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Homogenization estimates for viscoplastic polycrystals are derived by applying the 
generalized-secant linearization scheme of Liu and Ponte Castañeda (2004) [1] to the 
constitutive description with strain rates as primary variables. The resulting estimates 
are thus particularly suitable for simulating mechanical processes where deformations are 
imposed and where the material softens. Their accuracy is preliminarily assessed in the 
context of a model material system. Good agreement with previous estimates is found.

© 2014 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Des estimations relatives à l’homogénéisation de polycristaux viscoplastiques sont obtenues 
en appliquant la méthode de linéarisation sécante généralisée de Liu et Ponte Castañeda 
(2004) [1] au cas d’une relation constitutive où les taux de déformation sont des variables 
primaires. Les estimations obtenues sont particulièrement adaptées pour simuler des 
chargements mécaniques où les déformations sont imposées et où le matériau s’adoucit. 
La précision de ces estimations est évaluée au préalable dans le cas d’un système matériau 
modèle. Un bon accord est obtenu avec des estimations antérieures.

© 2014 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

This work is concerned with homogenization techniques for correlating the macroscopic viscoplastic response of poly-
crystalline solids with the flow rules governing microscopic viscoplastic slip. We consider polycrystals consisting of a random 
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aggregate of perfectly bonded single crystals (i.e., grains) of a similar size, much smaller than the specimen size and the 
scale of variation of the applied loads, distributed in a statistically uniform and ergodic fashion. In the current configuration 
of the aggregate at a generic stage of deformation, the grain orientations are assumed to take on a set of N discrete values, 
characterized by rotation tensors Q(r) (r = 1, . . . , N). All grains with a given orientation Q(r) occupy a possibly disconnected 
domain and are collectively referred to as ‘phase’ r. For definiteness, we focus on material systems made up of single crystals 
deforming along K slip systems according to microscopic flow rules of the form

D = ∂u

∂σ
(x,σ ) with u(x,σ ) =

NX
r=1

χ(r)(x)u(r)(σ ), u(r)(σ ) =
KX

k=1

ψ
(r)
(k)

¡
σ · μ(r)

(k)

¢
(1)

where D and σ are the Eulerian strain rate and Cauchy stress tensors, χ(r) are the characteristic functions of each phase r, 
ψ

(r)
(k)

are convex viscoplastic slip potentials, and μ(r)
(k)

are the Schmidt tensors indicating slip directions. The macroscopic 
homogenized response of the polycrystal is then given by (e.g., [1])

D = ∂eu
∂σ

(σ ) with eu(σ ) = min
σ∈S(σ )


u(x,σ )

® = min
σ∈S(σ )

NX
r=1

c(r)u(r)(σ )
®(r)

(2)

where D = hDi and σ = hσ i, h·i and h·i(r) denote volume averages over the aggregate and over phase r, respectively, c(r) is 
the volume fraction of phase r, and S(σ ) is the set of statically admissible stress fields with average σ .

Amongst the various quasi-analytical techniques available to estimate the macroscopic potential eu in terms of the micro-
scopic properties, the so-called ‘generalized-secant technique’ proposed by Liu and Ponte Castañeda [1] seems to deliver the 
most accurate estimates to date — see, for instance, Refs. [2–4]. This technique is based on the concept of ‘linear-comparison 
medium’ whereby the variational problem (2)2 is rewritten in terms of linearized microscopic slip potentials so that linear 
homogenization techniques, such as the well-known Self-Consistent technique [5], can be used to approximate the non-
linear macroscopic potential. The resulting estimates are computationally inexpensive relative to full-field simulations, but 
they still require the numerical resolution of a large set of nonlinear algebraic equations. This fact can become an issue 
when simulating mechanical processes where deformations are imposed, which require inversion of the above constitutive 
description in order to express stresses in terms of strain rates; this can be particularly crucial in problems where the 
material exhibits softening.

The purpose of this work is to derive generalized-secant estimates for the inverted stress–strain-rate relation by applying 
the strategy of Liu and Ponte Castañeda [1] directly to the dual problem of (2). This problem was not tackled in Ref. [1] be-
cause the dual potential of u(r) does not exhibit the additive form (1)2 on which the linearization strategy hinges. However, 
well-known results of convex analysis (e.g., [6]) do permit to write the inverted microscopic flow rule as

σ = ∂ w

∂ D
(x, D) with w(x, D) =

NX
r=1

χ(r)(x)w(r)(D), w(r)(D) = min
γ

(r)
(k)

∈Γ (r)(D)

KX
k=1

φ
(r)
(k)

¡
γ

(r)
(k)

¢
(3)

where

φ
(r)
(k)

(γ ) = sup
τ

£
τγ − ψ

(r)
(k)

(τ )
¤

(4)

is the Legendre transform of the slip potentials ψ(r)
(k)

and

Γ (r)(D) =
(
γ

(r)
(k)

(k = 1, . . . K ) such that
KX

k=1

γ
(r)
(k)

μ(r)
(k)

= D

)
(5)

and to invert the macroscopic constitutive relation (2) to

σ = ∂ew
∂ D

(D) with ew(D) = min
D∈K(D)


w(x, D)

® = min
D∈K(D)

NX
r=1

c(r)w(r)(D)
®(r)

(6)

where K(D) is the set of kinematically admissible strain-rate fields with average D . Thus, the form (3)2 for the dual 
potential w(r) exhibits an additive form analogous to that of u(r) , except for an additional minimum operation. This fact is 
exploited next to derive generalized-secant estimates for the potential ew . The accuracy of the resulting estimates is then 
preliminarily assessed in the context of a model material system.
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2. A strain-rate formulation of the generalized-secant scheme

2.1. An estimate for the effective potential

Following the strategy of Liu and Ponte Castañeda [1], we begin by expressing the slip potentials φ(r)
(k)

in the alternative 
form

φ
(r)
(k)

(γ ) = stat
α

(r)
(k)

≥0

£
φ̊

(r)
(k)

¡
γ ;α(r)

(k)

¢ + v(r)
(k)

¡
α

(r)
(k)

¢¤
(7)

where the functions φ̊(r)
(k)

denote comparison slip potentials given by

φ̊
(r)
(k)

¡
γ ;α(r)

(k)

¢ = φ
(r)
(k)

¡
γ̆

(r)
(k)

¢ + φ
(r)0
(k)

¡
γ̆

(r)
(k)

¢¡
γ − γ̆

(r)
(k)

¢ + 1

2
α

(r)
(k)

¡
γ − γ̆

(r)
(k)

¢2
(8)

and

v(r)
(k)

¡
α

(r)
(k)

¢ = stat
γ̂

(r)
(k)

£
φ

(r)
(k)

¡
γ̂

(r)
(k)

¢ − φ̊
(r)
(k)

¡
γ̂

(r)
(k)

;α(r)
(k)

¢¤
(9)

In these expressions, α(r)
(k)

and γ̆ (r)
(k)

represent uniform-per-phase slip viscosities and reference slip rates, respectively, the stat 
denotes a stationary operation, and the prime denotes differentiation. Expression (7) is valid provided the correct stationary 
point is chosen in v(r)

(k)
. The reader is referred to [1] for details on the derivation of analogous expressions in terms of the 

stress potentials ψ(r)
(k)

.
Introducing the representation (7) for the slip potentials in expression (3) we obtain the alternative representation for 

the phase potentials

w(r)(D) = stat
α

(r)
(k)

≥0

"
ẘ(r)¡D;α(r)

(k)

¢ +
KX

k=1

v(r)
(k)

¡
α

(r)
(k)

¢#
(10)

where the functions ẘ(r) are comparison phase potentials given by

ẘ(r)¡D;α(r)
(k)

¢ = min
γ

(r)
(k)

∈Γ (r)(D)

KX
k=1

φ̊
(r)
(k)

¡
γ

(r)
(k)

¢
(11)

In deriving (10) we have commuted the stationary and the minimum operations based on the same arguments of Ref. [1]. 
Introducing expression (10) in (6) and commuting, once again, the stationary and minimum operations gives the approximate
stationary estimate

ew(D) = stat
α

(r)
(k)

≥0

"e̊w¡
D;α(r)

(k)

¢ +
NX

r=1

KX
k=1

c(r)v(r)
(k)

¡
α

(r)
(k)

¢#
(12)

where e̊w(D; α(r)
(k)

) is the effective potential of a comparison polycrystalline solid with the same microstructure as the original 
solid but with slip potentials φ̊(r)

(k)
as given by (8). Thus, this expression provides a nonlinear estimate given any linear 

homogenization estimate for the comparison potential e̊w .

2.2. The comparison polycrystal

The potential (8) can be written in the alternative form

φ̊
(r)
(k)

¡
γ ;α(r)

(k)

¢ = 1

2
α

(r)
(k)

γ 2 + e(r)
(k)

γ + f (r)
(k)

(13)

where

e(r)
(k)

= φ
(r)0
(k)

¡
γ̆

(r)
(k)

¢ − α
(r)
(k)

γ̆
(r)
(k)

and f (r)
(k)

= φ
(r)
(k)

¡
γ̆

(r)
(k)

¢ − φ
(r)0
(k)

¡
γ̆

(r)
(k)

¢
γ̆

(r)
(k)

+ 1

2
α

(r)
(k)

γ̆
(r)2

(k)
(14)

Performing the minimization in (11) we obtain

ẘ(r)¡D;α(r)
(k)

¢ = 1
D · L(r) D + τ (r) · D + f (r) (15)
2
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where

L(r) =
"

KX
k=1

¡
α

(r)
(k)

¢−1
μ(r)

(k)
⊗ μ(r)

(k)

#−1

(16)

τ (r) = L(r)
KX

k=1

¡
α

(r)
(k)

¢−1
e(r)
(k)

μ(r)
(k)

(17)

f (r) = 1

2
τ (r) · ¡L(r)¢−1

τ (r) +
KX

k=1

·
f (r)
(k)

− 1

2

¡
α

(r)
(k)

¢−1¡
e(r)
(k)

¢2
¸

(18)

Thus, the effective potential e̊w can be written as

e̊w¡
D;α(r)

(k)

¢ = e̊w¡
D;α(r)

(k)
, e(r)

(k)
, f (r)

(k)

¢ = 1

2
D ·eLD +eτ · D +ef (19)

where eL, eτ and ef are the effective properties of the linear comparison polycrystal. Their expressions in terms of the local 
properties L(r) , τ (r) and f (r) will depend on the linear homogenization scheme employed.

2.3. The stationarity conditions

The stationarity conditions in (9) and (12) lead to a system of nonlinear equations for the set of variables α(r)
(k)

and γ̂ (r)
(k)

given by

φ
(r)0
(k)

¡
γ̂

(r)
(k)

¢ − φ
(r)0
(k)

¡
γ̆

(r)
(k)

¢ = α
(r)
(k)

¡
γ̂

(r)
(k)

− γ̆
(r)
(k)

¢
(20)¡

γ̂
(r)
(k)

− γ̆
(r)
(k)

¢2 = 2

c(r)

∂ e̊w
∂α

(r)
(k)

¡
D;α(r)

(k)

¢ ≡ ¡
γ

(r)
(k)

− γ̆
(r)
(k)

¢2®(r)
(21)

with k = 1, . . . , K and r = 1, . . . , N . The first set of Eqs. (20) states that the optimal slip viscosities α(r)
(k)

are given by 

generalized secant linearizations of the nonlinear functions φ(r)0
(k)

passing through the points γ̂ (r)
(k)

and γ̆ (r)
(k)

, while the second 
set of equations states that the optimal γ̂ (r)

(k)
are related to the intraphase fluctuations of the slip rates γ (r)

(k)
about γ̆ (r)

(k)
in the 

linear comparison polycrystal. The last identity follows from well-known results for field statistics in heterogeneous media 
(e.g., [7]). We refer to [1] for further discussions on these type of conditions.

2.4. The reference slip rates

The estimate (12) is valid for any choice of reference strain rates γ̆ (r)
(k)

. Thus far, no stationarity condition has been found 
for these parameters, and only physically motivated prescriptions are considered.

The simplest choice is

γ̆
(r)
(k)

= 0 (22)

In this case, the linearization (20) becomes a secant condition through the γ̂ (r)
(k)

, and the estimate (12) can be shown to 
reduce to the dual version of the secant estimate of deBotton and Ponte Castañeda [8]. These estimates are only exact to 
first order in the heterogeneity contrast.

Another possible choice is to identify the reference slip rates with the corresponding phase averages of the slip rates in 
the linear comparison polycrystal:

γ̆
(r)
(k)

= 
γ

(r)
(k)

®(r) ≡ γ
(r)
(k)

(23)

which can be computed from e̊w making use of the identity (e.g., [7])

γ
(r)
(k)

= 1

c(r)

∂ e̊w
∂e(r)

(k)

¡
D;α(r)

(k)
, e(r)

(k)
, f (r)

(k)

¢
(24)

This is analogous to the choice employed by Liu and Ponte Castañeda [1] in their stress formulation, and can be shown to 
deliver estimates that are exact to second order in the contrast. Despite the analogy, it can be shown that there is a duality 
gap between the resulting estimate (12) and its stress formulation, in general. However, the results provided below show 
that this gap is very small and can even vanish in some limiting cases. With the choice (24), expressions (20), (21) and 
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Fig. 1. Yield surfaces for square (K = 2), hexagonal (K = 3) and octagonal (K = 4) symmetries.

(24) constitute a system of 3N × K nonlinear algebraic equations for the variables α(r)
(k)

, γ̂ (r)
(k)

and γ (r)
(k)

, which must be solved 
numerically, in general.

Other prescriptions are certainly possible but will not be considered here for brevity.

2.5. Alternative form of the estimate

Making use of the stationarity conditions (20) and (21), it can be shown that the estimate (6) admits the alternative 
form

ew(D) =
NX

r=1

KX
k=1

c(r)£φ(r)
(k)

¡
γ̂

(r)
(k)

¢ − φ
(r)0
(k)

¡
γ̆

(r)
(k)

¢¡
γ̂

(r)
(k)

− γ
(r)
(k)

¢¤
(25)

which proves more convenient for computational purposes.

3. Sample results for a model crystalline solid with second-phase inclusions

3.1. Problem setting and formulae

By way of example, we consider a special class of two-phase crystalline solids with ‘particulate’ microstructures, consist-
ing of aligned cylindrical inclusions (r = 2) that are distributed randomly and isotropically in a viscoplastic monocrystalline
matrix phase (r = 1). It is assumed that the cylindrical inclusions are aligned with the e3 direction, and that the crystalline 
matrix deforms along slip systems with Schmid tensors

μ(k) = 1

2
(n(k) ⊗ e3 + e3 ⊗ n(k)) with n(k) = cos θ(k)e1 + sin θ(k)e2 (26)

where {e1, e2, e3} forms an orthonormal basis. The slip potentials are taken to be of the power-law form

ψ(k)(τ ) = γ̇0τ0

1 + n

¯̄̄̄
τ

τ0

¯̄̄̄1+n

⇒ φ(k)(γ ) = γ̇0τ0

1 + m

¯̄̄̄
γ

γ̇0

¯̄̄̄1+m

(27)

where τ0 and γ̇0 denote the flow stress and the reference strain rate of the slip system, n is a nonlinearity exponent, and 
m = 1/n is the strain-rate sensitivity such that 0 ≤ m ≤ 1. The limiting values m = 1 and m = 0 correspond to a linearly 
viscous and a rigid-perfectly plastic behavior, respectively. For simplicity, we assume that all slip systems have the same 
constitutive constants n, τ0 and γ̇0.

The two-phase crystal is subjected to anti-plane loadings so that the relevant viscoplastic boundary value problem be-
comes a vectorial, two-dimensional problem, where the non-zero components of the stress and strain-rate vectors, namely, 
σ13, σ23, D13 and D23, are functions of x1 and x2 only.

In order to assess the sensitivity of the predictions on material anisotropy, we consider three different matrix materials 
with sets of angles θ(k) given by {0, π/2}, {0, ±π/3}, and {0, ±π/4, π/2}, which correspond to square (K = 2), hexagonal 
(K = 3), and octagonal (K = 4) symmetry, respectively. In the linear case, the anti-plane response of the matrix is actually 
isotropic for the three families of slip systems. In the nonlinear case, however, the response is anisotropic, such that in the 
ideally plastic limit it defines a polygonal yield surface in the σ13–σ23 stress space, as shown in Fig. 1. Note that as the 
number of slip systems K increases, the potential approaches an isotropic yield surface with flow stress τ0.

For brevity, we restrict attention to material systems with either voided or rigid inclusions, which correspond to the cases 
of extreme heterogeneity contrast and, as such, are particularly relevant for testing the capabilities of the new scheme. In 
these cases, the macroscopic potential ew can be shown to be of the form

ew(D) = eτ0(θ)γ̇0
µ

De
¶1+m

(28)

1 + m γ̇0
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where De = (D2
13 + D2

23)
1/2 and θ = tan−1(D23/D13) are the macroscopic strain rate magnitude and direction, respectively. 

Thus, the macroscopic response can be completely characterized by the effective flow stress eτ0(θ) only. The generalized-
secant estimate (25) for ew with the prescription (23) leads to the estimate

eτ0

τ0
(θ) = (1 − c)

KX
k=1

·µ
γ̂

(1)

(k)

De

¶1+m

− (1 + m)

µ
γ

(1)

(k)

De

¶mµ
γ̂

(1)

(k)

De
− γ

(1)

(k)

De

¶¸
(29)

for the effective flow stress of the material systems under consideration, where c denotes the volume fraction of inclusions. 
For the case of macroscopic loadings along the direction of a slip system (i.e., θ = θ(k)) and the effective potential of the 
linear comparison medium computed by means of the Hashin–Shtrikman estimates of Willis [5], the system of equations 
for the quantities γ̂ (1)

(k)
/De and γ (1)

(k)
/De can be written as

γ̂
(1)

(k)

De
= γ

(1)

(k)

De
+ λk

α(k)

s
c

2

sin2 θ(k) + a cos2 θ(k)√
a

A and
γ

(1)

(k)

De
= [λkB cos θ(k)]1/m k = 1, . . . , K (30)

where

λ−1
k =

KX
k=1

cos2 θ(k)

α(k)

, λ−1
⊥ =

KX
k=1

sin2 θ(k)

α(k)

, a = λk
λ⊥

, η =
KX

k=1

·
1

α(k)

µ
γ

(1)

(k)

De

¶m

− γ
(1)

(k)

De

¸
cos θ(k) (31)

α(k) = (γ̂
(1)

(k)
/De)

m − (γ
(1)

(k)
/De)

m

γ̂
(1)

(k)
/De − γ

(1)

(k)
/De

(32)

and the coefficients A and B depend on the inclusion type. For the case of voided crystals:

A =
µ

1 + η

1 + c
√

a

¶2

and B = 1 + η

1 + c
√

a
(33)

while for the case of rigidly reinforced crystals:

A = a−1

(1 − c)2
and B = 1

(1 − c)
+ η (34)

3.2. Results and discussion

Fig. 2 shows plots for the effective flow stress of voided and rigidly reinforced crystals loaded along the direction of a slip 
system, as a function of the strain-rate sensitivity m, for the choice c = 0.25. The new generalized-secant estimates (GSEC-γ ) 
of the Hashin–Shtrikman type are compared with the elementary bounds of Taylor and Reuss, the corresponding secant 
estimates (SEC) of deBotton and Ponte Castañeda [8], and the stress-based generalized-secant estimates (GSEC-τ ) of Liu and 
Ponte Castañeda [1]. Analytical expressions for various estimates applied to this model problem can be found in Refs. [9,10]. 
In addition, exact results are given for material systems with the infinite-rank, transversely isotropic, sequentially laminated 
microgeometries (LAM) of Idiart [11], with matrix behavior given by (26)–(27). It is recalled that the secant estimates 
provide rigorous upper bounds for all the other estimates considered. It is also recalled that the sequentially laminated 
microgeometries attain the linear Hashin–Shtrikman estimates, so that any difference between the LAM results and the 
linear-comparison estimates of the Hashin–Shtrikman type are solely due to the linearization procedure. We emphasize 
that the GSEC-τ and GSEC-γ are different estimates which can be independently used to estimate material behavior under 
arbitrary loading conditions.

The main observation in the context of this figure is that the new GSEC-γ estimates give very similar predictions to the 
dual GSEC-τ estimates for all cases considered; that is, the duality gap is small. Moreover, this duality gap vanishes not only 
in the linear case (m = 1) but also in the strongly nonlinear limit of ideal plasticity (m = 0). For intermediate values of m, 
the duality gap is virtually zero except for some range around m = 0.1 in the case of voided crystals. Within that range, the 
GSEC-γ are found to be less accurate than their GSEC-τ counterparts relative to the exact LAM results. Note that this range 
seems to widen with increasing number of slip systems.

However, in view of the fact that the material systems considered here exhibit extreme heterogeneity contrasts, it is 
expected that differences between the GSEC-γ and GSEC-τ estimates will be smaller in the context of fully dense polycrys-
tals with realistic microstructures, even for relatively high crystal anisotropies. Moreover, it is expected that the additional 
inaccuracies incurred by the use of GSEC-γ estimates in lieu of GSEC-τ estimates, if any, will be entirely compensated by 
the concomitant computational simplifications for modeling mechanical processes under imposed deformations. Efforts to 
evaluate this compromise are currently under way and will be reported upon completion.
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Fig. 2. (Color online.) Effective flow stress eτ0, normalized by the slip flow stress τ0, for a two-phase monocrystal with K slip systems: (a–c) voided inclusion, 
(d–f) rigid inclusions. The volume fraction of inclusions is c = 0.25.
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