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Abstract We consider ionic transport by diffusion and migration through microstructured solid electrolytes.
The assumed constitutive relations for the constituent phases follow from convex energy and dissipation poten-
tials which guarantee thermodynamic consistency. The effective response is determined by homogenizing the
relevant field equations via the notion of multi-scale convergence. The resulting homogenized response involves
several effective tensors, but they all require the solution of just one standard conductivity problem over the
representative volume element. A multi-scale model for semicrystalline polymer electrolytes with spherulitic
morphologies is derived by applying the theory to a specific class of two-dimensional microgeometries for
which the effective response can be computed exactly. An enriched model accounting for a random dispersion
of filler particles with interphases is also derived. In both cases, explicit expressions for the effective material
parameters are provided. The models are used to explore the effect of crystallinity and filler content on the
overall response. Predictions support recent experimental observations on doped poly-ethylene-oxide systems
which suggest that the anisotropic crystalline phase can actually support faster ion transport than the amorphous
phase along certain directions dictated by the morphology of the polymeric chains. Predictions also support
the viewpoint that ceramic fillers improve ionic conductivity and cation transport number via interphasial
effects.

Keywords Diffusion · Migration · Heterogeneous solids · Periodic homogenization · Interphases

1 Motivation

Current efforts to develop polymeric electrolytes for all-solid-state lithium batteries are hampered by the
unsatisfactory ionic conductivity and transport numbers of available polymers at room temperature. The most
promising polymer electrolytes available to date consist of poly-ethylene-oxide (PEO) complexes doped with
a lithium salt such as lithium perchlorate (LiClO4) or lithium iodide (LiI). These are semicrystalline polymers
often exhibiting spherulitic microstructures (e.g., [13,19,22]).

Early studies on different polymer complexes revealed that a transition from highly activated to easy
ion transport with varying temperature was always accompanied by a considerable reduction in crys-
tallinity [4]. This observation led to the widespread belief that only the amorphous phase could support
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fast ion transport in semicrystalline polymers. Since then, efforts have focused on producing polymer
complexes with minimal crystallinity levels—see [14] for a recent review. However, more recent stud-
ies have revealed that the ionic conductivity of PEO complexes can increase by several orders of mag-
nitude when specimens are subjected to large stretchings [16,17,21]. This observation strongly suggests
that the anisotropic crystalline phase can actually support faster ion transport than the amorphous phase
along certain directions that become aligned with the principal axes of deformation. In fact, crystalline PEO
is known to consist of monoclinic unit cells of aligned chains exhibiting a helical configuration which
may permit fast ion transport along the helical axis (e.g., [15]). This suggests, in turn, that highly con-
ductive PEO complexes could be obtained by tuning the crystallographic texture rather than reducing the
crystallinity.

At the same time, studies on different composite polymer complexes revealed that ionic conductivity and
cation transport number can increase upon the addition of a ceramic filler such as aluminum oxide (Al2O3) or
zirconium dioxide (ZrO2) (e.g., [8,10,11]). Since ceramic fillers do not actually conduct ions, such increases
have been ascribed to the presence of an amorphous interphase surrounding the filler particles that facilitates
cation mobility while providing anchoring sites for anions. Further support to this belief stems from the fact
that surface treatments to the filler particles can have a significant impact on the overall transport properties
of the composite polymer (e.g., [10]).

The problem of correlating the overall ionic transport properties with the underlying microstructure in
solid electrolytes is a difficult task requiring, in general, the solution of a set of coupled nonlinear elec-
trodiffusion equations with highly oscillating coefficients. It is therefore common practice to introduce
severe simplifications in the analysis—for instance, the assumption that ionic transport is Ohmic—which
preclude the use of the resulting models to describe the above-mentioned phenomena. The purpose of the
present work is to consider ionic transport in microstructured solids more rigorously through a continuum
model problem with multiple microstructural length scales. We begin in Sect. 2 by specifying the phys-
ical problem and recalling the field equations commonly used to describe ionic transport in solids con-
taining an arbitrary number of ion families. The assumed constitutive relations for the constituent phases
follow from convex energy and dissipation potentials which guarantee thermodynamic consistency. The
overall response of a microstructured solid is obtained in Sect. 3 by homogenizing the field equations via
the notion of multi-scale convergence of [3]. The resulting homogenized response involves several effec-
tive tensors, but they all require the solution of just one standard conductivity problem over the repre-
sentative volume element. The theory is applied in Sect. 4 to a model class of two-dimensional microge-
ometries which represent the essential morphological features of spherulitic polymer systems and at the
same time allow exact computation of the overall response. An enriched model for composite systems
consisting of a spherulitic polymer with a random dispersion of second-phase particles is also derived. In
both cases, explicit expressions for the effective material parameters are provided. The models are used
to explore the effect of crystallinity and filler content on the overall response of semicrystalline polymer
electrolytes.

2 Ionic transport in microstructured electrolytes

We consider the transport of ions through a microstructured electrolyte medium composed of N differ-
ent homogeneous phases and operating under isothermal stationary conditions. We neglect any effects
due to deformation. The electrolyte occupies a fixed domain Ω ⊂ R

3, while each phase r occupies a—
possibly discontinuous—domain Ω(r) ⊂ Ω (r = 1, . . . , N ) such that Ω = ∪N

r=1Ω
(r). The domains

Ω(r) can be described by a set of characteristic functions χ(r)(x), which take the value 1 if the posi-
tion vector x is in Ω(r) and 0 otherwise. The phases contain A different ionic species with valencies zα

(α = 1, . . . , A). In the presence of an electric field, these ions move through the electrolyte medium
and conform an electric current. The focus here is on electrolyte systems where the length scales of
the microstructural morphologies are much smaller than the characteristic size of the specimen and the
scale of variation of the boundary conditions. Under these circumstances, the effective properties of the
microstructured electrolyte are expected to be independent of the specific form of external actions on the
system. The mathematical derivations of the next section are particularly simpler when the external action
consists of a prescribed volumetric supply of ions within the electrolyte, which is independent of the
microstructure.
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Thus, let hα(x) denote a molar supply rate per unit volume of species α in Ω; the balance of ions then
requires that

∇ · jα = hα in Ω, α = 1, . . . , A, (1)

where cα(x) and jα(x) denote, respectively, the molar concentration and molar flux of ions of type α within the
electrolyte. We associate with each ionic species a continuous electrochemical potential field μα(x) character-
izing the energy flow due to species transport—see below. In turn, assuming magnetic effects are negligible,
the electric potential φ(x) in all space is solution to the Maxwell’s equations

∇ · d = F
A∑

α=1

zαcα, d = ε0e + p, e = −∇φ in R
3, (2)

where F is Faraday’s constant, ε0 is the permittivity of vacuum, d(x) is the electric displacement, e(x) is the
intensity of the electric field, p(x) is the electric polarization of the electrolyte medium, and φ(x) is continuous
and such that φ → 0 as |x| → ∞. Finally, the electric current density i(x) flowing within the electrolyte is
given in terms of the molar fluxes by

i = F
A∑

α=1

zαjα in Ω. (3)

For simplicity, we assume that the conditions

μα = 0 and φ = 0 (4)

hold on the boundary of Ω . Note that the boundary condition on φ decouples the electric field distributions
within Ω and outside of Ω . Note also that, in view of the material heterogeneity, the above equations should
be understood in the sense of distributions, with the fields cα(x), μα(x), φ(x), and p(x) supported in Ω .

Equations (1)–(2) must be supplemented by suitable constitutive laws consistent with the principles of
thermodynamics.1 These are obtained here by following the procedure of [9]. Thus, the rate of external
working F due to the external supply of ions is given by

F =
A∑

α=1

∫

Ω

μαhα dV, (5)

where the product μαhα represents the chemical energy supply associated with each species α (see, for instance,
[18]). On the other hand, the free energy E and rate of dissipation D of the electrochemical system are taken
to be of the form

E =
∫

Ω

W (x, p, c1, . . . , cA) dx +
∫

R3

ε0

2
|e|2 dV, (6)

D =
∫

Ω

A∑

α=1

∂U

∂(∇μα)
(x, c1, . . . , cA, ∇μ1, . . . ,∇μA) · ∇μα dV . (7)

In (6), the first term represents the energy of the electrolyte, while the second term represents the energy
of the electric field; in (7), the integrand represents the rate of energy per unit volume dissipated within the
electrolyte due to ionic transport. Any dissipation due to electric polarizability is thus neglected. The energy
density W (x, ·, ·) and dissipation potential U (x, c1, . . . , cA, ·) are assumed to be convex. In addition, U is
assumed to be positive and to take the value 0 at cα = 0 and ∇μα = 0. These properties guarantee positivity
of dissipation as required by the laws of thermodynamics.

1 Initial conditions, on the other hand, will not be required in the subsequent analysis.
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Now, the rate of dissipation (7) must be equal to the difference between the rate of external working (5)
and the rate of change of free energy (6) for all admissible thermodynamic processes. This implies that

∫

Ω

A∑

α=1

(
μα − ∂W

∂cα

− Fzαφ

)
ċα dV +

∫

Ω

(
e − ∂W

∂p

)
· ṗ dV −

∫

Ω

A∑

α=1

(
jα + ∂U

∂(∇μα)

)
· ∇μα dV = 0

(8)

must hold for all admissible thermodynamics processes—see, for instance, [26]. This, in turn, implies the
constitutive relations

e = ∂W

∂p
, μα = ∂W

∂cα

+ Fzαφ, jα = − ∂U

∂(∇μα)
. (9)

Further progress requires specific forms of the functions W and U . These functions can be written as

W (x, p, c1, . . . , cA) =
N∑

r=1

χ(r)(x) W (r)(p, c1, . . . , cA), (10)

U (x, c1, . . . , cA,∇μ1, . . . , ∇μA) =
N∑

r=1

χ(r)(x) U (r)(c1, . . . , cA, ∇μ1, . . . , ∇μA), (11)

where the W (r) and U (r) denote the energy densities and dissipation potentials associated with each phase r .
In this work, we characterize the electrochemical response of the constituent phases by functions of the form

W (r)(p, c1, . . . , cA) = 1

2
p · κ (r)p + RT

A∑

α=1

cα

(
ln

cα

c(r)
0α

− 1

)
, (12)

U (r)(c1, . . . , cA, ∇μ1, . . . , ∇μA) =
A∑

α=1

1

2
cα∇μα · M(r)

α ∇μα. (13)

Here, RT is the universal gas constant times the absolute temperature, c(r)
0α are reference molar concentrations,

and κ (r) and M(r)
α are positive-definite, second-order tensors characterizing, respectively, the electric polariz-

ability and the ionic mobility in each phase r . Introducing these expressions in (9), we obtain the following
constitutive relations consistent with thermodynamics:

p = (κ (r))−1e, μα = RT ln
cα

c(r)
0α

+ Fzαφ, jα = −cαM(r)
α ∇μα. (14)

These constitutive relations are known to be appropriate for low electric field intensities and dilute ion concen-
trations. Note that when the reference concentrations c(r)

0 differ between phases, the molar concentrations cα

are discontinuous across material interfaces. In fact, the ratio c(r)
0α /c(s)

0α fixes the ratio of molar concentrations
of ionic species α in phases r and s under equilibrium conditions. Subsequent developments are facilitated by
introducing the electric permittivity and pseudo-diffusivity tensors

ε(r) = ε0I + (κ (r))−1, D(r)
α (μα, φ) = g(μα − Fzαφ)c(r)

0α M(r)
α , (15)

where

g(s) = es/RT . (16)

The exponential function in these expressions arises from elimination of the molar concentrations cα by
inversion of (14)2. In view of these definitions, the constitutive relations for the molar fluxes and the electric
displacement within each phase take the simple form

jα = −D(r)
α (μα, φ)∇μα and d = ε(r)e. (17)

Note that the diffusivity of the various ion families are only coupled through the electric potential φ.
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3 The effective response

The effective response of the microstructured electrolyte is formally obtained by evaluating the transport of ions
through a sequence of material systems with fixed Ω and decreasingly smaller microstructural length scales.
There are several ways of evaluating such a limit. In this work, we make use of the multi-scale convergence
approach of [3]. This approach assumes the microstructure is a periodic repetition of cubic unit cells with
possibly multiple length scales. Given our interest in semicrystalline polymer systems, we consider material
systems possessing two well-separated microstructural length scales to be identified later with the characteristic
sizes of the lamellae and the spherulites. More specifically, we let Ω# = [0, �]3 denote a cubic unit cell of side
� and write the characteristic functions χ(r) as a product

χ(r)(x) = χ
(r)
1

(x
ε

)
χ

(r)
2

( x
ε2

)
, (18)

where ε = |Ω#|/|Ω|, and the functions χ
(r)
1 and χ

(r)
2 are Ω#-periodic characteristic functions describing the

morphological patterns at the larger and smaller length scales, respectively. In this phase-based microstructural
description, a given constituent phase may have to be labelled as two different materials in different mesoscale
patterns; alternatively, multi-scale microstructures can be described by pattern-based characteristic functions
as in [1].

In view of expressions (1) through (17), the corresponding sequences of electrochemical potentials με
α and

electric fields φε in a stationary regime are solutions to the nonlinear field equations

−∇ ·
[
Dα

(x
ε
,

x
ε2 , με

α, φε
)

∇με
α

]
= hα(x) in Ω, (19)

−∇ ·
[
ε
(x

ε
,

x
ε2

)
∇φε

]
= F

A∑

α=1

zαc0α

(x
ε
,

x
ε2

)
g(με

α − Fzαφε) in Ω, (20)

με
α = 0 and φε = 0 on ∂Ω, (21)

where

Dα(y, z, μα, φ) =
N∑

r=1

χ
(r)
1 (y)χ

(r)
2 (z) D(r)

α (μα, φ), (22)

ε(y, z) =
N∑

r=1

χ
(r)
1 (y)χ

(r)
2 (z) ε(r), (23)

c0α(y, z) =
N∑

r=1

χ
(r)
1 (y)χ

(r)
2 (z) c(r)

0α , (24)

α = 1, . . . , A. The homogenized response of the system is obtained by taking the limit ε → 0 in these
equations.

Assuming the source terms hα(x) are such that the sequences με
α and φε are bounded in H1

0 (Ω), these
sequences multi-scale converge to some limit functions μα(x) and φ(x) in H1

0 (Ω), and their gradients multi-
scale converge to some limit gradients ∇μα(x) + ∇yμ

1
α(x, y) + ∇zμ

2
α(x, y, z) and ∇φ(x) + ∇yφ

1(x, y) +
∇zφ

2(x, y, z), where the functions μi
α and φi are Ω#-periodic in both arguments [3]. These functions are

solution to the multi-scale equations

−∇z · [
Mα(y, z)(∇μα(x) + ∇yμ

1
α(x, y) + ∇zμ

2
α(x, y, z))

] = 0 in Ω × Ω# × Ω#, (25)

−∇z · [
ε(y, z)(∇φ(x) + ∇yφ

1(x, y) + ∇zφ
2(x, y, z))

] = 0 in Ω × Ω# × Ω#, (26)

−∇y · 〈
Mα(y, z)(∇μα(x) + ∇yμ

1
α(x, y) + ∇zμ

2
α(x, y, z))

〉
z = 0 in Ω × Ω#, (27)

−∇y · 〈
ε(y, z)(∇φ(x) + ∇yφ

1(x, y) + ∇zφ
2(x, y, z))

〉
z = 0 in Ω × Ω#, (28)

−∇ · 〈
Dα(y, z, μα, φ)(∇μα(x) + ∇yμ

1
α(x, y) + ∇zμ

2
α(x, y, z))

〉
y,z = hα(x) in Ω, (29)
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−∇ · 〈ε(y, z)(∇φ(x)+∇yφ
1(x, y)+∇zφ

2(x, y, z))
〉
y,z = F

A∑

α=1

zα〈c0α〉y,z g(μα−Fzαφ) inΩ,

(30)

μα = 0 and φ = 0 on ∂Ω, (31)

α = 1, . . . , A. In these expressions, ∇y and ∇z refer to the partial nabla operator with respect to y and z,
respectively, 〈·〉y , 〈·〉z , and 〈·〉y,z denote volume averages over y, over z, and over both y and z, respectively,
and

Mα(y, z) =
N∑

r=1

χ
(r)
1 (y)χ

(r)
2 (z) M(r)

α with M(r)
α = c(r)

0α

〈c0α〉y,z
M(r)

α . (32)

Equations (25), (27), and (29) follow from the multi-scale limit of Eq. (19), while Eqs. (26), (28), and (30)
follow from the multi-scale limit of Eq. (20). The proofs are given in Appendix 1. The functions μα(x) and φ(x)
represent the macroscopic electrochemical and electric potentials, while the functions μi

α and φi are related to
the underlying microscopic potentials. Note that the microscopic/mesoscopic Eqs. (25)–(28) are linear, and
it is only the macroscopic Eqs. (29)–(30) that preserve the nonlinearity of the original field equations. In fact,
in the homogenization limit (ε → 0), the microscopic electrochemical and electric potentials are coupled
only via the macroscopic gradients. In other words, for a given macroscopic electric field, the microscopic
electric potential is independent of the electrochemical potentials; and for a given macroscopic gradient of
an electrochemical potential, the corresponding microscopic electrochemical potential is independent of the
other electrochemical potentials and the electric potential. This is a consequence of the separation of length
scales and the assumed additive decomposition of the functions (12) and (13). Note also that the ion mobility
at the microscopic scale is dictated by the weighted mobility tensors (32).

The form of Eqs. (25)–(31) motivate the definition of the following microscopic, mesoscopic (̃·), and
macroscopic (·) quantities:

e(x, y, z) = − [∇φ(x) + ∇yφ
1(x, y) + ∇zφ

2(x, y, z)
]
, (33)

ẽ(x, y) = 〈e(x, y, z)〉z = − [∇φ(x) + ∇yφ
1(x, y)

]
, (34)

e(x) = 〈̃e(x, y)〉y = −∇φ(x), (35)

d(x, y, z) = ε(y, z) e(x, y, z), (36)

d̃(x, y) = 〈d(x, y, z)〉z = ε̃(y) ẽ(x, y), (37)

d(x) = 〈̃d(x, y)〉y = ε e(x), (38)

jα(x, y, z) = −g(μα − Fzαφ)〈c0α〉y,zMα(y, z)[∇μα(x) + ∇yμ
1
α(x, y) + ∇zμ

2
α(x, y, z)], (39)

j̃α(x, y) = 〈jα(x, y, z)〉z = −g(μα − Fzαφ)〈c0α〉y,zM̃α(y)[∇μα(x) + ∇yμ
1
α(x, y)], (40)

jα(x) = 〈̃jα(x, y)〉y = −g(μα − Fzαφ)〈c0α〉y,zMα∇μα(x) = −Dα(μα, φ)∇μα(x), (41)

cα(x) = 〈c0α〉y,z g(μα − Fzαφ). (42)

The second identities in (37)–(41) follow from the linear dependence of the local fields μi
α and φi on the

macroscopic gradients ∇μα and ∇φ. In fact, the local problems (25) through (28) have the structure of a
standard linear conductivity problem. Thus, the effective tensors at the mesoscopic level can be expressed as

M̃α(y) = 〈Mα(y, z) A2 {Mα(y, z)}〉z and ε̃(y) = 〈ε(y, z) A2 {ε(y, z)}〉z, (43)

while the effective tensors at the macroscopic level can be expressed as

Mα = 〈
M̃α(y) A1

{
M̃α(y)

}〉
y and ε = 〈̃ε(y) A1 {̃ε(y)}〉y . (44)
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In these expressions, the tensors Ai {·} are the standard concentration tensors of the gradient fields associated
with the unit cell problems (25)–(28) (see, for instance, [23]). The tensors ε and Mα denote, respectively,
the effective permittivity of the electrolyte and the effective mobilities of each ionic species α within the
homogenized electrolyte. Note that at a given length scale (mesoscopic/macroscopic), all effective tensors are
given in terms of the same set of concentration tensors Ai evaluated at different local constitutive tensors.
Thus, the homogenized properties at a given length scale can be obtained by solving just one standard linear
conductivity problem over the unit cell. A similar result has been recently obtained in a simpler context by [5]
via two-scale asymptotic expansions. Motivated by a dimensional analysis of the various physical magnitudes
involved, [5] also considered an alternative set of microscopic equations where the left-hand side of Gauss’
equation (26) is multiplied by the small parameter ε3, and obtained an alternative set of macroscopic equations
with Gauss’ equation replaced by an electroneutrality condition. A similar analysis could be performed by
means of multi-scale convergence but is not pursued here for brevity.

With definitions (33)–(42), the multi-scale system of Eqs. (25)–(30) can be written as

∇z · jα(x, y, z) = 0, ∇z · d(x, y, z) = 0 in Ω × Ω# × Ω#, (45)

∇y · j̃α(x, y) = 0, ∇y · d̃(x, y) = 0 in Ω × Ω#, (46)

∇x · jα(x) = hα(x), ∇x · d(x) = F
A∑

α=1

zαcα(x) in Ω. (47)

Finally, we can define microscopic, mesoscopic, and macroscopic current densities as

i(x, y, z) = F
A∑

α=1

zαjα(x, y, z), (48)

ĩ(x, y) = 〈i(x, y, z)〉z = F
A∑

α=1

zα̃jα(x, y), (49)

i(x) = 〈̃
i(x, y)

〉
y = F

A∑

α=1

zαjα(x). (50)

Then, noting that the macroscopic molar concentrations cα given by (42) are continuous—unlike the micro-
scopic molar concentrations cα—, we have that

jα = −RT
A∑

α=1

Mα∇cα + F
A∑

α=1

zαcαMαe, (51)

and therefore

i = −RT F
A∑

α=1

zαMα∇cα + F2
A∑

α=1

z2
αcαMαe, (52)

where use has been made of (41). In view of these expressions, and following common practice, we define the
macroscopic ionic transport tensors

Dα = RTMα and κ = F2
A∑

α=1

z2
αcαMα, (53)

which represent the effective diffusivities and the effective conductivity of the microstructured electrolyte,
respectively. It is pointed out that the conductivity depends on the ion concentrations cα , and therefore, it is
not a material parameter.
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4 A multi-scale model for semicrystalline polymer electrolytes

4.1 Assumptions and formulae

The focus here is on semicrystalline polymer electrolytes exhibiting spherulitic microstructures operating at
room temperature. For definiteness, we take the PEO systems doped with LiClO4 of [13] as a case study. In these
systems, the PEO molecules dissolve the LiClO4 salt into Li+ (α = +) and ClO−

4 (α = −) univalent ions (z+ =
−z− = 1) and form various phases depending on salt concentration and temperature. At room temperature,
their microstructural morphology is a two-scale structure formed by alternating layers of crystalline and
amorphous phases in intimate contact with each other at the lower nanometer scale, which in turn radiate out
from various center points in the specimen, leading to morphological structures at the larger micrometer scale
known as spherulites. Depending on salt concentration, the spherulites can either form a granular aggregate
or be separated by a continuous amorphous matrix, and the volume fraction of the crystalline phase can range
from 10 to 90 %. At the molecular scale, the crystalline phase consists of monoclinic unit cells of aligned
polymer chains exhibiting a helical configuration [15].

We derive a multi-scale model for these material systems by constructing (two-dimensional) microgeome-
tries which, on the one hand, are complex enough to reproduce the essential geometrical features of the above
microstructures, but, on the other hand, are simple enough so that their homogenized response can be com-
puted exactly. The microgeometries of choice consist of a combination of a Schulgasser’s cylinder assemblage
(Schulgasser 1983) and simple laminates. At the mesoscale, these microgeometries are assemblages of homo-
thetic cylinders of infinite sizes filling up the entire unit cell, each composed of an isotropic exterior coating of
amorphous phase and a radially symmetric interior core or cylindrite. At the microscale, the cylindrite is in turn
a laminated microgeometry composed of alternating laminae of amorphous and crystalline phases with the
lamination direction coincident with the mesoscale tangential direction. A schematic of the microgeometries
is shown in Fig. 1.

The microstructural parameters of the model are the volume fractions of the cylinders occupied by the
amorphous rings fr and by the cylindrites fc, and the volume fractions of the lamellar structure within the
cylindrite occupied by the amorphous phase f a

c and by the crystalline phase f cr
c . These parameters satisfy the

identities
fr + fc = 1 and f a

c + f cr
c = 1. (54)

Fig. 1 Schematic of the Schulgasser’s cylinder assemblages utilized in the models with and without filler inclusions
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The total volume fractions of crystalline and amorphous phases are thus given by

f (cr) = fc f cr
c and f (a) = fc f a

c + fr , (55)

respectively, and are such that f (cr) + f (a) = 1; the volume fraction f (cr) ≡ f represents the crystallinity of
the electrolyte.

The mobility tensors of both ion types in the isotropic amorphous phase and the anisotropic crystalline
phase are taken to be, respectively,

M(a)
α = m(a)

α I and M(cr)
α = m‖

α nc ⊗ nc + m⊥
α (I − nc ⊗ nc), (56)

where m‖
α and m⊥

α represent mobilities along the directions parallel and perpendicular to the direction nc of
the chain helix axes. The corresponding weighted mobility tensors Mα are given by

M(a)
α = /m(a)

α I and M(cr)
α = /m‖

α nc ⊗ nc + /m⊥
α (I − nc ⊗ nc), (57)

with

/m(a)
α = c(a)

0α

f (cr)c(cr)
0α + f (a)c(a)

0α

m(a)
α and /m‖,⊥

α = c(cr)
0α

f (cr)c(cr)
0α + f (a)c(a)

0α

m‖,⊥
α . (58)

Here, c(cr)
0α and c(a)

0α are the reference concentrations of the crystalline and amorphous phases, respectively.
Following the scheme of the previous section, the overall response is obtained sequentially by first homog-

enizing the laminated structure to obtain the mesoscopic mobilities M̃α as dictated by (43)1, and then homog-
enizing Schulgasser’s assemblage to obtain the macroscopic mobilities Mα as dictated by (44)1. In so doing,
it should be pointed out that, strictly, the multi-scale microgeometries considered here lie outside the class of
periodic microgeometries considered in the previous section, where it is required that the unit cells at both
scales be cubic and mutually aligned. However, it is reasonable to assume that the multi-scale Eqs. (33)–(42)
remain valid more generally.

The ensuing analysis is greatly simplified by assuming that the chain axes nc are aligned with the lamination
direction n. This amounts to disregarding chain tilting. Granted this assumption, the effective mobilities in the
lamellae structure can be written as—see, for instance, [20]—

M̃α(y) = /̃m
‖
α n(y) ⊗ n(y) + /̃m

⊥
α [I − n(y) ⊗ n(y)], (59)

where n(y) is lamination direction at position y in the Schulgasser assemblage, and the parallel and perpen-
dicular mobilities are given by

/̃m
‖
α =

(
f cr
c

/m‖
α

+ f a
c

/m(a)
α

)−1

and /̃m
⊥
α = f cr

c /m⊥
α + f a

c /m(a)
α . (60)

Thus, the axes of anisotropy of the mesoscopic mobility tensors are radially aligned within the cylindrites.
This allows the use of Schulgasser’s solution scheme to obtain the macroscopic mobility tensors Mα , which
yields

Mα = /mαI (61)

with

/mα = /m(a)
α

(1 − fc) /m(a)
α + (1 + fc)

√
/̃m

‖
α /̃m

⊥
α

(1 + fc) /m(a)
α + (1 − fc)

√
/̃m

‖
α /̃m

⊥
α

. (62)

Details of the derivation of this expression are given in Appendix 2. Expression (62), together with (58) and
(60), constitutes a closed-form estimate for the mobilities of each ion species through the model semicrystalline
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polymer in terms of the local mobilities of the amorphous and crystalline phases, and the various microstructural
parameters. In the absence of amorphous rings ( fc = 1), the expression reduces to

/mα =
√

/̃m
‖
α /̃m

⊥
α . (63)

If, in turn, no amorphous phase is present in the lamellar structure ( fc = f cr
c = f (cr) = 1), the expression

reduces further to

/mα =
√

m‖
α m⊥

α . (64)

Note that in all cases, /mα is symmetric in m‖
α and m⊥

α : Interchanging the parallel and perpendicular mobilities
in the crystalline phase results in the same effective mobility.

Given the overall isotropy of the electrolyte, the effective conductivity is of the form κ = κI. In a typical
lithium battery, it is only the cations that react at the electrode–electrolyte interfaces. Thus, under steady state
conditions, there is no net flux of anions through the electrolyte and ionic conduction is solely due to cation
transport. Consequently, we set

κ = F2c+ /m+. (65)

For later purposes, it is convenient to introduce a reference molar concentration c0 = ρPEO/wPEO, where
ρPEO and wPEO denote the mass density and molar weight of PEO, respectively, and a reference conductivity
κ0 = F2z2+c0m(a)

+ , so that

κ

κ0
= c+

c0

/m+
m(a)

+
. (66)

Finally, it is noted that if the electric permittivity tensors of the amorphous and crystalline phases are taken
to be of the same form (56), the effective permittivity tensor ε of the electrolyte is given by the same expressions
(61)–(62) with the weighted mobilities replaced by the local electric permittivities.

4.2 The effect of crystallinity and salt concentration

Here, we present a selected set of numerical results to explore the dependence of the macroscopic mobilities
on the various material and microstructural parameters.

We begin by considering material systems with no amorphous ring ( fr = 0). The results are parameterized
by the reference concentration contrast c(cr)

0α /c(a)
0α , the mobility contrast (m‖

α + m⊥
α )/(2m(a)

α ), and the mobility

anisotropy ratio of the crystalline phase m‖
α/m⊥

α . We assume that the mobilities are such that m⊥
α ≤ ma

α ≤ m‖
α .

Moreover, given that the ratio of PEO ether oxygens to lithium ions in the crystalline phase is typically
lower than in the amorphous phase, we assume that c(cr)

0α /c(a)
0α ≥ 1. Figure 2 shows predictions for the effective

mobility mα of species α, normalized by the corresponding mobility in the amorphous phase m(a)
α , as a function

of crystallinity f , for a wide range of material parameters. It is recalled that these normalized results are the
same for both ionic species α. The main observation in the context of this figure is that the effective mobility
can decrease with increasing crystallinity even when the mobility in the crystalline phase along the chain axis
is orders of magnitude higher than the mobility of the amorphous phase. In fact, the predictions provided in
parts (a) and (b) show that for sufficiently low mobility contrasts (≤ 5) and large mobility anisotropy ratios
(≥ 1,000), the effective mobility decreases monotonically with crystallinity, by up to an order of magnitude, in
the range 0 ≤ f ≤ 0.9. This shows that the decrease in ionic conductivity with crystallinity commonly observed
in semicrystalline polymer electrolytes does not imply a faster ionic transport in the amorphous phase than in
the crystalline phase, as originally proposed by [4]. Moreover, while this model does not account for the effect
of mechanical deformations, it is clear that the above predictions provide a plausible mechanistic explanation
for the increase in ionic conductivity observed in stretched electrolytes [16,17,21]. Indeed, upon stretching
a material system with the above characteristics, the polymer chains in both the amorphous and crystalline
phases tend to align with the stretching direction [6]; the effective mobility along the stretching direction should
thus tend to m‖

α . For the choice c(cr)
0α /c(a)

0α = 10, m‖
α/m⊥

α = 1,000, and (m‖
α + m⊥

α )/(2m(a)
α ) = 5, the mobility
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Fig. 2 a–c Effective mobility of species α in a semicrystalline polymer electrolyte without amorphous rings ( fr = 0), normalized
by the corresponding mobility m(a)

α in the amorphous phase, versus crystallinity f ; plots for: a c(cr)
0α /c(a)

0α = 10, m‖
α/m⊥

α = 1,000,

and various mobility contrasts (m‖
α + m⊥

α )/(2m(a)
α ); b c(cr)

0α /c(a)
0α = 10, (m‖

α + m⊥
α )/(2m(a)

α ) = 5, and various mobility anisotropy

ratios m‖
α/m⊥

α ; c (m‖
α +m⊥

α )/(2m(a)
α ) = 5, m‖

α/m⊥
α = 1,000, and various reference concentration contrasts c(cr)

0α /c(a)
0α . d Effective

conductivity of a class of electrolytes with varying microstructure, normalized by a reference conductivity κ0, as a function of
the PEO ether oxygens to lithium ions ratio (EO:Li), for various crystallinity levels of the cylindrites f cr

c

m‖
α can be two orders of magnitude larger than the predicted effective mobility for (unstretched) systems with

moderate crystallinity levels. This is approximately the increase reported by [15] in PEO systems doped with
LiI.

The predictions provided in part (c) show the role of the reference concentration contrast on the effective
mobility for the choice m‖

α/m⊥
α = 1,000 and (m‖

α + m⊥
α )/(2m(a)

α ) = 5. It is seen that realistic trends are

reproduced provided c(cr)
0α > 2c(a)

0α . Thus, the usual assumption c(cr)
0α = c(a)

0α , which implies that the ion
concentrations are continuous and consequently simplify the mathematical formulation, is at odds not only with
the expected inhomogeneity of local ion concentration at equilibrium but also with the observed macroscopic
variation of conductivity with crystallinity.

In this connection, it should be pointed out that polymer electrolytes with different effective conductivity
always differ in several microstructural and material characteristics, making it difficult to experimentally isolate
the effect of individual parameters. For instance, the work of [13] suggests that, as dopant concentration at
casting increases, the amorphous phase surrounding the spherulites takes on a larger volume fraction of the
electrolyte and that the dopant concentration in the crystalline phase remains constant and only increases
in the amorphous phase. By way of example, part (d) shows predictions for the effective conductivity as a
function of dopant molar concentration at casting c, accounting for such variations in microstructural and
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material parameters. Note that the ratio (c/c0)
−1 represents the total ratio of PEO ether oxygens to lithium

ions (EO:Li) in the as-cast electrolyte. The predictions correspond to c+ = c and lithium mobilities such that
m‖

+/m⊥+ = 1,000 and (m‖
+ + m⊥+)/(2ma+) = 5. In turn, the volume fraction of amorphous ring and reference

concentration ratio are taken to depend on c as

fr = γr

(
c

c0

)
and

c(cr)
0+

c(a)
0+

= γc

(
c

c0

)−1

, (67)

with γr = 1/γc = 5; these numerical constants follow roughly from the data of [13]. For reference, the figure
also includes the predictions for systems with no amorphous rings ( fr = 0) and fixed c(cr)

0+ /c(a)
0+ = 10 (dotted

lines). The main observation in the context of this figure is that a variation of microstructural and material
parameters of the form (67) can increase the variability of the effective conductivity with dopant concentration
by an order of magnitude. Note that for f cr

c = 0.75, the variation is three orders of magnitude, which falls
within the range observed by [13]. The break point in these curves corresponds to the EO:Li ratio below which
the material is fully amorphous. It should be pointed out, however, that additional microstructural changes
are expected to occur which can modify the predicted trends. For instance, dopant molecules may segregate
and form second-phase particles at larger concentrations (e.g., [19]). The above theoretical framework can
certainly incorporate such features provided sufficient experimental guidance is available.

4.3 The effect of nonconducting fillers

In addition to ionic conductivity, the transport numbers

t+ = /m+
/m+ + /m−

and t− = 1 − t+ = /m−
/m+ + /m−

(68)

are electrolyte properties of particular relevance to battery performance—see, for instance, [12]. In general,
high cation transport numbers (t+) seem desirable. The cation transport number in PEO systems doped with
LiClO4 is low (∼ 0.25 at room temperature) but can increase significantly with the addition of a ceramic
filler such as Al2O3 and ZrO2—see, for instance, [8,10,11]. The above Schulgasser assemblage model can be
enriched to assess the role of interphases in this effect.

In this case, the cylindrites are assumed to contain a central inclusion with vanishing mobilities and reference
concentrations representing the nonconducting filler, surrounded by an isotropic layer with mobilities m(int)

α

and reference concentrations c(int)
0α , see Fig. 1. This microgeometry is consistent with the observation that filler

particles act as nucleation sites for spherulites during casting and are surrounded by amorphous interphases
of finite size (e.g., [24]). The effective mobilities of this assemblage are obtained, once again, following the
scheme described in the previous section. The result is

/mα = /m(a)
α

(1 + fc)Aα + (1 − fc) /m(a)
α

(1 − fc)Aα + (1 + fc) /m(a)
α

, (69)

where

Aα =
√

/̃m
‖
α /̃m

⊥
α

[
f K
c + (

f (int) + f (inc)
)K

]
Bα +

[
f K
c − (

f (int) + f (inc)
)K

] √
/̃m

‖
α /̃m

⊥
α

[
f K
c − (

f (int) + f (inc)
)K

]
Bα +

[
f K
c + (

f (int) + f (inc)
)K

] √
/̃m

‖
α /̃m

⊥
α

, (70)

Bα = /m(int)
α

f (int)

f (int) + 2 f (inc)
. (71)

In these expressions, f (inc) and f (int) denote the volume fractions of inclusions and interfaces, respectively, fc
is the volume fraction of the core composed of the inclusion, the interphase, and the cylindrite; the weighted
mobilities are given by

/m(r)
α = c(r)

0α

f (cr)c(cr)
0α + f (a)c(a)

0α + f (int)c(int)
0α

m(r)
α (72)
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Fig. 3 Transport properties of a composite electrolyte (EO:Li=10) as a function of filler content, for various interphase growth
rates and reference concentration ratios c(int)

0− /c(int)
0+ : a effective conductivity, normalized by the reference conductivity κ0;

b effective cation transport number

(r = a, cr, int), and K =
√

/̃m
‖
α/ /̃m

⊥
α . Details of the derivation are provided in Appendix 2. Under steady state

conditions, the effective conductivity is given by (65) with /m+ now given by (69).
Sample numerical results are reported for the choice f cr

c = 1 − f a
c = 0.25, fr = 1 − fc = 0.6(1 −

f (inc) − f (int)), c(cr)
0α /c(a)

0α = 1, m‖
α/m⊥

α = 1,000 and (m‖
α + m⊥

α )/(2m(a)
α ) = 5 for both ionic species, and

m(a)
− = 3m(a)

+ . Thus, anion mobilities outside the interphase are three times higher than the corresponding
cation mobilities, giving a cation transport number in the absence of fillers of t+ = 1/(1+3) = 0.25. However,
to reproduce an anchoring effect of anions in a good cation-conducting interphase, we set m(int)

− = 0.033m(a)
−

and m(int)
+ = 100m(a)

+ , c(int)
0+ /c(a)

0+ = 1 and high ratios c(int)
0− /c(a)

0−: A high reference concentration c(int)
0− “attracts”

anions to the interphase, while a low mobility m(int)
− precludes them to move away from it. We further take

c+ = (1− f (inc))c with c/c0 = 1/10 (i.e., EO:Li = 10:1) and assume that the interphase size depends linearly
on filler size according to

f (int) = γi f (inc). (73)

Figure 3 shows predictions for the effective conductivity and cation transport number as a function of filler
content for various interphase growth rates γi and reference concentration ratios c(int)

0− /c(a)
0−. In the absence of

interphases (γi = 0), the cation transport number is independent of filler content and the effective conductivity
decreases moderately with increasing filler content as a result of the insulating effect of the inclusions and
of the decrease in overall lithium molar density. In the presence of interphases, by contrast, both properties
vary strongly with filler content. In the case of the effective conductivity, predictions are seen to increase
initially by up to two orders of magnitude and reach a maximum when the interphases percolate—interphase
percolation occurs at f (inc) = 1/(1 + γi ) for the choice (73), see part (a). From there on, the model material
becomes a two-phase composite made up of an isotropic conducting matrix and nonconducting inclusions;
thus, the ionic conductivity decreases monotonically with increasing filler content. These trends are consistent
with experimental data from various PEO composites [24], which consistently show a maximum within the
range of 0.05-0.3 filler content. Thus, the model suggests that interphase percolation may indeed be one of the
mechanisms behind the observed maximum in those material systems.

In the case of the cation transport number, predictions are also seen to increase with filler content up to the
point where interphases percolate, see part (b). The larger the anion reference concentration c(int)

0− the steeper

the increase. Beyond percolation, t+ remains constant and close to unity. Thus, a combination of high c(int)
0−

with low m(int)
− does seem to reproduce an anchoring effect of anions within the interphase region. In particular,
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the choice c(int)
0− /c(int)

0+ = 10 reproduces an increase of cation transport number with filler content comparable
to those reported for PEO composites [10] and other composite polymer electrolytes [25]. This makes plain the
importance of allowing for spatial variations of the reference concentration when modeling microstructured
solid electrolytes.

5 Concluding remarks

In the above model problem, the field equations were homogenized for specific forms of the energy functions
W (r) and dissipation potentials U (r), as given by (12)–(13). These forms pertain to linearly polarizable solids
containing dilute solutions of ions showing linear transport behavior. However, the homogenization proce-
dure could handle more complicated energy and dissipation functions describing additional phenomena such
as nonlinear polarizability and strong ion–ion interactions in nondilute solutions. Such nonlinear analyses
are required, for instance, to estimate the influence of microstructural parameters on the dielectric strength
and electrochemical stability of a solid electrolyte, properties that are of particular relevance to the design
of rechargeable batteries. This possibility is currently being pursued and will be the subject of a separate
contribution.
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Appendix 1: Multi-scale limits

We assume the fields με
α(x) and φε(x) solving Eqs. (19)–(20) are bounded in H1

0 (Ω) for all ε. Then, up to a sub-
sequence, these fields multi-scale converge to some limiting fieldsμα(x) andφ(x) in H1

0 (Ω), respectively, while
their gradients multi-scale converge to some limiting gradient fields ∇μα(x) + ∇yμ

1
α(x, y) + ∇zμ

2
α(x, y, z)

and ∇φ(x) + ∇yφ
1(x, y) + ∇zφ

2(x, y, z), respectively, with the functions μi
α and φi (x, ·) Ω#-periodic in the

y and z arguments—see [3]. The equations for the various limiting functions are obtained next by writing the
field Eqs. (19)–(20) in weak form and passing to the limit ε → 0.
Diffusion equations. For a given sequence of electric potentials φε, Eq. (19) for the chemical potentials με

α can
be written in weak form as

∫

Ω

[
∇ · Dα

(x
ε
,

x
ε2 , με

α, φε
)

∇με
α + hα(x)

]
ϕ(x) dV = 0 ∀ϕ ∈ H1

0 (Ω). (74)

Taking ϕ(x) = ϕ0(x) + εϕ1(x, x/ε) + ε2ϕ2(x, x/ε, x/ε2), with ϕi (x, ·) Ω#-periodic in their second and third
arguments, and integrating by parts, we obtain

lim
ε→0

∫

Ω

∇με
α · Dα

(x
ε
,

x
ε2 , με

α, φε
)

[∇ϕ0(x) + ∇yϕ1(x, x/ε) + ∇zϕ2(x, x/ε, x/ε2)] dV =
∫

Ω

hα(x)ϕ0(x) dV (75)

for all admissible functions ϕ0, ϕ1, and ϕ2. Based on the work of [7] on quasi-linear operators oscillating at
a single length scale and satisfying certain polynomial growth conditions, it is reasonable to expect that the
equality

lim
ε→0

∫

Ω

∇με
α · Dα

(x
ε
,

x
ε2 , με

α, φε
)

[∇ϕ0(x) + ∇yϕ1(x, x/ε) + ∇zϕ2(x, x/ε, x/ε2)] dV

= lim
ε→0

∫

Ω

∇με
α · Dα

(x
ε
,

x
ε2 , μα, φ

)
[∇ϕ0(x) + ∇yϕ1(x, x/ε) + ∇zϕ2(x, x/ε, x/ε2)] dV (76)
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holds2. Granted this assumption, equation (74) and the definition of multi-scale convergence imply that
∫

Ω

〈[∇μα(x) + ∇yμ
1
α(x, y) + ∇zμ

2
α(x, y, z)] · Dα

(
y, z, μα, φ

) [∇ϕ0(x) + ∇yϕ1(x, y) + ∇zϕ2(x, y, z)]〉y,z dV

=
∫

Ω

hα(x)ϕ0(x) dV (77)

for all admissible functions ϕ0, ϕ1, and ϕ2. Finally, variations with respect to ϕ0, ϕ1, and ϕ2 deliver the field
Eqs. (25) and (29).
Gauss’ equation. Noting that the function g is the derivative of a convex function f , it is easy to show that,
for given fields με

α , the electric potential φε satisfying (20) solves the minimization problem

I
ε = min

φε∈H1
0 (Ω)

I ε[φε] = min
φε∈H1

0 (Ω)

∫

Ω

[
1

2
∇φε · ε

(x
ε
,

x
ε2

)
∇φε +

A∑

α=1

c0α

(x
ε
,

x
ε2

)
f (με

α − Fzαφε)

]
dV .

(78)

The functional I ε[φε] can be bounded from above and below as follows. On the one hand, the convexity of
the integrand of (78) in ∇φε and φε implies that

I ε[φε] ≥
∫

Ω

[
1

2
e · ε

(x
ε
,

x
ε2

)
e + ε

(x
ε
,

x
ε2

)
e · (∇φε − e) +

A∑

α=1

c0α

(x
ε
,

x
ε2

) [
f (sα) + f ′(sα)(με

α − Fzαφε−sα)
]
]

dV

(79)

for every ε and any fields e(x) and sα(x). In particular, take

e(x) = ∇φ(x) + ∇yφ
1(x, x/ε) + ∇zφ

2(x, x/ε, x/ε2) and sα(x) = μα(x) − Fzαφ(x). (80)

By definition of multi-scale convergence, we obtain the lower bound

lim
ε→0

I ε[φε] ≥ I [φ, φ1, φ2] (81)

where

I [φ, φ1, φ2] =
∫

Ω

〈
1

2
[∇φ(x) + ∇yφ

1(x, y) + ∇zφ
2(x, y, z)] · ε(y, z)[∇φ(x) + ∇yφ

1(x, y) + ∇zφ
2(x, y, z)]

+
A∑

α=1

c0α(y, z) f
(
μα(x) − Fzαφ(x)

)
〉

y,z

dV . (82)

On the other hand, evaluating the functional I ε in (78) at the sequence of potential fields

ϕε(x) = φ(x) + εφ1(x, x/ε) + ε2φ2(x, x/ε, x/ε2) + 1

Fzα

[
με

α(x) − μα(x) − εμ1
α(x, x/ε) − ε2μ2

α(x, x/ε, x/ε2)
]
,

(83)

and invoking the definition of two-scale convergence, we obtain the upper bound

lim
ε→0

I ε[φε] ≤ lim
ε→0

I ε[ϕε] = I [φ, φ1, φ2] (84)

since φε is the minimizer of I ε. Noting that the lower bound (81) and the upper bound (84) coincide, we
conclude that

lim
ε→0

I ε[φε] = I [φ, φ1, φ2]. (85)

Thus, following the arguments of [2], the multi-scale fields φ, φ1, and φ2 should minimize I [φ, φ1, φ2]. It is
easy to show that the minimization conditions imply the field Eqs. (26) and (30).

2 A rigorous proof for the growth conditions (15) is not available.
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Appendix 2: Effective properties of Schulgasser assemblages

Consider a two-dimensional Schulgasser assemblage composed of homothetic cylinders with radial and tan-
gential local mobilities m‖(ρ) and m⊥(ρ), which can vary arbitrarily with the radial coordinate ρ ∈ [0, 1]
within the cylinders. The extreme values ρ = 0 and ρ = 1 correspond to the center and periphery of a cylinder,
respectively. Schulgasser (1983) has shown3 that the effective mobility m of the assemblage is given by—see
also [20]—

m = h(1), (86)

where the function h(ρ) ∈ C0[0, 1] is solution to the Ricatti equation

ρh′(ρ) + [h(ρ)]2

m⊥(ρ)
= m‖(ρ). (87)

Anisotropic core with isotropic ring. Consider the case of a cylinder with an anisotropic central core of radius
ρc with mobilities m‖,⊥

c and an isotropic external ring with mobility mr . Then,

m‖,⊥(ρ) =
{

m‖,⊥
c 0 ≤ ρ ≤ ρc

mr ρc < ρ ≤ 1
(88)

Integrating (87) piecewise and enforcing continuity at ρ = ρc, we obtain

h(ρ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

√
m‖

cm⊥
c 0 ≤ ρ ≤ ρc,

mr

(√
m‖

cm⊥
c + mr

)
(ρ/ρc)

2 +
(√

m‖
cm⊥

c − mr

)

(√
m‖

cm⊥
c + mr

)
(ρ/ρc)2 −

(√
m‖

cm⊥
c − mr

) ρc < ρ ≤ 1.

(89)

At ρ = 1, we have that (ρ/ρc)
2 = 1/ fc where fc is the volume fraction of the core. Thus, after routine algebra,

we finally obtain

m = h(1) = mr
(1 + fc)

√
m‖

cm⊥
c + (1 − fc)mr

(1 − fc)

√
m‖

cm⊥
c + (1 + fc)mr

. (90)

Composite core with isotropic ring. Now consider the case of a cylinder composed of an isotropic central
inclusion with an isotropic concentric interface within the core. Then,

m‖,⊥(ρ) =

⎧
⎪⎪⎨

⎪⎪⎩

minc 0 ≤ ρ < ρinc
mint ρinc ≤ ρ < ρint

m‖,⊥
c ρint ≤ ρ < ρc

mr ρc ≤ ρ ≤ 1

(91)

Integrating (87) piecewise and enforcing continuity of the solution, we obtain

h(ρ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

minc 0 ≤ ρ ≤ ρinc,

mint
(minc + mint)(ρ/ρinc)

2 + (minc − mint)

(minc + mint)(ρ/ρinc)2 − (minc − mint)
ρinc < ρ ≤ ρint,

√
m‖

cm⊥
c

(
hint +

√
m‖

cm⊥
c

)
(ρ/ρint)

2K +
(

hint −
√

m‖
cm⊥

c

)

(
hint +

√
m‖

cm⊥
c

)
(ρ/ρint)2K −

(
hint −

√
m‖

cm⊥
c

) ρint < ρ ≤ ρc,

mr
(hc + mr )(ρ/ρc)

2 + (hc − mr )

(hc + mr )(ρ/ρc)2 − (hc − mr )
ρc < ρ ≤ 1,

(92)

3 Schulgasser (1983) considered the mathematically analogous problem of thermal conductivity.
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where K =
√

m‖
c/m⊥

c , and

hint = h(ρint) = mint
fintmint + ( fint + 2 finc)minc

( fint + 2 finc)mint + fintminc
, (93)

hc = h(ρc) =
√

m‖
cm⊥

c

[ f K
c + ( fint + finc)

K ]hint + [ f K
c − ( fint + finc)

K ]
√

m‖
cm⊥

c

[ f K
c − ( fint + finc)K ]hint + [ f K

c + ( fint + finc)K ]
√

m‖
cm⊥

c

. (94)

Here, fc, fint, and finc denote the volume fractions of the core, the interface, and the inclusion, respectively.
Thus, at ρ = 1, we have that (ρ/ρc)

2 = 1/ fc and so

m = h(1) = mr
(1 + fc)hc + (1 − fc)mr

(1 − fc)hc + (1 + fc)mr
. (95)
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