UML, own elaboration ... 129

Figure 87_Alarm System UML, own elaboration .. 130

Figure 88: Menu UML, own elaboration ... 130

Figure 89: Other generators UML, own elaboration .. 131

“That is what learning is. You suddenly understand something you’ve understood all your

life, but in a new way.”

Doris Lessing

Lourdes Mas Lillo Identification and Monitoring of Violent Interactions in Video

9

3 Special Thanks

The final project is a significant task where the capabilities of the student are tested at the end of the

degree. It is also a very important moment of life, each step on its creation brings the student closer

to a big change on their life… what comes after the studies are finished? I am taking these steps full

of joy, motivation and thankfulness to all the people that accompany me and support me all this way.

I would like to take this opportunity to thank you, mom and dad, because, since I was a kid, you

taught me to be perseverant and care about my future. Thanks to you, I learned to reduce leisure time

when I needed to focus on my studies but still always have time for a good paella break on Sunday.

It is your tips that brought me to where I am. In addition, of course, thanks for having me home these

extra years and for your support. I want to specially mention you, dad, for being the first believing

in me when I decided to go back to university and study a completely new field for me, computing.

This might be an irony of the destiny, Chris, as my best friend, you were in Dublin the first one to

know about my plans to go back to university. Now, as my husband, in Bamberg you sit patiently by

my side while I finish this writing, being the first one reading the documentation that portray these

years of work.

Also, to you, Paco, my tutor. I had the opportunity to be student of one of your subjects before, were

you shared dynamism. We were programming robots to follow fun circuits but also having interesting

lectures, debates, opinion pieces…, you showed us how to do a good job and enjoy it. It is a pleasure

to work again with you for this final project, even though being in different countries and not being

able to do the presentation physically due to COVID-19 restrictions, it is an enriching experience to

share the progress of this project over the screen. Your dedication is an example that I will keep on

for my future steps.

I am a lucky person to have people in my life that believe in me, support me and teach me. I have

enjoyed the years at university, this final project and I am feeling prepared to continue my path with

perseveration, patience and dedication.

Identification and Monitoring of Violent Interactions in Video Lourdes Mas Lillo

10

4 Keywords

Alarm system, AlexNet, bullying, ConvLSTM, convolutional long short-term memory,

convolutional neural network, dataset, graphic processing unit, Keras, LeNet5, long sort-term

memory, LSTM, normalization, NN, neural network, NumPy, OpenCV, PDCA, pretraining,

recurrent neural network, RNN, surveillance camera, TensorFlow, time steps, video processing,

video recognition, violence, violence detection.

5 Abstract

This project shall help to bring a tool to fight against bullying in schools. It is also possible to use it

in different scenes where a camera is recording a common area shared by people, such as companies,

banks, prisons, or hospitals. To achieve that, the issue is approached from two main modules. The

first one, a comparative study of approaches to detect violence in video, using image and video

analyser Neural Networks (NN)s: a custom image analyser NN based on LeNet5, AlexNet, custom

stacked long short-term memory (LSTM) and convolutional LSTM based NNs. The trainings are

done with two datasets that have been subject to modifications to correct possible misinterpretations

during the learning and pretraining is applied. The LeNet5 based NN is unsuccessful and tested with

an independent dataset AlexNet is inaccurate. The best results are obtained with a stacked LSTM

NN and a convolutional LSTM with dropout and a LSTM layer. Both NNs achieve over 90 % of

accuracy with training and validation datasets, meanwhile the stacked LSTM and the convolutional

NN achieve, respectively, 75 % and 100 % of accuracy with a small independent test dataset created.

The convolutional LSTM needed 10 times less epochs to achieve the same result as the stacked

LSTM.

The second module consists of a violence detection system that applies the best solution obtained

from the comparative study. The violence detection system saves the frames detected as violence

with date, time and camera name and emits a sound alarm when more than a certain number of

consecutive frames are evaluated as containing violence. This way the sensitivity of the system is

reduced and avoids false alarms due to small mistakes done by the intelligence.

Lourdes Mas Lillo Identification and Monitoring of Violent Interactions in Video

11

6 Introduction

As the Institute of Statistic of the UNESCO released, almost a third of the teenagers in the world

have suffered bullying recently (1). Some ciphers are incredibly high, especially in developing

countries. The percentages are not small in Europe neither, for example, 23.27 % in Germany or

39.04 % in Portugal, Spain was at 15.37 %. These data belong to the result of the statistics obtained

in 2014 for the Sustainable Development Goal and represent the percentage of students experiencing

bullying in the last 12 months. Furthermore, it should be considered that these statistics only contain

registered cases.

Esteban Beltrán, director of Amnesty International Spain, talks in (2) about the lack of registration

regarding bullying cases in Spanish schools. He explains difficulties to identify such cases and that

the current measures to handle them are not working sufficiently. In the same report Beltrán adds

that the protection of the infancy is an obligation and therefore, not fulfilling this duty is a violation

of the human rights.

7 Motivation

As a Social Worker finishing my degree in Computer Engineering, I have proposed myself to merge

my two fields of expertise in this final degree project: A computing project with the aim to promote

the social development and help to increase the wellness of people. Part of our duty as a society is to

keep order to maintain a good coexistence of everyone regardless differences between the

individuals. This means giving everyone the prerequisites to develop their life in a safe way fulfilling

their basic needs. The Universal Human Rights Declaration, published by the United Nations

declares the basic rights that apply to all humanity with the intention to recognize their dignity

freedom and justice rights (3).

Aggression is part of human history and still is, from macro events as the fall of the Roman Empire

or the World Wars, to smaller happenings like disputes for access to resources or bullying at schools.

At violence situations, where one or several individuals are attacking a third individual or another

group, some of the articles of the Universal Human Rights Declaration are broken which means

committing a big offense against the basic wellness needs of the offended person. Violence acts

against a person disrespect the following articles of the Human Rights Declaration:

First place, article number 3, because offended persons are forced to a change of their situation that

is not wanted and therefore, they lose their liberty and security.

 “Article 3. Everyone has the right to life, liberty and security of person.” (3)

The physical and mental wellness of a person is also attacked if not following the 5th article, due to

a violence act against them.

Identification and Monitoring of Violent Interactions in Video Lourdes Mas Lillo

12

 “Article 5. No one shall be subjected to torture or to cruel, inhuman or degrading treatment or

punishment.” (3)

The honour of the person under aggression is insulted because its bounds to society are damaged by

disrespectful treatment. This is breaking the rights given to an individual by the article number 12 of

the currently analysed declaration.

 “Article 12. No one shall be subjected to arbitrary interference with his privacy, family, home or

correspondence, nor to attacks upon his honour and reputation. Everyone has the right to the

protection of the law against such interference or attacks.” (3)

Social work is a discipline that promotes the social change, solving problems in human relationships

and works for the empowerment and freedom of the individual to increment their wellness.

Therefore, social work intervenes on the interaction of the people with their environment.

Personally, from the social worker point of view, I feel the need to act for a better society that secures

the basic rights of all individuals, especially for those individuals more vulnerable. After evaluating

potential projects to finalize my degree as Computer Engineer, I found a possibility to combine

learned abilities to fulfil what my moral considers correct. Creating this tool may help the society by

detecting violence in institutions, which increases the wellness of individuals that suffer from

bullying.

Intervention against violence in institutions should be confronted taking various actions: In one hand,

it is important to work on the negotiation capability and empathy of all the members of the institution.

This step can be defined as prevention. In the other hand it is important to detect current violence

situations to be able to interfere and re-educate the aggressor and support victims giving them

protection and methods to confront this situation and possible similar ones in future. A fast detection

is key to de-escalate or eliminate an issue and make it less natural and accepted as something

common. Moreover, the violence will have a reduced impact time onto the individuals involved

making it easier to be treated. Analysing this information, emerges the need to improve the possible

detection time of violence by bringing a tool that can help to stop bullying situations, in a fast way.

8 Plan of Action

This chapter explains the organization followed in this project. First, the goal and the objectives are

set, and after, the tasks required to fulfil the objectives are worked out and prioritized. To ensure a

high-quality result, this project is organised following the basic structure of the world’s most applied

quality management standard EN ISO 9001 (4). This standard is based on the idea of continuous

improvement to optimize the output of any project or process. The PDCA cycle shown in Figure 1

explains the main steps to achieve continuous improvement and the closed control circuit of this

method ensures the high-quality output.

Lourdes Mas Lillo Identification and Monitoring of Violent Interactions in Video

13

Plan

Act

Check

Do

Continuous
improvement

Figure 1: PDCA cycle, the basic structure of the worldwide most applied quality standard EN ISO 9001, own elaboration

based on (4)

The PDCA cycle is mirrored in the general structure implemented in this project:

▪ Plan (Chapters 8, 9 and 10)

▪ Do (Chapters 11 and 12)

▪ Check (Chapter 13)

▪ Act (Chapter 14)

Also, within the experimental section the control circuit ensures continuous improvement due to each

result getting analysed and the gained know-how being implemented into the plan of the following

experiment.

8.1 Goal and Objectives

To accomplish the goal developed in the motivation (chapter 7), “to improve the possible detection

time of violence by bringing a tool that can help to stop bullying situations, in a fast way”, there are

some steps that are considered required. In first place, it is necessary to fast and accurately detect

aggression acts while being executed. For conventional methods are considered too slow,

automatization could solve this problem. Second, it is required to produce evidence of the aggression

that could be used for analysis and determine the gravity. And in third place, it is required that the

competent authority gets informed quickly to interfere and stop the aggression. From these premises

three objectives are extracted that will ensure the goal of this project:

Identification and Monitoring of Violent Interactions in Video Lourdes Mas Lillo

14

I. Detecting danger situations in video in an automatized way

II. Saving the information related with the possible aggression

III. Generating an alarm to warn the competent authority

To fulfil the objectives, two technical modules can be distinguished, a first one that fast and

automatized detects violence scenes as required for the first objective. And a second module, a tool

to record the detected scenes and generate an alarm, accomplishing the second and third objective.

To simplify them, Table 1 shows the names given to the modules and their logic order of processing,

these names are used through the document to organize the explanations.

Table 1: Logic steps to fulfil the objectives of this project, own elaboration

Module

First module Training comparative studies

Second module Alarm system

8.2 Task Organization

In this section, tasks necessary to fulfil the goal and objectives are worked out and organized. In

addition, the tasks have been rated according to their contribution to the project result to finally

enable proper prioritization and organisation of resources while project controlling. Table 2 and

Table 3 show the explanation how the severity and effort of a task are estimated. Noticeably the

severity value increases by 5 for each step and therefore is favourited over the effort. The reason is

that the most crucial tasks must be done to achieve full functionality, even if their effort is high.

Table 2: Indicators used to rate the value of a project task, own elaboration

Value for the project output (VAL)

Indicator Meaning

5 Very low severity, this task has a cosmetic impact on the project result

10 Low severity, this task has a low impact on the project result

15 Medium severity, this task has a medium impact on the on the project result

20 High severity, this task is mandatory for the system to work properly and be useful

Table 3: Indicators used to rate the expected effort to achieve a project task, own elaboration

Estimated effort (EE)

Indicator Meaning Expected time effort [t]

6 Very low effort t < 1 day

5 Low effort 1 day ≤ t < 2 days

4 Medium -low effort 2 days ≤ t < 1 week

3 Medium-high effort 1 week ≤ t < 2 weeks

2 High effort 2 weeks ≤ t < 1 month

1 Very high effort t ≥ 1 month

Finally, the priority of a tasks is calculated by multiplying the severity and effort values. Table 4

shows how to interpret the results of this calculation and their meaning regarding their importance

Lourdes Mas Lillo Identification and Monitoring of Violent Interactions in Video

15

for the project efficiency. The calculation results per task are organized and presented in the Table

5, Table 6, Table 7, Table 8, Table 9, Table 10

Table 4: How to interpret the priority value of a task, own elaboration

Priority (PRIO) Description

PRIO ≤ 30 Indifferent for the project

60 ≥ PRIO > 30 Recommended task

PRIO > 60 Necessary task

8.2.1 Organization

Table 5: Priority of tasks required for the organization of the project, own elaboration

1. Organization

Code Task Details VAL EE PRIO

1.1 Plan

Produce the list of tasks determinant to fulfil the

objectives of the project
20 5 100

Organize the tasks depending on their importance

for the project
20 6 120

Create a time plan 15 5 75

1.2

Review

Progress

Summarise the status of the project 15 6 90

Check if the progress reached fulfils the plan 15 6 90

1.3
Reunion

with tutor

Explain progress to the tutor 15 6 90

Explain important changes to the tutor 15 6 90

Discuss the next steps with the tutor 15 6 90

8.2.2 System Preparation

Table 6: Priority of tasks required for the system preparation of the project, own elaboration

2. System preparation

Code Task Details VAL EE PRIO

2.1
Research

options

Choose the favourite options for building and

running the project
20 5 100

2.2 Installations

Install required software 20 5 100

Make the required installations for the

dependency with libraries and frameworks
20 5 100

2.3

Ensure

protection

to data

Apply a license to the project 5 6 30

Use a control version 20 6 120

8.2.3 Datasets

Table 7: Priority of tasks related with the datasets of the project, own elaboration

3. Datasets

Code Task Details VAL EE PRIO

3.1

Dataset

research

Acquire datasets that are of use for the project 20 4 80

Analyse scholar literature (journal articles,

conference proceedings, books, …) related to

works where those datasets where used

20 4 80

Identification and Monitoring of Violent Interactions in Video Lourdes Mas Lillo

16

3.2
Structure

data

Design suitable datasets for the model from the

original video datasets to use during the training
20 5 100

3.3

Implement

code to

handle

input

Create code to automatically modify big datasets,

reorganize and relabel
20 4 80

8.2.4 Training Comparative Studies

Table 8: Priority of tasks required for the training comparative studies of the project, own elaboration

4. Training comparative studies

Code Task Details VAL EE PRIO

4.1 Research

Analyse the related theory using literature

(journal articles, conference proceedings, books,

…)

15 4 60

Analyse the current state of the art using literature

(journal articles, conference proceedings, books,

…)

15 4 60

Compare different model approximations

15 4 60

4.2
Design and

implement

Apply learned information to design an own NN 20 4 80

Implement the NN 20 5 100

4.3
Train single

NN

Experiment with different NN 15 3 45

Execute trainings of the NN with different

datasets
15 3 45

4.4

Use with

pretrained

NN

Execute retraining of a model with different

datasets
15 3 45

4.5
Modify and

update NN

Modify NN to improve the results based on the

evaluation
20 6 120

4.6

Compare

with

previous

results

Analyse the results obtained from the trainings 10 6 60

Compare the accuracy of different datasets 10 6 60

Analyse how different values affect the results of

the training
15 6 90

8.2.5 Alarm System

Table 9: Priority of tasks required for the alarm system of the project, own elaboration

5. Alarm system

Code Task Details VAL EE PRIO

5.1

Create

automatized

detector

Use trained models to evaluate violence detector

in video
20 5 100

Create interface 5 5 25

Frame the people on the scenes 5 5 25

Store the detected violence video sections 15 6 90

Signalize if a violence situation is detected by the

system
20 6 120

5.2 Test Test the alarm with an independent dataset 15 5 75

Lourdes Mas Lillo Identification and Monitoring of Violent Interactions in Video

17

8.2.6 Project Documentation

Table 10: Priority of tasks required for the documentation of the project, own elaboration

6. Project documentation

Code Task Details VAL EE PRIO

6.1
Create

structure

Customize the documentation layout to fulfil

the layout of the University of Alicante

requirements for final projects

20 6 120

6.2 Introduction Generate project introduction documentation 20 4 80

6.3
Theoretical

knowledge

Generate documentation of the studies

obtained related to the project
20 2 40

Organize the bibliography into a folder 5 6 30

6.4
Implementation

and testing

Generating documentation of the programming

progress
20 3 60

Generating documentation of the tests realized 20 3 60

Generating documentation of the result and

interpretation
20 4 80

6.5
Summary and

evaluation

Evaluating the results of the training

comparative studies
20 5 100

Evaluating the results of the alarm system 20 5 100

Assessment of the project objectives 15 6 90

Conclusion and future work 20 6 120

6.6
Revise

documentation
Correct mistakes in the documentation 20 4 80

9 State of the Art

This chapter introduces concepts that support understanding the general operating principle and

modules needed to develop a system able to fulfil the objectives. In first place, a selection of

computer vision techniques used to detect human actions in video and in second place, Neural

Networks (NN)s that learn from video data are defined.

9.1 Computer Vision Techniques

The input data for this system should be properly prepared to enable it to recognize and process visual

data efficiently with NNs. In this chapter, techniques to process video and image data are introduced.

Those can help by focussing specific features that are fed to the NN.

9.1.1 OViF

Oriented Violent Flows (OViF) is a method proposed for fast practical detection of violence in

videos. It is taking advantage of the motion orientation of data regarding the magnitude of the change

of information. Hence, this method helps focussing on parts of the input data that shows a rapid

change in its consistency, like for example a fast moving leg performing a kick. (5)

Identification and Monitoring of Violent Interactions in Video Lourdes Mas Lillo

18

9.1.2 IFV

The Improved Fisher Vectors (IFV) encoding simplifies the structure of videos by connecting the

space-time of the referent points’ positions in the image. This has use, for example, to determine

their speed or trajectory. (6)

9.1.3 STIP

For the Space Time Interest Point (STIP) the variation in space and time is analysed to find the

interest points. That have the highest amount of displacements on the video. For a video showing a

fox moving in front of a static plant for example, the STIP is formed around the animal. Through a

segment of 2-dimensional images, the method marks interest points that evolve through the frames

in 3-dimensions, the position (x,y) dependent on the time. (7) (8)

9.2 Neural Networks

Artificial Intelligence (AI) is the umbrella term for intelligence associated with machines that are

capable to solve a problem independently of the method. A logic algorithm or Machine Learning

(ML) can achieve this, for example. ML is a branch of the AI that is focused on the use of learning

from generalizations to solve a problem. An evolution of the ML is the Deep Learning (DL), where

NNs are applied to imitate the functionality of the visual cortex of animals. This technique is very

successful detecting image and audio characteristics (9). In Figure 2 is presented the dependency

order between the three elements just explained. The following chapter defines the basic functionality

of a NN, introduces a selected list of specialised NNs architectures and finally explains settings

necessary for training of a NN.

Artificial Intelligence

Machine Learning

Deep Learning

Figure 2: Deep learning from a macro perspective, own elaboration based on the artificial intelligence and deep learning

dependency

Neuron

Neurons are the components of the NNs. They are interconnected and show a similar behaviour as

biological neurons processing and passing data for interpretation. Each neuron is a mathematical

function that computes the weight average of the input it receives, and then applies an activation

function to generate an output for the next neuron.

Lourdes Mas Lillo Identification and Monitoring of Violent Interactions in Video

19

Network Structure

A NN is typically organized in an input layer, hidden layers and an output layer and each neuron is

connected to the neurons set on the previous layer. It basically consists in a circuit of neurons, which

connections are set as weights. Those weights can be of positive or negative value and, if positive,

promote the connection, while, if negative, inhibits it. The inputs, modified by the weights are

summed on their way through the net and, finally, applying an activation function determines the

output range. This method makes it possible to find patterns by building complex relationships

between the data input and the output.

Activation Functions

The activation function is an important part of a training process of a NN. This function determines,

depending on the importance of the input, how much the weight of a neuron is transformed.

Therefore, it will strongly influence the output of a NN and is determinant for a correct learning

process. Further details to activation functions and how to use them can be found in chapter 9.3.3.

Learning Styles

Various learning styles can be applied to NNs as, in first place, the Unsupervised Learning (UL).

With this method, unlabelled data is analysed to find common patrons and create groups of data an

scheme of this learning is presented in Figure 3. In second place, the Supervised Learning (SL) learns

from data that contain labels. During the training the system tries to predict the label of the elements

and learns from comparing with the real result as seen at Figure 4. Last, is the Reinforcement

Learning (RL), this method represented at Figure 5, is an interactive system based on learning from

feedback of the environment.

Clustering

Figure 3: Unsupervised learning style, own elaboration

Identification and Monitoring of Violent Interactions in Video Lourdes Mas Lillo

20

Model

Rhombus

Rhombus

Square

Circle

Circle

Training

Figure 4: Supervised learning style, own elaboration

Environment Agent

Action

Reward/Penalty

State

Figure 5: Reinforcement learning style, own elaboration

9.2.1 DNN

 A NN is divided in layers containing each a certain quantity of neurons. A simple NN contains three

layers, one for the input, a hidden layer, and another for the output. A Deep Neural Network (DNN)

consists on a NN with more than one hidden layer. There can be the same quantity of neurons in two

NNs with a different quantity of layers, for example, having one layer with ten neurons or ten layers

with one neuron each. The layers are used to find features with different level of abstraction, from

more general to more detailed. For example, for learning how to recognize humans in images, a first

layer can determine general curvatures, a second one shapes of bodies, and a third one parts of the

bodies. Therefore, the use of DNN is of help processing complex problems.

9.2.2 CNN

This NN extracts features from the data using a kernel which is a matrix operation applied across the

data as shown in Figure 6. It is characterized by having multilinear operations that happen in the

hidden layers. The basic operations of the CNN are the convolutions and the pooling. The first one

Lourdes Mas Lillo Identification and Monitoring of Violent Interactions in Video

21

consists of applying filters to find features and the second consists of subsampling to reduce the

dimensions of the feature map. A simple scheme of a CNN is shown in Figure 7 for a better

understanding. The CNNs are challenging the state of the art in activity recognition (9).

0

Source pixel

1

05

2

4

5 6 5

0 1

20

-1

-2

-1 0 1

-9

Convolutional
 filter

Destination pixel

Figure 6: Example of matrix multiplication on a convolution to calculate a pixel value applying a filter, own elaboration

based on a filter application

I

I

I K

K

K
C

C

C

C

C

H

H

H

Output

Hidden cell

Input

I K H

H

H

H

H O

O

O

O

I

K Kernel

C Convolution or pool

H

O

Figure 7: Deep CNN structure, own elaboration based in (10)

9.2.3 RNN

The idea of the Recurrent Neural Network (RNN) started when the back-propagation algorithm was

developed. The fundament for an RNN is the recursion. It is a powerful procedure applied to obtain

a complex function with simple steps through repetition. It enables to fine tune the weights of its

Identification and Monitoring of Violent Interactions in Video Lourdes Mas Lillo

22

neurons on base of the error rate. Applying recursion to artificial intelligence can bring particularly

good results. (11)

The structure of an RNN, as represented in Figure 8, consists of keeping the input and its context

unities with the objective of maintaining the information from the past, while looping with the

purpose of updating the status in the RNN.

I

I

I R

R

R R

R

R

O

O

O O

R

I

Output

Recurrent cell

Input

Figure 8: Diagram with the RNN structure, own elaboration based on (10)

The general recursive formula applied for the RNN is shown at [1]:

[1] 𝑆𝑡 = 𝐹𝑤(𝑆𝑡−1, 𝑋𝑡)

Where St is the state at the time step t, Fw is a recursive activation function dependent on St-1 and Xt.

St-1 represents the state at the previous time step and Xt is the input at time step t. To formulate an

example, in [2] is assumed that the activation function Fw is a tanh function.

[2] 𝑆𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑠𝑆𝑡−1 + 𝑊𝑥𝑋𝑡)

The state at the time step t is the update of the weighted previous state WsSt-1 with the current weight

per the current input WxXt and passed through a tanh activation.

Lourdes Mas Lillo Identification and Monitoring of Violent Interactions in Video

23

RNN

Input

Output

Wx

Wy

Yt

Xt

Ws

Figure 9: Scheme of the fundamental RNN functionality, own elaboration based on (10)

Figure 9 shows the simplified behaviour of an RNN. The neural network receives an input Xt and

generates an output Yt. A loop, here expressed as an arrow, allows to recursively pass information

about the weights of the network´s layer, represented with a W. The behaviour of the RNN through

the different time states is visualized in more detail on the Figure 10.

Tanh(WsSt-1+WxXt)

Input

Wy

Xt

Tanh(WsSt+WxXt+1)

Tanh(Wsht-1+W´yYt) Tanh(Wsht+W´yYt+1)

Xt+1

St-1 St

ht-1 ht

Yt Yt+1

St+1

ht+1

Input

First layer

Hidden layer

Weight calculation Wy

Ws Ws

Wh Wh

W´yW´y

Wx Wx

ht+n...

ht+n...

... ...

Figure 10: RNN structure in detail, own elaboration based on (10)

The flow diagram Figure 10 demonstrates how the training process works. Shown are two layers, the

input layer S and a hidden layer h. Both layers change their state at different times t-1, t, t+1,..., t+n.

At each time step, the layers will receive an input X that is used to update the weights of the layer

Identification and Monitoring of Violent Interactions in Video Lourdes Mas Lillo

24

using, to keep the previous example, a tanh function. Finally, it will generate an output Y that will

represent the input for the following layer.

Figure 11 shows the working structure of an RNN. Each neuron computes the weight for the input X

and if the activation function gives a positive result, it passes on information for the next neuron.

Once the input is processed, the network generates an output with a prediction Y. At that point the

model is optimized by applying a loss function that calculates the error of the prediction. Based on

this calculation, an optimizer updates the weights to move in the direction of a minimum loss.

Layer

Input

Xt+1

Layer

Y

Weight calculation

Wx

...Layer

Xt

Input Input

Xt+n

Ws Ws Ws

Loss

Output

Weight update

Optimizer

Error calculation

Figure 11: The recursivity in a RNN diagram, own elaboration based on (12)

The recursivity of this network can generate issues because the neurons can be activated to infinite

or to zero when iterating several times over the input. This problem happens when the error gradient

is too small to train correctly. In the RNN the derivates of each layer’s activation function are looped

back from the last layer to the initial layer, unrolling the recurrent calculation of the initial layer

values. When selecting the activation function, it is important to avoid multiplying groups of layers

with activations that have small derivates. This is to avoid the reduction of the gradient being dragged

to the initial layers, which are determinant to basic recognition of the input. The increase of this

gradient can end up in a big inaccuracy on the predictions. (13)

9.2.4 LeNet5

LeNet5 is a basic CNN architecture presented in (14) that uses the back-propagation algorithm also

applied for RNN. It is made for pattern recognition, especially hand-written and machine printed

numbers and characters. The input of this NN is typically small, conformed by 32x32 size elements.

It is considered a good example of gradient based learning technique. (14)

9.2.5 AlexNet

Introduced by (15) and owing its name to one of its creators, Alex Krizhevsky, this is a well-known

CNN that won the ImageNet Large Scale Recognition Challenge in 2012. It is pretrained with the

ImageNet database and it is possible to directly load the weights of the trained model. This NN works

Lourdes Mas Lillo Identification and Monitoring of Violent Interactions in Video

25

specially well for training with image data, but it has also been used for training with video datasets,

for example in (16).

9.2.6 MobileNet

MobileNet is an efficient CNN architecture to build small models that fulfil requirements for mobile

and embedded vision applications in (9). To reduce the computation cost, the first few layers of this

network have depth wise separable convolution filters, except the first layer that is fully

convolutional. As the MobileNet models are small, they have less problems with overfitting, making

the regularization and data augmentation techniques obsolete. (17)

9.2.7 SqueezeNet

SqueezeNet is a CNN architecture capable to achieve a result similar to AlexNet but having 50 times

less parameters (18). This is achieved by replacing the 3x3 filters to 1x1, “squeezing” the channels

into 3x3 filters and down sampling late to keep a large activation in the convolution layer. In (9) this

network is considered for embedded system use, as it is especially beneficial with limited system

resources.

9.2.8 VGG16

VGG16 was developed based on AlexNet and uses small 3x3 filters that increase the accuracy

analysing characteristics. The advantage of using this model is that it is pretrained with ImageNet

and enables to directly load its weights as it can be seen in the code below. (9)

from Keras.applications.vgg16 import VGG16

VGG16(weights='imagenet')

9.2.9 LSTM

The Long Short Term Memory (LSTM) was developed in 1997 and has been used for famous tools

such as Google Translate, Siri (Apple) and Alexa (Amazon). Its advantage is to reduce the two

problems of the RNNs: the gradient vanishing and the gradient explosion (19). A LSTM neural

network is an RNN architecture with the advantage of feedback connections with a structure

connection between the cells as shown in Figure 12. It uses LSTM cell blocks instead of neurons

which means that its units have a built-in memory cell (16).

Identification and Monitoring of Violent Interactions in Video Lourdes Mas Lillo

26

I

I

I M

M

M M

M

M

O

O

O O

I

Output

Memory cell

Input

M

Figure 12: Diagram visualizing simplified the LSTM structure, own elaboration based on (10)

Differing from the RNN, the LSTM architecture uses so-called memory cells (16) more inspired in

circuitry than in neuronal connections as can be seen in Figure 13. The objective of the memory cell,

a series of non-linear gates used to control how the information flows, is to keep track of the

dependencies between the elements of the dataset. They represent simple components called input

gate, forget gate and output gate that modify the weight cells. The task of the input gate is to manage

the quantity of information that must be remembered from the past in the cell. The forgetting gate,

instead, enables to forget non relevant information to release the network from overload problems.

As its name shows, the output cell passes on information to the next cell. This structure combines

the traditional feed forward NN learning style (long term) with the possibility to connect temporary

events (short term) and therefore find common features in dynamic datasets with interdependence.

(16)

Xt

σ σ tanh σ

X +

XX

tanh

ht

Xt+1

σ σ tanh σ

X +

XX

tanh

ht+1

Xt-1

σ σ tanh σ

X +

XX

tanh

ht-1

...

......

...

Input Input Input

Weight calculation Weight calculation Weight calculation

Figure 13: LSTM diagram: own elaboration based on the LSTM mechanism explanations found at (12)

9.2.10 Stacked LSTM

The typical LSTM model has one LSTM layer whose output is processed by several different layers.

The LSTM layer receives with its input a sequence with previous time steps states. In Keras, it returns

the result for the current state not forwarding the time step sequences due to an argument on the

Lourdes Mas Lillo Identification and Monitoring of Violent Interactions in Video

27

LSTM layer called return_sequences. This argument is a Boolean that conditions whether to return

the hidden state or not (Table 11). It is set as false by default.

Table 11: Input and output size possible for a LSTM layer, own elaboration based on the LSTM structure

LSTM Structure

Input (batch size, time steps, length)

Output return_sequences = False (batch size, units)

Output return_sequences = True (batch size, time steps, units)

A stacked LSTM model contains a group of connected LSTM layers. It makes the model deeper than

it would be using only one LSTM layer, each layer processes a part of the task and pass it on to the

next layer that will continue working on it making a higher level of abstraction. This way the

information about the previous time steps is shared. To stack a group of LSTM layers the argument

return_sequences must be activated as true in all the LSTM layers except in the last one.

9.2.11 Convolutional LSTM

A Convolutional LSTM (ConvLSTM) layer works similar to a LSTM layer but adding the power of

convolutional calculations. It exchanges matrix multiplications through the convolutions and enables

filters as seen in Figure 6. Those filters make re-dimensions in the input without losing the original

dimension values of the matrix that passes through the layers.

9.3 Training Details

This section introduces different settings and approaches to train a NN. Furthermore, is explained

how they will affect the learning result.

9.3.1 Validation Style

There are different possibilities to evaluate the learning process of a model during the training time.

It is determinant to define if the currently learned weights are giving good results with the data. The

typical protocol to check the validity of the results implies to separate the dataset in three parts. The

training set, as its name implies, is the input used to train the NN. In each epoch it is applied to make

the system predict from the input and compare with the expected output. The validation set is used

to test how the model is working at the end of the epoch. Finally, the test set is the fraction of data

used to evaluate the model’s result of training. Therefore, this set is an independent not being used

during training, nor validation. To correctly use this sets, interpreting the learning process through

the epochs is important, as the net’s capability of extrapolating the learned information because it

may give clues about the learning process and discover problems such as overfitting.

9.3.1.1 No Validation

It is possible to train a model not using a validation dataset. It implies that at the end of each epoch

the weights obtained are not used to validate the results with another piece of data.

Identification and Monitoring of Violent Interactions in Video Lourdes Mas Lillo

28

9.3.1.2 Independent Dataset

It consists in loading a validation dataset at the end of each epoch that does not belong to the training

set. This option only is interesting if the validation set is a representative selection, otherwise this

will cause the problem explained at 10.5.6.6.

9.3.1.3 Part of the Training Set

As the name indicates, this method uses a part of the training set to validate the accuracy at each

training epoch. It brings the risk of overfitting, explained at 10.5.6.3, as the model is not receiving

any new element to generalize over the trained, but only data seen before.

9.3.1.4 Cross-validation

This technique consists in reusing the training dataset also for validation. Therefore, the dataset is

split in k parts, at each epoch a different part is used for validating and the other parts for training.

This process is repeated as shown in Figure 14 until all parts are used once for validation. The method

is also called k-fold cross-validation.

Training

Validation

Figure 14: Cross-validation structure, own elaboration based on the cross-validation technique

9.3.1.5 One Step Ahead Cross-validation

This technique, explained at the book (20), is used for time dependent models such as LSTM when

the training set elements are linear and their time order is crucial. Then cross-validation, which

implies removing a section of the training set, is not suitable as the dataset would lack some key

information. To apply this method, at each epoch a new sample is added and used to validate the

Lourdes Mas Lillo Identification and Monitoring of Violent Interactions in Video

29

training with the previous samples as shown in Figure 15. The time order is respected, and a new

validation is added on each time step. This is interesting when the training input is not divided in

individual elements.

Training

Validation

Figure 15: One step ahead cross-validation structure, own elaboration based on the proposal at (20)

9.3.2 Optimizers

An optimizer is a method to update weights and learning rate to minimize the loss function. As

explained in chapter 9.3.4, the optimizer and the loss are a required input to compile a model from

the Keras library (21). Literature introduces various optimizers suitable for specific cases. A selection

of them is listed in this chapter.

9.3.2.1 SGD

The Stochastic Gradient Descent optimizer (SGD) replaces the gradient by an estimation, this

reduces the computational cost and slows the loss to converge. (22)

9.3.2.2 RMSprop

RMSprop is an adaptative learning rate optimizer that speeds up the mini-batch learning by dividing

the learning rate for a weight and making an average of the magnitudes of the recent gradients of that

weight. (22)

9.3.2.3 Adam

Adam optimizer is an adaptative optimizer similar to RMSprop based on the estimation of low-order

moments, requiring little memory and being recommended for training with large datasets, large

Identification and Monitoring of Violent Interactions in Video Lourdes Mas Lillo

30

parameters or when the gradients are very noisy (23). Adam keeps track of the average exponential

decay of the previous gradients and uses the average of the first and second Momentum shown at

Figure 16 for the gradient calculation. (24)

9.3.2.4 Adagrad

Adagrad works well with sparse gradients and converges slower than Adam and SGD (23). It is an

adaptative optimizer with parameter-specific learning rates, applied preferably with unmodified

parameters (24). The learning rate value decreases its value in relation to how often the parameter is

updated during the training. (21)

9.3.2.5 Adadelta

Adadelta is an adaptative optimizer and a variant of Adagrad. It uses a window with the gradient

updates to add dimension, this way the window moves through the updates without the need to

accumulate the past values. Therefore, Adadelta continues learning after a big number of updates

because the learning rate depends on the window values and not on simply decreasing with the

updates. (21)

9.3.2.6 Adamax

The Adamax is a variant of the Adam optimizer based on the infinity norm. The difference with that

model is that it updates the individual weights scaling their gradients in an inverse proportional scale

norm for their individual current and past gradients, this means that the gradients are updated based

on the max of the decayed gradients. Therefore, when the scale tends to infinite, the algorithm is

more stable. (23)

9.3.2.7 Nesterov versus Momentum

The Momentum method shown in [3] and [4] is accelerating the gradient descent across the iterations

accumulating a speed vector that reduces persistently the speed. (25)

[3] 𝑣𝑡+1 = 𝜇𝑣𝑡 − 𝜀∇𝑓(𝜃𝑡)

[4] 𝜃𝑡+1 = 𝜃𝑡 + 𝑣𝑡+1

𝜇 𝜖[0,1] is the Momentum coefficient, νt is the gradient retained from the timestep t, ∇𝑓(𝜃𝑡)is the

gradient at a certain time t. 𝜀 > 0 represents learning rate, ν represent the speed vector at a time t. ν

at a time t+1 is calculated using the values from the previous timestep as shown in the first

equation above. Therefore, the speed vector is constantly changing, getting reduced until it

converges.

The Nesterov acceleration gradient, shown at [5] and [6], is like the Momentum technique but follows

a different order. It is jumping in direction of the previously accumulated gradient, measures the

Lourdes Mas Lillo Identification and Monitoring of Violent Interactions in Video

31

gradient and makes a corrective jump. As shown at the following formula, the difference is the update

of the vector 𝑣, adding the Momentum coefficient to the gradient. (25) (26)

[5] 𝑣𝑡+1 = 𝜇𝑣𝑡 − 𝜀∇𝑓(𝜃𝑡 + 𝜇𝑣𝑡)

[6] 𝜃𝑡+1 = 𝜃𝑡 + 𝑣𝑡+1

The optimization with Momentum creates oscillations in the high curvature vertical direction, the

Nesterov method avoids these oscillations and therefore it is more effective than Momentum at

decelerating over iterations. Nesterov is then tolerating more values of 𝜇 (25). In Figure 16 is

visualized the Momentum and the Nesterov behaviour.

Correction

Nesterov

Figure 16: Momentum and Nesterov behaviour, own elaboration based on (26)

9.3.2.8 Nadam

The Nesterov Adam optimizer (Nadam) is similar to Adam optimizer, based in RMSprop, but instead

of being combined with Momentum, it is combined with Nesterov. Details of the Nesterov method

are explained in the previous chapter 9.3.2.7. It is a combination of RMSprop with Nesterov

Momentum. (24)

9.3.3 Activation Function

In a NN the input of a layer is summed with its weight and then an activation function is applied

generating the output that is received by the next layer on the NN. This activation function shall be

controlled because it affects the result and accuracy, determining if a neuron is activated and how. In

the next sections are the most important activation functions explained.

9.3.3.1 Linear Activations

A linear activation function is represented with a straight line in a graph as seen in Figure 17.

Assuming a x-y coordinate system, it is calculated by a multiplication applied to x that affects the

pendant of the line in the graph, plus a constant that is the value on y when x = 0 as is seen at [7].

[7] 𝑓(𝑥) = 𝑎 + 𝑏𝑥

An identity function is a linear function where the output is equal to the input, applied to the formula

above this means a = 0 and b = 1. There is no normalization between a possible range of values and

Identification and Monitoring of Violent Interactions in Video Lourdes Mas Lillo

32

the value x is contained between -∞ and ∞. Linearity between input and output will complicate the

learning process because high values may appear and affect the control feature of the weights.

Figure 17: Identity function graphic representation, own elaboration using MATLAB

9.3.3.2 Non-linear Activations

Non-linear activation functions permit the NN to compute complex problems using a small range of

nodes to represent the output in a neuron. The reason is that these functions, using a x-y coordinate

system, will not be represented with a constant line. It is beneficial if it is reduced the pendant in the

y axis, simplifying the scale of the result. It also permits to do backpropagation using the derivate.

Binary Step

This function is useful for binary classification because it makes all positive input equal to 1 and all

negative input equal to 0. The mathematic formula is expressed at [8] and visualized in Figure 18.

[8] 𝑓(𝑥) = {0 𝑓𝑜𝑟 𝑥 < 0, 1 𝑓𝑜𝑟 𝑥 ≥ 0}

Figure 18: Binary step, own elaboration using MATLAB

Logistic or Sigmoid

The output of the logistic activation function, with a characteristic sigmoid shape, is a value between

zero and one, with big negative values close to zero and positive values close to one. This avoids

problems with exponentially growing results ending up on very high values, as possible for example

Lourdes Mas Lillo Identification and Monitoring of Violent Interactions in Video

33

with the identity function. The function is mathematically expressed in the formula [9] and visualized

in Figure 19.

[9] 𝑓(𝑥) =
1

1+𝑒−𝑥

For this method is not centred on 0, the model might get stuck during the training if the input has a

big negative weight which will force the output close to zero. This can affect the feed-forward

activation of the NN, reducing the model parameters updates. This inhibits the model to change its

state and create the vanishing gradient problem.

Figure 19: Sigmoid function graphic representation, own elaboration using MATLAB

tanh

The Hyperbolic Tangent Activation Function (tanh), formulated at [10], is a sigmoid function

expressed with the formula below. It avoids the vanishing gradient problem by having an output that

variates in the range [-1,1] as presented in Figure 20. Therefore, even if a big amount of negative

inputs shifts the calculation to negative values, neutral values will shift the outputs back to zero,

which helps the model parameters to get less stuck.

[10] 𝑓(𝑥) =
2

1+ 𝑒−2𝑥 − 1

Figure 20: tanh function graphic representation, own elaboration using MATLAB

Identification and Monitoring of Violent Interactions in Video Lourdes Mas Lillo

34

arctan

This is a function that makes a similar distribution to sigmoid and tanh. It gives a value between

[-π/2,π/2], incrementing the range of values. Its formula is the inverse of the tangent and shown in

[11]. The graphical representation at Figure 21 shows the possible results for the values x between -10

and 10.

[11] 𝑓(𝑥) = 𝑡𝑎𝑛−1(𝑥)

Figure 21: arctan function graphic representation, own elaboration using MATLAB

Rectified Linear Unit, ReLU

Rectified Linear Unit (ReLU) is a linear function that outputs the input directly in case of it being

positive, otherwise it outputs 0, removing the negative part as shown in the function [12]. The

resulting values for x between -6 and 6 are shown in the Figure 22. Like the logistic sigmoid function,

there is the risk that the model stops changing its state if there is too much negative input. It can also

stop learning when the learning rate is too high, because it is converging early.

The CNN that are trained with ReLU are proved to train several times faster than those that use the

tanh activation function (15). The ReLU does not require an input normalization to avoid saturation.

It means as long as some of the model’s inputs are positive, the neuron is learning, but local

normalization still helps to generalize (15).

[12] 𝑓(𝑥) = {0 𝑓𝑜𝑟 𝑥 < 0, 𝑥 𝑓𝑜𝑟 𝑥 ≥ 0}

Lourdes Mas Lillo Identification and Monitoring of Violent Interactions in Video

35

Figure 22: ReLU function graphic representation, own elaboration using MATLAB

Leaky ReLU

This is a version of ReLU, but instead of putting the negatives values to zero, it reduces considerably

its value and the progression of the negative values decrease slowly. It generalizes better than sigmoid

and avoids the neuron from getting stuck at 0.

It has the mean activation close to 0, which accelerates the training (27). As it can be seen in the

formula [13] t is mathematically defined as the maximum between x and a small value multiplied

per x. Therefore 𝛼x, being 𝛼 a predetermined small value, when x is less than 0 and the value when

x is higher than 0. The result for values x between -6 and 6 and an α of 0,01 is shown in the Figure

23.

[13] 𝑓(𝑥) = {𝛼𝑥 𝑓𝑜𝑟 𝑥 < 0, 𝑥 𝑓𝑜𝑟 𝑥 ≥ 0}

Figure 23: Leaky ReLU function graphic representation, own elaboration using MATLAB

Parametric ReLU

Also known as PReLU. Is a variation of Leaky ReLU. Instead of a predetermined value multiplied

with x when x is smaller than 0, the value, α, used to multiply x with is determined by the NN. For

this function, shown at [14], a graphic for x between -6 and 6 and α=0,05 is displayed at Figure 23.

[14] 𝑓(𝑥) = {𝛼𝑥 𝑓𝑜𝑟 𝑥 < 0, 𝑥 𝑓𝑜𝑟 𝑥 ≥ 0}

Identification and Monitoring of Violent Interactions in Video Lourdes Mas Lillo

36

Figure 24: Parametric ReLU function graphic representation, own elaboration using MATLAB

Exponential Linear

Exponential Linear is called (ELU) or (SELU) and is like parametric ReLU, but with a curved shape

on the negative side instead of a straight line. It is introduced in (27) and its graphical representation

is shown at Figure 25. The function that defines this activation, being 0 < α, is [15]:

[15] 𝑓(𝑥) = {𝛼(𝑒𝑥 − 1) 𝑓𝑜𝑟 𝑥 < 0, 𝑥 𝑓𝑜𝑟 𝑥 > 0

Figure 25: ELU graphic representation, own elaboration using MATLAB

Concatenated ReLU

Concatenated ReLU (CReLU) proposed in (28) is also similar to ReLU, but having two outputs as

seen in [16]. One for the positive and the other for the negative input.

[16] 𝑓(𝑥) = {[𝑥, 0] 𝑓𝑜𝑟 𝑥 < 0, [0, 𝑥] 𝑓𝑜𝑟 𝑥 ≥ 0}

ReLU-6

At (29) a study found that for the ReLU activation function, an upper output value limit of 6 gave

better results. Therefore, the output of this activation function is limited to 6 for the positive values.

At [17] is shown the mathematical formula of ReLU-6 and the graph (Figure 26) that represents the

results for a range of x between -10 and 10.

[17] 𝑓(𝑥) = {0 𝑓𝑜𝑟 𝑥 < 0, 𝑥 𝑓𝑜𝑟 0 < 𝑥 < 6, 6 𝑓𝑜𝑟 𝑥 ≥ 6}

Lourdes Mas Lillo Identification and Monitoring of Violent Interactions in Video

37

Figure 26: ReLU-6 function graphic representation, own elaboration using MATLAB

Softmax

This activation function calculates a probability distribution set in the range between -1 and 1 where

the sum of it is 1, from a vector with k numbers, where j represents each element as shown in [18].

This formula is visualized in Figure 27 showing the possible output for an element of the distribution.

[18] 𝜎(𝑧)𝑗 =
𝑒

𝑧𝑗

∑ 𝑒𝑧𝑘𝐾
𝑘=1

 𝑓𝑜𝑟 𝑗 = 1, … , 𝑘

Figure 27: Softmax function graphic representation, own elaboration using MATLAB

9.3.4 Loss Functions

The loss function, together with the optimizer described in chapter 9.3.2, is one of the parameters

needed to compile a model. The loss is the function used to optimize the score of the model

calculating the error. It guides the optimizer to move towards the direction of the minimum. The

decision of which loss function to choose should be taken considering the type of data that the model

is trained with and the activation function. The loss function can be manually created, but there are

existing good defined functions for Keras (30). A selection of important loss functions is explained

here.

Identification and Monitoring of Violent Interactions in Video Lourdes Mas Lillo

38

9.3.4.1 Mean Errors

The Mean Error calculations are done regarding the average error committed between the prediction

made and the real result. Examples of frequently used functions are defined below.

Mean Squared Error

Mean Squared Error (MSE) requires that the output line of the model is linear. It measures the quality

of the estimation through a mean calculation as shown in [19].

[19] 𝑀𝑆𝐸 =
1

𝑛
∑ (𝑌𝑖 − Ẏ𝑖)2𝑛

𝑖=1

The mean of the square of the errors is calculated subtracting the predictions to the real values

applying the square to the results and calculating the mean. As seen in the formula above, where n is

the number of elements on the vector that contains the predictions generated, Y is the vector of values

observed on each of the variables that are predicted and Ẏ represents the predicted values. The result

of applying this formula is positive, with the best result being 0, because it means there is no

difference between the prediction and the actual result. This formula predicts quantities on regression

problems. (30)

Mean Absolute Error

Mean Absolute Error (MAE) is useful when the distribution of the result contains values that are too

separated from the tendency. In this case it avoids giving results too small or too big (30). At [20] is

shown the formula that defines this loss function using the same nomenclature as in the MSE. It

consists in applying the mean to the absolute result of subtracting the expected results to the

predictions.

[20] 𝑀𝐴𝐸 =
1

𝑛
∑ |Ẏ𝑖 − 𝑌𝑖|𝑛

𝑖=1

Mean Absolute Percentage Error

This method is a variant of MAE. It is showing the percentage of the absolute error, which basically

is the Mean Absolute Error, multiplied by 100. (30)

Mean Squared Logarithmic Error

For regression problems where a large value or a group of values needs to be predicted, this method

to calculate the loss can be beneficial. It calculates first the logarithm of the prediction before

calculating the mean. This way the values are reduced and themselves reduce the difference in error

results when predicted values show big differences amongst each other.

9.3.4.2 Crossentropy

The MSE loss models have in common the problem of saturation and learning slow. Using a cross-

entropy approximation improves the performance of the model, especially those models that have

Lourdes Mas Lillo Identification and Monitoring of Violent Interactions in Video

39

sigmoid or softmax output. This method uses the Maximum Likelihood Estimation (MLE)

framework to find the best estimations of parameters from the experience with previous training data.

The crossentropy loss is minimized which means training with small values will bring a better result

than training with big ones. (31)

[21] 𝐶𝑟𝑜𝑠𝑠𝑒𝑛𝑡𝑟𝑜𝑝𝑦 = −
1

𝑛
∑ 𝑌𝑖𝑙𝑜𝑔(𝑥 + Ẏ𝑖)𝑛

𝑖=1

This function, seen at [21], represents the average crossentropy of all examples. Where n is the

number of elements on the vector that contains the predictions generated, Y is the vector of values

observed on each variable being predicted and Ẏi represents the predicted values and x is a very small

number, for example 1E-15, added to Ẏi for avoiding the calculation of log(0). Therefore, the best

possible solution is a value close to 0, but reaching a loss of 0 is impossible because of the sum of x.

(30)

Categorical Crossentropy

This loss function supports mapping the probability of classifications to match between the different

possible labels. It brings a prediction for multi-class classification. The output of this function has

the form of a vector that contains the distribution of probabilities of different classes. A good last

layer activation function to combine with this loss is softmax. (30)

9.3.4.3 Hinge

The hinge loss is used for classifying the maximum margin of a classification. Following are three

kinds of hinges that might be interesting.

Hinge

Hinge is an alternative to crossentropy that can be used to classify binary problems, where the

classification is set in the range [-1, 1]. For this it is important to use an activation that supports this

range. Adamax will work well with this loss (30). In the hinge formula, shown at [22], a value

between -1 and 1 is given by Ẏ·f(x), being Ẏ the output given by the model. the result is evaluated

as follows: A value < 0 is incorrect, and > 0 is correct, the distance from 0 determines how mistaken

or accurate the value is. Hinge returns the maximum between 0 and Ẏ·f(x), the maximum margin.

[22] 𝐻𝑖𝑛𝑔𝑒 = max (0, 1 − Ẏ · 𝑓(𝑥))

Categorical Hinge

The categorical hinge is similar to the previous hinge, but adapted for categorical classifications,

calculating a vector with the maximum margin of multi-class classifications. (30)

Identification and Monitoring of Violent Interactions in Video Lourdes Mas Lillo

40

Squared Hinge

The squared hinge loss, as the other versions of squared loss, uses the square of the score in this case

to classify the maximum margin. As the normal hinge it works well when it is used with tanh

activation. (30)

9.3.5 Epochs

The number of epochs defines the total amount of repetitions that the training algorithm processes

the entire dataset. The weights of the model are updated at the end of each epoch.

9.3.6 Batch Size

The batch size is a hyperparameter used to determine the samples distribution from the used data set

before each update in the model. After all samples in the batch were iterated, the NN compares the

predictions developed with the samples and compares them with the expected results. Based on the

deviation the current error is calculated and used to improve the model. As the NN updates after each

batch, the gradient descent of the error is modified so the batch size directly affects the quantity of

updates in the error function. Therefore, the batch size affects the optimization of the model. There

are three possible types of batch size.

9.3.6.1 Batch Gradient Descent

First, the Batch Gradient Descent, where the batch size is equal to the size of the training set, it

implies that the model is only updated after all the training set is evaluated. Having less updates in

the model makes the gradient descent calculation more efficient. It also makes a more stable update

that in some cases can result in a good convergence, but in the other cases can lead to a premature

convergence.

9.3.6.2 Stochastic Gradient Descend

In second place, there is the Stochastic Gradient Descend (SGD), which is a batch of size 1. It

calculates the error and updates the model for each training example, which has more computational

cost than other gradients, descends but improves the error descent. Having improvements very often,

which means a faster learning, these updates can create a noisy gradient signal making the model

error jump and have an increasing variance over the epochs. Therefore, the noise learning process

can help to avoid local minima but also can make it difficult to settle a minimum.

9.3.6.3 Mini-Batch Gradient Descent

Finally, the Mini-Batch Gradient Descent, where the batch size is equal to a value between 1 and the

size of the training set, is the most used batch size. It is intended to combine the characteristics of the

previous models to achieve a result that can be robust but also efficient. Choosing smaller values will

lead to faster convergence and slightly increased noise, while choosing bigger values result in a

slower but more accurate evolution.

Lourdes Mas Lillo Identification and Monitoring of Violent Interactions in Video

41

9.3.7 Time Steps

Time steps contain the value k used to control how many frames are considered interdependent.

Assumed the value k is 5, for the scene taking place at time t, the frames t-1, t-2, t-3, and t-4 are too

considered relevant for the interpretation.

9.3.8 Training Host

Training with big datasets might face possible limitations regarding the GPU process capability of

common computers. To avoid this, it is important to choose hardware matching the problem size. As

explained below, there are two basic hardware approaches for this project. Each accompanied by

individual difficulties and opportunities.

9.3.8.1 Computer

A standard computer is an option to be considered when it can afford enough processing capabilities

for the training. Hereby it is important to count on a potent GPU, as the computational time cost of

using the CPU may be enormous, especially when training with big datasets like a huge number of

frames contained in videos. Having multi-GPU training options with a correct division of data

between the GPUS is an advantage. Modern GPUs are particularly well-suited to cross-GPU

parallelization, as they are able to directly read from and write to one another’s memory (15).

9.3.8.2 Servers

Using potent servers of a third party eases the training task, not having to worry about the memory

the data requires to be loaded and being able to load big clusters of data simultaneously for

processing. Generally, there are two kinds of third-party servers available on the market:

Rented Servers

It is possible to rent GPU servers. For example, Cherry Servers (32), available with a monthly fee

based on the rented GPU. The prices are in a range from 100 euros to 700 euros per month, dependent

on the required specifications.

Colaboratory

As a free option for scientists, researchers, and students it is offered Colaboratory, that belongs to

the company Google. This online tool offers an interactive environment than can be shared by

different users that consists in a cloud service server based on Jupiter Notebooks where members can

add and execute code.

9.3.9 Dropout

The dropout was introduced at (33) and with a specific probability sets the output of each hidden

neuron to zero. The neurons that are “dropped out” do not contribute to the pass-forward or

participate in the backpropagation of the network. Simplified, the dropout supports forgetting a part

of what is learned and therefore is especially useful to avoid overlearning (15).

Identification and Monitoring of Violent Interactions in Video Lourdes Mas Lillo

42

10 Methodology

Based on the existing concepts introduced in chapter 9, the following chapter focusses on the

selection of suitable tools to achieve the project objectives and the justification of the chosen

methods.

In the past years, the demand for automated rating and tagging systems has increased for various

applications. Named shall be, for example, YouTube, that gets a huge amount of uploads every day,

making it difficult for operators to be able to check the quantity of videos. Not least because of such

big companies’ interest, action recognition made a lot of progress in the recent past and there is a

good base of methods chosen for similar applications. (5) (8) (34) (35)

In comparison, the detection of violent or aggressive behaviour was less studied even if there is a

high demand for various applications, as the support of surveillance, rating video online content or

parental control (8).

10.1 Sensor Input Data

The main possibilities to counter violent behaviour with surveillance are a preventive way via

education or deterrence or a reactive way due to evidence and punishment. The chance of intervention

while the act of aggression is very low because of the gigantic amount of resources needed for it,

especially security personnel. The required human labour force was already reduced significantly by

using security cameras to observe risk areas from a centralized security office. Still the headcount of

personnel required to permanently supervise all installed security cameras is overwhelming and the

costs enormous. For there are not enough personnel, the real time evaluation of the input and

detection of all violence scenes is not possible. Of course, the human response rate and time is slow

and camera systems lose much of their prevention effect and intervention potential. An automatized

system instead would be capable to detect violence situations in real time and drag the attention of

the personnel to where it is needed. First, such a system must be able to see and somehow detect the

violence situations. For in many locations already installed, surveillance cameras are an obvious

choice as suitable input sensor. In this project the chosen feed for the automatized system is video

data.

10.2 Datasets

A dataset is a compilation of data, in this case video data, which includes examples with or without

specific features. A distinction is made between datasets with labelled files regarding the kind of

feature they contain and unlabelled datasets, which do not have content-related label. The selection

of datasets is determinant for what the system will analyse, because from training datasets the system

identifies the features needed to recognise violence in surveillance cameras video input. There are

Lourdes Mas Lillo Identification and Monitoring of Violent Interactions in Video

43

enough datasets available on the internet that are related with human behaviour. Table 12, below,

shows a list of datasets evaluated for this project.

Table 12: Some examples of human action detection datasets and the references of their work, own elaborated list of

remarkable datasets

Human Detection Datasets

SBU Kinect Interaction Dataset (36)

INRIA IXMAS (37)

UT-Interaction dataset (38)

Violent-Flows - Crowd Violence/Non-violence Database (39)

UCF-101 dataset (16)

Hockey Fights (8)

The Movies Dataset (40)

Training datasets should be as similar as possible to the real application and regarding the chosen

learning style the dataset must be labelled or may be unlabelled. Labelled datasets are preferred for

this project to freely decide the learning style. Datasets showing uncomplex scenes can easier lead

to positive results because unimportant features are less distracting the focus of the characteristics to

learn. Because of this, SBU Kinect Interaction Dataset and The Movies Dataset are discarded for

their complexity and size. The UCF-101 dataset has been discharged because it had bad results with

LSTM in (16). Four datasets from Table 12 are preselected for this project, Hockey fight database

(8) and Violent-Flows database (39) show group violence acts, the first one at ice hockey matches

and the second one shows crowded scenes with equal distribution of videos with and without

violence. INRIA IXMAS (IXMAS), used at (37), is a dataset focussed on one person. The dataset is

big and contains 12 human actions. It shows individuals acting alone from different camera

perspectives. It is considered important for this project as surveillance cameras tend to be set in high

positions, generally above the heads of the people and not just in a frontal perspective as it happens

with other datasets. Table 13 indicates the labels used in the IXMAS dataset and whether they

represent violence or non-violence.

Table 13: INRIA IXMAS labels, own elaboration based on the IXMAS label content

Label Representation Violence

0 Check camera 0

1 Cross arms 0

2 Scratch head 0

3 Sit down 0

4 Get up 0

5 Turn around 0

6 Walk 0

7 Wave arm 0

8 Punch 1

9 Kick 1

10 Point arm 0

11 Pick up 0

Identification and Monitoring of Violent Interactions in Video Lourdes Mas Lillo

44

UT-interaction dataset (UT) is introduced in the paper (41) and is also used at (38). The contained

videos have a size of 720x480 pixels per frame and show scenes where pairs of people interact with

6 different kind of activities. Three of them are defined violent and the other three not. These

interactions are done wearing more than 15 different clothing sets in front of variating backgrounds.

The dataset keeps a good distribution between the violence and non-violence classes which makes it

suitable for this project. In Table 14 are listed the labels used in the UT dataset and whether they

represent violence or not.

Table 14: UT-interaction labels, own elaboration based on the UT label content

Label Representation Violence

0 Handshake 0

1 Hug 0

2 Kick 1

3 Point 0

4 Punch 1

5 Push 1

It is important to work with different datasets because a combination is expected to bring improved

generalization. The two datasets with the simplest non-mass violence scenes are chosen for this

project IXMAS and UT, as they are considered to give clear input for the training. Also, a custom

dataset is created to test the model with an independent input. Table 15 shows a summary of the

datasets chosen for this project.

Table 15: Characteristics of the chosen datasets, own elaboration

Characteristics UT IXMAS Custom

Used for Training Training Final test

Different camera positions 1 5 1

Different background scenarios 2 1 1

Labels 6 12 10

Violence ratio [%] 50 16,7 50

10.3 Violence Detection

The next step is to determine the subject of analysis: The definition of violence. It can be difficult to

extract the difference between violence and non-violence, as it may be influenced by subjective

impression. In some cases, even humans face problems to correctly separate a real act of aggression

from friendly playing. A machine may have the same issue and possibly mix up activities as running

or dancing with violent behaviour. Therefore, features have to be found that can be used to securely

identify an act of violence. (9) (35)

The difference between the typical datasets for image analysis and the ones used for video is the

interdependence between the frames. When working with image datasets, the label is related with a

feature of the current image. When processing video, the label of the video might be related with a

Lourdes Mas Lillo Identification and Monitoring of Violent Interactions in Video

45

feature appearing in only few frames up to maybe all frames of the video. Also, the feature might not

be static, detectable in one single frame, but instead may be a change happening interdependent

between several frames. Therefore, each frame must be analysed autonomous and related to the

previous or following x frames.

Figure 28: Frames from the IXMAS dataset that belong to a kick labelled video

Figure 28 shows the process and the relation between frames, their interdependency, the importance

of time to define violence. With the factor time also comes the order of frames that determines a

time-dependent action. In addition, context is needed to clarify if a kick is just a raised leg or an act

of aggression.

10.3.1 Computer Vision Techniques

It might be difficult for an AI to identify the time-dependent data that is relevant to correctly rate a

video; therefore, computer vision techniques can assist focussing on important features. As a first

approximation, violent behaviour may be defined as abnormal behaviour. There are existing methods

for abnormal behaviour detection (6), but this will not be sufficient because violence is more complex

than just a detected abnormality. On the contrary, the majority of examples for abnormal behaviour

are non-violent like, for example a person in a crowd wearing short pants in winter.

Focusing on the video, there are more factors that might determine violence, for example the speed

of a movement, body contact or blood. (5) applies a technique called OViF (see chapter 9.1.1) to

analyse movement speed in relation with violent content. Focussing on the feature speed can also

cause problems, for example, rapid movements like running that do not necessarily imply a violent

action.

Regarding the feature blood, (42) and (43) are studies that evaluate the presence of blood to detect

violence in videos. For some surveillance cameras are recording images in greyscale, difficulties

with the integration of this technique and the blood colour detection are expected in this work.

Furthermore, blood presence per se is not an evidence of violence, as there are many cases of violence

with the absence of blood.

Further studies (compare (44), (45), (46)) focus their investigation on combining audio and video

analysis. Audio input is another feature that might help identifying violence but again, certain sounds

might not be safe evidence for an act of violence. Common video surveillance cameras also do not

register audio and therefore this work is not including audio analysis.

Identification and Monitoring of Violent Interactions in Video Lourdes Mas Lillo

46

An interesting procedure to approach the video violence recognition is STIP, explained in chapter

9.1.3. At (47) the state of the art is compared regarding different approximations and the conclusion

is that techniques as STIP give good results for action recognition. (8) applies this technique to detect

violence in sport videos using a hockey dataset. In 2019, in (9) this method is successfully used for

violence recognition using DL. In this study the technique is considered optional, implemented only

if no good result is achieved using only DL, because the strategy of this work is to approach the

problem with the simplest solution.

At (6) spatio-temporal information is used applying the IFV technique (see chapter 9.1.2) to learn

about human movement applied to violence detection using cross-validation. The method showed a

high accuracy but also very high computational requirements. As with the previous technique, this

work tries to achieve a good result with the lowest possible computational requirements, to make the

system suitable for the maximum number possible of surveillance machines. Therefore, this method

shall not be implemented until necessary.

10.3.2 Neural Networks

Summarized, violence is a very broad group of interactions and it is not possible to generally define

it with one or few selected features. More promising is the concept of identifying a combination of

many features that violence situations have in common. The advantage of NNs is that through the

training the network itself learns which features are relevant, taking all available information in

consideration: Be it blur on the frame caused by movement, the position of bodies or any other

common factor of the training dataset. Therefore, this study focusses on a NN approach to fulfil the

project objectives.

DNN

In 2003 was proved at (48) that using DNN is more successful than using a large multilayer

perceptron to train deeper. The system is consuming this way less neurons but achieving a better

result. One of the advantages of using DNN is that these networks by themselves can find features

and a solution adapted to the problem (9). Due to the complexity of human behaviour and the multiple

factors involucrate in the movement and interaction, this structure is chosen for this project.

The benefit of using deepness at CNN architectures is described at (15) and it is demonstrated that

the results are better with deepness included to CNN. Deep CNNs extract features from the images

to make predictions and have proved themselves more suitable for big data applications (9). This

perspective is implemented for the project to achieve better results in the training and to take more

profit of the datasets as they are composed by big groups of images.

Lourdes Mas Lillo Identification and Monitoring of Violent Interactions in Video

47

CNN

There are five deep CNNs evaluated for this project, LeNet5, AlexNet, VGG16, MobileNet and

SqueezeNet. The CNN architecture LeNet5 is chosen as a first approximation based on identifying

the structure of the human body. Similar as number and letters, the extremities of the human body

may be generalized as a distribution of shapes as demonstrated in Figure 29.

Figure 29: Human shape, own elaboration using as background a frame from the UT dataset

Based on this assumption, when people are appearing in the frames, there are structures in different

positions in the image bending on concrete axis. It is estimated that when, for example, a leg is close

to the body of another person it can be interpreted as violence. The analysis of this simple model for

violence video recognition is interesting to check if it is capable to deliver good results despite its

simplicity and with low computational resource requirements. Therefore, a NN inspired on LeNet5

and adapted for this problem is developed.

Due to its simplicity there is a risk that LeNet5 is not solving this problem, AlexNet, VGG16,

MobileNet and SqueezeNet, might serve as further CNN alternative. AlexNet is one of the most

important CNN architectures and known for its impact on machine vision. It is possible that this NN

solves the issue without the need of a complex time series based architecture, reducing training time

cost. Hence, this model is tested in this project. MobileNet and SqueezeNet are considered as an

alternative to AlexNet for surveillance machines with a small processing capability. But regarding

their similarities, AlexNet is chosen to prove the functionality of this kind of NNs. The VGG16

network, introduced at 9.2.8, can be loaded pretrained with ImageNet, but as its architecture is more

complex than AlexNet’s. For a simple solution is searched in this work, VGG16 is not used.

LSTM

At (49) and (50) is shown that RNNs are applied successfully for motion recognition. As the data

analysed is structured in video and the human interaction, this approximation is interesting. The

Identification and Monitoring of Violent Interactions in Video Lourdes Mas Lillo

48

LSTM chosen because its architecture was created to solve problems that can appear using RNNs as

explained at 9.2.9. The method is applied in a stacked way, as defined in 9.2.10, to bring the benefits

of deepness (compare chapter 9.2.1), including the time dimension between the layers, to take more

profit of this architecture.

A more complex solution for action recognition in video, which also has a high computational cost,

is to apply LSTM networks in combination with 3D CNN, using the descriptors that are generated

by the CNN to feed the LSTM network (9). As a proposal to apply this technique and to take most

profit of the LSTM, it is decided to create a ConvLSTM network that contains a Convolutional LSTM

layer with its output reshaped and fed to a LSTM layer. It is expected to need less LSTM layers when

using convolutions, so with this model it is possible to reduce the LSTM layers and changing one for

a convolutional LSTM including time dimension on this and other layers.

Computer Vision Techniques

In (51) LSTM is applied successfully for activity recognition and, for it is a similar application, this

architecture is expected to deliver good results for violence recognition. Furthermore, it includes the

ability to analyse time interdependencies and therefore the integration of computer vision techniques

is not necessary when using LSTM or ConvLSTM. For those reasons computer vision techniques

were excluded and the focus of this study are the LSTM and ConvLSTM networks.

Conclusion

A range of different NNs is tested in this project. On the first place, focussing on CNN to check if it

is possible to avoid the computational efforts of processing the time dimension. A very simple

approach here fore is based on LeNet5 architecture while the following step of complexity is to test

AlexNet. On the second place, two NNs that track the evolution of the scene, the time steps, are

evaluated. The first is a custom stacked LSTM model and after, the convolutional feature of the CNN

is included, creating a ConvLSTM model that contains a convolutional LSTM and LSTM layers.

The intention is to find a simple model that can solve the problem. The LSTM strategies are expected

to be the best options because they have memory cells that enable to remember previous results and

take profit of the interdependency of the images.

10.3.3 Learning Style

For the violence detection is not a cluster problem but a classification to detect concrete facts, the

UL learning style does not apply and therefore is not considered for the further development. The

feedback-based learning style RL could be fed well with the big amount of data available due to the

number of surveillance cameras in use, but the system ought to be released to learn from the feedback

received by security personnel. This means releasing a system that, at the beginning, makes many

mistakes and thereby strongly affects the work conditions of the personnel using it. Having to react

to fake alarms and giving feedback, but also missing real violence situations, which would put into

Lourdes Mas Lillo Identification and Monitoring of Violent Interactions in Video

49

danger possible victims, would heavily affect the trust put into the automatic system and therewith

its acceptance on the market.

Counting on a high number of correctly labelled public datasets with human interactions that include

violence acts, the style of learning that suits the best the problem is the SL as the model could learn

from comparing its predictions with the actual results of a given dataset.

10.3.4 Pretraining

There is a big dependency between the model’s performance and the size of the dataset. For this

reason, it is interesting to use knowledge transfer in order to avoid overfitting. This means pretraining

the network on a large generic database and after retraining the model to make a fine-tuning (9).

In (16) the LSTM is tested ineffective after having good results in the MediaEval. The creators

consider the reason is that the LSTM was trained with the UCF-101 which is a dataset very different

from the one used before. There is to expect that the results are going to be affected by the dataset

used. The team expects improvements on the LSTM model if retrained (16). Using pretrained models

is interesting for big deep architectures that otherwise would develop a very high training time effort.

A good base for pretraining is ImageNet, which is an image database organized by nodes that has

over 14.000.000 images. Pretraining with the contained images helps the model to identify people,

improve the learning rate and therefore make the system more intelligent. Using various datasets and

comparing the results is done before in (5) and (35).

Following this idea but creating an alternative, the pretraining of the network in this study is

performed with one violence video dataset. After learning with this pretraining dataset, the weights

of the model are loaded and reused in the next training step with another independent violence video

dataset. The intention is to use a pretrained model to merge the results of multiple training steps for

improved violence detection. This procedure is expected helpful to detect violence actions that are

staged in various ways and with several backgrounds.

The NNs are pretrained with IXMAS dataset and the weights are used to retrain with UT dataset.

This decision follows the idea of pretraining with a larger, simpler and more general dataset. The

IXMAS dataset is expected to be a good base.

10.4 Tool Selection

This chapter shows the discrimination made to select tools necessary or useful to develop the project

modules training comparative studies and alarm system. Most significant choice is the used library

and the related programming language. Advantages and disadvantages are evaluated below, and the

most suitable option is chosen.

Identification and Monitoring of Violent Interactions in Video Lourdes Mas Lillo

50

10.4.1 Machine Learning Libraries

There are several machine learning libraries that have been examined to be chosen for this project

(see Table 16); Torch, Theano, TensorFlow, Scikit-learn and Keras over Theano or over TensorFlow.

Table 16: Deep Learning frameworks of interest for the project and characteristics of them, own elaboration

Library Application of interest Complexity

Torch ML library Low

Theano Symbolic compiler for NNs High

TensorFlow ML library Middle

Scikit-learn Data modelling library Low

Keras
Library to be run over Theano or

TensorFlow/Fast moulding
Low

PyTorch Library based on Torch/ Debug Middle

Torch is a ML library based on the language Lua and using CUDA, it is of simple implementation

and very efficient. Theano is a symbolic compiler of NNs interesting for investigations and creating

optimized NNs. It is good for optimizations of matrix operations and uses the NumPy syntax.

TensorFlow is also a ML library that uses CUDA, but it is based on very optimized C++ code. Theano

is very complex in comparison to Torch or TensorFlow.

As Scikit-learn is more centred in the modelling of the data than in loading and manipulating the

data, it is used together with other tools as a support. As PyTorch is a library based on Torch and

Keras runs over TensorFlow, the decision is between Torch and TensorFlow. Both are suitable but

due to the bigger community for TensorFlow, the tool is chosen, and Keras is chosen to be run over

TensorFlow and simplify its use and have a good control of the variables used for training. In the

end, Keras, TensorFlow and Scikit-learn are the chosen libraries for this project.

10.4.2 Language

The core of TensorFlow is optimized C++ and CUDA code. But for its use it is offered for C++,

Python, JavaScript and Java languages as an application programming interface (API). For Java API

is still in experimentation in TensorFlow Core v2.2.0, it is not further considered for this project.

Table 17 shows the criteria on which the three languages C++, Python and JavaScript are evaluated.

Table 17: Characteristics of the possible programming languages to use in this project, own elaboration

Characteristic C++ Python JavaScript

Level Middle High High

Example of use Large systems Data analysis Web pages

Style Complex Simple Intermediate

Execution Compiled Interpreted
Interpreted/Just in

time compilation

Advantage
Manual control of

memory
NumPy library

Runs in every

browser

Lourdes Mas Lillo Identification and Monitoring of Violent Interactions in Video

51

The advantage of JavaScript is its compatibility with several browsers, making it suitable for

multiplatform purposes, even though, the idea of the final interface is not to be run in a browser. C++

language is interesting as it leads to the opportunity to manually control the memory allocation of

the elements, a helpful feature if memory is compromised by large datasets. Nonetheless, Python

brings more simplicity, as this language is easy to write and read. Furthermore, it gives the

opportunity to use the NumPy library, which belongs to this language and allows creating

multidimensional arrays and scientific operations on them.

The final decision is to use python for its simplicity and because of the NumPy library. In case of the

need to create more optimized code or to run a browser app, more modules in C++ and JavaScript

may be added in the future.

10.5 Training Methodology

A big part of the time dedicated to this project is employed to study the state of the art regarding DL

to determine the decisions taken. For example, understanding and controlling the normalization, the

loss function, and the activation to improve the training results is vital for the development of this

project. The next segments explain and justify the settings that are chosen to proceed with the NN

trainings using Keras.

10.5.1 Normalization

To use normalization is to apply a regularization to something; in this project it refers to adjust values

that are used in the calculations during the training. There are different ways to apply normalization

to the training, such as adding normalization layers to the model or to normalize the dataset.

Batch normalization layers map the input of a NN layer to a smaller size, they are very useful to

avoid the exploding and vanishing gradient problem explained at 9.2.3, keeping the values operated

within a smaller range, reducing their sparsity distribution and error on jump calculations.

To normalize the dataset used for training its values are, for example, divided by a set number. During

implementation, the importance to normalize a dataset to values that are adaptable to the loss function

was recognized. So, the output may be easily used for the loss calculation. Generally, it is

recommendable to use values not too much separated. In this study the datasets are normalized

dividing their values by 256 which is 28, because this value could be of use for making the

calculations of the NN more efficient for pooling with 2X2 windows.

10.5.2 Dataset

The chosen datasets are available for public use, but they are not optimized for the system developed

in this work. This section explains the organization and changes that are applied to the dataset to

enable their usage with this system and to achieve a better training result.

Identification and Monitoring of Violent Interactions in Video Lourdes Mas Lillo

52

10.5.2.1 Choosing Colour Distribution

The decision for this study is using greyscale instead of colourful images. As mentioned in the

methodology at 10.3.1, the blood colour is not determinant and after replacing the RGB colour

codification for greyscale, the images are still completely recognizable as demonstrated in Figure 30.

Furthermore, the greyscale can help to generalize and bring more attention to shapes and changes of

positions than to colours. Using greyscale images provides another advantage: The size of the image

is reduced per three. The text below represents an extract of the program showing the image sizes,

three times more image files can fit into the same memory space.

Shape of colour image (240, 264, 3)

Shape of greyscale image (240, 264, 1)

Figure 30: A video frame shown in RGB colour and in greyscale, taken from the UT dataset and edited

10.5.2.2 File Changes

To simplify and make the datasets more suitable for the problem, the amount of data is reduced to a

representative subset that is enough to give good results but also reduces the computing cost. In

addition, the labels are modified to binary violence/non-violence because the goal for this project is

to detect violence not to specify the kind of violent action.

10.5.2.3 Choosing Validation Styles

Regarding the descriptions made of the possible validation styles 9.3.1, there is the need to choose a

suitable one for the project. Table 18 shows a summary of criteria, used to analyse possible styles of

validation organization, based on the required style of input and issues predicted when evaluating

available methods. The two selected validation styles for this project are, in first place a part of the

dataset that is used until the cross-validation is implemented, as this is the method that best suits the

problem and avoids the learning problems of the other models.

Lourdes Mas Lillo Identification and Monitoring of Violent Interactions in Video

53

Table 18: Analysis of the different styles to process the validation dataset, own elaboration

Style Input Possible problems

No validation Elements Overfitting

Independent dataset Elements Validation set unrepresentative

Part of the training set Elements Overfitting

Cross-validation Elements None seen

One step ahead validation Constant
The datasets used in this project are not constant

10.5.3 Choosing Optimizer

Table 19 summarizes the main characteristics of analysed optimizers that are described at 9.3.2. This

helps to choose the most suitable alternatives for this project.

Table 19: List of Keras optimizers with their main characteristics, own elaboration

Optimizer Main characteristic

SGD For high redundant datasets

RMSprop Speeds the mini-batch learning

Adagrad Converges slow, adapting the learning rate

Adadelta Learns longer than Adagrad

Adam For large datasets

Adamax Better for jump calculations that tend to infinite

Nadam Like Adam but correcting the jump

SGD is not of interest for this project as, in contrary to the other optimizers, its learning is not

adaptative and therefore adapts less to the learning requirements of the model. RMSprop uses mini-

batch and as Adam is similar but applying Momentum, it gives an advantage to Adam that also works

well with big datasets. For this reason, Adam is chosen as basic optimizer for this system. From the

Adam family, Adamax and Nadam are kept in mind as alternatives to Adam, in case problems evolve

related with the learning. Adamax is used when the weight values on the scale tend to infinite and

Nadam to test the use of Nesterov method.

The learning rate is an important hyperparameter of optimizers. It represents how much a weight is

updated within one iteration during the training. It generally is a small value that controls how fast

the model learns from the problem, the value is configurable between [0,1]. A small learning rate

makes the model learn slowly, on the contrary, a big learning rate increases the speed of the learning

of the model. The value of the learning rate should be chosen high enough that the NN learns with

sufficient speed, not converging too fast or getting stuck during the learning process. The adaptative

optimizers allow adapting the learning rate during the training and therefore help the model to learn

correctly. Several learning rates are tested to find an optimum in the range [1E-1,1E-6].

Identification and Monitoring of Violent Interactions in Video Lourdes Mas Lillo

54

10.5.4 Choosing an Activation Function

Based on the descriptions of the activation functions and their characteristics (see chapter 9.3.3), the

ones suitable for this project are selected in this chapter. Important characteristics evaluated for

selecting the activation function are summarized in Table 20.

Table 20: Summary of the activation function characteristics, own elaboration

Function Linear
Dying

neurons

Vanishing

problem

Mean

activation

close to 0

Learning

faster

Linear Yes No No No No

Identity Yes No No No No

Binary Step No Yes No No No

Sigmoid No Yes Yes No No

tanh No No Yes No No

arctan No No Yes No No

ReLU
No/Yes for

positive values
Yes No No Yes

Leaky

ReLU
Yes No No Yes Yes

PReLU Yes No No Yes Yes

ELU No No No Yes Yes

CReLU
No/Yes for

positive values
No No No Yes

ReLU-6 [No,Yes],[Yes,No] Yes No No Yes

Softmax No No Yes No No

The linear activation is not is not used because the linearity is expected to bring problems due to the

data complexity. Instead, a non-linear activation is applied, as its output is normalized and helps to

generalize. The most common non-linear activation functions are sigmoid, tanh and ReLU. The way

they are combined in the model is very important for the performance (52). The binary step is not

taken for this system because the human interaction is complex and there is a big number of different

actions, this function is expected to be too simple for the problem.

Regarding possible problems with activation functions, the dying neurons effect happens when a

neuron always generates 0 because it is stuck on the negative side. A neuron on the negative side

makes a plane calculation and has difficulties to have discriminations again. Activation functions

with a plane 0 output for the negative side, like sigmoid or ReLU, will more likely have this problem.

9.3.3 shows the functions of the activation functions evaluated. All functions whose negative part is

represented as a plain line on the x axis, are more likely to have this problem.

Another problem is the vanishing problem, explained at chapter 9.2.3, it happens with functions that

reduce big input on small sizes. This applies to sigmoid, tanh and arctan functions, that reduce the

input in a small range between [0,1], [-1,1], and [-π/2, π/2] respectively. Small changes on the input

Lourdes Mas Lillo Identification and Monitoring of Violent Interactions in Video

55

imply small changes on the output, and therefore the derivate becomes small (53). A way to reduce

the vanishing problem applied in this project is to use a normalization layer explained at 10.5.1.

An advantage of ReLU is that it has less computational cost than sigmoid and tanh, which have

expensive exponential calculations (54). Therefore, reduces the training time required. Regarding the

size of the datasets used this is very positive.

Having the mean activation close to 0 accelerates the learning: “Mean shifts toward zero speed up

learning by bringing the normal gradient closer to the unit natural gradient because of a reduced bias

shift effect” (27). It can be useful to use these functions when the one used is converging too early.

Leaky ReLU, PReLU and ELU have this characteristic, they can be a good option to improve the

results achieved with ReLU. As PReLU and ELU leave to the NN to decide the value of α, is taken

Leaky ReLU to manually control this value. CReLU is not used as it is not contemplated the use of

two outputs, and ReLU-6 is not expected to be needed

The ReLU function is the chosen for the hidden layers, if the training converges too soon because of

the dying neuron problem, Leaky ReLU or PReLU are the alternative.

Regarding the last layer, is taken softmax as it is suitable for probability calculations and this work

aims to give a probability output of violence content. As in 10.5.5 is said that the crossentropy loss

combines well with a softmax or sigmoid last layer, sigmoid will be also tested, but expecting a better

result with softmax.

10.5.5 Choosing a Loss Function

This section provides a summary of facts significant to choose a suitable loss function for the system.

Loss functions in general are described at chapter 9.3.4. Table 21 shall give an overview of important

details taken into consideration for selecting the loss function used for this project.

Table 21: Summary of loss function characteristics, own elaboration

Loss function Output structure Preferable with

Mean Linear Sigmoid

Crossentropy Estimation of parameters Sigmoid (binary) or softmax

Hinge Estimation of parameters Set in the range [-1, 1]

Regarding the output wanted, when only one output per input is wanted, the MSE model is a good,

MSE is a mean calculation to use when only one value is expected, this is considered of interest for

the binary classification in this project. Instead, for analysing an estimation of different probabilities

and then choosing the one that best adapts, categorical crossentropy or hinge would be the best loss

functions. Regarding the combination of loss function with activation functions, analysing the state

of the art (see chapter 9.3.4.2) the crossentropy is preferred for models with last sigmoid or softmax

function layers. The hinge loss, which gives a result within [-1,1], is interesting combined with

Identification and Monitoring of Violent Interactions in Video Lourdes Mas Lillo

56

activation functions that go on the same range, for example Leaky ReLU. Categorical crossentropy

seems to accelerate the learning and as the datasets are complex on their labels and the actions are

similar it is considered beneficial that the model gives predictions for each label instead of forcing

only one option during training. Categorical crossentropy is selected over the other models for this

project in order to accelerate the learning and because the human actions are complex and can have

similitudes, therefore, a distribution of probabilities for the possible actions is expected to be more

fair to the problem. MSE is also chosen for this project and is compared to check the expected

advantage of using crossentropy. The last layer activation function to combine whit categorical

crossentropy for a distribution of probabilities is Softmax. To ensure in the NN that the output is a

distribution, the labels should be organized using to categorical from Keras.

10.5.6 Interpreting the Accuracy and Loss

The learning curves are graphs that visualize the learning performance of a model. They typically

visualize the plot of learning on the y axis and the x axis represents the amount of training epochs.

These curves are especially useful to rate the performance of ML as the learning rate is incrementing

over time (55). In this project the training data is shown using the training history visualization from

Keras. The fit or fit_generator functions return a history object, from where data collected during the

epochs is taken. The accuracy and the loss evolution through the epochs are valuable data for

evaluating the model’s performance and detect learning problems. One simple way to visualize the

results is using matplotlib library to generate graphs with the evolution results. Table 22 shows the

different elements to consider when interpreting an accuracy and loss graph.

Table 22: Tools to interpret the results of the learning on a NN, own elaboration

Tool Description

Accuracy
Performance learning curve, this metric shows how correct the

model works

Loss Optimization learning curve, how the model is optimized

Train learning curve
Calculated with the training dataset. To see how the model is

learning during the training process

Validation learning curve
Calculated with the validation dataset, to see how well the model

is generalizing with data not trained with

In this project two graphs are generated after each training. The first graph shows the accuracy during

training and validation and the second graph that shows the loss during training and validation. It is

important to understand the typical behaviours of a learning curve to diagnose how the model is

learning and to enable fast troubleshooting.

10.5.6.1 Not Learning

A model is not learning when its accuracy does not improve and the loss is not reducing over the

epochs, which means that the errors are staying constant, except maybe some noise. Figure 31 and

Figure 32 present typical graphs of a non-learning model.

Lourdes Mas Lillo Identification and Monitoring of Violent Interactions in Video

57

Figure 31: Accuracy evolution of a non-learning model, created using matplotlib

Figure 32: Loss evolution of a non-learning model, created using matplotlib

10.5.6.2 Underfitting

The underfitting occurs when a model is not capable to learn from the training dataset. This can be

identified when analysing the training loss graph as a flat line or noisy values of high loss. Also

possible is a training loss that continuously decreases during the training and shows a tendency to

continue decreasing at the end of the training. This shows that the model is capable to learn more,

and it should learn longer time.

Identification and Monitoring of Violent Interactions in Video Lourdes Mas Lillo

58

10.5.6.3 Overfitting

Overfitting occurs when a model learns too much from a dataset during the training, including

random noises, this means that the model has memorized not determinant features and therefore the

generalization capability gets reduced. To observe this behaviour the validation accuracy should be

analysed. It happens if the model has higher learning capacity than the one required or has trained

too many iterations. It can be identified in the loss graph, as the training loss continues decreasing

but the validation one stops decreasing at certain point and starts increasing.

10.5.6.4 Good Fitting

This is the best outcome possible and it is set in between the under and over fitting, having a model

that is capable to learn and to generalize. It can be recognized when the graphs of the training and

validation loss decrease until they reach a stability with a minimum distance between the train and

validation values.

10.5.6.5 Training Set Unrepresentative

When the training set is not wide enough compared with the validation dataset, it happens that the

model is not receiving sufficient information to learn about the problem, even though it fulfils the

requirements for a good generalization capability. This case can be recognized when both lines of

the loss are showing progress but the distance between training and validation is big.

10.5.6.6 Validation Set Unrepresentative

This problem happens if the validation dataset is not giving enough information to the model to learn

how to generalize. It can be identified when the learning rate seems to be correct, but the validation

loss has strong noise movements along the training loss. Another possible result can be the gap

between both curves, training and validation loss, being too big. With better results for the training

it can mean that the validation dataset is not representative. Examples for both possible results are

demonstrated in Figure 33 and Figure 34.

Lourdes Mas Lillo Identification and Monitoring of Violent Interactions in Video

59

Figure 33: Accuracy of a validation set unrepresentative during the training of a ConvLSTM NN, created using matplotlib

during the tests made in this project

Figure 34: Loss of a validation set unrepresentative during the training of a ConvLSTM NN, created using matplotlib

during the tests made in this project

10.5.7 Choosing Number of Epochs, Batch Size and Time Steps

The epochs are a key element for training described at 9.3.5. The quantity of epochs used should be

enough that the accuracy reaches its top and the loss is stabilized, but avoiding extra trainings that

would lead to overfitting as explained in 10.5.6.3.

Identification and Monitoring of Violent Interactions in Video Lourdes Mas Lillo

60

For big datasets it can be difficult to apply the batch gradient descent because of the spatial

complexity of keeping all files of the dataset in memory. Over this method and using a batch of 1,

The mini-batch style is expected to be a better approximation because it uses a size of batch and it is

possible to adapt its value to control how the model converges bringing robustness and efficiency as

said in 9.3.6.3. This adaptability is beneficial because it determines after how many consecutives

predictions is calculated the error committed. Therefore, this method is applied and is used with

Adam, Adamax or Nadam optimizers that were selected in 10.5.3.

In (56) recommend batch sizes power of two, such as 32, 64, 128. It could help fitting the

requirements of the processor used for loading and training the dataset. This setting is accelerating

the processing time of a training. The value will be adjusted between 20 and 80 in the tests to find

the one that best suits the problem, and a power of 2 in this range will be also compared to determine

if it brings improvements for the training.

The amount of memorized time steps required to detect the time-dependent action is relies on the

application and therefore there is no fixed rule. (57) recommends to memorize 5 or 10 time steps.

When the value gets higher the representation taken to be memorized are a higher subset of the

dataset, which also may cause problems because a high value k means remembering more

information that may be not related to the action. When the memorization is applied over a smaller

number of frames, the effect of the technique has less effect on the learning, which means that the

trained AI less considers the interdependency. For the following experiments, the time step values k

of 2, 10 and 20 are used to find the best option and confirm if the values between 5 and 10 indeed

bring the best result.

10.5.8 Choosing a Training Host

Several options to host the training are shown at chapter 9.3.8. The possibility of rented servers is

discarded due to the costs. To ensure high data security, it is decided to guarantee local training and

prepare single and multi GPU mode instead of using Colaboratory servers. This decision increases

the training time but brings the experience to confront a limited system and to learn how to take the

most profit of it.

10.5.9 Computer Characteristics

The characteristics of the hardware used during training is shown in Table 23.

Table 23: Characteristics of the computer used during the training, own elaboration

Characteristics

RAM 16.0GB

Processor Intel(R) Core(TM) i7-4790k CPU 4.00GHz

GPU GeForce GTX 980

Lourdes Mas Lillo Identification and Monitoring of Violent Interactions in Video

61

10.5.10 Spatial and Computing Adaptations

Some preparations are necessary to correctly train the NNs in this project. On the first place, it is

necessary that the system uses the GPU power, in second place, the project shall enable to use multi-

GPU power to take profit of further computer improvements. Finally, the kind of generator used to

load the data in memory batches is chosen for the different input dataset structure required by the

NNs.

10.5.10.1 GPU Training over CPU

Using GPU over CPU for training big data is very important. Due to the different architecture of both

processors, a CPU can quickly fetch small amounts of packages in the RAM, the GPU is specialised

in fetching big amounts of memory data in a slower way. Due to the quantity of videos to be analysed

there is a great quantity of frames to process in this project. This is just what the GPU is specialised

for and using it instead of the CPU is significantly improving the processing speed.

10.5.10.2 Preparing the Computer for GPU Training

In this section is explained how to prepare the software to use the GPU for training. The package

TensorFlow does not permit to train multi-GPU, instead the tensorflow-gpu should be installed in

the project interpreter because this package allows to use TensorFlow over the GPU.

The next step is to install CUDA as a platform to compute the GPU on the project. During the testing

of the tool a problem was found: TensorFlow could not use CUDA and the function cudaGetDevice

failed. The result of the root-cause-analysis is that the used version CUDA 10.1 does not include the

cudart64_100.dll that is required by TensorFlow 2.0 (58). As work-around it is possible to either

manually add the required dll-file to the bin path in the installation folder or to install the supported

version CUDA 10.0 (59). To avoid further incompatibilities, CUDA 10.0 is used in this project.

To integrate the CUDA Toolkit Visual Studio is installed. It is important to install a version of Visual

Studio that is supported by CUDA. For this tool combination Visual Studio Community 2017 is

supported and offers an interesting free version of the development environment.

The next requirement is cuDNN the CUDA NN library. It is necessary to sign in on the Nvidia

developer webpage to download this GPU-accelerated library of primitives for DNNs and include it

in the CUDA files.

10.5.10.3 Preparing the Code for Multi-GPU Training

To adapt the system to use the multi-GPU power and make a correct multiprocessing Keras offers

an option to integrate this function as shown in the code below.

print(_get_available_devices())

 num_gpus = tf.contrib.eager.num_gpus()

 print("num gpus: ", num_gpus)

Identification and Monitoring of Violent Interactions in Video Lourdes Mas Lillo

62

 model = tfk.utils.multi_gpu_model(model, gpus=num_gpus)

10.5.10.4 Generator Style

To enable local training with big datasets, it is required to load the elements of the dataset by batches

of temporal data, keeping the data in memory only while being used. A data generator solves this

issue and provides the batches. The first example is the ImageDataGenerator, it is a Keras generator

class used to create data batches shaped for the typical training input for models that train with

images. It gives the opportunity to add data augmentation to the dataset. A second option is the

TimeSeriesGenerator. This Keras class transforms the input data, such as video images, into the

shape required for the training of time factor dependent models, as LSTM. The problem with both

options is that one generates batches with a structure good to fed images to NN and the second to fed

time dependent elements. In this project both structures, and in addition the ConvLSTM structure

input, are required.

The favoured option for this work is to develop a custom data generator that creates data batches

with different shapes, bringing a reusability value for training different NNs. This custom generator

can cover all cases, gives the possibility to customize and adapt and can be of use for future work.

At Table 24 the important factors considered when choosing the generator style are summarized.

Table 24: Options proposed to solve the lack of memory to load the dataset while training problem, own elaboration

Options Data shape Reusability
Implementation

time cost

ImageDataGenerator For image data models Less Low

TimeSeriesGenerator For time dependent models Less Low

Own generator Can create different ones More High

10.6 Alarm System

The tools used to develop the Alarm system are the ones determined at 10.4, using python language

for its simplicity, and TensorFlow and Keras to load the trained model in order to analyse the frames.

This part of the project will consist in a system that can process video input in real time and detect

violence scenes using the developed model. When violence is detected, relevant frames are saved as

evidence while an alarm is generated to inform the authorities and enable a quick reaction of the

personnel. For this the system must be simple and fast, which means cosmetic features of the software

are not necessary. This is a professional tool, clicking buttons or appearing pop-ups on the screen

can interfere the view of or unnecessarily distract the personnel and therefore, are not wanted. After

detailed analysis, it was concluded that subtask “Frame the people on the scenes” is not implemented

in the system. Automatic generated frames do not add extra value but could distract personnel or in

the worst case even disturb the view on significant happenings.

Lourdes Mas Lillo Identification and Monitoring of Violent Interactions in Video

63

Combined with the sound alarm when detecting violence, the scene shall be visible from a video

frame where the camera ID is written for a fast localization of the event. The personnel shall not need

to interact with the program and instead focus on interfering in the act. To avoid unnecessarily

occupied storage space, the evidence frames are saved in greyscale, not in colour. The name of the

camera used, date and hour are added to the saved frames to add reliability and avoid mistakes

evaluating the evidence.

Alarm
system

Environ-
ment

CameraSecurity Goal

N
o

vi

o
le

n
ce

Figure 35: Behaviour of the alarm system, own elaboration

10.7 Summary

This project studies different approaches for violence detection in videos based on NNs, more

specifically, a LeNet5 model and AlexNet. If those NNs are not sufficient to solve the problem due

to the time dependency between frames, the use of LSTM and convolutional LSTM layers is realized.

Two datasets are used and, following the advice from (16), the possibility of improvement using

pretraining is applied. The training structure is analysed and set, and the trainers created. A custom

data generator needs to be created to provide data batches with different shapes suitable for all applied

NN architectures. Finally, a simple real time violence in video analyser software is developed and

tested with an independent dataset.

11 System Description

This section describes the characteristics of the implementation. First, the used software is named

and, the two modules implemented to fulfil the objectives of this project are described: The training

comparative studies and the alarm system. The design of this system using unified modelling

language (UML) used to create this system can be seen at the annex 16.3.

Identification and Monitoring of Violent Interactions in Video Lourdes Mas Lillo

64

11.1 Used Software

The system is built using Python language over PyCharm environment developed by JetBrains. The

main external libraries employed are TensorFlow, Keras, OpenCV, matplotlib, NumPy and Scikit-

learn. To enable the use of the GPU for the training calculations, CUDA and Visual Studio

Community 2017 have been installed. For the project documentation Microsoft Office is applied, in

particular: Word, Excel, and Visio. Graphs are created with MATLAB.

11.2 Training Comparative Studies

The module “training comparative studies” is created with a scalable perspective, to make possible

to include models with three different structures of input data. The trainer class and custom generator

can use different networks and structures of data and it is simple to add new ones. This makes this

code also reusable for different projects and purposes. Heritage of classes, enumeration of model

types and a custom generator that can adapt the batches to the required structure are key for the

successful development.

11.2.1 Models

The NNs code is separated on different python files depending on the model type and called by the

trainers to load the model. Here are described the NN developed in this project. To generalize, all

models receive the input and output size by parameter to make it adaptable to different problems.

Also, it is possible to load an already trained model instead of creating a new one. Below are

described the general structure of NN systems tested. The models UML can be seen at the annex

Figure 85.

11.2.1.1 CNNs

Both used CNN models are included on independent files. They are based either on the LeNet5 or

the AlexNet structure. The shape of the layers of the LeNet5 is adapted to bigger images than the

ones typically fed to the net to preserve details of the video. In both cases the activation used on the

layers is ReLU except on the last layer where softmax is applied as explained in chapter 10.5.4. The

input distribution for these NNs follows:

 (samples, channels, rows, cols)

The inner architecture of AlexNet is not explained in this section, as it was not modified for this

project. To adapt the net to the complexity of the problem, LeNet5 was customized: Three layers

instead of two convolutional 2D layers are used in this NN. The quantity of filters per convolution is

also changed from 6 and 16 filters to 16, 64 and 64. The first kernel is of size (7,7), the rest is the

same as in the original LeNet5. Furthermore, there are two instead of three final dense layers, but

with more elements. The first dense has 1024 units and the second has a variable number of units

and this way can adapt to the output size required by the problem. In addition, max pooling is used

https://www.office.com/
https://www.mathworks.com/products/matlab.html

Lourdes Mas Lillo Identification and Monitoring of Violent Interactions in Video

65

instead of average pooling, as it extracts the most important features instead of smoothing the data.

The code below is used to create the LeNet5 based model:

 model = Sequential()

 model.add(Conv2D(16, (7, 7), strides=1, padding='same', input_shape=dim, activation='relu'))

 model.add(MaxPooling2D(pool_size=(2, 2)))

 model.add(Conv2D(64, (3, 3), strides=1, padding='same', activation='relu'))

 model.add(MaxPooling2D(pool_size=(2, 2)))

 model.add(Conv2D(64, (3, 3), padding='same', activation='relu'))

 model.add(Flatten())

 model.add(Dense(1024, activation='relu'))

 model.add(Dense(outputshape, activation='softmax'))

11.2.1.2 Stacked LSTM

This model uses a recurrent approach applying stacked LSTM. It makes the model deeper than only

using one layer because each layer processes a part of the task before it is passed on to the next layer

that will continue working on it and creating a higher level of abstraction. The most suitable stacked

LSTM model created in this study has four LSTM and two dense layers. Figure 36 visualizes its

basic architecture.

(h*w*channels)

ti
m

e
st

e
p

s

Input

Dense

LSTM LSTM LSTM LSTM
Dense

..
.

B
a

tc
h

 s
iz

e

Figure 36: The stacked LSTM model network structure created, own elaboration

This model receives different parameters to generalize its use. For example, a Boolean determines if

the weights of an already trained LSTM model should be loaded. For this, the model must have a

h5py format. If no trained model is loaded, a new one is created using several variables to make the

model adaptable to different dataset sizes and required outputs. The model is sequential, this means

that a list of layers is passed to the model constructor. In the code the layers are added using the order

method.add. Regarding the LSTM layers, As the first parameter of the LSTM layers it is written the

number of units named length, that represents the number of elements in the training. Written as first

parameter of the LSTM layers is the number of units named length, which represents the number of

elements in the training. Sequential requires that in the first layer input shape is passed as an

Identification and Monitoring of Violent Interactions in Video Lourdes Mas Lillo

66

argument. It can be a tuple, or, in case accepting any shape is wanted, it should be defined as “None”.

For LSTM layers the input must be given in three dimensions that must be organized, as shown in

the code below, with the number of samples, the time steps to be memorized and the size of an

element from the dataset.

(samples, time steps, features)

For the next layers the input shape is inferred, so it is not required to specify it. The LSTM output by

default is two-dimensional, because it learns from previous time steps but gives a result for the

current one. When stacking LSTM, the next LSTM layer will again expect a three-dimensional input,

therefore return_sequences must be set to true in all LSTM layers but the last one, where it is set to

false. Setting this variable to true makes the hidden state output visible for the next layer, so the input

in the next time step is the full sequence returned by the previous time step. The last LSTM layer

only needs to return the result for the current time step. The activation by default is tanh, and the

recurrent activation is hard sigmoid. The last LSTM layer output is used in a dense layer, that

organizes the input that receives to a tuple, in this case the output is a tuple with shape batch size.

Finally, a second dense with the size of the number of classes is applied. The explained settings are

applied in the code below.

model = Sequential()

model.add(LSTM(length, input_shape=(timesteps, patch_window[0]*patch_window[1]),

return_sequences = True, activation = relu))

model.add(LSTM(length, input_shape=(timesteps, patch_window[0]*patch_window[1]),

return_sequences = True, activation = relu))

model.add(LSTM(length, input_shape=(timesteps, patch_window[0]*patch_window[1]),

return_sequences = False, activation = relu))

model.add(Dense(length, activation = ‘relu’))

model.add(Dense(outputshape, activation = ‘softmax’))

To illustrate the distribution of data passing in the NN, Table 25 shows the size distribution of data

for a batch size of 32, 10 time steps and 7 classes. The first three LSTM layers share information

regarding the time steps to the following layers while the last one does not share it. The first of the

following dense layers has the size of the batch and last one provides the final output, which is the

quantity of possible classes.

Lourdes Mas Lillo Identification and Monitoring of Violent Interactions in Video

67

Table 25: Layers size output of the LSTM NN, own elaboration

Layer type Output shape

lstm_1 (LSTM) (None, 10, 32)

lstm_2 (LSTM) (None, 10, 32)

lstm_3 (LSTM) (None, 10, 32)

lstm_4 (LSTM) (None, 32)

dense_1 (Dense) (None, 32)

dense_2 (Dense) (None, 7)

11.2.1.3 ConvLSTM

The convolutional LSTM-NN (shown in Figure 37) processes the input first in a ConvLSTM layer

and after reshapes the data for the use in a LSTM layer. After two dense layers a tuple is returned

containing the shape defined by the quantity of labels for the problem.

(hXwXchannels)

ti
m

e
st

e
p

s

Input

Dense

Conv
LSTM

Flatten

Repeat
vector LSTM

Dense

..
.

B
a

tc
h

 s
iz

e

(hXwX32)

Figure 37: The ConvLSTM model network structure created, own elaboration

The shape of the input for a convolutional LSTM layer is shown below. It uses the channels, rows

and columns as needed to correctly apply the filters and being able to calculate the size of the picture

matrix.

(samples, time steps, channels, rows, cols)

Table 26: Layers size output of the ConvLSTM NN, own elaboration

Layer type Output shape

conv_lst_m2d_1

(ConvLSTM2D)
(None, 1, 254, 32)

dropout_1 (Dropout) (None, 1, 254, 32)

flatten_1 (Flatten) (None, 8128)

repeat_vector_1

(RepeatVector)
(None, 10, 8128)

lstm_1 (LSTM) (None, 32)

leaky_re_lu_1 (LeakyReLU) (None, 32)

dense_1 (Dense) (None, 32)

leaky_re_lu_2 (LeakyReLU) (None, 32)

dense_2 (Dense) (None, 7)

Table 26 shows the size of data passing through the NN for a batch size of 32, 10 time steps and 7

classes. A first convolutional LSTM layer is followed to a dropout to avoid overfitting. In the next

Identification and Monitoring of Violent Interactions in Video Lourdes Mas Lillo

68

step it is necessary to prepare the data fed to the LSTM. First, a flatten layer is used to give the shape

required to store the features of the LSTM. A repeat vector that adds the dimension used by the time

steps is added after and therefore the LSTM layer can be used. To include the activation function

leaky ReLU and apply it to the model, it is necessary to create an own layer for it. Regarding the

following dense layers, the first has the shape of the batch size and the second of the quantity of

classes. The code below shows how to create this code with Keras:

model = Sequential()

 model.add(ConvLSTM2D(filters=32, kernel_size=(1,3), activation='relu',

input_shape=(timesteps, 1, patch_window[0], patch_window[1])))

 model.add(Dropout(0.5))

 model.add(Flatten())

 model.add(RepeatVector(outputsize))

 model.add(LSTM(length, return_sequences=False))

 model.add(LeakyReLU(alpha=0.05))

 model.add(Dense(length))

 model.add(LeakyReLU(alpha=0.05))

 model.add(Dense(outputsize, activation='softmax'))

11.2.2 ModelType Enumerator

ModelType is a custom class that contains an enumerator naming the possible models. It helps

organizing the processes adapted to the model that is applied. Used to sort code regarding the model

type to work with, it, for example, determines the requirements for the selected model to train, or it

organizes the data accordingly. The training classes, the generator and the final system detector have

a ModelType object. The UML of this enumerator can be seen in the annex at the Figure 85.

11.2.3 Trainer

The code used to train the NN is differenced in two parts, first a parent class called KerasTrainer,

and second the trainers that inherit from this general trainer. This way it the code can be easily

escalated. In the annex Figure 85 is the UML used to design the trainer structure.

11.2.3.1 KerasTrainer

This code is complex, and the constructor declares a wide amount of class variables, between them

are included, paths to reach datasets for training, validating and testing or a model path in case it is

wanted to load one, also variables to determine the size such as the patch window which is a tuple

that contains the size that the images are rescaled to, the number of labels, the quantity of epochs,

the batch size or the number of time steps. Regarding training settings there is a variable to define

the optimizer and also the early stopping and the model check point that are explained below to

understand their applicability.

Lourdes Mas Lillo Identification and Monitoring of Violent Interactions in Video

69

In first place, the variable early_stopping calls the method EarlyStopping that inherits from Callback

class in the Keras library, it stops training when a monitored quantity of progress stops, the patience

parameter determines after what amount of times that the model has not improved, it will stop

training. The monitored value to determine if the model is learning is the loss as it is set in the monitor

parameter. In second place, model_checkpoint is calling ModelCheckpoint from the Keras Callback

class, it saves the model after each epoch, as the parameter save_best_only is set to true, it will only

save the best model until the moment, allowing to have at each training the best result obtained saved.

The model is saved in an .hdf5 format making easier to load it after.

Regarding the class methods, there are some general ones to be used by the classes that inherit from

this class. Their applicability is going to be explained below.

Multi GPU training

For parallel training is needed to set the model as a multi GPU model using the function

multi_gpu_model from TensorFlow that receives the model and the number of GPUs. This function

is deprecated and is going to be removed after April of 2020, it is necessary to change it for

tf.distribute.MirroredStrategy.

To see all the devices of the system, including CPU, the function get_available_devices returns an

array with the name of the devices that can be used for training, this list is accessed using the method

list_local_devices from the device_lib, this method returns a list of DeviceAttributes protocol buffer,

and is from this buffer that the list of names is taken from. To get the concrete number of GPUs in

the system is used show_gpus, which is a function that dynamically gets the number of GPUs that

are integrated in the system, it prints the result of the function above descripted. After this, it calls

the function contrib.eager.num_gpus from the library TensorFlow, this function returns the number

of disponible GPU devices. In the code below is

 try:

 print("num devices: ", _get_available_devices())

 num_gpus = tf.contrib.eager.num_gpus()

 print("num gpus: ", num_gpus)

 model = tfk.utils.multi_gpu_model(model, gpus=num_gpus)

 print("multi gpu")

Channels Order

This method returns a tuple that has the correct shape regarding the format that the data will have to

follow training depending on the current Keras data format, whether it is channels first or channels

last. When the data format is channels first the Keras input for image processing follows is organized

as a tuple of the shape (1, height, width) if it is the other case possible, the order is (height, width, 1).

Identification and Monitoring of Violent Interactions in Video Lourdes Mas Lillo

70

Evaluation

The evaluation is done over the test dataset, that have not been used during the training, to see the

abstraction to new data capability of the model. To evaluate the model there are different methods

from the Keras library used.

First, using the predict_generator method, that generates predictions from input samples that are

taken from a data generator, in this case, using the custom generator created. It returns a NumPy

array of predictions.

Second, using evaluate_generator, this method evaluates the model using a generator, it receives

both the test input and the output expected. It makes predictions and then evaluates the performance

of them comparing the results obtained with the ones expected. It returns a list of scalars, in case of

the model having multiple outputs, or a scalar test loss in the case of this code as there is only an

output in the model.

Third, using the predict_classes method that generates predictions for the samples batch by batch, a

difference with the previous two evaluation system to take into consideration is that this method is

loading the test data fully into memory instead of using a given generator.

A last method saves the training and loss accuracy using the matplotlib library to generate the

graphics.

11.2.3.2 Trainers

The classes TrainLeNet5, TrainAlexNet, TrainLSTM and TrainConvLSTM inherit from

KerasTrainer, and the constructor calls the parent constructor to initialize its variables, it also

introduces dimension variables to work with RGB or greyscale channels and have a ModelType

object to determine the input structure required for the different NN.

Fit

Their method train_fit loads the model and trains having all the data loaded in memory

simultaneously. The variables data and labels store the training set and class data into a NumPy array.

The code then is split into train and test, groups, they are used during training on each epoch, the first

group to train and the second to validate the results. All the arrays of data are reshaped then to adapt

to the model input. The model is loaded on the device CPU to leave free space to the GPU to make

the training calculations and finally the model is fit using the fit function. In the next code is shown

how to ensure using TensorFlow that the model is loaded in the CPU.

with tf.device('/cpu:0'):

 model = get_X_model(…)

history = model. Fit(…)

Lourdes Mas Lillo Identification and Monitoring of Violent Interactions in Video

71

The fit function receives as parameters the training data and labels, the validation data that is used

after each epoch to check with a group of it has not being trained with during the epoch. It also

receives the batch size, so the fit function can know how big are the bunches that each epoch must

divide the data in. Also the numbers of epochs, or full iterations over the training set, the verbose

that is set to 1, it means that during the training there is information about the process on the console,

that can be of great help to visually evaluate the speed of the training and learning. There are also the

early_stopping and the model_checkpoint callbacks between the parameters. This fit function will

update the weights of the model during the training and will return the final model with its weight.

Fit Generator

The method train_fit_generator is similar to the train_fit method with the main difference that it uses

a custom generator to load in chunks the data with the structure required for the model. It also uses

StratifiedKFold from the library Scikit-learn to make cross-validation with 10 folds.

11.2.4 Custom data generators

The class DataGenerator contains the custom code of a generator that feeds the data in bunches to

be fitted for training. Its UML design can be seen at Figure 85. This class inherits from

Keras.utils.sequence, which is a base object used for fitting into a sequence of data. To use this base

object, it is needed to implement the functions __len__ and __getitem__, and in case there is the need

to modify the dataset between epochs it is required also to implement on_epoch_end.

__init__ is the constructor that initializes the object, as arguments to initialize its values it receives

the following data: a dictionary containing the physical addresses of all the frames and their labels.

This way it is possible to access all images in an ordered mode. This constructor also receives the

batch size that is used to determine the quantity of elements in a cluster that are taken, to be processed

as a group.

The value dim represents the tuple that determines the dimension of one element. The constructor

also receives the time steps that are required during training, and it will also affect to the dimension

of the elements as the LSTM and ConvLSTM NNs will use this feature.

A variable that contain the number of classes is used to transform the output data to categorical and

then be able to compare the distributions with the real ones when training. It works as follows, if

there are three labels and one element of the dataset that is going to be used for training contains the

first label, the distribution of its expected output is (1,0,0).

Also the path where images are wanted to be load from in batches is set on the constructor, the patch

window, that contains the height and weight to resize the image, a ModelType object and finally a

Boolean to determine if on_epoch_end is applied a shuffle.

Identification and Monitoring of Violent Interactions in Video Lourdes Mas Lillo

72

The function __len__ returns the number of batches per epoch. This value is typically calculated as

the number of samples divided by the batch size, this way can be analysed the maximum quantity

possible of images without repetitions of the same image on each epoch. The quantity of samples

value is taken from the length of the dictionary that contain the frames addresses.

As an example of this, with 31 samples and batches of ten images, the data is distributed as “31/10

= 3,1”, in the code this result is parsed to integer because the batches that are being taken can only

be a natural number or 0, therefore the result will be 3 batches per epoch.

 def __len__(self):

 return int(np.floor(len(self.list_IDs) / self.batch_size))

The function __getitem__ overrides the same method from the inherited Sequence class. The current

position in the dataset is controlled with an array of indexes, the indexes is a class variable from

Sequence that is used to point to a different group of elements on each batch avoiding repetitions.

These indexes have been used to check the distribution of the elements to be feed to the trainer. In

the Figure 38 can be seen the indexes in which a dataset is divided into. Each index references to a

position of the dataset, for example the index 0 references to the first image, let’s say position x, then

the index 1 references to the image at the position x+n and the index 2 to the one at position x+2n.

Figure 38: Screenshot that shows the indexes that point to the batches made for the training, taken during a program run

It uses the custom method __data_generation__, where the indexes are used to iterate over the

dictionary of images and get all the data needed to conform each of the batches. Finally, returns a

batch of data to be used during the training that consist of tuples of image data and their

corresponding label. The shape of the images depends on the ModelType enumerator used in the

class.

__data_generation__ is a custom method created to generate data; it is called by __getitem__

receiving an array that contains the name of the elements to get on each batch and an empty array

“X” which shape depends on the ModelType. It returns two NumPy arrays, one called “y” contains

the labels of the elements in the batch, the other, “X” filled with the data from the images. First, it is

created an empty NumPy array for storing the labels, “y” with the size of the batch and volume

needed to store int values.

The data is captured, iterating over a for loop, that takes every segment of the array list_IDs_temp,

that contains the segment of the dictionary with the names of the frames that have to be captured for

the current batch. Each image is read using imread function from the public OpenCV library and

Lourdes Mas Lillo Identification and Monitoring of Violent Interactions in Video

73

resized according to the required criteria, after editing the image, it is added to the “X” array and

from the name of the image is taken the label value and stored on “y”. on_epoch_end is the last

method of the class. On it, the indexes of the batches are updated at the end of each epoch. If the

shuffle variable is set as true, the values are returned in a random order.

11.2.5 Other Generators

Two alternative generators have been created; their UML can be seen at Figure 89.

DataGeneratorOfSection is a class that works as the custom DataGenerator, but it also receives the

indices created by StratifiedKFold to apply cross-validation. Instead of generating data of the whole

dataset, it does it for the indexes given. It is called inside of an iterator of each split for the

cross-validation, on the trainer class.

The DataStratifiedGenerator is another generator created. It is designed to make the batches for

cross-validation without the need to use the StratifiedKFold from Scikit-learn

It is like the custom DataGenerator, but on the constructor it is include the counter called

batch_count that is initialized to 0 and increases and the validation_count, that it is set to the division

value -1, it decreases one on each epoch and determines which batch will not be taken on that epoch,

since is going to be the validation data.

Finally, it also has a Boolean to determine if the generator is created for the training or the validation,

depending on it, will create batches for the training the validation. To visualize with an example, if

there are 3 divisions, on the first epoch there are two batches for training and one for validating. The

possible index values for batch_count and validation_count is {0,1,2}, these values are the indexes

for the __getitem__ method. In the first epoch, batch_count will have the values 0 and 1 and the

validation_count 2. In the second epoch, batch_count will have the values 0 and 2 and the

validation_count 1. And, in the last epoch batch_count will have the values 1 and 2 and the

validation_count 0.

11.2.6 Frames Provider

The class FramesProvider manages the loading of frames into memory. The UML design is reachable

in the annex Figure 85. The constructor receives the necessary variables for load and then organize

the image shapes, the directory of frames, such as the batch size that is used for training the images,

the time steps, the dimensions of the image and the patch window or the model type.

There is a method in this class that is used to return all the frames from a directory as a NumPy array

in the correct structure format depending to be input of a traditional image processing NNs with

channels last, a LSTM or a ConvLSTM layer.

The elements are read from the directory where the frames are stored using listdir function from os

library, and these elements are sorted to be taken following a decimal order and iterated with a for

Identification and Monitoring of Violent Interactions in Video Lourdes Mas Lillo

74

loop. Each image then is read using imread function from the OpenCV library, then if the image is

correctly read it is resized using again the OpenCV library, to fit into the path window shape, that

gives all the images a fixed size, independently of their original size, so all the images that are used

during training have the same size. Finally, the data gets structured in the pertinent way. This code

is used when training with a fit and for testing, but with small groups of data, as it loads into memory

the complete dataset.

Get_training_set_and_class is a method that receives a patch window and using the path of the folder

where the frames are stored, returns two arrays, the first containing the frames and the second

containing the labels. It iterates over the list of directories and sorts the elements so the frames that

have been stored being classified by their name ordered following the decimal system, are taken on

that same order. Each image is read and resized to the given patch window is added to the array of

frames data, and the label of that frame, which information is written on the name of the frame file,

is stored on the labels array. Finally, once all frames and labels have been loaded in the two arrays,

these arrays are structured in the function structure data and finally returned. This code is only used

when the training is done using fit during training, as it loads into memory the whole amount of data

that is going to be used as training set. Due to the big amount of data it was impossible to use it with

the resources of the computer used for training, therefore this code is not being used and instead the

data is being loaded on chunks using a custom generator.

structure_data gives a structure to the frames and its classes that is adapted to the requirements for

typical image CNN model to the dataset and to the labels arrays, converting the arrays to NumPy

arrays and giving to each element on the frames array 3 dimensions, that are (height, width, channels).

11.2.7 List ID Dictionary

The ListID_Dictionary contains a dictionary used to facilitate the access to the dataset elements in

an ordered way without having to load them all at the same time. This way is ensuring that the time

steps order is kept. In the next paragraphs are explained the details of the two different dictionaries

creators implemented. The UML design for the code to control the dictionary can be found at the

annex Figure 85.

The first one, called path_file_dictionary, receives as argument a path name and generates two

dictionaries that are returned. The first will contain, ordered, the names of the frames that are

contained in the path, and the second will contain the extracted labels of the frames on the same

order. The code opens the path, which is a dataset folder and iterates through it catching the image

names and saving them in the dictionary as follows.

{0: ‘0_x_.jpg’, 1: ‘1_x_.jpg’, 2: ‘2_x_.jpg’, …, n: ‘n_x_.jpg’}

Lourdes Mas Lillo Identification and Monitoring of Violent Interactions in Video

75

It is needed to specifically sort the images as their correct time order follow the structure seen in the

code above, where the number before the first “_” symbol represents the step position of the frame

in a decimal base and the value after it represents the label for that image. The List of directories on

the given path are taken using listdir(path) and a for loop that takes the elements sorted. When taking

the images without sorting them first, the image “10_x.jpg” is considered to be before the “2_x.jpg”,

because the first value on the first string name is lower than the one in the second. It is also used a

lambda function, so the sorting criteria doesn’t include the values after the “_” symbol.

The second dictionary generator, random_part_dictionary, receives two dictionaries, one with frame

IDs and the second with label IDs and also a numerical value that determines the size of a segment

that wants to be taken from the dictionaries. The elements taken respect the time order. With the

random function it is selected a starting point between the beginning of the dictionary’s length, and

their longitude – the desired longitude of the segment, so the segment is not out of range. Then, a

dictionary that contains the elements from the segment from the random point and the length received

by parameter is returned.

11.2.8 Video Provider

The class VideoProvider is the parent class that is used to manage the datasets. The UML structure

of the code is available in annex Figure 86. This class contains code to manage the organization and

storage of the video frames, respecting the order and setting the frames labels. The classes

VideoProviderIxmas and VideoProviderUT inherit from the video provider and adapt the frame

organization depending on the dataset where it comes from, the IXMAS or the UT dataset.

The constructor receives the addresses of the data that is going to be processed, origins and

destinations. It also initializes a counter used to determine the current frame numeration. And finally,

is also initialized the number of elements that might be removed from the beginning and the end of

the video to shorten it.

The classes VideoProviderIxmas and VideoProviderUT offer modules to return lists containing

frames and their classes from a dataset, to return the entire dataset and the labels. But also, to read

all videos from folders and subdirectories and save their frames in order. They bring methods that

can manage the datasets removing the x first and last frames of each video in the generated frames

dataset, or, to relabel the first and last x frames to a standing or non-violence label. They also can

relabel the IXMAS and UT dataset to binary, violence/non-violence. For the IXMAS dataset it also

gives the opportunity to separate the videos in 5 datasets depending on the camera position of the

video.

For this class implementation, the library OpenCV is of great use to process the videos, specially

class functions such as videoCapture() to read from video, imwrite() to save the frames, release() to

Identification and Monitoring of Violent Interactions in Video Lourdes Mas Lillo

76

close the file, destroyAllWindows() to close all windows and de-allocate the memory usage, to resize

or to change colour format.

11.3 Alarm System

In this project it is included an alarm system that operates in a real time video classifier which UML

design is found in the annex Figure 87 and Figure 88. It reads and analyses real time videos and in

case it notices violent content a sonic alarm will operate. This software is a simple console

application, its menu is shown below at Figure 39.

Figure 39: Console application menu for executing the alarm system, screenshot of the program run

When running the alarm system, the trained model is loaded, and it is used to evaluate the video

surveillance cameras output. For this the frames of the video are loaded using the OpenCV library.

The system is prepared to operate with image processing NNs, LSTM and ConvLSTM, the

dimensions of the data input for the network is controlled with the ModelType enumerator.

The frames processed appear and disappear in order in a fixed window created using the library

OpenCV, therefore to the human eye it looks like a video. The frames are accumulated on small

batches of 20 frames of data that are feed to the Keras evaluate function and the output is processed.

To avoid fake alarms, the system has a sensitivity of ½(batch_size). Which means that one half of

the processed frames on each epoch must be considered as containing violence by the machine to

make the alarm sound and save the frames that contain the event.

Figure 40: Alarm System running during a violent situation, screenshot of the program run

Lourdes Mas Lillo Identification and Monitoring of Violent Interactions in Video

77

Figure 41: Alarm System running after a violent situation, screenshot of the program run

As an example of how this system works, is shown above two screenshots taken while the execution

is taking place. Figure 40 and the Figure 41 show the alarm system software running: Figure 40

shows the system at the beginning, while the Figure 41 shows the result directly after the violence

scene. After the situation, one person pushing the other, the frames related with violence are saved

on the system in black and white, including camera name, date and time of the happening.

12 Experimentation and Discussion

Regarding the investigations and suppositions exposed above, there is a big amount of trials done to

support and evaluate them and to find the most suitable result. In this chapter are the main

experimentations described and discussed. The full set of trainings is not listed here since this would

go beyond the scope of this study. The focus is set on what are the most interesting discoveries and

results. To ensure an optimized output of the project, the experimental section is aligned closely to

the PDCA idea of EN ISO 9001 (4). During the process of creating code and training the model,

checks are done to analyse the current state and to develop and apply correction measures.

12.1 Training Comparative Studies

In first place, the modifications made on the datasets. In second place, the training of CNNs: the

custom LeNet and AlexNet, training video datasets to determine if a simple image processing NN is

capable to solve the problem, using the fit function and loading all the dataset into memory, is

checked. All the appearing memory problems are solved to adjust to local training using fit_generator

function and a custom generator, which feeds the data in different data sizes, as typically for CNN,

LSTM and ConvLSTM input. In third place, the study evaluates time factor dependent NNs for the

same problem. There are different approaches to check possible settings. Finally, the two best models

are compared, and final tests are run over the alarm system.

Identification and Monitoring of Violent Interactions in Video Lourdes Mas Lillo

78

12.1.1 Datasets

The datasets are subject to different segmentations and modifications in order to search the best

option to feed the trainer. In the Table 27 the different subsets created from the modifications made

to each dataset are listed. These subsets used for training are explained in the following chapters.

Table 27: Matrix of applied dataset modifications, own elaboration

Mode IXMAS UT

Full Yes Yes

Section Yes Yes

With new standing label No Yes

Section binarized Yes Yes

Section binarized with new standing label No Yes

Full binarized Yes Yes

Full binarized with new standing label No Yes

Divided by cam positions Yes No

12.1.1.1 Full and Section

The training of the full version of IXMAS and the UT datasets results in a big time cost. The time

required to train the complete set is calculated and compared using default_timer, form the library

timeit, because it selects the best clock available for the platform and version of Python.

The time comparison required for training the full datasets is shown for the developed ConvLSTM

model using cross validation. This method processes the images maximum once per epoch, with

16 epochs on each of the 10 folds, so in total for 160 total epochs. Table 28 shows the results of the

time calculation and the difference between both datasets. The required training time for the full

IXMAS dataset is about 10.4 times higher than for the full UT dataset. This big difference is realistic

because the IXMAS dataset, with 135079 frames, is about 10.2 times the size of the UT dataset with

13240 frames.

Table 28: Calculation of required training times with UT and IXMAS datasets, own elaboration

Dataset
Training

time [s]

Training

time [h]

UT (13240 frames) ≈10380 ≈3

IXMAS (135079 frames) ≈107677 ≈30

Time difference (IXMAS vs. UT): 97297 27

This time effort is not problematic for the one-off final training of the models. But to meet the project

time plan, the training time of 30 h must be optimized for the testing in the development phase. The

solution is to subdivide the datasets to a reduced size but still variated and big enough to be

representative and a good example for learning, and too keeping the equilibrium in the variety of

labels. The following distribution for the datasets was applied: The IXMAS dataset (1800 videos) is

reduced to 1/10 of the files and approximately 3 hours required training time. For the UT dataset

Lourdes Mas Lillo Identification and Monitoring of Violent Interactions in Video

79

(120 videos), 3/10 of the files are selected to reduce the training time to about 51 minutes. With this

changes and the reduced training time, it is possible have fast and reliable tests. Finally, for the best

result, the full versions of the datasets are used to train the finalized models.

12.1.1.2 Dividing the Dataset of IXMAS on 5 Datasets per Cam Positions

To check the influence of the camera position, the full IXMAS dataset is used for training dividing

the data in 5 groups, as this dataset contains 5 camera positions. When training with these subsets

independently is found that the models tend to converge earlier. This is assumed to be because this

subset contains less variety of scenes but keeps a big size within the dataset, which makes the models

to find earlier common features between the elements. With these results, this dataset distribution is

discarded for more use, as it does not bring improvement to the system.

12.1.1.3 New Standing Label

After analysing the UT dataset is decided that some modifications on it might bring advantages for

training. Approximately the first and last 25 frames per video show the actors standing in front of

each other. That might have caused problems for learning as the action standing was labelled with

different definitions for the dataset of videos, as a solution it is created a new label for those images.

In the Figure 42 can be seen the starting frames of the first video of the UT dataset that represents a

hug.

Figure 42: Screenshot of frames from a UT dataset video, extracted from the UT dataset

In Figure 43 is possible to see the first frames of a video in the UT dataset that are labelled as hugging

but the action is still not taking place. This segment of the dataset can lead to confusion as every

video starts like this regardless of the classification.

Identification and Monitoring of Violent Interactions in Video Lourdes Mas Lillo

80

Figure 43: Screenshot of frames from the UT dataset that show that there are video frames where there is not the action

labelled happening, approximately the first 25 frames of this video express no movement, extracted from the UT dataset

Figure 44 shows frames of a video in the UT dataset hug and it is possible to recognise the action

that implies a hug. This segment of the video is considered well classified.

Figure 44: Screenshot of frames from the UT dataset that show that the frames placed on the middle of a video express the

labelled action, extracted from the UT dataset

As a simple way to improve the classification on the training process a new label called standing is

created for those scenes. This is tested with both datasets and different models. For the IXMAS

dataset using this relabel technique did not improve the accuracy, it is expected to be due to there is

a small quantity of frames that does not show the action at the beginning and at the end, around 12,

less than half of the ones seen in the UT dataset. Relabel the 15 first and last frames of each video,

instead of 25 as suggested at the beginning was giving better result. It is thought to be because after

transforming the 25 first and last frames from each video, there were too many elements with the

standing label in the dataset creating instability between the labels partition when training with

binarization as the non-violence label was having more elements than the violence. Therefore,

creating the new label or including standing to the non-violence group for the first and last 15 frames

for the UT dataset is reducing the mistakes of the machine related with the standing action.

12.1.1.4 Binarize the Datasets

In this project it is tested the datasets with their original labels, with an extra label, but also with only

two labels, violence/non-violence. For detection of human violence interaction there is a huge

amount of possible actions, and non all of them are being contemplated in this project. Based on the

violence detection strategy defined in 10.3, the speed, blur and the space time differences are subject

of interest and they can determine violence, this means that violence has a common factor that can

be identified in video. Therefore, both IXMAS and UT have been subject of binarization for training.

In Figure 45 and Figure 46 it is shown a representative segment of the IXMAS dataset that was

trained with the LSTM model and binarized labels. The results are very good for analysing how the

binarization improves the results, even though, 250 epochs are too much for the model ends in

overfitting and the validation dataset is unrepresentative and can be seen in the noise of the validation

accuracy, this problem was reduced after, applying cross-validation. But as it can be seen the model

starts learning at around 88 % of accuracy. This happens when training with less labels, it is more

Lourdes Mas Lillo Identification and Monitoring of Violent Interactions in Video

81

difficult to make a mistake. And for a binary problem the minimum starting accuracy that was found

in the tests was around 50 %.

Figure 45:Model accuracy graphic for LSTM with binarized IXMAS dataset, created using matplotlib during the tests made

in this project

Figure 46: Model loss graphic for LSTM with binarized IXMAS dataset, created using matplotlib during the tests made in

this project

As the labels are reduced to violence and non-violence, the model finds common characteristics that

represent both labels. Using the original labels, the IXMAS model is able to difference the actions

Identification and Monitoring of Violent Interactions in Video Lourdes Mas Lillo

82

from each other, but in the binary case small mistakes take place due to the big generalization, this

can also explain the noise around Figure 45. The training achieves a good result in accuracy for both

training and validation that is seen in Figure 47. Also, when trying the model with the test dataset,

the accuracy is very good, except for a few frames that mistakes.

Figure 47: Results obtained training a model with a binarized dataset, screenshot from a program run

Figure 48:Mistaken frames while binarization from the IXMAS dataset, extracted from the IXMAS dataset

Figure 48 are the frames that the model mistakes, the model is considering that looking at the clock

is violent most likely because it is a similar movement to punch. It is deduced to happen because the

model does not have a concrete punch and looking at the clock labels anymore. Therefore, it has not

learned the details of those actions independently but mixed with other factors that have the violence

and non-violence segments in general. The two actions are similar, and the model makes mistakes in

a minor quantity of the frames that represent those actions.

For fixing this problem it is decided to take the steps of signalizing the violence alarm after a

significative amount of violence prediction is set as output for the model as explained at the chapter

12.2.1. Making the model less sensible, and less prone to small fails. The results are considered

positive and that they can bring better options for generalization as there are more kind of actions

than the ones labelled on the original datasets, this generalization violence/ non-violence is part of

the final product.

12.1.2 Image Processing

In first place, are evaluated the two image-based models, one inspired on LeNet5 and the AlexNet.

A summary of the results can be seen in Table 29. The complexity of the problem approached in this

project resulted into both networks, LeNet5 and AlexNet, are proved to be not of use. AlexNet is

capable to learn from images from the UT dataset that it was trained with. It is also successful with

ImageNet, or as seen in (27), it achieves an 81,6 % of accuracy on CIFAR-10 dataset. It proves that

this NN is good for image recognition, even for the violence in video datasets used, but it is very

inaccurate generalizing the test videos in this project. Therefore, it is unsuccessful for human

violence detection.

Lourdes Mas Lillo Identification and Monitoring of Violent Interactions in Video

83

Table 29: Results of the image-based models used in this project, own elaboration

Model Result

LeNet5 (modified) Not learning

AlexNet Good learning but misinterpretation of independent set

The NN based on LeNet5 is not solving the problem and AlexNet has difficulties with the accuracy.

The interpretation of the inaccuracy is that they lack important information related to the space-time

context. The complexity of human interaction includes factors that an image-based model lacks. For

example, in a frame with two people, without the context of how they approached each other, the

correct tagging of their action is difficult. The fact that AlexNet is more successful than LeNet5 is

considered due to its higher deepness. Both models were considered as an option to avoid the

computational cost of including the time dependency used by video processing NNs. This idea was

abandoned fast and the image processing CNNs replaced by a LSTM and a ConvLSTM for video

processing.

12.1.3 Video Processing

The Stacked LSTM is the first time-dependent model trained. The video datasets have been trained

using fit_generator to be able to train with the whole dataset loading it into memory by chunks. The

first test is done with 10 epochs and a batch size as mini batch gradient of size 20.

The first dataset used for training with fit generator is the UT-interaction dataset (38) that has 6

possible labels, {0,1,2,3,4,5} each one represents one kind of action, explained at Table 14 using a

colour format that is used during the training is the RGB, and the images have been dimensioned to

256X256 pixels as determined at 10.5.1. The time step value is set to 5 to learn from the

interdependency of close images without keeping memory from images that where processed with a

big separation.

The results of the first training are negative, neither loss nor accuracy has progress, this tells that the

model is not learning. With the model stopping to learn when it reaches a value around the 20 % of

accuracy, it is not too promising. Considering that there are 6 possible labels, the results seem to be

random. It is important to find the reason for this situation. In the next sections it is explained different

approaches to adjust and fix the problem.

12.1.3.1 Normalizing the Data

The crossentropy loss, used on this approximation, is a minimized loss. It is expected to get better

results when training with small values as explained at 9.3.4.2. To normalize the data implies a

reduction of the range of possible values. For applying this to the work, in the dataset frames the

values that represent each pixel value of the image is normalized, being divided by 10.5.1.

Identification and Monitoring of Violent Interactions in Video Lourdes Mas Lillo

84

Table 30: Accuracies obtained using data normalization with the IXMAS dataset, own elaboration

Model Labels
Patch

window
Normalization Dataset Accuracy [%]

LSTM 11 256X256 1/256 Full IXMAS 35

LSTM 11 256X256 No Full IXMAS 85

Table 30 shows the results applying and not applying data normalization to the IXMAS dataset when

using the LSTM model. Applying this change implies a great success to the learning and makes the

LSTM model to be capable to achieve an accuracy over 85 % with the IXMAS dataset, when the

accuracy without using this adaptation is the 30 %. The best result is achieved combining

normalization with making bigger the height and wide of the frames.

The interpretation for this improvement is that big calculated values make the training more difficult

due to the sparsity of the values and the possible tendency to the infinite on the calculations. The

division of the data values per 256 reduces this problem because the distances of the jumps of the

gradient during training are smaller, but also incrementing the size of the image makes more

separation between elements and gives more data to the NN.

12.1.3.2 Losses

The use of categorical crossentropy and MSE losses is compared in this section. Categorical

crossentropy is used to discriminate in which probability each option is the correct one, MSE on the

other hand returns only one possible solution. It is interesting that in the same conditions both losses

achieve the same accuracy as it can be seen in the Table 31, but the epochs needed for it is different.

with MSE it is required 250 epochs and with categorical crossentropy 200, which is a decrease of

20 % of the epochs required to achieve 80 % of accuracy.

Table 31: Different accuracies obtained using data normalization with the IXMAS dataset, own elaboration

Model Loss Learning rate Dataset Epochs Accuracy [%]

LSTM MSE 1e-3 Full IXMAS 250 80

LSTM
Categorical

crossentropy
1e-3 Full IXMAS 200 80

It is interesting to compare the accuracy progress between the model subject of this comparison using

MSE loss at Figure 49 and using crossentropy loss at Figure 70. The progression of the one using

crossentropy shows a faster learning at the beginning and converges later, this reflects the results on

the Table 31. The comparison between the losses, at Figure 50 and Figure 71, regardless the noise

on validation caused by an unrepresentative validation set, the progression shows a better evolution

on the categorical crossentropy. The training and validation loss are reduced first faster and at the

end it converges. The loss for MSE instead evolves with the predictions on the validation dataset that

does not go down with the training loss. The decision is that crossentropy applies better for this

Lourdes Mas Lillo Identification and Monitoring of Violent Interactions in Video

85

problem, reducing the training time and learning better at the early epochs. Therefore, it is selected

as part of the final solution.

Figure 49: Stacked LSTM model accuracy with MSE loss and a learning rate of 1e-3, created using matplotlib during the

tests made in this project

Figure 50: Stacked LSTM model loss with MSE loss and a learning rate of 1e-3, created using matplotlib during the tests

made in this project

12.1.3.3 Time Steps Approach

In Figure 51 and Figure 52 the quantity of time steps used is 20, this idea is taken as an alternative

to relabel the first and last 25 frames as in 12.1.1.3. Then connecting the info between frames during

Identification and Monitoring of Violent Interactions in Video Lourdes Mas Lillo

86

the training could reduce this problem. It was also trained with 10 time steps as it is suggested in

10.5.7 the results are shown in Figure 70 and Figure 71.

In the accuracy for 10 time steps, Figure 70, it can be appreciated a better result than in the one using

20 time steps, Figure 52, from 80 % of accuracy to close to 90 %.The validation loss has a better

performance following the training loss evolution, which is better than the loss with 20 time steps in

Figure 52. This is considered to happen because the training was remembering with 20 time steps

irrelevant information that was not found as a common factor in the validation dataset. Then the use

of 10 time steps is considered as a better option as it was suggested in the methodology.

Figure 51: Stacked LSTM model accuracy for 20 time steps and a learning rate of 1e-3, created using matplotlib during the

tests made in this project

Lourdes Mas Lillo Identification and Monitoring of Violent Interactions in Video

87

Figure 52: Stacked LSTM model loss for 20 time steps and a learning rate of 1e-3, created using matplotlib during the tests

made in this project

12.1.3.4 Batch Sizes

The batch sizes used for the training are the following {20, 40, 80, 64}. In the tests have been seen

that best batch size is between 40 and 80. Using a power of two as recommended at (56) did not seem

to cause any improvement during the training.

The stacked LSTM model is mainly trained with a batch size of 40. But as an alternative it has also

been trained with a size of 20 and 80 using the mini-batch gradient descend explained and chosen at

the chapter 9.3.6.3. In the next graphs can be seen the results for a batch size of 20 and 80.

Identification and Monitoring of Violent Interactions in Video Lourdes Mas Lillo

88

Figure 53: Stacked LSTM model accuracy for 10 time steps, batch size of 20 and a learning rate of 1e-3, created using

matplotlib during the tests made in this project

Figure 54: Stacked LSTM model loss for 10 time steps, batch size of 20 and a learning rate of 1e-3, created using matplotlib

during the tests made in this project

As it can be seen in the Figure 54, the model loss of the validation does not evolve as the one of the

train, this is telling that the batch size is too small and the validation dataset is not representative.

Comparing a batch size of 80 at Figure 55 with one with 20 at Figure 53 in this project, it can be

seen how the accuracy for the one with bigger batch size evolves more constant and converges later

than the smaller. From the loss perspective, it is also better the results with a batch size of 80, Figure

Lourdes Mas Lillo Identification and Monitoring of Violent Interactions in Video

89

56, the validation loss evolves as the training without a big gap as it happened with Figure 54.

The conclusion is that a bigger batch size, between 40 and 80, brings better results than a smaller

one.

Figure 55: Stacked LSTM model accuracy for 10 time steps, batch size of 80 and a learning rate of 1e-3, created using

matplotlib during the tests made in this project

Figure 56: Stacked LSTM model loss for 10 time steps, batch size of 80 and a learning rate of 1e-3, created using matplotlib

during the tests made in this project

Identification and Monitoring of Violent Interactions in Video Lourdes Mas Lillo

90

12.1.3.5 Activation Function Adaptation

One of the early training problems is that the predictions are pushing for only one result when testing

the accuracy on different actions. On each training, this final prediction is a different value. The

interpretation for this is that the model is not learning properly and therefore not extracting the correct

features for correctly predicting a label. And, the weights of the model make to tend only for one

label value as result. Analysing the possible reasons for the model to push always for a concrete

reason the result is that, it is possible that there is vanishing gradient explosion happening, explained

in 9.2.3. The activation function used is sigmoid and as explained in 9.3.3 it can develop in the

mentioned problem. To reduce this problem, it is applied normalization, explained at 12.1.3.1, and

used ReLU and Leaky ReLU as alternatives to sigmoid. As seen in the Figure 57 the model distributes

the probability between the different layers, fixing the previous problem.

The decision regarding the activation function is shown in the chapter 9.3.4.2 were it is seen that the

last layer activation that works better with categorical cross entropy is ReLU.

Figure 57: Screenshot that shows the predictions for each possible label for a frame from the UT dataset, screenshot from

a program run

As seen on the screenshot above the decision taken to predict a label is less hard and different possible

labels have more chances to be chosen. This change brought improvement to the performance of the

training, but there were still notable during the training tendencies for some labels regardless of the

dataset values.

Leaky ReLU

As explained before ReLU is a good activation functions to reduce the vanishing gradient problem

for values over 0 but leaky ReLU also avoids for the negative ones as explained at 9.3.3.2. This

activation is applied with two different alphas, first 0.01 and then with 0.05. The two first graphics

below show the accuracy and loss result for Leaky ReLU with alpha 0.01 and the two next ones show

the result for the alpha 0.05.

Lourdes Mas Lillo Identification and Monitoring of Violent Interactions in Video

91

Figure 58: Model accuracy graphic for leaky ReLU model using an alpha of 0.01 with Adamax and 1e-3 learning rate,

created using matplotlib during the tests made in this project

Figure 59: Model loss graphic for leaky ReLU model using an alpha of 0.01 with Adamax and 1e-3 learning rate, created

using matplotlib during the tests made in this project

Identification and Monitoring of Violent Interactions in Video Lourdes Mas Lillo

92

Figure 60: Model accuracy graphic for leaky ReLU model using an alpha of 0.05 with Adamax and 1e-3 learning rate,

created using matplotlib during the tests made in this project

Figure 61: Model loss graphic for leaky ReLU model using an alpha of 0.05 with Adamax and 1e-3 learning rate, created

using matplotlib during the tests made in this project

The validation accuracy using an alpha of 0.01 Figure 58 shows more noise than the one using 0.05

Figure 60. The given interpretation is that the one with the bigger alpha can distance more from 0

the negative values giving more negative weight and the training model then is more suitable for the

validation images.

Lourdes Mas Lillo Identification and Monitoring of Violent Interactions in Video

93

On the other hand, for the 0.05 alpha training the loss evolution at Figure 61 shows how the loss of

validation takes more time to decrease than the loss of training. Meanwhile in the 0.01 loss results

the validation and the training losses evolve in the same way Figure 59.

Last Layer Activation

In the investigation to decide the activation function (chapter 10.5.4), the most fitting activation is

softmax. In this project is also compared with sigmoid. In Figure 64, Figure 65, Figure 66, and Figure

67 results is confirmed that even when using a less deep NN, softmax activation gives better results,

especially when combined with the crossentropy loss as suggested in 9.3.4.2. Therefore, it is

confirmed that categorical crossentropy works better with a softmax output as recommended in (31).

12.1.3.6 Optimizers

It is interesting the comparison of the results obtained with the two selected optimizers, Adam and

Adamax explained at 9.3.2.3 and 9.3.2.6. As an example of their accuracy in this chapter is shown

the different outcome of using the two optimizers, with a test using LSTM with leaky ReLU using

an alpha of 0,05 and a learning rate of 1e-3. Both optimizers work well for this problem, but there is

a detail that is worth to mention: As it can be seen in the Adam graphic results, Figure 62 and Figure

63, the values evolve similar to the ones from the Adamax graphs, Figure 60 and Figure 61. The big

difference is the speed that the model needs to achieve a good result level. With Adam the model

needs 250 epochs to achieve an accuracy around 95 %, on the other side Adamax it converges earlier

and in 200 epochs it reaches 80 % of accuracy this can be seen simplified in Table 32. The reason

for these results is estimated to be the norm used for calculating the gradient updates, as this is the

big difference between both methods. Therefore, basing the gradient updates to the infinite norm

does not give better results than using the square root of the sum of the squares, which is the Adam

approximation. The noise in the validation loss was corrected applying cross-validation.

Table 32: Accuracies obtained using Adam instead of Adamax when the model converges, own elaboration

Model Optimizer Converge Dataset Epochs Accuracy [%]

LSTM Adam Yes IXMAS 250 95

LSTM Adamax Yes IXMAS 200 80

Identification and Monitoring of Violent Interactions in Video Lourdes Mas Lillo

94

Figure 62: Model accuracy graphic for leaky ReLU model using an alpha of 0.05 with Adam and 1e-3 learning rate, created

using matplotlib during the tests made in this project

Figure 63: Model loss graphic for leaky ReLU model using an alpha of 0.05 with Adam and 1e-3 learning rate, created

using matplotlib during the tests made in this project

12.1.3.7 Adding Deepness

During the development of the stacked LSTM model development different deepness are tested. To

see the influence of the deepness to the result as it is suggested in the 10.3.2. To bring a representation

of the deepness application in this project, it is shown the results for the stacked LSTM with two,

three, four and five layers of deepness.

Lourdes Mas Lillo Identification and Monitoring of Violent Interactions in Video

95

On Figure 64 and Figure 65 it is shown the results for five stacked LSTM layers using a final sigmoid

activation. The result is still not one of the bests, as other variables have to be adjusted.

Figure 64: Stacked LSTM model accuracy with five layers of deepness and sigmoid final layer activation, created using

matplotlib during the tests made in this project

Figure 65: Stacked LSTM model loss with five layers of deepness and sigmoid final layer activation, created using

matplotlib during the tests made in this project

Figure 66 and Figure 67 how the results obtained using a stacked LSTM model with three layers with

a final softmax activation layer. Bigger deepness does not imply improvements, and the best result

Identification and Monitoring of Violent Interactions in Video Lourdes Mas Lillo

96

found is the network with four layers of deepness. It is seen on the examples explained before.

Probably the deeper networks are learning too many details from the images, which difficult the

generalization.

Figure 66: Stacked LSTM model accuracy with three layers of deepness and softmax final layer activation, created using

matplotlib during the tests made in this project

Figure 67: Stacked LSTM model loss with three layers of deepness and softmax final layer activation, created using

matplotlib during the tests made in this project

Lourdes Mas Lillo Identification and Monitoring of Violent Interactions in Video

97

12.1.3.8 Changing the Learning Rate

There are different learning rates that were tried to look for the best speed to learn, the values tried

are in the range 1e-2 to 1e-5, which is [0.13533528323, 0.00673794699]. The learning rate is chosen

looking for a value that permits to learn with a speed that lets the network to train without converging

too fast and without being stopped. Reducing the learning rate to 1e-5 did not improve the

performance of the training. 1e-4 was giving better results. One of the best results was with 1e-3 that

on the epoch 200 could reach an accuracy around 0.80 and still learning but the loss was not

improving in 1/4 of the epochs from the epoch 150. Therefore, it can be deduced that the learning

rate 1e-4 could make the training to train faster without converging too early. And the best learning

rate for this problem is proved to be 1e-4, because with the same number of epochs was learning to a

good speed.

12.1.4 Validations

The validation during training has been done from different approaches, in this section is explained

the general results for the different approximations used.

12.1.4.1 Independent validation dataset

Using the two UT-interation segments of datasets, one for training and the second for validating, the

main difference is that the background is different and so the clothes of the kids. It is done following

the decision obtained in 10.5.2.3 where it is talked about how to select a validation style. The first

option was to use a non-trained with dataset that had to be similar enough to avoid the problem of

validation set unrepresentative explained at 10.5.6.6. the two datasets were not close enough and the

graphic showed that the validation set was not representative.

The results were not too promising with the LSTM model and the UT dataset where the validation

accuracy was converging when achieving the 57 % of accuracy for 6 labels. The validation set was

unrepresentative. This is interpreted as when training with a small dataset, the UT dataset consists in

117 videos, segmenting them into different parts, one for training and another for validating, is not

convenient, as it decreases the quantity of trainable elements.

12.1.4.2 Part of Training Validation Dataset

Using a random part of the training dataset as a validation was giving good results, but as the segment

used was also part of the training in the epoch it could lead to overfitting, the overfitting effect is

explained at 10.5.6.3. These trainings were successful with the IXMAS dataset achieving an accuracy

of 95 % in training and 92 % in validation. It is interesting that there was not overfitting taking place

and when testing with a non-trained dataset element, even from the UT dataset the predictions where

accurate in a 70 % of the cases, having some errors such as mistaking raising the arm to check the

clock with a violent act, most likely mistaking it with a kick action.

Identification and Monitoring of Violent Interactions in Video Lourdes Mas Lillo

98

For training this dataset it was needed between 150 and 200 epochs. The next approximation explains

an optimization applied to reduce this quantity of epochs and give better generalization to the model.

12.1.4.3 Cross-validation

Using cross-validation reduced the quantity of steps needed to achieve a good result from between

150 and 200 epochs to 8 epochs per 10 folds, that makes a total of 80 epochs for the full IXMAS

dataset. And as it can be seen in the next two tables Figure 68 and Figure 69 the final results were

very positive with a good accuracy for both training and validation.

Figure 68: Accuracy in the last fold of a cross-validation using the complete IXMAS dataset and the ConvLSTM model,

created using matplotlib during the tests made in this project

Lourdes Mas Lillo Identification and Monitoring of Violent Interactions in Video

99

Figure 69: Loss in the last fold of a cross-validation using the complete IXMAS dataset and the ConvLSTM model, created

using matplotlib during the tests made in this project

12.1.5 Pretrain the Model

One of the proposals introduced in this project is to use one of the violence datasets found as base to

train another one, as it was explained in 10.3.4 to avoid overfitting and create a stronger model

capable of better generalization.

The ConvLSTM model is Trained using the full IXMAS database achieving an accuracy of 87 % for

training and validation and a loss of 0.4 and 0.07 for training and validation using cross-validation

with 10 segmentations and 8 epochs per segmentations. It is retrained with the UT dataset raw

binarized and relabelling the first and last 20 frames as non-violent. The first with an accuracy for

training and validation of 58 % and the second with 78 % and 75 % of accuracy, respectively.

Therefore, retraining is not successful with this model.

Training the full IXMAS dataset with the stacked LSTM using cross-validation of 10 divisions and

16 epochs and then training the full UT, achieved an accuracy of 81 % for training and 82 % for

validation. Therefore, the suggestion made in (16) led to one of the best results obtained. Applying

pretraining between IXMAS and UT using binarization generates improvements on the stacked

LSTM model.

12.1.6 The Best Approximations

In this section are shown what are considered the two best options obtained for the stacked LSTM

and the ConvLSTM models. In the Table 33 is presented the two best models, for them were the ones

showing a better generalization with a custom dataset never seen before.

Identification and Monitoring of Violent Interactions in Video Lourdes Mas Lillo

100

Table 33: Results during training of the models with the best outcome with an independent test, own elaboration

Model Retrained Binary Dataset
Training

accuracy [%]

Validation

accuracy [%]

LSTM Yes Yes
Full UT pretrained

with full IXMAS
82 81

ConvLSTM No Yes UT section 99 97

The Best LSTM

To find the best Stacked LSTM model, it was tested with different conditions such as different

deepness or different learning rate, depending on the graphic outputs interpretation. The considered

best result was obtained with four layers of deepness, using the Adamax optimizer and a learning

rate of 1e-3 using the section IXMAS dataset.

After a training of 50 epochs it was interpreted that the learning did not converge, the graphic showed

that the model was still learning but the loss did not improve for 3 epochs, as the early stop had a

patience of 3, it was decided to augment that patience to 5 and continue. It learned until 140 epochs

but still seemed not to converge achieving around 75 % accuracy and 0.8 of loss, so the patience was

increased, and the result was that the training could improve.

As seen in Figure 70 and Figure 71 the model has been capable to achieve high results for the labelled

with actions datasets. for binarized has been also accurate but with more difficulties. The retrained

and binarized model described at the end of 12.1.5 is one of the options most capable to generalize

for actions never seen as it will be explained in the chapter 12.2.3.

Figure 70: Stacked LSTM model accuracy for 10 time steps and a learning rate of 1e-3, created using matplotlib during the

tests made in this project

Lourdes Mas Lillo Identification and Monitoring of Violent Interactions in Video

101

Figure 71: Stacked LSTM model loss for 10 time steps and a learning rate of 1e-3, created using matplotlib during the tests

made in this project

The Best ConvLSTM

The ConvLSTM model has shown to fit for solving the problem specially with the section IXMAS

dataset. The ConvLSTM model contains a ConvLSTM layer, a dropout and a LSTM layer and is

interesting how fast it learns compared with the LSTM model that contains four LSTM layers.

The convolutional properties benefit the learning process in training with video dataset and it can be

proved with the graphs shown below where it is seen how the model has learnt fast how to solve the

problem. The two graphs Figure 72, Figure 73, show the results using a dropout of 0.5, which is a

common value. There are some noise movements along the graphs and it learns very fast. It means

that the learning was not the best for generalizing and with the speed it was learning it could lead

easily to overfitting.

 The dropout was changed to 0.75 and in Figure 74 and Figure 75 can be seen how this noise factor

was highly reduced. Still this is a very powerful network that learns very fast from big datasets with

time dependency.

Identification and Monitoring of Violent Interactions in Video Lourdes Mas Lillo

102

Figure 72: ConvLSTM model accuracy with 0.5 dropout, created using matplotlib during the tests made in this project

Figure 73: ConvLSTM model loss with 0.5 dropout, created using matplotlib during the tests made in this project

Lourdes Mas Lillo Identification and Monitoring of Violent Interactions in Video

103

Figure 74:ConvLSTM model accuracy with 0.75 dropout, created using matplotlib during the tests made in this project

Figure 75: ConvLSTM model loss with 0.75 dropout, created using matplotlib during the tests made in this project

This model has been capable to achieve 99 % and 97 % of accuracy on training and validation with

the UT binarized dataset, a difficult combination as models were learning better in general from

IXMAS. A big advantage to use ConvLSTM model over the stacked LSTM is the time required for

training, this model is more potent for learning thanks to the Convolutional capability explained at

9.2.2. this model is capable to abstract violence on before not seen actions as explained at 12.2.3

Identification and Monitoring of Violent Interactions in Video Lourdes Mas Lillo

104

12.2 Alarm System

The alarm system uses a trained model to give real time predictions from video input, in case of

violence it alerts the authorities and saves the frames related. To check the results, it is necessary to

evaluate the capacity of abstraction, for this a small home recorded video actions have been tested.

For this the alarm system is tested with the homemade dataset created. In the next table are shown

the two best models obtained and their given code for this test result

Table 34: The two best models obtained, and a given code to identify them, own elaboration

Model Code

LSTM full UT pretrained with IXMAS, binary classification LSTM

ConvLSTM UT section binary classification ConvLSTM

12.2.1 Optimization of the Alarm System

While analysing bunches of data it is possible that the system misinterprets single frames, or

simplified it makes mistakes. Those errors, even if they are small, can trigger the alarm at a wrong

situation. For example, if the output for an evaluation of 40 frames contains random small amounts

of violence outputs, it might trigger an alarm but indeed are just errors in the video analysis. A

distribution as shown below contains the results for 40 frames of a non-violence scene, the system

interprets that most of the frames, in this case 38, represent non-violence, meanwhile 2 are

misunderstood for violence.

[0000000000000010000000000000000010000000]

After analysing the results, a modification is necessary to prevent the alarm system making false

violence alarms. Because one frame represents a small fraction of time, for surveillance cameras a

typical value of frames per second is 30/1, which means that a frame represents 1/30 of a second. To

consider violence in a segment there shall be a minimum of adjacent frames classified as violence as

shown in the next example.

 [0000000000000011111111111111100010000000]

To calculate the minimum amount of continuous violence frames needed to consider a scene as

violent, there were several possibilities: First, setting a number as fixed value and second, setting a

part of the batch size. Table 35and Table 36 show the results of five experiments for each model. For

the variable solution, in this case ½ of the batch size, showed the best results it is implemented into

the system.

Lourdes Mas Lillo Identification and Monitoring of Violent Interactions in Video

105

Table 35:Noise saved regarding violence in the frames for the LSTM model, own elaboration

LSTM
Violent Frames

stored
Noise

1 504 High

8 501 Low

½ (batch size) = ½ 20 = 10 444 None

½ (batch size) = ½ 30 = 15 387 None

½ (batch size) = ½ 40 = 20 309 None

Table 36:Noise saved regarding violence in the frames for the ConvLSTM model, own elaboration

ConvLSTM
Violent Frames

stored
Noise

1 331 Low

8 249 Low

½ (batch size) = ½ 20 = 10 201 None

½ (batch size) = ½ 30 = 15 201 None

½ (batch size) = ½ 40 = 20 169 None

12.2.2 Timing

The time required for the alarm system to give an output can be considered in real time, as typical

surveillance cameras have a frame rate of 30 frames per second and the system is capable to analyse

20 frames in 5 milliseconds (ms) using the ConvLSTM model and 6 milliseconds using the LSTM.

The speed depends on the frame rate, for first 20 frames will be accumulated. To detect a violent

scene, it is necessary that 10 consecutive frames show violence. In the worst case, this violence

appears only at the beginning of the bunch, and 10 more frames will have to be taken to continue

with the analysis, then the group will be processed in milliseconds as shown in Table 37.

Table 37: System speed to detect violence in a bunch of 20 frames, own elaboration

Model Frames Time [ms]

ConvLSTM 20 5

LSTM 20 6

12.2.3 Accuracy Evaluation with a Custom Dataset

To find out the accuracy of the model when confronting the unknown, the trained models are loaded

in the alarm system and tested with a long interactions video and with a custom created dataset,

which includes scenes and actions that the system has not seen before. In this section the result for

the two best models is shown.

Table 38 presents the distribution of action elements on the custom dataset test, their labels and if

they are easy to interpret by a human, after asking a group of four volunteers. The action number 1

was grabbing a leg of another person and holding it while this person jumped up and down, moving

around with the other leg. It is difficult to determine if this action is violence or not, but the majority

Identification and Monitoring of Violent Interactions in Video Lourdes Mas Lillo

106

of the requested said that it is playing, therefore not violence. A similar inaccuracy resulted from a

video showing action number 5, a hard-fast caress that could also look like a slow fake slap. Here

the opinion of the volunteers is balanced with two votes for violence and two votes against.

Table 38: Testing used in the Alarm System, own elaboration

Code Action Label
Human

accuracy [%]

1
Grabbing

leg

Non-

violence
75

2 Hug
Non-

violence
100

3 Pointing
Non-

violence
100

4 pushing Violence 100

5

Hard-fast

caress/

fake slap

Undecided 50

Table 39: Results of the test done on the alarm system for the best models created, own elaboration

Model 1 2 3 4 5
Total

accuracy [%]

LSTM Violence
Non-

violence

Non-

violence
Violence Violence 75

ConvLSTM
Non-

violence

Non-

violence

Non-

violence
Violence

Non-

violence
100

For the accuracy evaluation with the custom dataset, the action with code 5 in Table 38 is not

considered because it is undetermined by human labelling. Table 39 shows the result of the accuracy

evaluation. As it happened with the human rating, the action number 1 got differently labelled by the

two tested NNs. The LSTM failed in the action where humans also were doubting, so the result of

the ConvLSTM is considered better with 100 % accuracy for the tested actions. Therefore, the

ConvLSTM model is implemented in the alarm system for further use.

For the evaluation with the long interaction video, it was discovered that the LSTM model tends to

consider the close contact actions as violent, especially those new and never trained, such as kissing.

Therefore, the ConvLSTM model is the one most suiting the problem.

13 Review and Conclusion

This chapter evaluates whether the project’s goal and objectives are fulfilled. Therefore, first the

completion of the tasks is checked according to the task plan of chapter 8.2. Furthermore, all the

important facts and the project’s benefit are presented in the project review before the conclusion.

Lourdes Mas Lillo Identification and Monitoring of Violent Interactions in Video

107

13.1 Tasks Review

The tasks of this project are evaluated to determine the quantity of work done. The calculation is

based on the quantity of tasks finalized and their priority value calculated in 8.2 for this is an indicator

of the objectives’ achievement.

Table 40 presents the general results for each task group. The total points are the sum of the priority

values of each task on the main task groups, the achieved ones are the sum of the points of those

completed. Finally, shown is the percentage (%) of the number tasks accomplished. The result is that

four out of six of the main task groups are completed by 100 %. The system preparation and the

alarm system lack 30 and 20 points respectively. These missing points are related with two tasks of

low priority: The first one is “Apply a license to the project” which is not done yet as the system is

not about to be published. The second is “Frame the people on the scenes”, but chapter 10.6 classifies

this task non-beneficial for the project and therefore the implementation was dropped. As Table 40

is a summary showing the main tasks only, assessment tables showing the sub-tasks can be found in

the annex 16.2.

Table 40: General assessment of the project tasks, own elaboration

Code Main tasks Total points Achieved points Accuracy [%]

1 Organization 745 745 100

2 System preparation 450 420 93

3 Datasets 340 340 100

4
Training comparative

studies
825 825 100

5 Alarm system 435 415 95

6 Project documentation 960 960 100

 Sum 3755 3705 98

13.2 Project Review

The project organization and working based on the PDCA method resulted being useful to improve

the system development as after each experiment the result was analysed. Dependent on the outcome,

the models were constantly updated leading to the best experimental result achievable, based on the

state of the art and the requirements presumed for this application. The project has finished with two

strong models that are showing a good accuracy with the validation datasets and the custom dataset,

which verifies the functionality of the software.

The system preparation, especially the state of the art research, occupied a long period of the project

duration. Nevertheless, the invested time was paid back because the gained expertise allowed a good

choice of tools and accelerated the following system setup and development significantly.

Using a greyscale dataset appeared beneficial because it does not reduce the accuracy, due to the

colour not being determinant, and lowers computational efforts and memory space used to process

Identification and Monitoring of Violent Interactions in Video Lourdes Mas Lillo

108

the images. Optimizing the size of the datasets to achieve a good result with short trainings was very

useful while the comparative testing. Another beneficial modification of the UT dataset is the non-

violence-labelling of the first and last frames of all videos where the violence action is still not

happening per more than 20 frames. Generally, it is recommended to use an equilibrated distribution

of each label in a training dataset. The applied relabelling changed this balance of violence and non-

violence frames and lead to an improved training result. This experiment proves that it is more

beneficial to reduce wrong labelled frames, for example the time people are standing before starting

a violent interaction, than keeping an exact equilibrium. Also, the binarization of the datasets to

violence/non-violence labels lead to better test results, than keeping an individual label for each kind

of action. The model was also learning faster at the beginning of each training. This is interpreted as

having less labels makes it easier to find features to correctly assign the label. The dataset IXMAS

was generally related with better accuracy results than the UT dataset due to the simplicity, the

smaller size per frame, and being a bigger dataset.

One of the biggest improvements while training comparative studies resulted from applying data

normalization. This breakthrough improved the accuracy of the model training with the IXMAS

dataset from a 30 % to 85 %. Furthermore, the cross-validation positively influenced the accuracy

result over the epochs. Using this method, the accuracies where incremented in a more similar way

than with other methods tested. The distribution of validation and training was more even because

the whole dataset was used for training and validation. The categorical crossentropy, compared to

MSE loss, was fastening the learning with the big video datasets used for training. The code for this

project is created based on the attributes of scalability and reusability to ease adding new controllers

and modifiers to the current datasets and new ones. It enables adding new models and trainer code

and contains an extendable data generator providing data in customized structures. Following

experiments showed that the optimized batch size lies between 40 and 80, smaller sizes gave worse

results. To reach the best memorization for the LSTM layers, time steps of 10 are proposed. When

using a higher time step value, the validation loss tends to progress worse. Finally comparing the two

best models: The ConvLSTM network achieved the same accuracy result as the LSTM, but within

20 training epochs instead of 200 epochs. The investigation made to select the best settings for the

NNs and the data restructuration lead to the possibility to achieve a good result with an independent

dataset using small LSTM and ConvLSTM models.

The developed alarm system can be used with a surveillance camera. To prove its effectivity, the

system was evaluated with a custom recorded video dataset that was never used while the training

and validation steps. When analysing unknown actions, as for example kissing, both NNs made a

few mistakes but were in general able to detect violence. An important setting to avoid mistakes is

that violence must be detected for at least 10 consecutive frames using a batch size of 20 before the

alarm is triggered. This avoids mistakes as, for example, a single frame giving a violence output in a

Lourdes Mas Lillo Identification and Monitoring of Violent Interactions in Video

109

full video of non-violent actions. Dependent on the model chosen to assess the surveillance camera’s

videos, also the sensibility to violence may differ. To summarize this part of the conclusion: The

alarm system is working but needs some fine-tuning regarding the detection sensibility.

Finally, the project documentation contains all the important results of this study. It preserves the

gained knowledge and creates a good base for further development or commercialization of this

system.

13.3 Conclusion

To fulfil the first objective, “Detecting danger situations in video in an automatized way” two models

were developed that are capable to detect violence in an independent dataset not seen before. These

models are implemented in a software that systematically reads video data and returns the result of

the training for batches of 20 frames in approximately 6 milliseconds. The second and third

objectives, “Saving the information related with the possible aggression” and “Generating an alarm

to warn the competent authority” were accomplished in the alarm system. After detecting a violence

situation, the software generates a sound alarm to inform the personnel in charge and saves related

frames of the situation, including name of the camera, date and time, for the use as evidence.

For all objectives achieved, it is assumed that the system is capable to fulfil the project goal “to

improve the possible detection time of violence by bringing a tool that can help to stop bullying

situations, in a fast way”. Currently it is impossible, of course, to verify the accomplishment of the

goal, because a larger field test or the software release followed by a student are necessary to gain

reliable data about bullying statistics and reaction times.

14 Future Work

In this chapter, ideas for further improvement and recommendations on how to proceed are

suggested:

A license for the developed software is considered before public release but before there are further

optimization steps to be processed.

Applying background subtraction combined with NN is very interesting as it recognizes the presence

of the person and it can bring the opportunity to focus on the analysis of the interaction ignoring the

background. This technique could be approached using the OpenCV library. A good reference for

this task can be (60) and (61), who already introduced studies regarding background subtraction.

To increase the accuracy of the model regarding group violence, related videos should be added to

the training datasets. To reduce the required training time of those large datasets, decreasing the

frames per second of the videos may be considered. The alarm system is capable to process batches

of 40 frames in less than one second and therefore the system is capable to work with typical

Identification and Monitoring of Violent Interactions in Video Lourdes Mas Lillo

110

surveillance cameras videos in real time. This should be subject of further tests with real time camera

input.

The videos taken from surveillance cameras can also be an interesting input for training, because it

is composed by real situations. Those actions are more natural than typical interpretations used for

training and therefore the effectivity of the model may be increased. These videos could be a source

applied via SL learning style. This means labelling them and applying them to optimize the accuracy

of the already trained models. To proceed on this path, the allowance of an institution where the

surveillance takes places and of the people appearing is needed to respect the regulation (EU)

2016/679, commonly known as General Data Protection Regulation (GDPR) (62).

It is a time-consuming task to label a large amount of surveillance camera videos. If the software is

already working stable with good accuracy, the RL learning style can be applied after the release.

This method requires big amount of data, which is provided by the quantity of surveillance cameras

installed, but requires personnel give feedback to the system to let the AI learn from it.

Lourdes Mas Lillo Identification and Monitoring of Violent Interactions in Video

111

15 References

1. UNESCO. Sustainable Development Goal 4 : 4.a.2 Percentage of students experiencing bullying

in the last 12 months. [Online] [Cited: 25 03 2020.]

http://data.uis.unesco.org/index.aspx?queryid=3624.

2. Spain, Amnesty International. España: acoso escolar, un problema invisible que precisa un sistema

de denuncias útil de verdad. [Online] 5 June 2019. [Cited: 25 03 2020.]

https://www.es.amnesty.org/en-que-estamos/noticias/noticia/articulo/espana-acoso-escolar-un-

problema-invisible-que-precisa-un-sistema-de-denuncias-util-de-verdad/.

3. Assembly, United Nations General. Universal Declaration of Human Rights. Paris : s.n., 10

December 1948. Declaration.

4. 2, ISO/TC 176/SC. Quality management systems - Requirements DIN EN ISO 9001:2015-11 .

November 2015. Vol. 5.

5. Violence detection using Oriented VIolent Flows. Gao, Yuan, et al. 24 February 2016, Image and

Vision Computing, pp. 37-41.

6. Human violence recognition and detection in surveillance video. Bilinski, P and Bremond, F.

Colorado Springs : IEEE, 2016. 13th International Conference of Advanced Video and Signal Based

Surveillance. pp. 30-36.

7. Violence Detection in Surveillance Video-A Survey. Naik, Anuja Jana and Gopalakrishna, M. T.

2016, International Journal of Latest Research in Engineering and Technology, pp. 11-17. 2454-

5031.

8. Violence Detection in Video Using Computer Vision Techniques. Bermejo, Enrique, et al. 2011.

International Conference on Computer Analysis of Images and Patterns. pp. 332-339.

9. A Sensor approach for Violence Detection in Smart Cities Using Deep Learning. Baba, Marius, et

al. Basel : s.n., 8 April 2019, Sensors, Vol. 19(7).

10. van Veen, Fjodor and Leijnen, Stefan. The Neural Network Zoo. The Asimov Institute. [Online]

14 September 2016. [Cited: 16 May 2020.] https://www.asimovinstitute.org/neural-network-zoo/.

11. Understanding the Principles of Recursive Neural Networks: A Generative Approach to Tackle

Model Complexity. Chinea, Alejandro. s.l. : Springer, Berlin, Heidelberg, 2009. ICANN 2009:

Artificial Neural Networks. Vol. 5768, pp. 952-963.

12. Understanding LSTM Networks. Colah's blog. [Online] 2015. [Cited: 21 April 2020.]

https://colah.github.io/posts/2015-08-Understanding-LSTMs.

Identification and Monitoring of Violent Interactions in Video Lourdes Mas Lillo

112

13. Wang, Chi-Feng. towards data science. The Vanishing Gradient Problem. [Online] [Cited: 13

April 2020.] https://towardsdatascience.com/the-vanishing-gradient-problem-69bf08b15484.

14. Gradient-based Learning Applied to Document Recognition. Lecun, Y., et al. 1998. Proceedings

of the IEEE. Vols. 86, no. 11, pp. 2278-2324.

15. ImageNet Classification with Deep Convolutional Neural Networks. Krizhevsky, Alex,

Sutskever, Ilya and Hinton, Geoffrey E. s.l. : Neural Information Processing Systems, 2012.

16. Dai, Qi, et al. Fudan_Huawei at MediaEval 2015: Detecting Violent Scenes and Affective Impact

in Movies with Deep Learning. s.l. : MediaEval, 2015.

17. Howard, Andrew G., et al. MobileNets: Efficient Convolutional Neural Networks for Mobile

Vision Applications. 2017. arXiv, 1704.04861.

18. Iandola, Forrest N., et al. SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and

<0.5MB model size. 2016. arXiv, 1602.07360.

19. Long Short-Term Memory. Hochreiter, Sepp and Schmidhuber, Jürgen. November 1997, Neural

Computation, Vols. 9,n°8.

20. Hyndman, Rob J. and Athanasopoulos, George. Forecasting: Principles and Practice. Australia :

s.n., 2018.

21. Chollet, François and and others. Keras. Keras. [Online] 2015. [Cited: 23 April 2020.]

https://keras.io.

22. Hinton, Geoffrey, Srivastava, Nitish and Swersky, Kevin. Neural Networks for Machine

Learning. Lecture 6a. Overview of mini-batch gradient descent.

23. Adam: A Method for Stochastic Optimization. Kingma, Diederik P. and Ba, Jimmy. San Diego :

s.n., 2015. 3rd International Conference for Learning Representations. arXiv, 1412.6980.

24. Usage of optimizers. [Online] [Cited: 01 April 2020.] https://keras.io/optimizers/.

25. On the Importance of Initialization and Momentum in Deep Learning. Sutskever, Ilya, et al. 2013.

Proceedings of the 30th International Conference on Machine Learning. Vol. 28, pp. 1139-1147.

26. Hinton, Geoffrey, Srivastava, Nitish and Swersky, Kevin. Neural Networks for Machine

Learning. [ed.] University of Toronto Computer Science. Lecture 6a Overview of mini-batch

gradient descent.

27. Fast and Accurate Deep Network Learning by Exponential Linear Units (ELUs). Clevert, Djork-

Arné, Unterthiner, Thomas and Hochreiter, Sepp. 2016. ICLR.

Lourdes Mas Lillo Identification and Monitoring of Violent Interactions in Video

113

28. Understanding and Improving Convolutional Neural Networks via Concatenated Rectified

Linear Units. Shang, Wenling, et al. 2016.

29. Convolutional Deep Belief Networks on CIFAR-10. Krizhevsky, Alex. 8 May 2012.

30. Usage of loss functions. Keras Documentation. [Online] [Cited: 04 April 2020.]

https://keras.io/losses/.

31. Goodfellow, Ian, Bengio, Yoshua and Courville, Aaron. Deep Learning. 2016. 978-0262035613.

32. Cherry Servers. [Online] [Cited: 19 May 2020.] https://www.cherryservers.com/.

33. Hinton, Geoffrey E., et al. Improving neural networks by preventing co-adaptation of feature

detectors. 2012. arXiv preprint arXiv:1207.0580.

34. A Survey on Vision-Based Human Action Recognition. Poppe, Ronald Walter. 6, June 2010,

Image and Vision Computing, Vol. 28, pp. 976-990.

35. Fast Violence Detection in Video. Deniz, Oscar, et al. Lisbon : Institute of Electrical and

Electronics Enigneers, 2014. pp. 478-485. 978-9-8975-8133-5.

36. Two-person Interaction Detection Using Body-Pose Features and Multiple Instance Learning.

Yun, Kiwon, et al. Rhode Island : s.n., 2012. Computer Vision and Pattern Recognition Workshops

(CVPRW), 2012 IEEE Computer Society Conference.

37. Free Viewpoint Action Recognition using Motion History Volumes. Weinland, Daniel, Ronfard,

Remi and Boyer, Edmond. s.l. : Elsevier, 13 July 2006, Computer Vision and Image Understanding,

Vols. 104 (2-3), pp. 249-257.

38. Ryoo, M. S. and Aggarwal, J. K. UT-Interaction-Dataset. ICRP contest on Semantic Description

of Human Activities. 2010.

39. Violent Flows: Real-Time Detection of Violent Crowd Behavior. Hassner, Tal, Itcher, Yossi and

Kliper-Gross, Orit. Rhode Island : IEEE, The Institute of Electrical and Electronics Engineers, 2012.

Conference on Computer Vision and Pattern Recognition .

40. The Movies Dataset. [Online] [Cited: 5 May 2020.] https://www.kaggle.com/rounakbanik/the-

movies-dataset.

41. Spatio-Temporal Relationship Match: Video Structure Comparison for Recognition of Complex

Human Activities. Ryoo, M. S. and Aggarwal, J. K. Kyoto : The Institute of Electrical and Electronics

Engineers, 2009. IEEE International Conference on Computer Vision.

Identification and Monitoring of Violent Interactions in Video Lourdes Mas Lillo

114

42. Violence Detection in Movies. Chen, Liang-Hua, et al. Singapore : The Institute of Electrical and

Electronics Engineers, 2011. Eighth International Conference Computer Graphics, Imaging and

Visualization. pp. 119-124.

43. Clarin, Christine T., et al. DOVE : Detection of Movie Violence using Motion Intensity Analysis

on Skin and Blood. 2016.

44. Audio-visual Content-based Violent Scene Characterization. Nam, Jeho, Alghoniemy, Masoud

and Tewfik, Ahmed H. 1998, Proceedings 1998 International Conference on Image Processing.

ICIP98 (Cat. No.98CB36269), Vol. 1, pp. 353-357.

45. CASSANDRA: Audio-Video Sensor Fusion for Aggression Detection. Zajdel, W., Krijnders, J. D.

and Gavrila, D. M. London : The Institute of Electrical and Electronics Engineers, 2007. Conference

on Advanced Video and Signal Based Surveillance. pp. 200-205.

46. Weakly-Supervised Violence Detection in Movies with Audio and Video Based Co-training. Lin,

Jian and Wang, Weiqiang. 2009. Advances in Multimedia Information Processing, Pacific-Rim

Conference on Multimedia. pp. 930-935.

47. Herath, Samitha, Harandi, Mehrtash and Porikli, Fatih. Going Deeper into Action Recognition:

A Survey. 2017. arXiv, 1605.04988v2.

48. Speech Recognition with Deep Recurrent Neural Networks. Graves, Alex, Mohamed, Abdel-

rahman and Hinton, Geoffrey. s.l. : University of Toronto, 22 March 2013.

49. Convolutional Learning of Spatio-temporal Features. Taylor, Graham W., et al. 2010. Computer

Vision - ECCV 2010. pp. 140-153.

50. Wang, Limin, et al. Temporal Segment Networks: Towards Good Practices for Deep Action

Recognition. 2016. arXiv, 1608.00859.

51. Donahue, Jeff, et al. Long-term Recurrent Convolutional Networks for Visual Recognition and

Description. 2014. arXiv, 1411.4389.

52. What is the best multi-stage architecture for object recognition? Jarrett, K., et al. s.l. : The

Institute of Electrical and Electronics Engineers, 2009. International Conference on Computer

Vision.

53. Wang, Chi-Feng. towards data science. The Vanishing Gradient Problem. [Online] 2019. [Cited:

12 April 2020.] https://towardsdatascience.com/the-vanishing-gradient-problem-69bf08b15484.

54. Representation Learning on Large and Small Data. Chou, Chun-Nan, et al. 2017.

Lourdes Mas Lillo Identification and Monitoring of Violent Interactions in Video

115

55. Mastery, Machine Learning. How to use Learning Curves to Diagnose Machine Learning Model

Performance. [Online] [Cited: 29 March 2020.] https://machinelearningmastery.com/learning-

curves-for-diagnosing-machine-learning-model-performance/.

56. CIFAR-10 Classification using Intel® Optimization for TensorFlow. s.l. : intel, 12 December

2017.

57. Kuhn, Max and Johnson, Kjell. Applied Predictive Modeling. 2013. ISBN 978-1-4614-6849-3.

58. tensorflow transition to gpu version. [Online] 2019. [Cited: 13 April 2020.]

https://stackoverflow.com/questions/58187677/tensorflow-transition-to-gpu-version.

59. Jarosciak, Jozef. How to resolve TensorFlow 2.0 Error – Could not load dynamic library

‘cudart64_100.dll’. [Online] 2019. [Cited: 13 April 2020.] https://www.joe0.com/2019/10/19/how-

resolve-tensorflow-2-0-error-could-not-load-dynamic-library-cudart64_100-dll-dlerror-

cudart64_100-dll-not-found/.

60. Person-on-person Violence Detection in Video Data. Datta, Ankur, Shah, Mubarak and Lobo,

Niels da Vitoria. 2002. Vol. 1, pp. 433-438. 0-7695-1695-X.

61. A Hibrid Framework Combining Background Substraction and Deep Neural Networks for Rapid

Person Detection. Kim, Chulyeon, et al. 10 July 2018, Journal of Big Data 5, Vol. 22.

62. REGULATION (EU) 2016/679 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL.

Union, The European Parliament and the Council of the European. 27 April 2016, Official Journal

of the European Union.

Identification and Monitoring of Violent Interactions in Video Lourdes Mas Lillo

116

16 Annex

16.1 Gannt Diagram

Figure 76:Legend of the color code used in the Gannt Diagram, own elaboration

Caption

Planned

Holidays

In time

Delayed

Lourdes Mas Lillo Identification and Monitoring of Violent Interactions in Video

117

Figure 77: Gannt diagram for the month of October 2019, own elaboration

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

October-19

2.1

2.2

Introduction

Summary and evaluation6.5

6.6 Revise documentation

Tasks

Plan

Code

1

1.1

1.2

Create automatized detector

Test

Project documentation

Datasets

Dataset research

1.3

2

Theoretical knowledge

Implementation and testing

Training comparative studies

Research

Design and implement

Create structure

Structure data

Implement code to handle input

Train single NN

6.3

6.4

6.1

6.2

5.2

6

3.3

4.3

4.4

4.5

5

5.1

4.6

3

Use with pretrained NN

Modify and update NN

Alarm System

Compare with previous results

Ensure protection to data2.3

3.1

3.2

4

4.1

4.2

Review Progress

Reunion with tutor

System preparation

Research options

Installations

Organization

Identification and Monitoring of Violent Interactions in Video Lourdes Mas Lillo

118

Figure 78: Gannt diagram for the month of November 2019, own elaboration

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

November-19

2.1

2.2

Introduction

Summary and evaluation6.5

6.6 Revise documentation

Tasks

Plan

Code

1

1.1

1.2

Create automatized detector

Test

Project documentation

Datasets

Dataset research

1.3

2

Theoretical knowledge

Implementation and testing

Training comparative studies

Research

Design and implement

Create structure

Structure data

Implement code to handle input

Train single NN

6.3

6.4

6.1

6.2

5.2

6

3.3

4.3

4.4

4.5

5

5.1

4.6

3

Use with pretrained NN

Modify and update NN

Alarm System

Compare with previous results

Ensure protection to data2.3

3.1

3.2

4

4.1

4.2

Review Progress

Reunion with tutor

System preparation

Research options

Installations

Organization

Lourdes Mas Lillo Identification and Monitoring of Violent Interactions in Video

119

Figure 79: Gannt diagram for the month of December 2019, own elaboration

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

December-19

2.1

2.2

Introduction

Summary and evaluation6.5

6.6 Revise documentation

Tasks

Plan

Code

1

1.1

1.2

Create automatized detector

Test

Project documentation

Datasets

Dataset research

1.3

2

Theoretical knowledge

Implementation and testing

Training comparative studies

Research

Design and implement

Create structure

Structure data

Implement code to handle input

Train single NN

6.3

6.4

6.1

6.2

5.2

6

3.3

4.3

4.4

4.5

5

5.1

4.6

3

Use with pretrained NN

Modify and update NN

Alarm System

Compare with previous results

Ensure protection to data2.3

3.1

3.2

4

4.1

4.2

Review Progress

Reunion with tutor

System preparation

Research options

Installations

Organization
Christmas Holidays

Identification and Monitoring of Violent Interactions in Video Lourdes Mas Lillo

120

Figure 80: Gannt diagram for the month of January 2020, own elaboration

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

2.1

2.2

Introduction

Summary and evaluation6.5

6.6 Revise documentation

Tasks

Plan

Code

1

1.1

1.2

Create automatized detector

Test

Project documentation

Datasets

Dataset research

1.3

2

Theoretical knowledge

Implementation and testing

Training comparative studies

Research

Design and implement

Create structure

Structure data

Implement code to handle input

Train single NN

6.3

6.4

6.1

6.2

5.2

6

3.3

4.3

4.4

4.5

5

5.1

4.6

3

Use with pretrained NN

Modify and update NN

Alarm System

Compare with previous results

Ensure protection to data2.3

3.1

3.2

4

4.1

4.2

Review Progress

Reunion with tutor

System preparation

Research options

Installations

Organization
Christmas Holidays

January-20

Lourdes Mas Lillo Identification and Monitoring of Violent Interactions in Video

121

Figure 81: Gannt diagram for the month of February 2020, own elaboration

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

2.1

2.2

Introduction

Summary and evaluation6.5

6.6 Revise documentation

Tasks

Plan

Code

1

1.1

1.2

Create automatized detector

Test

Project documentation

Datasets

Dataset research

1.3

2

Theoretical knowledge

Implementation and testing

Training comparative studies

Research

Design and implement

Create structure

Structure data

Implement code to handle input

Train single NN

6.3

6.4

6.1

6.2

5.2

6

3.3

4.3

4.4

4.5

5

5.1

4.6

3

Use with pretrained NN

Modify and update NN

Alarm System

Compare with previous results

Ensure protection to data2.3

3.1

3.2

4

4.1

4.2

Review Progress

Reunion with tutor

System preparation

Research options

Installations

Organization

February-20

Identification and Monitoring of Violent Interactions in Video Lourdes Mas Lillo

122

Figure 82: Gannt diagram for the month of March 2020, own elaboration

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

2.1

2.2

Introduction

Summary and evaluation6.5

6.6 Revise documentation

Tasks

Plan

Code

1

1.1

1.2

Create automatized detector

Test

Project documentation

Datasets

Dataset research

1.3

2

Theoretical knowledge

Implementation and testing

Training comparative studies

Research

Design and implement

Create structure

Structure data

Implement code to handle input

Train single NN

6.3

6.4

6.1

6.2

5.2

6

3.3

4.3

4.4

4.5

5

5.1

4.6

3

Use with pretrained NN

Modify and update NN

Alarm System

Compare with previous results

Ensure protection to data2.3

3.1

3.2

4

4.1

4.2

Review Progress

Reunion with tutor

System preparation

Research options

Installations

Organization

March-20

Lourdes Mas Lillo Identification and Monitoring of Violent Interactions in Video

123

Figure 83: Gannt diagram for the month of April 2020, own elaboration

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

2.1

2.2

Introduction

Summary and evaluation6.5

6.6 Revise documentation

Tasks

Plan

Code

1

1.1

1.2

Create automatized detector

Test

Project documentation

Datasets

Dataset research

1.3

2

Theoretical knowledge

Implementation and testing

Training comparative studies

Research

Design and implement

Create structure

Structure data

Implement code to handle input

Train single NN

6.3

6.4

6.1

6.2

5.2

6

3.3

4.3

4.4

4.5

5

5.1

4.6

3

Use with pretrained NN

Modify and update NN

Alarm System

Compare with previous results

Ensure protection to data2.3

3.1

3.2

4

4.1

4.2

Review Progress

Reunion with tutor

System preparation

Research options

Installations

Organization
Holidays

April-20

Identification and Monitoring of Violent Interactions in Video Lourdes Mas Lillo

124

Figure 84: Gannt diagram for the month of May 2020, own elaboration

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

2.1

2.2

Introduction

Summary and evaluation6.5

6.6 Revise documentation

Tasks

Plan

Code

1

1.1

1.2

Create automatized detector

Test

Project documentation

Datasets

Dataset research

1.3

2

Theoretical knowledge

Implementation and testing

Training comparative studies

Research

Design and implement

Create structure

Structure data

Implement code to handle input

Train single NN

6.3

6.4

6.1

6.2

5.2

6

3.3

4.3

4.4

4.5

5

5.1

4.6

3

Use with pretrained NN

Modify and update NN

Alarm System

Compare with previous results

Ensure protection to data2.3

3.1

3.2

4

4.1

4.2

Review Progress

Reunion with tutor

System preparation

Research options

Installations

Organization

May-20

Lourdes Mas Lillo Identification and Monitoring of Violent Interactions in Video

125

16.2 Detailed Task Review

16.2.1 Organization

Table 41: Priority of tasks required for the organization of the project, own elaboration

1. Organization

Code Task Details PRIO Done

1.1 Plan

Produce the list of tasks determinant to fulfil the

objectives of the project
100 Yes

Organize the tasks depending on their importance

for the project
120 Yes

Create a time plan 75 Yes

1.2

Review

Progress

Summarise the status of the project 90 Yes

Check if the progress reached fulfils the plan 90 Yes

1.3
Reunion

with tutor

Explain progress to the tutor 90 Yes

Explain important changes to the tutor 90 Yes

Discuss the next steps with the tutor 90 Yes

16.2.2 System Preparation

Table 42: Priority of tasks required for the system preparation of the project, own elaboration

2. System preparation

Code Task Details PRIO Done

2.1
Research

options

Choose the favourite options for building and

running the project
100 Yes

2.2 Installations

Install required software 100 Yes

Make the required installations for the

dependency with libraries and frameworks
100 Yes

2.3

Ensure

protection

to data

Apply a license to the project 30 No

Use a control version 120 Yes

16.2.3 Datasets

Table 43: Assessment of tasks related with the datasets of the project, own elaboration

3. Datasets

Code Task Details PRIO Done

3.1

Dataset

research

Acquire datasets that are of use for the project 80 Yes

Analyse scholar literature (journal articles,

conference proceedings, books, …) related to

works where those datasets where used

80 Yes

3.2
Structure

data

Design suitable datasets for the model from the

original video datasets to use during the training
100 Yes

3.3

Implement

code to

handle

input

Create code to automatically modify big datasets,

reorganize and relabel
80 Yes

Identification and Monitoring of Violent Interactions in Video Lourdes Mas Lillo

126

16.2.4 Training Comparative Studies

Table 44: Assessment of tasks required for the training comparative studies of the project, own elaboration

4. Training comparative studies

Code Task Details PRIO Done

4.1 Research

Analyse the related theory using literature

(journal articles, conference proceedings, books,

…)

60 Yes

Analyse the current state of the art using literature

(journal articles, conference proceedings, books,

…)

60 Yes

Compare different model approximations

60 Yes

4.2
Design and

implement

Apply learned information to design an own NN 80 Yes

Implement the NN 100 Yes

4.3
Train single

NN

Experiment with different NN 45 Yes

Execute trainings of the NN with different

datasets
45 Yes

4.4

Use with

pretrained

NN

Execute retraining of a model with different

datasets
45 Yes

4.5
Modify and

update NN

Modify NN to improve the results based on the

evaluation
120 Yes

4.6

Compare

with

previous

results

Analyse the results obtained from the trainings 60 Yes

Compare the accuracy of different datasets 60 Yes

Analyse how different values affect the results of

the training
90 Yes

16.2.5 Alarm System

Table 45: Assessment of tasks required for the alarm system of the project, own elaboration

5. Alarm system

Code Task Details PRIO Done

5.1

Create

automatized

detector

Use trained models to evaluate violence detector

in video
100 Yes

Create interface 25 Yes

Frame the people on the scenes 25 No

Store the detected violence video sections 90 Yes

Signalize if a violence situation is detected by the

system
120 Yes

5.2 Test Test the alarm with an independent dataset 75 Yes

16.2.6 Project Documentation

Table 46: Assessment of tasks required for the documentation of the project, own elaboration

6. Project documentation

Code Task Details PRIO Done

6.1
Create

structure

Customize the documentation layout to fulfil

the layout of the University of Alicante

requirements for final projects

120 Yes

6.2 Introduction Generate project introduction documentation 80 Yes

Lourdes Mas Lillo Identification and Monitoring of Violent Interactions in Video

127

6.3
Theoretical

knowledge

Generate documentation of the studies

obtained related to the project
40 Yes

Organize the bibliography into a folder 30 Yes

6.4
Implementation

and testing

Generating documentation of the programming

progress
60 Yes

Generating documentation of the tests realized 60 Yes

Generating documentation of the result and

interpretation
80 Yes

6.5
Summary and

evaluation

Evaluating the results of the training

comparative studies
100 Yes

Evaluating the results of the alarm system 100 Yes

Assessment of the project objectives 90 Yes

Conclusion and future work 120 Yes

6.6
Revise

documentation
Correct mistakes in the documentation 80 Yes

Identification and Monitoring of Violent Interactions in Video Lourdes Mas Lillo

128

16.3 UML

1
<<Enumerator>>
ModelType

KerasTrainer

TrainLeNet5 TrainAlexNet TrainLSTM TrainConvLSTM

DataGenerator
(keras.utils.Sequence)

1

FramesProvider

1
0..1

Dictionary

1

LSTM

ConvLSTM

LeNet

AlexNet

model_type

+dataset_train_size: Integer

#_show_gpus

+model_type: Enumerator

+dim: Tuple +dim: Tuple

+train_fit_generator:
keras.callbacks.History

+model_type: Enumerator

+train_fit_generator:
keras.callbacks.History

+dim: Tuple

+train_fit_generator:
keras.callbacks.History

+nb_classes: Integer

+path_frames_test: String

+patch_window: Tuple

+path_frames_validating: String

+dataset_test_size: Integer

+batch_size: Integer

+num_epochs: Integer

+path_frames_training: String

+model_path: String

+num_splits: Integer

#_print_history_acc(keras.callback
s.History)

#_save_model_json(keras.Model)

#_save_model_weights(keras.Mo
del)

#_print_history_loss(keras.callbac
ks.History)

+model_type: Enumerator

+train_fit: keras.callbacks.History

+dim: Tuple

+model_type: Enumerator

+train_fit_generator:
keras.callbacks.History

#_get_input_shape: Tuple

#_get_available_devices:
List(String)

+optimizer: keras.Optimizers

+model_checkpoint:
keras.callbacks.ModelCheckPoint

+early_stopping:
keras.callbacks.EarlyStopping

+timesteps: Integer

#_evaluate(keras.Model)

+dim: Tuple

+model_type: Enumerator

+patch_window: Tuple

+shuffle: Boolean

+frames_path: String

+nb_classes: Integer

+batch_size: Integer

+list_IDs: Dictionary

+time_steps: Integer

-__getitem__(index): Numpy
array, numpy array

+on_epoch_end

-__len__: Integer

-__data_generation__(Dictionary,
Numpy array): Numpy array,
Numpy array

#_generate_batches: Numpy
array, Numpy array

_generate_batches

+dim: Tuple

+model_type: Enumerator

+patch_window: Tuple

+all_frames_image_format:
Numpy array

+frames_path: String

+time_steps: Integer

+dim: Tuple

+get_training_set_and_class: List,
List
+structure_data(List, List): Numpy
array, numpy array

+frame_image_format(String):
Numpy array

+all_frames_ConvLSTM_format:
Numpy array

+all_frames_LSTM_format:
Numpy array

+train_fit: keras.callbacks.History +train_fit: keras.callbacks.History

train_fit

+model_path: String +model_path: String +model_path: String +model_path: String

+paths_file_dictionary(String):

+random_part_dictionary(Integer,Diction
ary,Integer)

+list_IDs: Dictionary

list_IDs

+list_IDs: Dictionary

+labels_dictionary: Dictionary

Figure 85: Trainers UML, own elaboration

Lourdes Mas Lillo Identification and Monitoring of Violent Interactions in Video

129

VideoProvider

VideoProviderIXMAS

VideoProviderUT

#_save_fram_videos_with_standi
ng_label(String, String)

#_structure_data(List, List):
Numpy array, Numpy array

#_delete_start_and_last_x_eleme
nts_folder(String)

+path_training_set: String

+current_frame: Integer

#_save_frame_videos(String,
String)

+path_frames_training: String

+frames_to_relabel_delete:
Integer

#_get_training_set(Tuple): List,
List

+path_frames_test: String

+path_test_set: String

#_classify_clips(List): List

#_get_video_paths: List

#create_standing_label_start_and
_last_x_elements_folder(String)

#save_images

#save_images_with_standing_lab
el
#change_to_two_labels_training_
test

+save_frames_depending_cam(Str
ing, String)

+increment_frame_pos(Integer)

+save_images(Boolean)

+path_training_set: String

+save_frame_videos(String, String,
Boolean)

+path_frames_training: String

+frames_to_relabel_delete:
Integer

+get_frame_pos(Integer)

+path_frames_test: String

+path_test_set: String

+save_frames_new_label(String,
String, String)

+change_to_two_labels_training_
test

+change_to_two_labels(String)

+current_frame_cam0: Integer

+current_frame_cam1: Integer

+current_frame_cam2: Integer

+current_frame_cam3: Integer

+current_frame_cam4: Integer

+save_frames(String, String,
String)

+path_training_set: String

+path_frames_training: String

+frames_to_relabel_delete:
Integer

+path_frames_test: String

+path_test_set: String

+save_frames_new_label(String,
String, String)

+change_to_two_labels(String)

+save_frames(String, String,
String)

+create_standing_label_start_and
_last_x_elements_folder(String)

Figure 86: VideoProvider UML, own elaboration

Identification and Monitoring of Violent Interactions in Video Lourdes Mas Lillo

130

1

Alarm

<<Enumerator>>
ModelType

+timesteps: Integer

+alarm_and_proves_UT(Numpy
array)

LSTM

ConvLSTM

LeNet

AlexNet
+X: Numpy array

+freq: Integer

+patch_window: Tuple

+dir_to_save: String

+save_violent_frames(Numpy
array)

+alarm_and_proves_binary(Nump
y array)

+duration: Integer

+model_type: ModelType

+model_path: String

+dir: String

+batch_size: Integer

+camera_name: String

+image_time_list: List[Array,
datetime]

+to_evaluate

+alarm_and_proves_IXMAS(Nump
y array)

+make_alarm_sound(Numpy
array)

model_type

Figure 87_Alarm System UML, own elaboration

0..1

Main

1

0..1

0..1

+save_frames: Boolean

+num_splits: Integer

+patch_window: Tuple

+path_frames_training: String

+num_epochs: Integer

+time_steps: Integer

+model_path: String

+path_video_test: String

+batch_size: Integer

+to_train

model_type

+path_frames_validating: String

+path_frames_test: String

+model_type: EnumeratorModelType

VideoProvider

KerasTrainer

Alarm

+menu

to_train

+manage_dataset

manage_dataset

+alarm

alarm

Figure 88: Menu UML, own elaboration

Lourdes Mas Lillo Identification and Monitoring of Violent Interactions in Video

131

DataGeneratorOfSection(keras
.utils.Sequence)

FramesProvider

1

DataStratifiedGenerator(keras.
utils.Sequence)

+dim: Tuple

+model_type: Enumerator

+patch_window: Tuple

+shuffle: Boolean

+frames_path: String

+nb_classes: Integer

+batch_size: Integer

+list_IDs: Dictionary

+time_steps: Integer

-__getitem__(index): Numpy
array, numpy array

+on_epoch_end

-__len__: Integer

-__data_generation__(Dictionary,
Numpy array): Numpy array,
Numpy array

+patch_window: Tuple

+all_frames_image_format:
Numpy array

+frames_path: String

+time_steps: Integer

+dim: Tuple

+get_training_set_and_class: List,
List
+structure_data(List, List): Numpy
array, numpy array

+frame_image_format(String):
Numpy array

+all_frames_ConvLSTM_format:
Numpy array

+all_frames_LSTM_format:
Numpy array

__data_generation__

+dim: Tuple

+model_type: Enumerator

+patch_window: Tuple

+shuffle: Boolean

+frames_path: String

+nb_classes: Integer

+batch_size: Integer

+list_IDs: Dictionary

+time_steps: Integer

-__getitem__(index): Numpy
array, numpy array

+on_epoch_end

-__len__: Integer

-__data_generation__(Dictionary,
Numpy array): Numpy array,
Numpy array

+batch_count: Integer

+validation_count: Integer

Figure 89: Other generators UML, own elaboration

