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Abstract
Purpose – One of the key elements in the banking industry relies on the appropriate selection of customers.
To manage credit risk, banks dedicate special efforts to classify customers according to their risk. The usual
decision-making process consists of gathering personal and financial information about the borrower.
Processing this information can be time-consuming, and presents some difficulties because of the
heterogeneous structure of data.
Design/methodology/approach – This paper presents an alternative method that is able to generate
rules that work not only on numerical attributes but also on nominal ones. The key feature of this method,
called learning vector quantization and particle swarm optimization (LVQ 1 PSO), is the finding of a reduced
set of classifying rules. This is possible because of the combination of a competitive neural network with an
optimization technique.
Findings – These rules constitute a predictive model for credit risk approval. The reduced quantity of rules
makes this method useful for credit officers aiming to make decisions about granting a credit. It also could act
as an orientation for borrower’s self evaluation about her/his creditworthiness.
Research limitations/implications – In spite of the fact that conducted tests showed no evidence of
dependence between results and the initial size of the LVQ network, it is considered desirable to repeat the
measurements using an LVQ network of minimum size and a version of variable population PSO to
adequately explore the solution space in the future.
Practical implications – In the past decades, there has been an increase in consumer credit. Retail
banking is a growing industry. Not only has there been a boom in credit card memberships, specially in
emerging economies, but also an increase in small consumption credits. For example, it is very common in
emerging economies that families buy home appliances on installments. In those countries, the association of
a home appliance shop with a financial institution is usual, to provide customers with quick-decision credit
line facilities. The existence of such a financial instrument aids to boost sales. This association generates
conflict of interests. On one hand, the home appliance shop wants to sell products to all customers. Therefore,
it is in its best interest to promote a generous credit policy. On the other hand, the financial institution wants
to maximize the revenue from credits, leading to a strict surveillance of loan losses. Having a fair and
transparent credit-granting policy favors a good business relationship between home appliances shops and
financial institutions. One way of developing such a policy is to construct objective rules to decide to grant or
deny a credit application.
Social implications – Better credit decision rules generate enhanced risk sharing. In addition, it improves
transparency in credit acceptance decisions, giving less room to arbitrary decisions.
Originality/value – This study develops a new method that combines a competitive neural network and
an optimization technique. It was applied to a real database of a financial institution in a developing country.

Keywords Classification, Credit risk, Particle swarm optimization, Learning vector quantization
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1. Introduction
The economic development in the past 60 years was accompanied by an extension and
popularization of the financial services. In fact, consumer lending gives the opportunity to a
large part of the population of many countries to obtain some goods and services now,
deferring the payment sometime in the future. This sort of “democratization” in consumption
poses a challenge to the financial institution. Although mortgage lending applications,
because of its comparatively reduced number of borrowers, can be decided at a slower pace,
consumer lending needs faster decision procedures. Borrowers want small credits for buying
home equipment, a car, a trip, etc. They are eager for a quick answer. Financial institutions
want to find the appropriate rules to approve credit application only to good borrowers, that
is those who pay back their financial commitments. From the point of view of the borrowers,
they want to receive a positive answer to their applications.

Financial institutions typically ask exhaustive information about the potential client: age,
marital status, salary, other debts, job type, etc. This information is gathered to be analyzed,
using some decision model. The result of this analysis is either to grant or reject the credit.

The increasing number of applicants and data raises the necessity for suitable techniques
that deal with the complexity of this multidimensional problem. Precisely, the area known as
data mining can shed light on this kind of situations. Lessmann et al. (2015) affirm that the
business value of accurate prediction relies on its relation with the firm profit equation.

Data mining comprises a set of techniques that are able to model available information.
One of the most important stages in the process is knowledge discovery. It is characterized
by obtaining new and useful information without assuming prior hypothesis. One of the
preferred techniques by decision makers is the association rule.

An example of the association rule is the following expression: IF condition1 THEN
condition2, where both the conditions are conjunctions of propositions of the form (attribute 5
value) and whose sole restriction is that attributes in the antecedent must not be present in the
consequent. When a set of association rules presents in the consequent the same attribute, it is
called a set of classification rules (Witten et al., 2011; Hernández Orallo et al., 2004).

The aim of this paper is twofold. On one hand, we benchmark a method for obtaining
classification rules that combine a neural network with an optimization technique, against
two well-known classification methods. On the other hand, we show that the solution
provided is very intuitive and simple because of the reduced number of rules required for the
decision.

A reduced set of rules improves the transparency in the decision-making process of the
financial institutions.

The rest of the paper is structured as follows. Section 2 briefly discusses relevant
literature on credit risk. Section 3 describes the neural network, metaheuristics and the
proposed method. Section 4 describes data and presents results of a true empirical
application, and Section 5 draws the main implications of our proposal.

2. Related work
The interest in studying business risk can be traced back to FitzPatrick (1932), who wrote
one of the earliest papers in bankruptcy prediction using 13 accounting ratios calculated for
40 firms during three years. In the 1960s, the development of the capital markets in the USA
showed the necessity for more scientific models to assess economic corporate strength.
Consequently, the first z-score model was developed by Altman (1968). At that time, the main
concern of banks was to classify corporations according to their credit risk, because they
were the main clients. However, in the past decades, there has been an increase in consumer
credit. Retail banking is a growing industry. Not only has there been a boom in credit card
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memberships, specially in emerging economies, but also an increase in small consumption
credits. For example, it is very common in emerging economies that families buy home
appliances on installments. In those countries, the association of a home appliance shop with
a financial institution is usual, to provide customers with quick-decision credit line facilities.
The existence of such a financial instrument aids to boost sales. This association generates
conflict of interests. On one hand, the home appliance shop wants to sell products to all
customers. Therefore, it is in its best interest to promote a generous credit policy. On the other
hand, the financial institution wants to maximize the revenue from credits, leading to a strict
surveillance of loan losses. Having a fair and transparent credit granting policy favors a good
business relationship between home appliances shops and financial institutions. One way of
developing such a policy is to construct objective rules to decide to grant or deny a credit
application.

There are several methods to construct rules to evaluate the creditworthiness of credit
applicants. The earliest methods were developed based on a discriminant analysis similar to
Altman (1968). However, computational intelligent techniques produce better results. These
techniques, without being exhaustive, include artificial neural networks, fuzzy set theory,
decision trees, support vector machines, genetic algorithms, among others. Artificial neural
networks is a family of neural networks with different architectures. These architectures include
popular models such as back propagation networks, self-organizing maps and learning vector
quantization (LVQ). The fuzzy set theory, developed from the seminal paper by Zadeh (1965), is
very useful in cases such as credit classification, where boundaries are not clearly defined.
Decision trees transform data in a tree-shaped structure of leaf and decision nodes, and the goal is
to test attributes to each branch of the tree, that constitutes a class. Support vector machines
search an optimal hyperplane to generate a binary classification, maximizing the margin of
separation between classes. Genetic algorithms are a set of methods to optimize problems, based
on the evolutionary idea of natural selection. Hand and Henley (1997) highlight the difficulty in
discovering new statistical techniques in this field because of the need for confidentiality. Better
techniques provide a competitive advantage to financial institutions and are not willing to
disclose such a discovery. Freitas (2003) discusses the use of genetic algorithms in data mining
and classification problems. Wang et al. (2007) propose a classification rule mining algorithm
based on particle swarm optimization (PSO). Lessmann et al. (2015) find that artificial neural
networks perform better than extreme learning machine. Abid et al. (2016) use logistic regression
and discriminant analysis to separate “good” and “bad” borrowers from a database of a
commercial Tunisian bank for the period 2010-2012. For a more detailed and recent review of both
traditional statistical models and intelligent methods for financial distress forecasting, we refer to
Chen et al. (2016) and references therein.

If the goal is to obtain association rules, the a priori method (Agrawal and Srikant, 1994) or
some of its variants could be used. This method identifies the most common sets of attributes and
then combines them to get the rules. There are variants of the a priori method, which are usually
oriented to reduce computation time.

Under the topic classification rules, the literature contains various construction methods
based on trees such as C4.5 (Quinlan, 1993) or clipped trees such as the PART method (Frank and
Witten, 1998). In both cases, the key is to get a set of rules that cover the examples fulfilling a
preset error bound. The methods of construction rules from trees are partitives and are based on
different attributes’ metrics to assess its ability to cover the error bound.

3. Methodology
This paper presents a hybrid approach based on PSO to determine the rules. There are
methods of obtaining rules using PSO (Wang et al., 2007). However, when operating with
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nominal attributes, a sufficient number of examples to cover all areas of the search space is
required. If this situation is not feasible, its consequence is a poor initialization of the
population, leading to premature convergence. As a way to bypass this problem, while
reducing the turnaround time, is to obtain the initial state from a competitive LVQ neural
network. There is some literature that uses PSO as a means to determine the optimal quantity
of competitive neurons to be used in the network, such as Hung and Huang (2010). This is not
the purpose of this paper because the LVQ network we used, although it is previously
dimensioned, could estimate the number of neurons to be used for each class based on the
proportion of examples in the training set.

3.1 Learning vector quantization
LVQ is a supervised classification algorithm based on centroids or prototypes (Kohonen,
1990). It can be interpreted as a three-layer competitive neural network. The first layer is only
an input layer. The second layer is where the competition takes place. The third layer
performs the classification. Each neuron in the competitive layer has an associated numerical
vector of the same dimension as the input examples and a label indicating the class they will
represent. These vectors are the ones that, at the end of the adaptive process, will contain
information about the classification prototypes or centroids. There are different versions of
the training algorithm. We will describe the one used in this article.

When starting the algorithm, some amount of K centroids should be indicated. This
allows defining the network architecture, given that the number of inputs and outputs are
defined by the problem.

Centroids are initialized by taking K random examples. Then, examples are entered one at
a time to adapt the position of the centroids. To do this, the closest centroid to the example is
determined, using a preset distance measure. Because this is a supervised process, it is
possible to determine whether the example and the centroid correspond to the same class. If
the centroid and the example belong to the same class, the centroid is moved closer to the
example with the aim of strengthening the representation. Conversely, if the classes are
different, the centroid is moved away from the example. These movements are performed
using a factor or adaptation rate.

This process is repeated either until changes are less than a pre-set threshold or until the
examples are identified with the same centroids in two consecutive iterations, whichever
comes first.

In the implementation used in this article, we also examine the second nearest centroid
and, in case it belongs to a different class of the example and is at a distance of less than 1.2
times the distance to the first centroid, it is moved away. Several variants of LVQ can be
consulted in Kohonen et al. (2001).

3.2 Obtaining classification rules with particle swarm optimization
PSO is a population-based metaheuristic proposed by Kennedy and Eberhart (1995). In it,
each individual in the population (particle) represents a possible solution to the problem and
adapts the following three factors:

(1) knowledge on the environment (fitness value);
(2) historical knowledge or past experience (memory); and
(3) historical knowledge or previous experiences of individuals located in its

neighborhood (social knowledge).

PSO was originally defined to work on continuous spaces. To operate with it on a discrete
space, it is necessary to take into account some precautions. Kennedy and Eberhart (1997)
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defined a binary version of the PSO method. One of the central problems of the latter method
is its difficulty changing from 0 to 1 and from 1 to 0 once it has stabilized. This has led to
different versions of binary PSO, looking to improve the exploratory capacity. In particular,
this work will use a variant defined by Lanzarini et al. (2011).

Obtaining classification rules using PSO, when operating on nominal and numeric
attributes, requires a combination of the methods mentioned above. This is because it is
necessary to say which attributes will be part of antecedent and what value or range of
values it may take (a combination of discrete and continuous spaces).

Because it is a population technique, the required information in each individual of the
population should be analyzed. A decision between representing a single rule or the full rules
set per individual should be made. At the same time, the representation scheme of each rule
should be chosen. Taking into account the aim of this work, we follow the iterative rule
learning approach developed by Venturini (1993), in which each individual represents a
single rule and the solution is constructed from the best individuals obtained in a sequence of
executions. Consequently, using this approach implies that the population technique be
applied iteratively until the desired coverage, obtaining a single rule for each iteration: the
best individual of the population. It has also been decided to use a fixed length representation
where only the antecedent of the rule is coded and given this approach; an iterative process
will associate all individuals in the population with a default class, which does not require
coding the consequent.

Regarding the fitness of each individual, it depends on two things:
• firstly, the importance of the rule that represents (based on its support and confidence);

and
• secondly, the size (proportion of attributes used in the antecedent relative to the total

number of attributes).

A detailed description on the application of PSO for obtaining classification rules is in
Lanzarini et al. (2015b).

3.3 LVQ 1 PSO: proposed method for obtaining rules
Rules are obtained through an iterative process that analyzes examples not covered in each class,
beginning by the more populated classes. Whenever a rule is obtained, examples covered by such
a rule are removed from the set of input data. The process continues until covering all examples,
or until the amount of uncovered examples in each class examples is either below the respective
minimum established support or until the maximum number of attempts to obtain a rule have
been reached. It is important to note that, because examples are removed from the set of input data
once they are covered by the rules, they constitute a classification. This is to say that, to classify
a new example, rules must be applied in the order in which they were obtained, and the example
will be classified according to the corresponding class of the consequent of the first rule whose
antecedent verifies the example under examination.

Before starting the iterative process of obtaining rules, the method starts with the supervised
training of a LVQ neural network, using the full set of examples and the algorithm described in
Section 2. The goal of this step is to identify the most promising areas of space search.

Because neural networks operate only with numeric data, nominal attributes are represented
by a dummy coding using as many binary digits as the different options of the nominal attribute.
In addition, before starting the training, each numeric attribute is linearly scaled in the interval
[0, 1]. The similarity measure used is the Euclidean distance. Once the training is complete, each
centroid will contain approximately the average of the examples it represents.
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To obtain each of the rules, the corresponding class of the consequent is determined first. With
the aim of obtaining rules with high support, the proposed method analyzes the classes having a
greater number of uncovered examples. The minimum support that a rule must meet is
proportional to the amount of non-covered examples of the class by the time that was obtained. In
other words, the minimum support required for each class decreases along iterations, as
examples of the corresponding class are covered. Thus, it is expected that the first rules have
more support than the last rules.

Once the class is selected, the consequent is determined by the rule. To obtain the antecedent,
a swarm population will be optimized, using the algorithm described in Section 3, initialized with
the information of all centroids able to represent a minimum number of examples from the
selected class and its immediate neighbors. The information of the centroid is used to determine
vector veloc2, described in Section 3. If this is a nominal attribute, the centroid information is
linearly scaled to the interval [lowerbound2j, upperbound2j]. However, if it is a numeric attribute,
the value to be scaled is (1 2 1.5 3 deviationj) which is the deviationj in the j-th dimension of the
deviation of the examples represented by the centroid. In both cases, it is intended to operate with
a value between 0 and 1 that measures the degree of participation of the attribute (if numeric) or
attribute value (if nominal) in building the antecedent of the rule. In the case of nominal attributes,
it is clear that the average indicates the ratio of elements represented by the centroid that match
the same value. However, when it is numeric, this ratio is not present in the centroid but the
deviation of the examples (considering a specific dimension). If the deviation in a certain
dimension is zero, all examples coincide in the value of the centroid, but if it is too large, it should
be understood that it is not representative of the group. Therefore, it would not be appropriate to
include it in the antecedent of the rule. If the deviation is large, using (1 2 1.5 3 deviationj), the
speed value veloc2 (argument of the sigmoid function) will be lower and the probability that the
attribute be used is reduced. In all cases, the speed veloc1 is initialized randomly in [lowerbound1j,
j upperbound1j]. The pseudocode of the proposed method is shown below:

Train LVQ network using all training examples
Compute the minimum support for each class
While (the end criteria is not reached)

Choose the class with largest number of non covered
examples
Construct a reduced population of the individuals,
based on centroids
Evolve the population using PSE according to Section 4
Obtain the best population rule
If (the rule fulfils with support and confidence
required) then
Add the rule to the set of rules
Consider as covered the examples correctly classified
by the previous rule
Recalculate the minimum support for this class

End if
End while

4. Data and results
We test our method in real consumer credit records of a savings and credit institution of
Ecuador, which generously provided data. The data comprise credit operations between
January 2011 and August 2015, with the following attributes: status; date of application;
branch; province; requested amount; authorized amount; purpose of the credit; cash, bank
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accounts, investments, other assets, liabilities and salary of the applicant; date of verification
of information; date of authorization; approval/denial date; and cash, bank accounts,
investments, other assets, liabilities and salary of the applicants’ partner. In case the
applicant is a small business, data requested are revenues and expenses of the business. The
“status” variable corresponds to the situation of the credit. Applications can be denied or
accepted. In case of being accepted, the status is classified between credits that were duly
repaid and those with some delay in the payback. In turn, overdue loans are classified
according to the credit procedures manual between those with less than 90 days overdue, and
those with more than 90 days overdue (initiation of legal actions).

Using the data described above, we compare the performance of the proposed method,
LVQ 1 PSO, vis-à-vis C4.5 methods defined by Quinlan (1993) and PART defined by Witten
et al. (2011). Both the alternative methods allow classification rules. C4.5 is a pruned tree
whose branches are mutually exclusive and allow classifying examples. PART gives as a
result a list of rules equivalent to those generated by the proposed classification method, but
in a deterministic way. The PART operation is based on the construction of partial trees.
Each tree is created in a similar manner to that proposed for C4.5, but during the process,
construction errors of each branch are calculated. These errors allow the selection of the most
suitable combinations of attributes. For a detailed description of the method see Quinlan
(1993) and Witten et al. (2011).

We performed 10 independent runs of each method. For LVQ 1 PSO, we use a LVQ network
of 30 neurons distributed between classes in proportion to the examples used.

The PART method was executed with a confidence factor of 0.3 for the pruned tree. For other
parameters, default values were used.

Table I summarizes the results obtained by applying the aforementioned three methods. In
each case, the accuracy of coverage of the rule set and the “transparency” of the obtained model
were considered. This “transparency” is reflected in the average number of rules obtained and the
average number of terms used to form the antecedent. We would like to highlight that, as we said
in the introduction, the proposed method is simple. This simplicity gives the general manager of
a financial institution a clear profile of the “good customer”. This situation could benefit the firm
not only through a reduction of the default risk but also to help to find the right customers in the
future, through marketing campaigns.

In a previous work, Lanzarini et al. (2015a) showed using public databases that LVQ 1 PSO
achieves higher accuracy than PART, but equivalent to that achieved by the C4.5 method.

In our case, even though the precision of our method is slightly lower than the benchmark
models, the number of rules is significantly lower. In fact, our method needs less than 3 per cent
of the rules of C4.5 and 7.5 per cent of the rules of PART. The antecedent in our method is also
shorter than that in the benchmark models. Consequently, we believe that our model is suitable
for credit scoring. In fact, it is much more simple and straightforward to understand by the
decision maker. Considering a trade-off between the number of rules and precision/type-I error,

Table I.
Prediction results of
the proposed and
benchmark methods

Method Prediction Deny Accept Type-I error Precision # rules Antecedent

C4.5 Deny 1,422.60 244.18 0.11 81.05 114.16 8.66 9.70 0.19
Accept 181.61 398.61

PART Deny 1,407.15 238.58 0.11 80.61 41.97 1.85 4.71 0.11
Accept 197.04 404.23

LvqPSOVar Deny 1,450.26 314.73 0.14 79.20 3.12 0.09 2.54 0.17
Accept 152.75 329.26
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we believe that our model is quite acceptable, taking into account that it provides understandable
information to managers, to target the right potential customers in the future.

5. Conclusions
We introduce a competing method for credit scoring using a variation of binary PSO, whose
population is initialized with information from the centroids of a previously trained LVQ neural
network. The advantage of this dual treatment is that it allows to deal with numerical and
nominal attributes, as it is the usual case in credit applications.

We test our model on actual credit operations from an important retail credit institution from
Ecuador. Results clearly show that the LVQ1PSO method obtains a simpler model. It uses about
7.5 per cent of the quantity of rules generated by PART and 3 per cent of the rules needed by C4.5,
with an antecedent formed by few conditions and slightly worse accuracy.

In spite of the fact that the conducted tests showed no evidence of dependence between results
and the initial size of the LVQ network, it is considered desirable to repeat the measurements
using an LVQ network of minimum size and a version of variable population PSO to adequately
explore the solution space in the future.

Finally, we would like to highlight that the goal of our method is to achieve an intuitive model
for credit scoring with a comparable accuracy to popular benchmark models. Our results suggest
that the simplification of decision rules generates transparency in credit scoring, which could
improve the reputation of financial institutions.
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