

UNIVERSIDAD NACIONAL DE LA PLATA

FACULTAD DE CIENCIAS EXACTAS

DEPARTAMENTO DE CIENCIAS BIOLÓGICAS

Trabajo de Tesis Doctoral:

"Comportamiento del aparato fotosintético bajo diferentes condiciones ambientales, y su posible uso como criterio de mejora vegetal en arroz (Oryza sativa L.)"

<u>**Tesista:**</u> Lic. Juan Manuel Vilas

Director: Dr. Andrés Alberto Rodríguez

Codirector: Gustavo Adolfo Martínez

<u>Año</u>: 2020

El presente trabajo de tesis fue realizado en el Laboratorio de Fisiología del Estrés Abiótico en Plantas, Unidad de Biotecnología I "Dr. Rodolfo A. Ugalde", Instituto Tecnológico Chascomús (INTECH), "Raúl Alfonsín", CONICET. Declaro que el material incluido en la presente tesis es, a mi mejor saber y entender, original producto de mi propio trabajo (salvo en la medida en que se identifique explícitamente las contribuciones de otros). Este material no lo he presentado en forma parcial o total, como una tesis en esta u otra institución.

.....

Lic. Juan Manuel Vilas

Director de tesis Andrés A. Rodríguez Lic. Biología (Universidad de Buenos Aires) Doctor (Universidad de Buenos Aires)

.....

Co Director Gustavo A Martínez Bioquímico (Universidad Nacional de La Plata) Doctor (Universidad Nacional de La Plata)

.....

"Nillius in Verba"

Royal Society of London

La vocación principal de un científico es perseguir el conocimiento a través de la experimentación, teniendo como guía los datos obtenidos y respetando de los mismos, sin dejarse influir por razones políticas o las creencias imperantes.

"Mira por ti mismo"

Agradecimientos:

Al Dr Andrés Rodríguez, por abrirme las puertas de su laboratorio para desarrollar mi tesis doctoral.

A mi Codirector el Dr. Gustavo Adolfo Martínez, y al Dr. Santiago Maiale, por su valiosa ayuda en mi proceso de formación científica. Y por brindarme las herramientas necesarias para el desarrollo de mi tesis.

Al Dr. Oscar Ruíz por brindarme su apoyo desinteresado para avanzar en mi trabajo de tesis.

A la agencia de promoción Científica y al Consejo de Investigaciones Científicas y Técnicas (CONICET), por otorgarme las becas doctorales, con la cual pude realizar mi formación.

A las Dras. Mariana Corigliano y Marina Clemente por su colaboración en los Western Blot del capítulo 1.

Al Dr. Fernando Carrari y Dr. Estanislao Burgos, por su aporte en el estudio de GWAS, y su cordial atención en su laboratorio IFIBYNE-UBA-CONICET.

Al Dr. Alberto Livore, al Lic. José Luis Colazo y todo su grupo de trabajo en GTMGA (Grupo de Trabajo Mejoramiento Genético de Arroz). INTA. Ruta Prov. 39 km 143.5 Concepción del Uruguay, Entre Ríos. Por brindarme soporte en el cultivo de plantas de arroz para el ensayo de GWAS.

A mis compañeros y amigos de laboratorio, Lucre, Pablo y Susana con quien compartí excelentes charlas científicas. A los amigos del "otro lado de la UB1", Leo, los Dres Franco Rossi, Matias Romero y Andres Gárriz con quienes me inicié en la Ciencia, aprendí y compartí grandes momentos.

A los amigos que hice en Chascomús: Diana, Liz, Juan Ignacio, Maxi, "El Beto", "Checho" y Gabi.

Principalmente a mi familia, y a los amigos que fui cosechando durante la Vida.

A todo el personal de INTECH, quienes de alguna u otra manera aportaron a la realización de esta tesis.

Publicaciones derivadas de esta tesis:

- Juan Manuel Vilas; Mariana Georgina Corigliano; Marina Clemente; Santiago Javier Maiale; Andrés Alberto Rodríguez (2020). Close relationship between the state of the oxygen evolving complex and rice cold stress tolerance. Plant Science.
- Juan Manuel Vilas; Estanislao Burgos; Lucrecia Puig; Jose L Colazo; Alberto Livore; Oscar Ruiz; Fernando Carrari; Andrés A Rodriguez; Santiago Maiale (2019). Análisis mediante GWAS de La funcionalidad del fotosistema II. XI Congreso Brasileiro de Arroz Irrigado (CBAI). ARTÍCULO BREVE.
- Juan Manuel Vilas; Rodolfo Bezus; Andrés Rodriguez; Santiago Maiale (2017). Análisis fisiológico de líneas F6 mejoradas, tolerantes a temperaturas subóptimas. X Congreso Brasileiro de Arroz Irrigado (CBAI). ARTÍCULO BREVE.
- Juan Manuel Vilas; Babuin Maria, Bezus Rodolfo, Rodriguez Andres, Maiale Santiago (2016). Análisis mediante JIO test en la hoja bandera en arroz. XXI reunión Argentina de Fisiología Vegetal. Ciudad de Corrientes Argentina. POSTER.
- Juan Manuel Vilas; A Gazquez; Alfonso Vidal; Rodolfo Bezus; Andrés Rodriguez; Santiago Maiale (2015). Comportamiento del aparato fotosintético de la hoja bandera durante el llenado de grano en líneas F4 tolerantes a frío. IX Congreso Brasileiro de Arroz Irrigado (CBAI). ARTÍCULO BREVE.

Abreviaturas

- μs: Microsegundos ACP: Análisis de Componentes principales ADN: Ácido desoxirribonucleico
- ADN_c: Ácido desoxirribonucleico copia
- AF: Aparato fotosintético
- ARN: Acido Ribonucleico
- ARNm: Ácido ribonucleico mensajero
- Asat: Tasa de fotosíntesis neta medida a saturación de luz
- APx: Ascorbato peroxidasa
- CAT: Catalasa
- CS: Sección transversal (Cross Section)
- D1: Día uno de tratamiento de frío
- D4: Día cuatro del tratamiento de frío
- DPC: 1,5 difenilcarbazida (Diphenylcarbazide)
- DE: Desviación estándar
- EDTA: Ácido etilendiaminotetraacético
- EROS: Especies reactivas de oxígeno
- EE: Error estándar
- FS: Fotosistema
- FSI: Fotosistema I
- FSII: Fotosistema II
- FTs: Factores de transcripción
- Gs: Conductancia estomática medida a saturación de luz
- GO: Ontología génica (Gene Ontology)
- GWAS: Estudio de asociación del genoma completo (Gemome Wide Association Studies).
- HPLC: Cromatografía líquida de alta eficacia (high performance liquid chromatography)
- IRF: Índice de respuesta fotosintética
- MDA: Malondialdehído
- MDS: Ordenamiento multidimensional no métrico

ms: Milisegundos

- OEC: Complejo liberador de oxígeno (Oxygen Evolving Complex)
- PAR: Radiación fotosintéticamente activa.
- PCR: Reacción de la polimerasa en cadena (Polimerase Chain Reaction).
- PF: Peso fresco
- PMSF: Fluoruro de fenilmetilsulfonilo (phenylmethane sulfonyl fluoride)
- PVP: Polivinil pirrolidona
- Q_a: Quinona a
- Q_b: Quinona b
- qRT-PCR: transcripción reversa (reverse transcription) seguida de reacción en cadena
- de la polimerasa en tiempo real (polimerase chain reaction)
- QTL: Locus de carácter cuantitativo (Quantitative Trait Loci)
- RC: Centro de reacción del fotosistema II (Reaction center of photosystem II)
- RF: Rasgos fotosintéticos.
- RuBisCo: Ribulosa-1,5 carboxilasa/oxigenasa
- SNP: Polimorfismo de nucleótido único (Single nucleotide polymorphism)
- TS: Temperaturas sub-óptimas
- TO: Temperaturas óptimas
- UA: Unidades arbitrarias

Comportamiento del aparato fotosintético bajo diferentes condiciones ambientales, y su posible uso como criterio de mejora vegetal en arroz (Oryza sativa L.)

Resumen:

El arroz se encuentra dentro de las especies vegetales mas cultivadas mundialmente, su alto valor nutricional y su capacidad de adaptarse a diversos ambientes ha favorecido la producción agrícola de esta especie en 113 países, siendo el alimento básico de más de la mitad de la población mundial. A su vez, en el mundo en desarrollo el arroz proporciona el 27 por ciento de la energía alimentaria y el 20 por ciento de las proteínas. Sin embargo, las cosechas y el rendimiento de grano están estancadas en los últimos tiempos. En Argentina, la limitación térmica por bajas temperaturas en zonas productoras de arroz, afecta al cultivo de arroz en estado vegetativo causando reducción del crecimiento como consecuencia del estrés por frío. Actualmente, para superar la deficiencia de temperaturas óptimas para el normal crecimiento del cultivo de arroz, se opta como estrategia retrasar las fechas de siembra. Esta estrategia, trae una segunda limitante a la productividad del cultivo, ya que el crecimiento en estadio adulto de la planta se desarrolla en condiciones de baja radiación lumínica desaprovechando de este modo gran parte del potencial lumínico ambiental. Por estos dos motivos, es de vital importancia generar nuevos germoplasmas de arroz con alta capacidad de crecimiento bajo condiciones de temperaturas sub-óptimas, y que a su vez posean una mayor eficiencia en la captación lumínica. Con el objetivo de evaluar el efecto de las temperaturas sub-óptimas (TS) a nivel fotosintético en arroz, se evaluó la respuesta fisiológica, bioquímica y transcripcional de un grupo de proteínas extrínsecas del fotosistema II (FSII) en dos variedades de arroz con crecimiento contrastante bajo temperaturas TS, IR50 y Koshihikari. Fisiológicamente, se observaron alteraciones en el transporte de electrones en las plantas sometidas a estrés por bajas temperaturas causadas por un desacople en el complejo liberador de oxígeno (OEC), siendo esta alteración mayor en la variedad sensible (IR50) en comparación con la variedad tolerante (Koshihikari). Nuestros resultados sugieren que los niveles de las proteínas extrínsecas del OEC están involucrados en el proceso de tolerancia al estrés por frío en arroz.

IX

Por otra parte se generaron líneas propias de arroz tolerantes a frío, utilizando una metodología de selección que permitió acortar los tiempos de obtención de líneas estables. Dichas líneas tuvieron una mayor capacidad de crecimiento en condiciones de baja temperatura junto con una mayor capacidad fotosintética a nivel del FSII. A su vez, estas líneas de arroz mejoradas tuvieron buenos rasgos de rendimiento comparada con sus respectivos parentales y una variedad comercial, acompañada de una mayor eficiencia fotosintética durante el periodo de llenado de grano. Finalmente, un estudio de asociación del genoma completo (GWAS) con plantas de arroz cultivadas en dos ambientes diferentes, permitió identificar polimorfismo de nucleótido único (SNPs), que mostraron un claro vínculo entre la expresión del potencial genómico y el ambiente en el que las plantas fueron cultivadas. A su vez, se identificaron locus de carácter cuantitativo (QTLs) que vinculan la eficiencia fotosintética con genes involucrados en el desarrollo celular y el llenado de grano en arroz.

El presente trabajo de tesis permitió identificar distintos mecanismos implicados en respuesta diferentes factores ambientales en arroz, en los cuáles la respuesta del FSII se encontraría fuertemente vinculada. Nuestros resultados abren la posibilidad de futuros estudios y aplicaciones en la mejora vegetal de las variedades de arroz actualmente cultivadas.

Palabras Clave:

ESTRÉS POR FRÍO, ARROZ, MEJORAMIENTO, FSII, OEC, DPC, GWAS, RENDIMIENTO DE GRANO.

Índice de Contenido

1- Introducción general
1.1 Generalidades del cultivo de arroz. 2
1.2 Estrés por frío en el cultivo de arroz.
1.3 La importancia de la fotosíntesis y el cloroplasto en la fisiología vegetal. 5
1.3.1 El cloroplasto y su respuesta al estrés por frío
1.3.2 Relación entre los componentes de rendimiento y la fotosíntesis
1.4. Nuevas tecnologías como complemento en programas de mejoramiento vegetal. 9
1.5 Análisis de la fluorescencia transitoria de la clorofila a11
2- Hipótesis y objetivo general14
3- CAPITULO 1: Modulación estructural y funcional de la fotosíntesis, y cambios en la actividad del complejo liberador de oxígeno (OEC) como respuesta a las bajas temperaturas en dos variedades de arroz.
3.1 Introducción.
3.1 Introducción.163.2 Objetivo particular.17
3.1 Introducción.163.2 Objetivo particular.173.3 Materiales y métodos.17
3.1 Introducción.163.2 Objetivo particular.173.3 Materiales y métodos.173.3.1 Material vegetal, condiciones de crecimiento y tratamientos.17
3.1 Introducción.163.2 Objetivo particular.173.3 Materiales y métodos.173.3.1 Material vegetal, condiciones de crecimiento y tratamientos.173.3.2 Análisis de la fluorescencia transitoria de la clorofila a (prueba OJIP).18
3.1 Introducción.163.2 Objetivo particular.173.3 Materiales y métodos.173.3.1 Material vegetal, condiciones de crecimiento y tratamientos.173.3.2 Análisis de la fluorescencia transitoria de la clorofila a (prueba OJIP).183.3.3 Cálculos de parámetros derivados del análisis de la prueba OJIP.18
3.1 Introducción. 16 3.2 Objetivo particular. 17 3.3 Materiales y métodos. 17 3.3.1 Material vegetal, condiciones de crecimiento y tratamientos. 17 3.3.2 Análisis de la fluorescencia transitoria de la clorofila a (prueba OJIP). 18 3.3.3 Cálculos de parámetros derivados del análisis de la prueba OJIP. 18 3.3.4 Actividad de los centros de reacción que reducen Quinonas b (Q _b). 19
3.1 Introducción.163.2 Objetivo particular.173.3 Materiales y métodos.173.3.1 Material vegetal, condiciones de crecimiento y tratamientos.173.3.2 Análisis de la fluorescencia transitoria de la clorofila a (prueba OJIP).183.3.3 Cálculos de parámetros derivados del análisis de la prueba OJIP.183.3.4 Actividad de los centros de reacción que reducen Quinonas b (Qb).193.3.5 Determinación de intercambio de gases.19
3.1 Introducción.163.2 Objetivo particular.173.3 Materiales y métodos.173.3.1 Material vegetal, condiciones de crecimiento y tratamientos.173.3.2 Análisis de la fluorescencia transitoria de la clorofila a (prueba OJIP).183.3.3 Cálculos de parámetros derivados del análisis de la prueba OJIP.183.3.4 Actividad de los centros de reacción que reducen Quinonas b (Qb).193.3.5 Determinación de intercambio de gases.193.3.6 Tratamiento con 1,5-difenilcarbazida (DPC).20
3.1 Introducción. 16 3.2 Objetivo particular. 17 3.3 Materiales y métodos. 17 3.3.1 Material vegetal, condiciones de crecimiento y tratamientos. 17 3.3.2 Análisis de la fluorescencia transitoria de la clorofila a (prueba OJIP). 18 3.3.3 Cálculos de parámetros derivados del análisis de la prueba OJIP. 18 3.3.4 Actividad de los centros de reacción que reducen Quinonas b (Q _b). 19 3.3.5 Determinación de intercambio de gases. 19 3.3.6 Tratamiento con 1,5-difenilcarbazida (DPC). 20 3.3.7 Análisis de expresión de genes mediante PCR cuantitativa en tiempo real. 21
3.1 Introducción. 16 3.2 Objetivo particular. 17 3.3 Materiales y métodos. 17 3.3.1 Material vegetal, condiciones de crecimiento y tratamientos. 17 3.3.2 Análisis de la fluorescencia transitoria de la clorofila a (prueba OJIP). 18 3.3.3 Cálculos de parámetros derivados del análisis de la prueba OJIP. 18 3.3.4 Actividad de los centros de reacción que reducen Quinonas b (Q _b). 19 3.3.5 Determinación de intercambio de gases. 19 3.3.6 Tratamiento con 1,5-difenilcarbazida (DPC). 20 3.3.7 Análisis de expresión de genes mediante PCR cuantitativa en tiempo real. 21 3.3.8 Extracción de proteínas para inmunodetección. 22

3.3.10. Análisis estadístico 23
3.4 Resultados. 24
3.4.1 Crecimiento de las variedades IR50 y Koshihikari a bajas temperaturas 24
3.4.2 Respuesta Fotosintética 25
3.4.3 Cambios en la cinética de la fluorescencia transitoria de la clorofila a 30
3.4.4 Efectos del frío sobre los centros de reacción Q _a RC, Q _b RC y OEC-RC del FSII.
3.4.5 Tratamiento con el donante artificial de electrones, 1,5-difenilcarbazida
(DFC)
3.4.6 Respuesta de las proteínas del OEC a las bajas temperaturas
3.5 Discusión.
3.5.1 Alteraciones en el crecimiento como consecuencia de las temperaturas sub-
optimas
3.5.2 Alteraciones en la fotosíntesis como consecuencias del estrés por frío en O.
Sativa
3.5.3 Alteraciones en los centros de reacción y el OEC como consecuencia de las
bajas temperaturas 42
3.5.4 Respuesta de las proteínas del OEC PsbP y PsbR, en el proceso fotosintético
y su relación con la tolerancia a las bajas temperaturas en arroz
3.6 Conclusiones.
3.7 Diagrama Resumen-Capítulo 1. 50
4- CAPITULO 2: Obtención de nuevos cultivares de arroz tolerantes a frío. Relación
entre el fenotipo fotosintético con la tolerancia a frío y el rendimiento de grano 51
4.1 Introducción.
4.2 Objetivo particular.
4.3 Materiales y métodos 53
4.3.1 Condiciones de crecimiento y tratamientos

	4.3.2 Crecimiento en condiciones ambientales no controladas.	54
	4.3.3 Selección de germoplasma	55
	4.3.4 Material vegetal	55
	4.3.5 Análisis de la fluorescencia transitoria de la clorofila a (prueba OJIP)	55
	4.3.6 Determinación del contenido de azúcares libres y almidón	56
	4.3.7 Determinaciones de la actividad de enzimas antioxidantes	56
	4.3.8 Estimación de la peroxidación lipídica mediante determinación de MDA p	or 57
	4.3.9 Monitoreo de la senescencia de la hoja bandera mediante la prueba OJIP.	58
	4.3.10 Índice de respuesta fotosintética (IRF)	58
	4.3.11 Cálculos de los componentes de rendimiento	58
	4.3.12 Análisis estadístico	59
4.4	4 Resultados.	60
	4.4.1 Capacidad de crecimiento contrastante y fenotipo a bajas temperaturas	50
	4.4.2 Cambios en el contenido de carbohidratos y respuesta antioxidante	en
	plántulas tratadas a temperaturas subóptimas	53
	4.4.3 Cambios en el contenido de carbohidratos y respuesta antioxidan enzimática en hoja bandera durante el llenado de grano.	te 65
	4.4.4 Análisis de los componentes de rendimiento.	72
	4.4.5 Índice de Respuesta Fotosintética (IRF) durante el llenado de grano	74
	4.4.6 Análisis de caracteres de rendimiento y la actividad fotoquímica de la ho bandera en una población segregante F2 de arroz	oja 76
4.5	5 Discusión.	81
	4.5.1 Selección y evaluación de germoplasma de arroz en estrés por baj temperaturas.	as 81
	4.5.2 Efecto del estrés por frío en el metabolismo primario de la planta.	82

con el llenado de grano	y su relación
4.5.3 La eficiencia fotosintética durante el llenado de grano, y su re	elación con la
senescencia de HB y las características de rendimiento	87
4.5.4 Incidencia de parámetros particulares de la prueba O	JIP sobre la
senescencia de la HB y su relación con los componentes de rendimie	nto 89
4.6 Conclusiones	
4.7 Diagrama Resumen-Capítulo 2	
5- CAPITULO 3: Análisis de la arquitectura genética del Fotosistema II	mediante un
estudio de asociación del genoma completo (GWAS) y su relación con	el llenado de
grano	
5.1 Introducción.	
5.2 Objetivo particular	
5.3 Materiales y métodos	
5.3.1 Germoplasma utilizado para el análisis de GWAS	
5.3.1 Germoplasma utilizado para el análisis de GWAS 5.3.2 Diseño experimental y ubicaciones	
 5.3.1 Germoplasma utilizado para el análisis de GWAS 5.3.2 Diseño experimental y ubicaciones 5.3.3 Fenotipado mediante fluorescencia transitoria de la clorofila a 	97
 5.3.1 Germoplasma utilizado para el análisis de GWAS 5.3.2 Diseño experimental y ubicaciones 5.3.3 Fenotipado mediante fluorescencia transitoria de la clorofila a y SPAD 	97
 5.3.1 Germoplasma utilizado para el análisis de GWAS 5.3.2 Diseño experimental y ubicaciones 5.3.3 Fenotipado mediante fluorescencia transitoria de la clorofila a y SPAD 5.3.4 Determinación de componentes de rendimiento 	
 5.3.1 Germoplasma utilizado para el análisis de GWAS 5.3.2 Diseño experimental y ubicaciones 5.3.3 Fenotipado mediante fluorescencia transitoria de la clorofila a y SPAD 5.3.4 Determinación de componentes de rendimiento 5.3.5 Mapeo por GWAS 	
 5.3.1 Germoplasma utilizado para el análisis de GWAS 5.3.2 Diseño experimental y ubicaciones. 5.3.3 Fenotipado mediante fluorescencia transitoria de la clorofila a y SPAD. 5.3.4 Determinación de componentes de rendimiento. 5.3.5 Mapeo por GWAS. 5.3.6 Estructura de la población. 	
 5.3.1 Germoplasma utilizado para el análisis de GWAS 5.3.2 Diseño experimental y ubicaciones 5.3.3 Fenotipado mediante fluorescencia transitoria de la clorofila a y SPAD 5.3.4 Determinación de componentes de rendimiento 5.3.5 Mapeo por GWAS 5.3.6 Estructura de la población 5.3.7 Análisis estadísticos. 	
 5.3.1 Germoplasma utilizado para el análisis de GWAS 5.3.2 Diseño experimental y ubicaciones 5.3.3 Fenotipado mediante fluorescencia transitoria de la clorofila a y SPAD 5.3.4 Determinación de componentes de rendimiento 5.3.5 Mapeo por GWAS 5.3.6 Estructura de la población 5.3.7 Análisis estadísticos 5.3.8 Análisis de genes candidatos 	
 5.3.1 Germoplasma utilizado para el análisis de GWAS 5.3.2 Diseño experimental y ubicaciones. 5.3.3 Fenotipado mediante fluorescencia transitoria de la clorofila a y SPAD. 5.3.4 Determinación de componentes de rendimiento. 5.3.5 Mapeo por GWAS. 5.3.6 Estructura de la población. 5.3.7 Análisis estadísticos. 5.3.8 Análisis de genes candidatos. 	
 5.3.1 Germoplasma utilizado para el análisis de GWAS 5.3.2 Diseño experimental y ubicaciones 5.3.3 Fenotipado mediante fluorescencia transitoria de la clorofila a y SPAD 5.3.4 Determinación de componentes de rendimiento 5.3.5 Mapeo por GWAS 5.3.6 Estructura de la población 5.3.7 Análisis estadísticos 5.3.8 Análisis de genes candidatos 5.4.1 Panel de diversidad y estructura de la población	

5.4.3. Análisis de enriquecimiento de términos GO e identificación de genes
candidatos 113
5.4.4 El análisis fenotípico reveló efectos ambientales y relaciones entre los rasgos
de panoja y parámetros del FSII 118
5.5 Discusión
5.5.1 Efectos del ambiente sobre la estructura de la población 122
5.5.2 Efectos ambientales, del genotipo e interacción genotipo/ambiente sobre
los fenotipos de fluorescencia de la clorofila a123
5.5.3 Identificación de marcadores SNPs y QTLs asociados a los fenotipos de
fluorescencia124
5.5.4 El fotosistema regula procesos biológicos, moleculares y rasgos de panoja.
5.5.5 El fenotipado fotosintético como herramienta de selección genética de
germoplasma de arroz129
5.6 Conclusiones
5.7 Diagrama Resumen-Capítulo 3133
6- Conclusiones generales
7- Referencias
8-Anexo 1: Material suplementario del Capítulo 1 167
9-Anexo 2: Material suplementario del Capítulo 2 170
2.A. Metodología de selección del material tolerante
2.B Índice de Respuesta Fotoquímica (IRF)
10- Anexo 3. Material Suplementario del Capítulo 3

1- Introducción general.

1.1 Generalidades del cultivo de arroz.

El arroz (*Oryza sativa* L.) es una especie vegetal originaria de Asia, perteneciente a la familia de las gramíneas o poáceas, compuesta por dos sub-especies mayores *INDICA* y *JAPONICA* provenientes de eventos de domesticación independientes a partir del ancestro silvestre *Oryza rufipogon.* A su vez, *O. sativa* se organiza en 5 sub-especies menores; *japónica templada, japónica tropical, aromática, aus e índica* (Garris y col. 2005).

En lo que respecta a la nutrición humana, el arroz es un cereal de vital importancia, que representa el alimento básico de la dieta de tres mil millones de personas en países de África, Asia y América Latina (FAO 2009).

Los cultivares de arroz mayormente sembrados en años recientes y actualmente en Argentina, pertenecen a la sub-especie *indica*. El hecho de que se utilicen dichos cultivares, fue una consecuencia de la demanda de los mercados. La creación del MERCOSUR, y su consolidación en la década de los años 90, proporcionó un salto para el sector arrocero dada la integración con un mercado tan demandante como el de Brasil.

El cultivo de arroz presenta una gran adaptabilidad a diferentes condiciones ambientales. Por esta razón, en la Argentina se puede encontrar explotaciones arroceras en las Provincias de Santa Fe, Entre Ríos, Corrientes, Misiones y Chaco (Quintero 2009).

Los cultivares de arroz *INDICA* son más eficientes que los cultivares *JAPONICA* en la captación de energía y por lo tanto, presentan mayor potencial de rendimiento. Sin embargo, a su vez también son más propensos que los cultivares *JAPONICA* a sufrir estrés por frío. Esto último, obliga al retraso de las fechas de siembra de los cultivares *INDICA*, para evitar que estos sean afectados por las bajas temperaturas durante la fase vegetativa temprana (Livore 2006).

Debido a lo expuesto anteriormente, es de interés comercial y agronómico generar e introducir nuevos materiales de arroz tolerantes a bajas temperaturas en las etapas tempranas del ciclo del cultivo, que a su vez, permitan el adelanto de la fecha de siembra. De esta manera, se lograría ubicar la etapa de llenado de grano en períodos

2

de mayor potencial lumínico, lo que se traduciría en una mejora en el rendimiento de grano.

1.2 Estrés por frío en el cultivo de arroz.

El origen de la susceptibilidad del arroz a las bajas temperaturas se debe al hecho de que esta especie evolucionó en zonas tropicales y subtropicales; como resultado de ello, presenta vulnerabilidad a climas templados y fríos (Imin y col. 2006)

En este sentido, las características climáticas de la Argentina representan una limitante en la producción de arroz que afecta su rendimiento. La mayor parte de las áreas óptimas para el cultivo de arroz presentan tipologías de clima templado con marcada amplitud térmica que coinciden con las etapas vegetativas del ciclo de crecimiento de la planta, desde la siembra hasta comienzo de macollaje (Quintero 2009).

En una gran parte de las áreas argentinas de mayor importancia para el cultivo de arroz, la temperatura mínima media en las etapas vegetativas más tempranas promedia los 13°C (Arguissain y col. 2011). En la Figura 1.1, se muestra la frecuencia de episodios de temperatura mínima por debajo de 15°C durante el ciclo del cultivo de arroz, para tres localidades de la provincia de Entre Ríos. Se puede observar que, las mayores probabilidades de que ocurran episodios de bajas temperaturas, coinciden con las fechas de siembra y de emergencia de la plántula (octubre-noviembre). Por otra parte, también se observa un aumento en la frecuencia de días con bajas temperaturas en las etapas finales del cultivo (2da de marzo). Episodios de bajas temperaturas en este estadio afectan el llenado de grano produciendo un gran porcentaje de semillas estériles (Yoshida 1981).

Figura 1.1: Características climáticas de la Provincia de Entre Ríos. Frecuencia promedio porcentual por quincena, de días con temperatura mínima diaria por debajo de 15°C **(adaptado, Quintero 2009)**.

Los efectos de las bajas temperaturas, se manifiestan en todas las etapas del desarrollo de la planta de arroz, produciendo un decaimiento de la germinación, menor emergencia de las plántulas, además de una disminución del crecimiento vegetativo temprano. Por otra parte, los fenómenos de bajas temperaturas se han descripto como un factor negativo, que afecta el rendimiento de grano del cultivo de arroz (Andaya y Mackill 2003; Bonnecarrère y col. 2011).

El rango óptimo de temperatura de crecimiento, en el estadio de plántula es de 25 a 30°C (Yoshida 1981). Si bien las temperaturas críticas difieren según la variedad, se considera que el arroz sufre estrés por bajas temperaturas, o temperaturas subóptimas (TS), por debajo de 20°C en este estadio (Kabaki y col. 1983; Takanashi y col. 1987). En este sentido, cuando las temperaturas son menores a 15°C, se detiene la producción de nuevos vástagos o macollos. A su vez, se ha descripto que la plántula cesa su crecimiento cuando las plantas son sometidas a temperaturas menores a 10°C (Yoshida 1981; Nakagahray col. 1997). Teniendo en cuenta que el número potencial de panojas por superficie queda establecido durante el período vegetativo. Es posible pensar a la etapa vegetativa como el factor que mejor explica la variación del rendimiento de grano en arroz (Arguissain y col. 2006); y a las bajas temperaturas, una limitante en la productividad del arroz afectando esta etapa. El mejoramiento a través de los años incrementó el índice de cosecha, pero sin producir cambios en la tasa de asimilación de carbono. Es por ello que, con solo aumentar el potencial de la fotosíntesis de la planta de arroz, es posible que se produzca un punto de ruptura del rendimiento actual promedio (aprox. 7 Tn/ha), el cual podría alcanzar un nivel más cercano a la productividad potencial estimada en 15 – 16 Tn/ha (Quintero 2009).

Por lo tanto, analizar el comportamiento fisiológico de las plantas de arroz en diferentes estados fenológicos, vegetativo temprano o plántula, vegetativo tardío o macollaje, y etapa de llenado de grano, puede ser una vía de aproximación para explicar la disminución del rendimiento, debido a un retraso en el crecimiento en estadio de plántula bajo una condición TS.

1.3 La importancia de la fotosíntesis y el cloroplasto en la fisiología vegetal.

1.3.1 El cloroplasto y su respuesta al estrés por frío.

La fotosíntesis es el fenómeno de conversión de la energía lumínica en energía química, que utiliza tanto FSII, como el fotosistema I (FSI), y enzimas de fijación de carbono para oxidar el H₂O a O₂, y reducir CO₂ a carbohidratos (Blankenship 2014). El proceso de fotosíntesis, se inicia en la etapa lumínica con la absorción de fotones por los pigmentos del complejo antena del FSII, y continua con la etapa oscura en el llamado ciclo de Calvin-Benson.

La fotosíntesis disminuye cuando se expone las plantas a bajas temperaturas. Esta reducción, es debido en parte al cierre de los estomas, y la consecuente incapacidad de fijar CO₂. En línea con esto, la enzima clave en la incorporación de CO₂, es la Ribulosa-1,5 bifosfatocarboxilasa/oxigenasa (RuBisCo); plántulas sometidas al frío mostraron una baja en la expresión de la proteína de unión a la subunidad mayor de la RuBisCo, indicando daño en el cloroplasto (Rodziewicz y col. 2014).

Dentro del cloroplasto, el aparato fotosintético (AF) y en particular el FSII, ha sido descripto como un objetivo sensible, que sufre diferentes niveles de daño en condiciones de estrés por frío (Strauss y col. 2006; Pagter y col. 2008). De modo que,

podría pensarse que aquellas plantas que fisiológicamente tengan una capacidad fotosintética mayor, deberían tener una mayor adaptabilidad a las condiciones de estrés en estadios tempranos del desarrollo, tanto como mejores potenciales de rendimiento y llenado de grano. Se ha demostrado en plantas de diferentes especies, que una mayor eficiencia fotosintética se traduce en una mayor tolerancia cuando se las someten a estrés por bajas temperaturas en estado vegetativo (Krüger y col. 2014; Gazquez y col. 2015; Calzadilla y col. 2016).

La fase más temprana de la fotosíntesis, ésta representada por el conjunto de reacciones fotoquímicas que se desarrollan en el FSII. Estas reacciones, ocurren mucho más rápido que las reacciones posteriores que conforman la cadena transportadora de electrones. Al mismo tiempo, el exceso de luz provoca que se dispare un fenómeno de daño a nivel del FSII, que se traduce en una menor capacidad fotosintética, por inhibición de las reacciones fotoquímicas del FSII. Esta situación se acentúa bajo condiciones de alta intensidad lumínica o de bajas temperaturas (Huner y col. 1998). La inhibición de la cadena transportadora de electrones y el consecuente daño fotoquímico del FSII, se encuentran entre los mayores efectos del frío en estadios vegetativos tempranos (Gesch y Heilman 1999; Jeong y col. 2002). A su vez, el fotodaño causado en el FSII en condiciones estresantes, incluido el frío, produce especies reactivas de oxígeno (EROS), que dañan el normal funcionamiento de la fotosíntesis (Takahashi and Murata 2008). En arroz, se ha descripto que la tolerancia a frío es consistente con una reducción del daño oxidativo causado por EROS a nivel de FSII (Bonnecarrère y col. 2011).

Análisis transcriptómicos llevados a cabo en plántulas de arroz sometidas a estrés por frío, revelaron que genes involucrados en el metabolismo del almidón y azúcares, así como genes relacionados con procesos fotosintéticos a nivel del FSI y FSII disminuyen su expresión (Maruyama y col. 2014; Gazquez y col. 2018). Indicando que el estrés por frío afecta a la fotosíntesis a nivel metabólico y estructural. En línea con esto, se ha reportado que componentes funcionales del FSII como OEC, participa en el balance redox del FSII; y el fotodaño causado en condiciones de estrés, e inducido por la luz, causaría daño no solo en FSII, sino también en el OEC (Zavafer y col. 2015). A su vez, diferentes autores reportaron que tanto el desacople entre el OEC y el FSII, como

6

la alteración o pérdida de diferentes proteínas estructurales y funcionales del OEC, afectan el normal crecimiento y la capacidad de fotoautotrofia de las plantas (Ifuku y col. 2005; Suorsa y col. 2006; Allahverdiyeva y col. 2013).

1.3.2 Relación entre los componentes de rendimiento y la fotosíntesis.

El rendimiento fotosintético de las plantas, junto con un aumento de la eficiencia de uso de la radiación solar, se ha convertido recientemente en una estrategia importante para los fisiólogos y mejoradores de cultivos.

La manipulación de la capacidad genética de la planta para desarrollar una mayor eficiencia fotosintética de captura de la luz, podría traducirse en un mayor rendimiento de grano en estadios reproductivos (Horton 2000; Zhu y col. 2010). Esto se podría lograr destinando mayores recursos fotosintéticos para la generación de fotoasimilados, que podrían ser re-movilizados hacia el grano, lo que se traduciría en un mayor rendimiento final de grano (Figura 2.1).

Figura 2.1: Diagrama de flujo de los procesos involucrados en la fotosíntesis, desde la absorción de luz hasta la producción de grano. Se indican la influencia de los mecanismos reguladores internos (líneas marrones), factores ambientales (líneas punteadas), y la capacidad de desarrollo/aclimatación (líneas negras). Estos tres subsistemas principales alteran la capacidad y la velocidad de los materiales fotosintéticos así como el flujo de energía a través de todo el sistema **(adaptado, Horton 2000).**

En líneas generales, los procesos de captación de luz a nivel del cloroplasto, dan como resultado la formación de glucosa, producto de la reducción de CO₂. La glucosa generada por las reacciones fotoquímicas en el AF pueden ser transportada a hacia el grano, o bien puede ser almacenada en forma de almidón. Por otra parte, la demanda de fotoasimilados por parte del grano, tienden a consumir las reservas de carbohidratos. Estos cambios metabólicos desencadenan procesos regulatorios que tienen a aumentar la fijación de CO₂ mediante un aumento de la actividad fotosintética a nivel de AF y sus respectivos FS. A su vez, existen factores ambientales que inciden negativamente en los procesos de captación lumínica, generando una menor fijación de CO₂, y por consiguiente una menor producción de glucosa, que afectan la productividad a nivel de grano. En este sentido, el retardo de la senescencia foliar es considerado una estrategia primordial en el mejoramiento de cultivos. De este modo, se podría incrementar la duración y cantidad de fijación de carbono para el cultivo (Thomas y Howarth 2000). En línea con esto, se ha demostrado que la eficiencia de captura de la radiación es una característica importante que correlaciona positivamente con el rendimiento en arroces cultivados bajo condiciones de clima templado (Gregersen y col. 2014).

Actualmente, existe un interés por describir fenotipos de arroz que puedan tener una mejor eficiencia en el transporte de electrones (Meacham y col. 2017), ya que la utilización de la energía para la conversión fotoquímica de la luz y la fotoprotección en entornos naturales, son caracteres potencialmente asociados a la mejora genética. En línea con lo mencionado anteriormente, existen reportes en arroz que describen la relación directa entre la actividad del FSII y el rendimiento de grano (Wang y col. 2014; Zhang y col. 2015).

Por lo tanto, una manera rápida de evaluar la funcionalidad del FSII es a través del análisis de la curva cinética de fluorescencia transitoria de la clorofila a, denominada prueba OJIP (Stirbet y Govindjee 2011). Por lo expuesto anteriormente, determinar la fluorescencia de la clorofila a en numerosas plantas, y su cambio durante el ciclo de vida de planta, brinda información del estado del FSII; herramienta que puede ser de gran utilidad en proyectos de mejoramiento vegetal.

1.4. Nuevas tecnologías como complemento en programas de mejoramiento vegetal.

El aumento en la población mundial hace que sea necesaria una mayor disponibilidad de alimentos. Por lo tanto, es imprescindible que los programas de mejora vegetal incluyan nuevas tecnologías que asistan a obtener cultivares que toleren diferentes estreses ambientales, y con mayores potenciales de rendimiento.

Las tecnologías "ómicas", como la genómica, proteómica y metabolómica, han logrado un aporte importante en el entendimiento de los mecanismos moleculares que intervienen en la interacción planta-ambiente. Por este motivo, se ha desarrollado una nueva tecnología "ómica" denominada fenómica; basada en el estudio del crecimiento, rendimiento y composición de plantas, usando tecnologías no destructivas como fluorescencia de la clorofila, termografía infrarroja y análisis por imágenes tanto del crecimiento como de la arquitectura de las plantas (Furbank y Tester 2011). Como se mencionó anteriormente, plantas con mayor eficiencia del FSII muestran mayor adaptabilidad frente a condiciones ambientales adversas. En línea con esto, la fluorescencia transitoria de la clorofila a, es una herramienta útil para seleccionar genotipos tolerantes a diferentes estreses ambientales en una amplia variedad de cultivos (Oukarroum y Strasser 2004; Silvestre y col. 2014; Strauss y col. 2006; Kalaji y col. 2018; Stirbet y col. 2018). También se ha reportado que la fluorescencia transitoria de la clorofila a, es una buena herramienta para detectar variedades que puedan tener mayor potencial de rendimiento durante el llenado de grano (Panda y Sarkar 2013; Zhang y col. 2015).

Estas nuevas tecnológicas de fenotipado reducen los costos, minimizan el trabajo a través de la automatización; y generan más datos por evento de medición que aumentan la precisión de la medida en relación con la organización biológica. Por lo tanto, el análisis fenómico, requiere nuevas herramientas estadísticas para la extracción de señales biológicamente significativas (Cobb y col. 2013).

En este sentido, el fenotipado de plantas es un enfoque eficaz para unir la brecha existente entre genotipo y fenotipo de cultivos (Knecht y col. 2016). La asociación entre genotipo y fenotipo ha presentado significativos avances gracias al desarrollo de la biología molecular. La identificación de regiones dentro del genoma que contiene genes asociados con un rasgo cuantitativo en particular o QTL, tuvo un punto de inflexión con el desarrollo de marcadores moleculares de ADN en los años 80 (Collard y col. 2005). Actualmente, las plataformas de secuenciamiento permiten el mapeo masivo de numerosos genotipos de diversas especies vegetales. En el caso del arroz, dichos mapeos han sido logrados recientemente mediante el uso de microarreglo de alta densidad de SNP. Esto ha permitido obtener el genotipado de paneles de diversidad de arroz con cientos de accesiones, con la finalidad de ser utilizados en estudios de mapeos por asociación (McCouch y col. 2016).

Los mapeos por asociación indican la posición y las distancias genéticas relativas entre los marcadores a lo largo de los cromosomas (Collard y col. 2005). El uso de diversos caracteres cuantitativos del fenotipo de las plantas en paneles de diversidad genotipados, permiten hacer estudios de GWAS, para comprender cómo las variantes específicas del ADN condicionan la herencia de los diversos fenotipos (Cobb y col. 2013).

De esta manera, el uso de nuevas tecnologías de fenotipado de alta resolución y bajo costo, en combinación con análisis estadísticos de mapeo genómico. Permitiría encontrar genes candidatos, en particular aquellos relacionados con la fotosíntesis. Asimismo, se podría dilucidar mecanismos de cómo funcionan los procesos biológicos asociados al AF, y en particular al FSII. Por otra parte, esto proveería un conjunto de marcadores moleculares asociados a dichos caracteres, para asistir a programas de mejoras en pos de obtener cultivos más eficientes y con mayores potenciales de rendimiento agrícola.

10

1.5 Análisis de la fluorescencia transitoria de la clorofila a.

Cuando se iluminan plantas pre adaptadas a la oscuridad, se desencadena un aumento polifásico de la fluorescencia emitida por los pigmento del AF, excitados por la luz (Figura 3.1). Asimismo, las diferentes trayectorias de la curva provee información sobre la estructura y funcionalidad del AF (Kalaji y col. 2016). Basado en la teoría de flujos energéticos, se desarrolló la prueba OJIP (Strasser y col. 2000) a partir del análisis de la curva polifásica de fluorescencia de la clorofila a.

En la Figura 3.1, se puede observar las diferentes fases de la curva OJIP, donde O representa la fluorescencia inicial medida después de la iluminación a los 50 μ s; J e I representan estados intermedios medidos a 2 ms y 30 ms, respectivamente. Por último la fase P corresponde a la fluorescencia máxima registrada.

Figura 3.1: Representación esquemática de los flujos energéticos relacionados con la fluorescencia transitoria de la clorofila a, y su relación con la prueba OJIP. En F_0 (O), todos los centros de reacción están oxidados ("abiertos"). En el tiempo que se alcanza la fluorescencia máxima F_P (P), los centros de reacción están reducidos ("cerrados").

La prueba OJIP, proporciona información del procesos de absorción de un fotón por las moléculas de la antena dentro la membrana del tilacoide (ABS), la energía atrapada (TR), la energía disipada (DI) y el transporte de electrones desde el FSII al FSI para dar finalmente ATP y NADPH (Strasser y col. 2004).

Por otro lado, se puede obtener información del estado funcional del FSII, denominados flujos fenomenológicos, calculados por sección transversal o CS (del inglés Cross Section); y del estado estructural del FSII, denominados flujos específicos, calculados por centros de reacción del FSII o RC (del inglés, Reaction Center of photosystem II). Así como también las diferentes eficiencias de los rendimientos cuánticos derivados (phi(P_o)= φ_{po} , psi(E_o)= Ψ_{Eo} y phi(E_o)= φ_{Eo}). Los parámetros derivados de la prueba OJIP, así como la representación de cada uno de ellos con los respectivos componentes del FS se encuentran resumidos a continuación (Tabla 1.1).

Tabla 1.1: Resum	Tabla 1.1: Resumen de los parámetros derivados de la prueba OJIP. Adaptado de Strasser y col. (2000).				
Parámetros	Significado				
F ₀	= fluorescencia a 20 μs				
F ₂₅₀	= fluorescencia a 250 μs				
FJ	= Intensidad de fluorescencia en el paso J (a 2 ms)				
Fκ	= Intensidad de fluorescencia a 0,3 ms				
F _M	 máxima intensidad de fluorescencia 				
t _{fmax}	= tiempo en cada punto hasta llegar a F _M , in ms				
VJ	$= (F_J - F_0) / (F_M - F_0)$				
V _K	$= (F_{K} - F_{0}) / (F_{M} - F_{0})$				
Area	= área entre la fluorescencia de la curva y F_M				
M_0	= 4 .(F_{250} - F_0) / (F_M - F_0); pendiente inicial del paso O-J				
ABS	= flujo de energía absorbida				
TR ₀	= flujo de energía atrapada a tiempo cero F_0				
ET ₀	= flujo de energía de transporte de electrones a tiempo cero F ₀				
DI ₀	= flujo de energía disipada a tiempo cero F ₀				
RC	= centro de reacción activo				
CS	= sección transversal excitada				
Bondimiontos cuán	ations				
	$h(Cos)$ = $h(P_{-}) = h(P_{-}) / (P_{-}) / (P_{-})$; or P_{-} is randimized substitution maxima for a substitution max				
TR0/ADS	primario del ESII				
ET_0/TR_0	psi(E ₀) = Ψ_{FO} = 1 - V ₁ ; probabilidad de atrapar un exiton y mover un e ⁻ dentro de la cadena				
-, -	transportadora después de la guinona $A(Q_A)$.				
ET ₀ /ABS	phi(E_o) = ϕ_{EO} = (1 - F_0) / (F_M) . (1/ ET_0 /T R_0); Rendimiento cuántico para el transporte de e ⁻ .				
Flujos específicos					
ABS/RC	$= M_0 \cdot (1/V_J) \cdot (1/TR_0/ABS);$ energía absorbida por centro de reacción o tamaño aparente				
	de antena				
	-14 (1/1/), energía atranada por contro do recesión				
	$= 100 \cdot (1/V)$, ellergia all'apada por centro de reacción $= 100 \cdot (1/V)$, (ET. /TB.): energía de transporte de concerto de reacción				
	$= /M_0 \cdot (1/V_0) \cdot (210/1K_0)$, energía de transporte de el por centro de reacción = (ABS/RC) = (TR-/RC): energía disinada nor centro de reacción				
Digric					
Flujos fenomenoló	gicos				
ABS/CS	= energía absorbida por sección transversal excitada				
DI ₀ /CS	= (ABS/CS) - (TR ₀ /CS); energía disipada por sección transversal excitada				
TR ₀ / CS	= (TR ₀ /ABS) . (ABS/Cs); energía atrapada por sección transversal excitada				
ET ₀ / CS	= (TR₀/ABS) . (ET₀/TR) . (ABS/CS); energía de transporte de e⁻ por sección transversal				
	excitada				
Otros parámetros					
RC/CS	= (IR_0/ABS) . (V_J/M_0) . (ABS/CS_0) ; centros de reacción por sección transversal				
vBC	= (1/(ARS/RC)) / (1 - (1/(ARS/RC)); Chlar/Chland, o probabilidad que el FSII tenga una				
<i>i</i> nc	clorofila que funcione como centro de reacción				
Planc	$= vRC/(1-vRC) (TR_0/ARS)/(1-(TR_0/ARS))/(T-(TR_0/ARS))/(1-(FT_0/TR_0))) $ indice del estado del ESU				
TABS	es la energía que se conserva desde la absorción de un fotón nor ESII hasta la reducción de la				
	quinona B				
Sm	= Área / (E_{M} - E_{0}); área complementaria normalizada. Relaciona el número de				
	transportadores de electrones por cadena transportadora de electrones, o energía necesaria				
	para cerrar todos los centros de reacción.				
Sm/t _{Emax}	=[RCabierto/(RCcerrado + RCabierto]=[Oa/ Oa(total)] Fracción promedio de los RCs				
- 7 -11104	abiertos en el intervalo de tiempo desde cero hasta el tiempo en el cual se alcanza la				
	fluorescencia máxima				

2- Hipótesis y objetivo general

La información presentada hasta el momento deja en evidencia la relevancia científica y nutricional del arroz, así como también el efecto de las limitaciones ambientales en la respuesta de las plantas, como el crecimiento y alteraciones en el rendimiento de grano. Como consecuencia, en base a los antecedentes mencionados se planteó la siguiente hipótesis de trabajo: *"Una mejor capacidad fotosintética contribuye a los mecanismos de tolerancia al estrés por frío, y puede ser utilizada como criterio de selección de germoplasmas con mejores aptitudes agronómicas".* Para poner a prueba dicha hipótesis, se propuso como objetivo general de esta tesis: estudiar los mecanismos de respuesta y tolerancia del arroz a las bajas temperaturas asociadas a la fotosíntética en relación con una mejor producción de grano, y estudiar la arquitectura genética del FS. Para llevar a cabo éste objetivo general, se puntualizaron una serie de objetivos particulares, los cuales se encuentran planteados en los capítulos correspondientes del presente trabajo de tesis.

3- CAPITULO 1: Modulación estructural y funcional de la fotosíntesis, y cambios en la actividad del complejo liberador de oxígeno (OEC) como respuesta a las bajas temperaturas en dos variedades de arroz.

3.1 Introducción.

Las plantas de climas tropicales como el arroz, se encuentran regularmente expuestas a las bajas temperaturas. Las temperaturas TS, están definidas para el arroz a partir de los 20°C o menos (Kabaki 1983; Takanashi y col. 1987). Las bajas temperaturas reducen la cinética decrecimiento de las plantas, afectan el cierre estomático y procesos bioquímicos, provocando pérdidas en la actividad de la RuBisCo y disminución de las tasas de fotosíntesis neta debido al efecto adverso en la asimilación de CO₂ (Allen y Ort 2001; Aghaee y col. 2011). En plantas sensibles, los efectos del frío han sido relacionados con fenómenos de disipación de energía, mientras que un aumento en la asimilación de CO₂ como sumidero de electrones parece ser preponderante en plantas tolerantes a frío (Calzadilla y col. 2019). Al mismo tiempo, la tolerancia de las plantas a los estreses ambientales está determinado por el equilibrio entre la tasa del daño al FSII, o fotodaño, y la tasa de su reparación (Takahashi y Murata 2008). En este sentido, las proteínas extrínsecas del FSII como las que conforman el OEC, son especialmente sensibles al estrés (Pérez Bueno y col. 2011). En plantas, esta estructura se compone principalmente por cuatro proteínas PsbP (23kDa), PsbR (10kDa), PsbO (33kDa) y PsbQ (17kDa), que en plantas superiores, se encuentran asociadas al lado luminal del FSII (De Las Rivas y col. 2007). En particular, la acumulación de cada una de estas proteínas es altamente dependiente de las otras (Allahverdiyeva y col. 2013). Particularmente, la proteína PsbO participa directamente en la división del agua y estabilización del complejo de manganeso (Mn₄CaO₅); a su vez, PsbP y PsbQ modulan la unión de los iones de Ca⁺⁺ y Cl⁻ requeridos para una eficiente evolución del oxígeno y protección del complejo Mn₄CaO₅. En conjunto, PsbO, PsbP y PsbQ estabilizan el OEC del lado dador de electrones (Yi y col. 2007a; Allahverdiyeva y col. 2009; Lovyagina y Semin 2016).

Por otra parte, PsbP es necesaria para el normal ensamblado y arquitectura del tilacoide (Yi y col. 2009b). Finalmente, se sabe que la proteína PsbR se encuentra unida al núcleo del FSII y participa en la unión y estabilización del OEC junto con PsbP (Suorsa y col. 2006; Allahverdiyeva y col. 2007; De Las Rivas y col. 2007).

Con el objetivo de profundizar el conocimiento de la respuesta a nivel fotosintético de plantas expuestas a bajas temperaturas, se evaluó la respuesta fisiológica,

bioquímica y molecular de dos variedades de arroz, Koshihikari e IR50 descriptas como tolerantes y sensibles en Gazquez y col. 2015.

3.2 Objetivo particular.

Describir la respuesta fisiológica, bioquímica y molecular de dos variedades de *O Sativa*, con respuesta contrastante al estrés por bajas temperaturas, y sus posibles mecanismos de tolerancia implicados a nivel del aparato fotosintético.

3.3 Materiales y métodos.

3.3.1 Material vegetal, condiciones de crecimiento y tratamientos.

Semillas de las variedades de arroz Koshihikari e IR50 se sembraron en placas de Petri utilizando papel de filtro Whatman Nº5, hidratadas con 7,00 ml de una solución acuosa de carbendazim al 0,025% p/v. Luego las semillas se incubaron a 30°C en oscuridad durante tres días. Las plántulas obtenidas se transfirieron a recipientes de 4,00 litros, y se cultivaron en condiciones hidropónicas con 3,00 litros de solución nutritiva Yoshida 1X (Yoshida y col. 1976), la composición de la solución nutritiva se encuentra definida en la Tabla 1 del Anexo 1.

Las plántulas fueron cultivadas en una cámara Percival E-30B (Percival Scientific[®], IA, EEUU), con fotoperiodo de 12/12 h (día/noche), 80% de humedad relativa, con una intensidad de luz de 260 µmol fotones m⁻² s⁻¹ de radiación fotosintéticamente activa (PAR, de sus siglas en Inglés) y 26°C de temperatura (condición de control o temperatura óptima, TO). Se usaron plántulas de 11 días para todos los experimentos, con el fin de que ambas variedades estén en la misma etapa fenotípica (tercera hoja).

El tratamiento de bajas temperaturas (tratamiento de estrés) se realizó en otra cámara de cultivo Percival E-30B (Percival Scientific[®], IA, EEUU) con idénticas condiciones de luz y humedad que el tratamiento control, pero a temperatura de crecimiento de 16°C, temperatura TS durante 4 días. Todas las determinaciones fisiológicas, bioquímicas y moleculares, se realizaron en la tercera hoja en ambas condiciones, TO y TS, a los días 1 y 4 (D1 y D4). La solución de Yoshida se renovó cada tres días hasta el final del experimento.

3.3.2 Análisis de la fluorescencia transitoria de la clorofila a (prueba OJIP).

Se realizó la prueba no invasiva OJIP (Strasser y col. 1995), utilizando un fluorómetro portátil POCKET PEA (Hansatech Instruments[®] Ltd., King's Lynn, Norfolk, Reino Unido). Para ello, se pre adaptaron las hojas a la oscuridad durante 20 min, luego la prueba se efectuó mediante la exposición de dichas hojas a un pulso de luz actínica, con una intensidad lumínica de 3500 µmol m⁻² s⁻¹ durante 3 s. Se procesaron los datos a través del software PEAplus (Hansatech Instrument[®], Reino Unido) y Windows Excel (Microsoft WA, EEUU). Los términos utilizados en el análisis de la prueba OJIP se encuentran definidos en la Tabla 1.1 de la introducción general.

3.3.3 Cálculos de parámetros derivados del análisis de la prueba OJIP.

Mediante la prueba OJIP, se analizó el comportamiento de componentes funcionales del FSII, Quinonas a (Q_a) y OEC. La cantidad de centros de reacción que reducen Q_a (Q_aRC) se calculó de la siguiente manera:

$Q_aRC = [(RC / CS)_{tratado1} / (RC / CS)_{tratado2}]. [(ABS / CS)_{tratado1} / (ABS / CS)_{tratado2}]$

Se evaluó el desacople del OEC utilizando los puntos de los datos de fluorescencia, la cinética de fluorescencia se normalizó doblemente por F_o y F_j según la siguiente ecuación:

$$W_{OJ} = (F_t - F_O) / (F_J - F_O)$$

Por último se calculó la diferencia cinética:

$$\Delta W_{OJ} = W_{OJ(tratado)} - W_{OJ(control)}$$

Donde ΔW_{OJ} representa la banda k (300 µs).

Por su parte, la fracción de centros OEC activos (OEC-RC) se calculó usando los valores V_K y V_J comparando las muestras control y tratadas, usando la siguiente ecuación:

Fracción de los centros OEC = $1 - (V_K / V_J) (tratado1) / 1 - (V_K / V_J) (tratado2)$

3.3.4 Actividad de los centros de reacción que reducen Quinonas b (Q_b).

Para la determinación de los centros de reacción que reducen Q_b (Q_bRC), se realizaron otras pruebas OJIP, utilizando un fluorómetro Handy PEA (Hansatech Instrument[®], Reino Unido). Los centros de reacción que reducen Q_b se calcularon de acuerdo con el protocolo denominado experimento de doble pulso, adaptado de Appenroth y col. (2001). Las hojas pre adaptadas a la oscuridad durante 20 min se expusieron dos veces durante 1 s con luz actínica de saturación en un intervalo de 0,5 s de oscuridad entre cada pulso de luz. El F₀ de la segunda iluminación puede ser mayor debido a la fracción de Q_a reducida (Q_a ⁻) restante. Por lo tanto, la fracción de centros que reducen Q_b se puede calcular de la siguiente manera:

$$Q_bRC = [1 - (F_0 / F_M) (2^{\circ}pulso) / 1 - (F_0 / F_M) (1^{\circ}pulso)] = \phi^*_{po} / \phi_{po}$$

Se procesaron los datos a través del software PEAplus (Hansatech Instrument[®], Reino Unido) y Windows Excel (Microsoft WA, EEUU).

3.3.5 Determinación de intercambio de gases.

Se registró la tasa neta fotosintética y la conductancia estomática, en la tercera hoja de plantas cultivadas en ambas condiciones de temperatura (TO y TS). Las mediciones se llevaron a cabo con un analizador de gases por infrarrojos (TPS-2, Ppsystems[®] Inc. MA, EEUU), equipado con una cubeta portátil para la medición de hojas (PLC-4). Las diferentes medidas se realizaron iluminando las hojas de plantas con luz LED en condiciones de saturación de luz (1500 µmol de fotones m⁻² s⁻¹).

3.3.6 Tratamiento con 1,5-difenilcarbazida (DPC).

En primer lugar, las plantas se adaptaron a la oscuridad durante 1 h apagando las luces de las cámaras de cultivo. Luego, se cortaron segmentos foliares de 30 mm correspondientes a la tercer hoja. Dichos segmentos de hojas, pertenecientes a la misma planta se enjuagaron con agua destilada y se incubaron con 1,0 mM de DPC (Sigma®, MO, EEUU), o con una solución de metanol al 2,0%, respectivamente (tratamiento con DPC y sin DPC). Posteriormente, se incubaron los segmentos en completa oscuridad durante 3h, bajo las mismas condiciones térmicas de la planta de origen. Luego, el desacople del OEC se determinó midiendo la fluorescencia transitoria de la clorofila a, en la misma forma descripta anteriormente (usando un fluorómetro Pocket PEA).

Las mediciones se realizaron para cada condición de temperatura (TO y TS) en cada variedad a los días 1 y 4, las condiciones del ensayo se esquematizan en la Figura 1.3.

Figura 1.3: Representación esquemática de la metodología experimental utilizida en el ensayo de DPC.
3.3.7 Análisis de expresión de genes mediante PCR cuantitativa en tiempo real.

Se extrajo el ARN de muestras de hojas congeladas en N₂ líquido, utilizando el kit Plant Spectrum Total RNA (Sigma[®], MO, EEUU), según las instrucciones del fabricante. Se determinó la calidad del ARN a través de electroforesis en gel de agarosa, y se cuantificó mediante análisis espectrofotométrico. Para la eliminación de DNA contaminantes se trataron todas las muestras con DNAasa, utilizando el kit Ambion[®] DNA-free (Life Technologies[®]), de acuerdo con las instrucciones del proveedor. La ausencia de ADN de las muestras, se evaluó mediante una reacción de PCR de amplificación nula utilizando los pares de cebadores actina-1 (ACT-1). Luego se sintetizó ácido desoxirribonucleico copia (ADNc), a partir de 2 µg de ARN total, 100 pmol de cebadores de oligo-dT y la enzima M-MLV Transcriptasa Reversa (Promega[®]) según las instrucciones del fabricante.

Para cada reacción de qRT-PCR, se utilizó una alícuota de 5 µl de una dilución 1:5 de ADNc, junto con 15 µl de FastStart Universal SYBR Green (ROX; Roche[®], Suiza) y la concentración adecuada de cada cebador de acuerdo con su eficiencia.

En cada reacción, se evaluaron 4 réplicas biológicas, cada una con dos réplicas técnicas, por muestra y por gen. Los cebadores utilizados en cada caso, se diseñaron con la ayuda del programa Primer Express 3.0 (Applied Biosystems[®], CA, EEUU).

Los parámetros de ciclado utilizados consistieron en un paso inicial de 95°C por 10 minutos, dos pasos de ciclado a 95°C por 15s, y un paso de 60°C por 1 min, repetidos 40 veces. Finalizando con el protocolo de disociación. Las amplificaciones se realizaron en un equipo de qPCR StepOne Plus[®] (Applied Biosystems[®], CA, EEUU).

Se calculó el ciclo umbral promedio para cada transcripto, y la cuantificación de la expresión génica se determinó en función de la expresión relativa del gen de interés y el gen de referencia ACT-1 (Li y col. 2009). Para fines comparativos, se utilizó el valor promedio del ciclo de umbral de las muestras control como referencia. Los identificadores de los genes analizados y las secuencias de los cebadores de los respectivos genes se encuentran definidos en la Tabla 2 del Anexo 1.

3.3.8 Extracción de proteínas para inmunodetección.

Hojas de plantas de ambas variedades cultivadas a TO y TS se molieron con nitrógeno líquido. Para la inmunodetección de PsbP, se extrajeron las proteínas solubles totales mediante la utilización de una solución tampón de extracción (100 mM de solución tampón de fosfato de potasio pH = 7,2; 0,1% Triton X-100, 1,0 mM EDTA; 5,0 mM ditiotreitol-DTT- y 0,2 mM PMSF) en una relación 1:5 p/v. Posteriormente, los extractos se centrifugaron a 10.000 g en frío (4°C) por 10 min, y los sobrenadante se utilizaron en las posteriores inmunodetecciones.

Para la inmunodetección de PsbR, se homogeneizaron hojas con nitrógeno líquido de plantas de ambas variedades cultivadas bajos TO y TS. Las proteínas se extrajeron mediante la utilización del tampón Laemmli (0,5M Tris-HCl pH 6,5; 4,0% SDS; 20,0% glicerol y 10,0% β -mercaptoetanol) en una relación 1:3 p/v. Posteriormente, los homogenatos se centrifugaron a 10.000 g en frío (4°C) por 10 min, los sobrenadantes se reservaron para las posteriores inmunodetecciones.

3.3.9 SDS-PAGE e inmunodetecciones de PsbP y PsbR.

Las proteínas se separaron por electroforesis en un gel de poliacrilamida al 18% (p/v) con dodecil sulfato de sodio (SDS, de sus siglas en inglés) (Sambrook y col 1989). Luego los geles se tiñeron con azul brillante de Coomassie y se electrotransfirieron a una membrana de fluoruro de polivinilideno (PVDF; GE Healthcare®) usando una unidad de transferencia eléctrica (Bio-Rad®). Las membranas se incubaron secuencialmente con anticuerpos monoclonales de conejo anti-PsbP (dilución 1:15.000; Agrisera® Suecia) o anticuerpo monoclonal de conejo anti-PsbR (dilución 1:5.000; Agrisera® Suecia). El análisis de inmunodetección se realizó utilizando inmunoglobulina G (IgG) de cabra como anticuerpo secundario, conjugado con fosfatasa alcalina (dilución 1:30.000; Sigma). La reacción de revelado se desarrolló mediante la adición de nitroblue tetrazolium/5-bromo-4-chloro-3-indolylphosphate (NBT/BCIP) sustrato (Promega®) de acuerdo con las instrucciones del fabricante.

Se realizó la cuantificación de las bandas detectadas para las proteínas PsbP y PsbR, a través del programa Image J (Instituto Nacional de Salud, MD, EEUU) utilizando

tres inmunotransferencias independientes. La media de cada cuantificación se relativizó a la intensidad de las bandas control para cada proteína y para cada variedad. Todos los valores se expresaron en unidades arbitrarias (UAs).

3.3.10. Análisis estadístico.

En todos los casos, se consideró como unidad experimental a una planta cultivada individualmente, excepto en los ensayos de DPC donde la unidad experimental fue representada por un segmento de hoja. El análisis de las variables se realizó implementado la prueba-t de Student (p<0,05) en R Studio. El análisis estadístico de la expresión relativa de genes se realizó mediante la aplicación de análisis de micromatrices de ADN del programa InfoStat (Universidad Nacional de Córdoba, Argentina, Di Rienzo y col. 2008) con 5000 ciclos de remuestreo (p<0,05).

Las gráficas que se presentan se realizaron con el programa GraphPad Prism (GraphPad software Inc. CA, EEUU).

3.4 Resultados.

3.4.1 Crecimiento de las variedades IR50 y Koshihikari a bajas temperaturas.

Se evaluó el crecimiento de la tercera hoja de dos variedades de arroz, IR50 y Koshihikari a TO y TS, durante 4 días (Figura 2.3). En comparación con la condición control, el tratamiento de frío redujo el crecimiento en ambas variedades; sin embargo ésta reducción fue mayor en IR50 en contraste con lo observado en la variedad Koshihikari (Figura 2.3, Tabla 1.3). Estos resultados indican una mayor tolerancia a las TS de la variedad Koshihikari y una mayor sensibilidad de IR50 frente a las bajas temperaturas.

Figura 2.3: **Crecimiento de las variedades IR50 y Koshihikari en condiciones de TO y TS**. Las mediciones fueron relativizadas al día inicial de los tratamientos control (TO) y frío (TS). En la gráfica se representa los valores medios ±DE de crecimiento. Símbolos abiertos representan la condición de TO; símbolos cerrados representa la condición de TS. En negro está representada la variedad Koshihikari, en gris se representa la variedad IR50. Los datos mostrados provienen de 10 réplicas biológicas(**n=10**).

	IR50 TO		IR50 TS		Koshihikari TO		Koshihikari TS			
	Media	±DE	Media	±DE	Media	±DE	Media	±DE		
D1	4,12	2,05	1,12	0,24	4,75	0,63	4,93	2,41		
D2	7,28	2,19	2,16	0,25	8,02	1,02	6,15	2,21		
D3	9,53	2,29	3,34	0,28	9,69	1,43	7,26	2,20		
D4	10,62	2,21	4,15	0,46	10,13	1,57	8,22	2,13		
									_	

Tabla 1.3: Crecimiento de las variedades IR50 y Koshihikari en condiciones de TO y TS. Las mediciones fueron relativizadas al día inicial de los tratamientos control (TO) y frío (TS), en cada caso se resto la longitud de la hoja tres al inicio del tratamiento. Los datos mostrados provienen de 10 réplicas biológicas (n=10).

3.4.2 Respuesta Fotosintética.

En diferentes especies de plantas, las bajas temperaturas afectan al cloroplasto generando alteraciones en la fotosíntesis (Mishra y col. 2018; Bonnecarrère y col. 2011; Krüger y col. 2014). Por esta razón, se estudió el efecto del frío sobre el proceso fotosintético en la variedad tolerante (Koshihikari) y sensible (IR50), a los días D1 y D4 de tratamiento (inicio y fin del tratamiento). En primer lugar, a partir del análisis OJIP realizado, se observó una reducción en el rendimiento cuántico máximo del FSII (Fv/Fm) desde el D1 de tratamiento de bajas temperaturas para ambas variedades, comparados con sus respectivos controles (Figura 3.3A). Por otra parte, la distribución de datos para la variedad IR50 registró una baja del 90% del valor óptimo de 0,75 para F_v/F_m (Bolhàr-nordenkampf y col. 1989), a D1 y D4 de TS en comparación con la condición de TO (Figura 3.3B). En cambio, la variedad Koshihikari solo registró una reducción del 40% en F_v/F_m al día cuatro del tratamiento de frío, en comparación con la condición control (Figura 3.3B). A su vez, en condiciones control, no se observaron alteraciones en los valores óptimos, como así tampoco en la distribución de este parámetro, donde el 100% de los datos se ubicaron dentro del rango óptimo (0,85-0,75), durante todo el ensayo (Figuras 3.3A y 3.3B).

Figura 3.3: Rendimiento cuántico máximo del FSII (Fv/Fm). Las mediciones se realizaron a día 1 (D1) y día 4 (D4) de los tratamientos control (TO) y frío (TS). **(A)** Valores medios \pm DE de Fv/Fm. Barras blancas representan TO; barras grises representan TS. **(B)** Distribución \pm DE de los valores de Fv/Fm de cada planta círculos abiertos, representan TO; círculos grises, representan TS. Los datos mostrados provienen de 17 réplicas biológicas (**n=17**). Líneas de puntos rojas y azules, simbolizan el valor óptimo mínimo y máximo respectivamente (0,75-0,85) de Fv/Fm.

También se calcularon otros parámetros derivados de la prueba OJIP a D1 y D4, relativizando los valores de cada parámetro obtenido a TS por su respectivo control a TO, en ambas variedades (Figura 4.3). La mayoría de los parámetros fueron alterados como consecuencia del tratamiento a TS en ambas variedades durante todo el ensayo (D1 y D4), siendo el índice de performance (Plabs) el parámetro más afectado, mostrando una reducción mas importante en IR50 en comparación con Koshihikari. El tamaño de antena aparente (ABS/RC) y el flujo de energía atrapada por RC (TR_o/RC), se incrementó en ambas variedades a lo largo del tiempo, siendo este incremento mayor en IR50 en relación al aumento observado en Koshihikari. Por otro lado, se observó una disminución en el flujo de transporte de electrones por RC (ET_o/RC), y en el flujo de transporte de electrones hasta el FSI por RC (RE $_0$ /RC) para ambas variedades a D1. Sin embargo, a D4 de tratamiento hubo un incremento de ET_0/RC y RE_0/RC para IR50, mientras que la variedad Koshihikari no presentó cambios en estos valores con respecto a D1. Cuando se analizaron los flujos fenomenológicos (por sección transversal, CS), se observó una disminución en el flujo de transporte de electrones (ET_o/CS y RE_o/CS) a los días D1 y D4, siendo estos cambios mayores para IR50 en comparación con Koshihikari. Por otra parte, el flujo de energía atrapada (TR₀/CS) se redujo significativamente al día 4 de tratamiento a TS solo para en la variedad IR50 (Figura 4.3).

Con respecto a los rendimientos cuánticos del FSII, φ_{EO} = ET_O/ABS (phi(E_o)) y Ψ_{EO} = ET_O/TR_O (psi(E_o)), ambos disminuyeron por efecto del tratamiento a TS en comparación con TO en las dos variedades. Siendo siempre la variedad IR50 el más afectado por el efecto de estrés por frío (Figura 4.3). Estos resultados, son consistentes con el menor flujo de trasporte de electrones y el menor flujo de energía atrapada en IR50, producido por la condición de estrés, en comparación con la condición control (Figura 4.3).

Por último, el número de centros de reacción activos del FSII (RC) por sección transversal (RC/CS), se redujo significativamente solo al D4 de tratamiento TS para la variedad Koshihikari, en comparación con la condición control (Figura 4.3). Mientras que para IR50, la reducción de RC/CS comenzó desde el inicio de la exposición a TS,

intensificándose la disminución a lo largo del tratamiento de frío, comparado con el tratamiento de TO (Figura 4.3).

Figura 4.3: Cambios de diferentes parámetros funcionales y estructurales derivados de la prueba OJIP. Las mediciones se realizaron a día 1 (D1) y día 4 (D4) de los tratamientos control (TO) y frío (TS). Todos los parámetros fueron relativizados a sus respectivos controles a los D1 y D4 de tratamiento. Líneas rojas representan al tratamiento TO, líneas azules representa al tratamiento TS. Los datos mostrados provienen de 17 réplicas biológicas (**n=17**).

Por otra parte, se midieron parámetros de intercambio gaseoso a saturación de luz (Figura 5.3), específicamente la tasa de fotosíntesis neta (Asat) y la conductancia estomática (Gs). Los valores de Asat se redujeron en el D1 de tratamiento de TS en ambas variedades comparadas con la condición TO. Siendo estas reducciones de un 77,9% y de un 60,0% para IR50 y Koshihikari respectivamente. Contrariamente al D1 de tratamiento de TS, solo la variedad IR50 mostró diferencias significativas en los valores de Asat a D4, estas diferencias fueron de un 63,6% en comparación con la condición TO. Por el contrario, la variedad Koshihikari no mostró diferencias significativas en el valor de Asat en comparación con la condición de TO a D4 (Figura 5.3A).

Por otro lado, el parámetro Gs mostró el mismo comportamiento que Asat en la variedad Koshihikari, los valores de de este parámetro se redujeron solamente al D1 de tratamiento TS (75,7%). Sin embargo, no se observaron diferencias significativas al D4 de TS en comparación con sus respectivos controles (Figura 5.3B). Por el contrario, IR50 no fue capaz de recuperar los valores de Gs durante el tiempo de ensayo, presentando descensos similares a los D1 y D4 de tratamiento. Los valores de reducción de Gs como consecuencia del estrés fueron del 85,1% y 83,5% a D1 y D4 respectivamente (Figura 5.3B), comparado con los respectivos controles a D1 y D4.

Figura 5.3: Parámetros de intercambio gaseoso. Las mediciones se realizaron a día 1 (D1) y día 4 (D4) de los tratamientos control (TO) y frío (TS). **(A)** tasa de fotosíntesis neta a saturación de luz (Asat). **(B)** conductancia estomática (Gs). Barras blancas representan TO; barras grises representan TS. Los datos mostrados son la media ±DE de 7 réplicas biológicas (n=7). Los asteriscos indican diferencias significativas entre los tratamientos para cada variedad, según la prueba t de Student (*p<0,05; **p<0,01; ***p<0,001; ****p<0,0001), ns indica que no hay diferencias significativas entre los tratamientos para cada variedad.

3.4.3 Cambios en la cinética de la fluorescencia transitoria de la clorofila a.

Analizando los cambios en la traza de las curvas de fluorescencia derivadas de la prueba OJIP normalizadas a F_{0} , se estimó el comportamiento de Q_a , Q_b y OEC; en respuesta al tratamiento de TS. La curva OJIP mostro una traza normal en ambas variedades a TO durante todo el ensayo (Figura 6.3). Tanto en la variedad IR50 como en la variedad Koshihikari hubo un aumento en el paso J de la curva OJIP a TS, siendo este aumento mayor en IR50, en comparación al aumento observado para la variedad Koshihikari en condiciones de TS (Figura 6.3). En condición de TS, el paso J de la curva OJIP para la variedad IR50 fue levemente menor al D4, comparado con el D1 en la misma condición térmica (Figura 6.3A). Contrariamente, en la variedad Koshihikari el paso J de la curva no mostró cambios al D4 de TS, manteniéndose en niveles similares a los D1 y D4 de tratamiento TS (Figura 6.3B). El aumento observado en el paso J, producido por el tratamiento de TS, indica una acumulación de Q_a reducido (Q_a), que no puede transferir electrones rápidamente al segundo aceptor de electrones de quinonas (Q_B). En este sentido, se observó una mayor acumulación de Q⁻a como consecuencias de las bajas temperaturas. Esta reducción, fue más marcada en la variedad IR50 en comparación con la variedad Koshihikari.

Figura 6.3: Curvas polifásicas OJIP normalizadas por F_0 (20µs) y F_MV_t = (F_t - F_0)/(F_M - F_0). (A) Variedad IR50. (B) Variedad Koshihikari. Símbolos abiertos en rojo representan al tratamiento TO; símbolos cerrados en azul representan el tratamiento TS. Los cuadrados simbolizan el D1 de tratamiento; los círculos simbolizan al D4 de tratamiento. Los datos presentados provienen de 17 plantas (n=17)

Con el propósito de seguir evaluando el efecto de las TS se realizó una segunda normalización de la curva OJIP entre los pasos O y J, y se calculó la diferencia cinética ΔW_{OJ} (Figura 7.3). Como consecuencia de las bajas temperaturas se observó un aumento en la curva a los 300 µs en ambas variedades estudiadas a D1 y D4. El incremento en la curva denominado como banda K, fue mayor para la variedad IR50 en comparación con la variedad Koshihikari a D1 y D4 respectivamente. Una evolución en la banda K significa una menor derivación de electrones desde el OEC hacia Q_a, para que esta pueda ser re-oxidada. Esta respuesta de aumento en la banda K frente a la condición de TS es mayor en IR50, en comparación con Koshihikari, una observación que es consistente con el aumento observado en el paso J.

Figura 7.3: Curva polifásica OJIP normalizada por F₀ (20µs) y F_J W_{0J}=(F_t-F₀)/(F_J-F₀). Δ W_{0J} es la diferencia cinética entre TS y TO. Símbolos abiertos representan a la variedad IR50, símbolos cerrados representan a la variedad Koshihikari. Los cuadrados simbolizan el D1 de tratamiento; los círculos simbolizan al D4 de tratamiento. Los datos presentados provienen de 17 plantas (n=17).

3.4.4 Efectos del frío sobre los centros de reacción Q_aRC, Q_bRC y OEC-RC del FSII.

Se determinó el comportamiento de diferentes centros de reacción (RCs) como indicador del estado funcional del FSII (Chen y col. 2014), en primer lugar se analizó el parámetro Sm/t_{Fmax} que expresa la fracción promedio de RC abiertos en el FSII, durante el tiempo necesario para completar su cierre (Figura 8.3A). Solo se observaron cambios significativos en este parámetro en la variedad IR50, donde al D1 de tratamiento de TS, se registró una caída de este parámetro de un 13,9% en comparación la condición control. Por el contrario al D4 del tratamiento de frío Sm/t_{Fmax} aumentó su valor un 18,2% en comparación con su control (TO).

En segundo lugar, se estimaron las fracciones de RCs capaces de reducir $Q_a y (Q_a RC) y Q_b (Q_b RC)$. Con respecto a los niveles de $Q_a RC$, estos disminuyeron en IR50 como consecuencia del tratamiento a TS a D1 y D4 (Figura 8.3B). En este sentido, los valores de caídas mostrados en IR50 fueron de un 8,0% a D1 y un 45,0% a D4, ambos comparados con sus respectivas condiciones de TO. Sin embargo, la variedad Koshihikari solo mostró caída de $Q_a RC$ al D4 de TS, la misma fue de un 15,0% menor comparando las condiciones de TO y TS.

Al mismo tiempo, los Q_bRC se redujeron significativamente debido al tratamiento de TS en comparación con la condición de TO en ambas variedades (Figura 8.3). En este sentido, en IR50 se observó una caída del 5,0% en Q_bRC a D1, observándose la mayor diferencia de Q_bRC al D4 de tratamiento TS, con valores de 17,4% en comparación con su respectivo control (Figura 8.3C). Por su parte, en la variedad Koshihikari la reducción de Q_bRC fue de un 4,8% y 6,2% al D1 y D4 respectivamente, comparando el tratamiento de TS con la condición control en cada caso (Figura 8.3C).

Finalmente, se estimaron las fracciones de centros de reacción OEC activos (OEC-RC). Estos disminuyeron en IR50; y en menor medida, en Koshihikari (Figura 8.3D). Si bien ambas variedad mostraron diferencias significativas entre los tratamientos TO y TS a D1 Y D4, solo la variedad IR50 presentó una reducción más pronunciada de los OEC-RC. Para esta variedad, se observó que esta disminución fue la misma al D1 y D4 de tratamiento TS, las mismas fueron de un 19,0% en comparación con sus respectivos controles. Por su parte la variedad Koshihikari presentó reducciones no tan marcadas

de los OEC-RC como consecuencia de las bajas temperaturas en comparación con sus controles, las mismas fueron de un 4,0% y un 6,0% menor a D1 y D4, respectivamente.

Figura 8.3: Determinación de diferentes centros de reacción (RCs) del FSII. Las mediciones se realizaron a día 1 (D1) y día 4 (D4) de los tratamientos control (TO) y frío (TS). (A) Promedio de la fracción de centros de reacción abiertos (Sm/t_{Fmax}) en el intervalo de tiempo desde la fluorescencia inicial hasta el tiempo de fluorescencia máxima. (B) Fracción de centros que reducen Q_a. (C) Fracción de centros de reacción que reducen Q_b. (D) Fracción de centros de reacción OEC activos. Barras blancas representan TO; barras grises representan TS. Los datos mostrados son la media ±DE de 17 réplicas biológicas (n=17). Los asteriscos indican diferencias significativas entre los tratamientos para cada variedad, según la prueba t de Student (*p<0,05; **p<0, 01; ***p<0,001; ****p<0,0001), ns indica que no hay diferencias significativas entre los tratamientos.

3.4.5 Tratamiento con el donante artificial de electrones, 1,5-difenilcarbazida (DPC).

Con el fin de evaluar la importancia del OEC en el balance energético del FSII en condiciones de bajas temperaturas, se incubaron segmentos de hojas como se detalla en la Figura 1.3, en presencia o ausencia del dador de electrones artificial DPC (Figura 9.3). Los resultados de éste experimento, indicaron que los aumentos en la banda K fueron similares en ambas variedades en ausencia de DPC al D1 de tratamiento (Figuras 9.3A y 9B). Mientras que en segmentos de hojas suplementados con DPC, se observó una reversión de la banda K en ambas variedades presentando valores negativos tanto en IR50 como en Koshihikari. Siendo la variedad IR50 la que presentó valores más negativos (Figuras 9.3A y 9.3B).

Por otro lado, luego de 4 días de tratamiento a TS y TO, se observó una mayor banda K en segmentos de hojas de la variedad IR50 en ausencia de DPC, comparado con segmentos de hojas de Koshihikari en ausencia de DPC. A este tiempo, segmentos de hojas suplementados con DPC redujeron la banda K en ambas variedades (Figuras 9.3C y 9.3D). En este sentido, la mayor reducción de banda K se observó en la variedad IR50, cuando se compararon segmentos de hojas en ausencia o presencia de DPC a D4 (Figura 9.3C). Por su parte, la variedad Koshihikari presentó una menor reversión de banda K por acción del tratamiento de DPC, cuando se la comparó con la variedad IR50 a D4 (Figura 9.3D).

Figura 9.3: Curva polifásica OJIP normalizada por F_o (20µs) y F_J W_{OJ} = (F_t-F_O)/(F_J-F_O). Δ W_{OJ} es la diferencia cinética entre TS y TO. Se representan las curvas en presencia y ausencia de DPC (+DPC y –DPC, respectivamente). Símbolos naranjas –DPC, símbolos violeta +DPC (A) Variedad IR50 D1, (B) Variedad Koshihikari D1 (C) Variedad IR50 D4 (D) Variedad Koshihikari D4. Los datos presentados provienen de 7 segmentos de plantas (n=7).

3.4.6 Respuesta de las proteínas del OEC a las bajas temperaturas.

Las proteínas que conforman el OEC, PsbP, PsbR, PsbO y PsbQ. Son proteínas extrínsecas asociadas al lado luminal de la membrana del FSII, con un rol importante en la fotosíntesis y en el equilibrio de transferencia electrónica (De Las Rivas y col. 2004). Con el objetivo de estudiar la respuesta frente al frío de este grupo proteico en *Oryza Sativa. L*, se analizó la expresión génica relativa mediante qRT-PCR (Figura 10.3). En la variedad IR50, el tratamiento de TS redujo la expresión relativa de los genes PsbP, PsbR y PsbQ; en comparación con el valor de referencia al D1 (Figura 10.3A). Al mismo tiempo de ensayo, el gen PsbO no mostró una reducción significativa en su expresión relativa en plantas de dicha variedad como consecuencia del tratamiento de TS (Figura 10.3A). A su vez, IR50 mostró una reducción de la expresión génica respecto del valor de referencia, de todos los genes evaluados debido al efecto de las bajas temperaturas (Figura 10.3B). Por el contrario, en la variedad Koshihikari solo al D4 de tratamiento a TS se observó una disminución en la expresión génica relativa, únicamente para el gen PsbP (Figura 10.3B).

Figura 10.3: Expresión relativa de los genes PsbR, PsbP, PsbO y PsbQ. (A) D1 de tratamiento. **(B)** D4 de tratamiento. Los valores representan la media ±EE de 4 réplicas biológicas (n=4). Barras blancas simbolizan la expresión relativa de los genes del cultivar IR50. Barras oscuras simbolizan la expresión relativa de los genes del cultivar Koshihikari. La línea roja que corta el eje Y en 1 representa la expresión génica de referencia. Los asteriscos indican diferencias significativas entre los tratamientos para cada variedad (*p<0,05; **p<0,01), ns indica que no hay diferencias significativas entre los tratamientos para cada variedad.

Por otro lado, se evaluaron los niveles proteicos de PsbP y PsbR; el análisis de inmunotransferencia demostró que las proteínas PsbP y PsbR fluctuaron a lo largo del experimento como consecuencia del tratamiento de TS en ambas variedades (Figura 11.3). En este sentido, IR50 presentó una disminución del contenido de la proteína PsbP al D1 de tratamiento con una recuperación parcial al D4 de TS. Estas reducciones fueron de un 51,0% y un 18,0% al D1 y D4 respectivamente (Figura 11.3B). Con respecto a los niveles proteicos de PsbR, estos disminuyeron un 50,0 % al D1 de tratamiento a TS, presentando valores de un 56,0 % menor en comparación con la condición de TO (Figura 11.3B).

En contraste, la variedad Koshihikari no presentó cambios en el contenido de PsbP entre tratamientos a D1 mientras que el contenido de PsbR presentó un incremento del 16,0% en el tratamiento TS comparado con la condición control a D1 (Figuras 11.3A y 11.B). Sin embargo, esta variedad mostró una caída en el contenido de ambas proteínas, con reducciones de 11,0% y 40,0% para PsbP y PsbR; respectivamente, cuando se comparan la condición de TS y TO al D4 (Figura 11.3B).

Figura 11.3. Contenido de proteínas PsbP y PsbR. Las mediciones se realizaron a día 1 (D1) y día 4 (D4) de los tratamientos control (TO) y frío (TS). **(A)** Inmunotransferencias representativas de las proteínas PsbP (23 kDa) y PsbR (10 kDa). P banda representativa de proteína teñida con azul de coomassie. **(B)** Contenido relativo de proteínas en las inmunotransferencias. La cuantificación (UAs) corresponde a la media ±EE de 3 inmunotransferencias independientes, y se expresa relativa a su respectivo control, para cada proteína en particular.

3.5 Discusión.

3.5.1 Alteraciones en el crecimiento como consecuencia de las temperaturas suboptimas.

El estrés por bajas temperaturas tiene un efecto significativamente negativo en el crecimiento de las plantas (Murata y col. 2007). La predisposición de las plantas a mantener el equilibrio entre la energía absorbida a través de la fotoquímica, y la posterior utilización de esa energía por el metabolismo se denomina fotostasis. El fenómeno de la fotostasis vincula el proceso de crecimiento con la fotosíntesis (Huner y col. 2003). El desequilibrio energético o la ruptura de la fotostasis, inducido por diferentes condiciones estresantes, puede desencadenar diferentes mecanismos para mantener alta la actividad del FSII y sostener el crecimiento y la productividad en las plantas (Melis 1998).

En el presente capítulo, se evaluó el crecimiento de dos variedades de arroz, IR50 y Koshihikari, sometidas a condiciones de TS (Figura 2.3 y Tabla 1.3). Resultando un comportamiento contrastante entre ambas variedades en respuesta al estrés por frío. La reducción del crecimiento registrada en plantas de arroz expuestas a TS, podría ser entendida como un fenómeno de ruptura de la fotostasis. Entonces, la diferencia de crecimiento contrastante en condiciones de TS entre IR50 y Koshihikari, podría explicarse mediante mecanismos de respuesta diferencial a las bajas temperaturas, asociados a la actividad del FSII.

3.5.2 Alteraciones en la fotosíntesis como consecuencias del estrés por frío en *O. Sativa.*

El fenómeno de daño fotosintético o fotodaño, se encuentra caracterizado por una reducción en la fijación de CO₂ y pérdida la eficiencia fotoquímica del FSII (Takahashi and Murata 2008). En particular, el estrés por frío puede acelerar el proceso de fotodaño debido a que este produce el deterioro de estructuras funcionales del AF (Murata y col. 2007). Los datos obtenidos mostraron una reducción en los valores de F_v/F_m desde el inicio del tratamiento a TS en IR50, indicando que el estrés por frío afecta el proceso fotosintético (Figura 3.3 y Figura 5.3A). En este sentido, la variedad

Koshihikari presentó una mejor capacidad fotosintética en condiciones de estrés en comparación con la variedad IR50. A su vez, la conductancia estomática también fue menos afectada por la condición de TS en la variedad Koshihikari (Figura 5.3B). Se ha reportado que aumentos en Gs contribuye a una mayor asimilación de CO₂, lo que es equivalente a decir un aumento en Asat (Tanaka y col. 2013). Particularmente, en condiciones de estrés por frío se ha observado que la disminución de Asat ocurre en paralelo con la caída en Gs (Calzadilla y col. 2016). En línea con lo anteriormente expuesto, nuestros resultados sugieren que la variedad Koshihikari posee una mejor regulación entre la absorción y el transporte de la energía fotoquímica en condiciones de TS, contrariamente a lo observado para IR50, donde se observó una temprana pérdida de la capacidad fotosintética desde el inicio del tratamiento a TS.

Por otra parte, la reducción del parámetro Pl_{abs} inducido por el tratamiento de estrés (Figura 4.3), estaría indicando alteraciones en el funcionamiento del FSII, siendo la variedad IR50, el más afectado durante la exposición a TS (Figuras 4A y 4B). El Pl_{abs} combina tres parámetros independientes; RC/ABS, φ_{PO} , Ψ_{EO} , que representan la estructura y funcionalidad del FSII (Strasser y col. 1999). La dependencia del Pl_{abs} con la densidad de centros de reacción, la eficiencia de captura, y la eficiencia de transporte de electrones dentro del FSII; convierte al Pl_{abs} en un parámetro muy sensible. Ya que si un estrés afectara a cualquiera de estos procesos, estos cambios se verían reflejado en un cambio de este índice (A. Stirbet y Govindjee. 2011; A. Stirbet y col. 2018).

Mientras tanto, la reducción observada en ET_o/RC y ET_o/CS en ambas variedades (Figuras 4.3A, 4.3B y 4.3D), sería consecuencia de una disminución en el flujo de electrones desde Q_a hacia Q_b causada por las bajas temperaturas (Gururani y col. 2015); así como la reducción en RE_o/RC y RE_o/CS (Figuras 4.3A, 4.3B y 4.3D), estaría causado por una deficiencia en la energía transmitida a través de la cadena transportadora de electrones, teniendo como aceptor final al FSI; tal como fue sugerido en ensayos de estrés por frío en soja (Krüger y col. 2014). Sin embargo, IR50 presentó mejoras en los valores ET_o/RC al D4 de tratamiento. Esta mejora en el flujo de transporte de electrones, puede ser asociada con una mayor actividad en el FSI en IR50, tal como lo indica el aumento en RE_o/RC. Dicha observación, se encuentra respaldada por ensayos complementarios de expresión relativa de los genes PetH y

PetF (Figura 1 en Anexo 1), que codifican para las proteínas ferredoxin-NADP⁺ Oxidoreductasa (FNR) y ferredoxia (Fd). Dos proteínas que participan en el último paso del transporte de electrones en el FSI (Palatnik y col. 2003; Rodriguez y col. 2007).

El parámetro ABS/RC es un flujo específico denominado tamaño aparente de antena. Incrementos en ABS/RC han sido relacionados con el daño en el FSII en condiciones de estrés (Yusuf y col. 2010; Dabrowski y col. 2016; Kalaji y col. 2018). Por lo tanto, el aumento en ABS/RC registrado desde el inicio en IR50 (Figuras 4.3 A y 4.3C), indicaría que el proceso de daño del FSII se inicia a tiempos cortos en IR50. Contrariamente a lo observado en Koshihikari, donde el incremento de ABS/RC es más evidente al D4 (Figura 4.3D). Particularmente, se ha reportado que las plantas bajo una condición de estrés por frío, aumentan su tamaño de antena como mecanismos de regulación entre la energía absorbida y la energía transportada por el FSII (Huner y col. 1998). Afirmación que es consistente con la fuerte reducción del transporte de electrones observado en IR50 en comparación con Koshihikari, principalmente al D1 de tratamiento de TS (Figura 4.3).

En ambas variedades, junto con el aumento en ABS/RC, se observó un incremento en el parámetro TR_o/RC como consecuencia del tratamiento de TS. Indicando que más energía estaría siendo atrapada por centro de reacción activo. Al respecto, se ha reportado que en condiciones de estrés, el incremento en ABS/RC y TR_o/RC sería como consecuencia de una menor densidad de RC activos por sección transversal de hoja, RC/CS (Susplugas y Col. 2000; De Ronde y Col. 2004; Jedmowski y Brüggemann. 2015). Lo que sería consistente con la pronunciada disminución observada en el parámetro RC/CS en la variedad IR50 sometida a TS. A su vez, esta tendencia a la baja en RC/CS desde el inicio de la condición de estrés, particularmente registrado en IR50, coincide con los mayores aumentos en ABS/RC y TR_o/RC observados para esta misma variedad, desde el inicio hasta el final del tratamiento a TS. Por otra lado, como consecuencia de la reducción en RC/CS, menos energía estaría siendo atrapada por sección transversal de hoja (R. Strasser y col. 2000; Kalaji y col. 2017). Esta afirmación, concuerda con el comportamiento observado en IR50 al D4 de TS, donde hubo una mayor disminución en RC/CS, en paralelo con una disminución en TR_o/CS (Figura 4.3).

41

Por último, los parámetros de rendimientos cuánticos que proporciona la prueba OJIP, φ_{EO} (ET_O/ABS) y Ψ_{EO} (ET_O/TR) mostraron una caída por efecto del tratamiento a TS, en mayor medida para la variedad IR50. A su vez, la disminución de Ψ_{EO} observada en Koshihikari por acción de las bajas temperaturas, explica los bajos valores observados para el parámetro PI_{abs}, siendo Ψ_{EO} el componente que más contribuye a la variación del PI_{abs} en Koshihikari. Por otra parte, los pequeños cambios en F_v/F_m (Figura 3.3) y los fuertes cambios en φ_{EO} y Ψ_{EO} mostrados por la variedad Koshihikari principalmente al D1 de TS (Figura 4.3). Sugiere que en dicha variedad, las TS no afectan las reacciones primarias de la luz del FSII, pero si el flujo de electrones mas allá de Qa. Lo mencionado, también sugeriría que la causa de la caída de energía para el transporte de electrones, no se originó en alteraciones negativas de los RCs para la variedad Koshihikari; a diferencia de lo observado en IR50 donde la disminución de Ψ_{EO} fue acompañado de un aumento en ABS/RC (ambos componentes del Pl_{abs}) desde el inicio del tratamiento de TS.

3.5.3 Alteraciones en los centros de reacción y el OEC como consecuencia de las bajas temperaturas.

Cambios en los estados de redox de las quinonas ($Q_a y Q_b$) han sido reportados en plantas sometidas a diferentes estreses (Foyer y col. 2002; Pagter y col. 2008; Chen y col. 2014; Żureky col. 2014). Particularmente, se han reportado desregulaciones en el transporte de electrones desde el FSII hacia el FSI en respuesta a las bajas temperaturas (Adam y Murthy 2014); siendo este un punto sensible que afecta finalmente la fijación de CO₂, un aspecto importante en el contraste entre variedades sensibles y tolerantes frente a esta condición (Hirotsu y col. 2004).

Ambas variedades mostraron una menor tasa de reconversión de Q_a⁻ como respuesta a las bajas temperaturas, evidenciada por el aumento en el paso J (Figura 6.3). En particular, IR50 mostró una mayor acumulación de Q_a⁻ que Koshihikari. Al mismo tiempo, se observó que la relación Sm/t_{Fmax} disminuyó al D1 de tratamiento en la variedad IR50, contrariamente a lo observado para la variedad Koshihikari que no presentó variaciones en Sm/t_{Fmax} bajo condiciones de TS a lo largo de todo el ensayo (Figura 8.3A). Estos resultados, sugieren que las TS causaron el cierre rápido de los RC- FSII en la variedad IR50 y que la variedad Koshihikari pudo sostener el flujo de electrones bajo condiciones de TS. A su vez, el comportamiento descripto para el parámetro Sm/t_{Fmax} indicó un desplazamiento significativo del estado redox hacia la forma Q_a⁻, en la variedad IR50.

Sin embargo, contrariamente a lo esperado, se observó un aumento de Sm/t_{fmax} al D4 de tratamiento en la variedad IR50. En este sentido, incrementos en los valores de Sm/t_{fmax} han sido reportado junto con una mejor eficiencia en la disipación de energía (loannidis y col. 2014). En línea con esto, el aumento en Sm/t_{fmax} observado para IR50 al D4, fue acompañado por la recuperación en el parámetros DI_o/CS, asociados a la disipación de energía (Figura2 en Anexo 1). En paralelo, en ensayos complementarios, se observó un aumento en la expresión relativa del gen PsbS al D4 de TS en la variedad IR50 (Figura 3 en Anexo 1). Dicha proteína del FSII ha sido descripta como participe en procesos de foto protección y disipación de energía en condiciones de estrés abiótico (Savitch y col. 2009; Wijk. 2012; Yamori. 2016). Estos resultados, junto con lo observado para ET_o/RC y RE/RC (Figura 4.3C), sugieren una respuesta alternativa de la variedad IR50 en respuesta a exposiciones prolongadas al frío. Donde se compensaría el exceso de energía absorbida, causado por el menor número de RC activos, para de este modo mantener activo el transporte de electrones a tiempos largos de exposición al frío.

Dado que el estrés por frío afecto a la fotosíntesis a nivel de los RC en mayor medida en la variedad IR50, se evaluó la influencia del frío sobre tres centros de reacción en particular: centros de reacción que reducen Q_a (Q_aRC), centros de reacción que reducen Q_b (Q_bRC); y centros OEC activos (OEC-RC). Si bien se observó acumulación de Q_a⁻ en ambas variedades como respuestas a las bajas temperaturas, solamente la variedad IR50 mostró una inactivación de los Q_aRC desde el inicio hasta el fin del tratamiento a TS, en comparación con el cultivar Koshihikari, que solo mostró una leve inactivación de estos centros de reacción al D4 (Figura 8.3B). A su vez, una mayor inactivación de los Q_bRC se observó en la variedad IR50 en respuesta a la condición de TS al D4 (Figura 8.3C). Aunque esta inactivación en los Q_bRC, no fue tan marcada como las encontradas en los Q_aRC al D4 de tratamiento a TS en esta misma variedad (Figuras 8.3B y 8.3C). En línea con esto, cambios en Q_aRC y Q_bRC han sido reportados en diferentes especies vegetales como consecuencia de las bajas temperaturas (Aro y col. 1990; Gazquez y col. 2018).

Por otra parte, el incremento en los OEC-RC al D4 de tratamiento sugeriría una mejor respuesta de la variedad Koshihikari frente al tratamiento de TS (Figura 8.3D). En este sentido, la mejor actividad de los OEC-RC en la variedad Koshihikari respalda los menores picos de banda K encontrados frente a la condición de estrés, en comparación con la variedad IR50 (Figura 7.3). A su vez, se ha reportado que aumentos en la banda K es un indicativo de desacople del OEC (Liu y col. 2006; Chen y col. 2014).

La condición de estrés en la variedad IR50 afectó en mayor medida los Q_aRC y OEC-RC en comparación con los Q_bRC, lo que indicaría una relación directa entre el funcionamiento del OEC, la actividad de los Q_aRC y la consecuente acumulación de Q_a reducido (Figura 6.3, Figura 7.3 y Figura 8.3). Por otra parte, los cambios menores de TR₀/RC encontrados en Koshihikari (Figura 4.3), indicaría que la cinética de donación de electrones desde el OEC hacia el núcleo del FSII estaría menos afectada, siendo esto una confirmación adicional de que el estrés por frío afecta en menor medida a los RC, y por consiguiente a la eficiencia energética en Koshihikari (Figura 4.3, Figura 7.3 y Figura 8.3D). En línea con nuestros resultados, diferentes autores han reportaron que una transferencia más lenta de electrones desde el OEC, en comparación a la transferencia de electrones desde el P680 a Q_a, da lugar a la presencia de banda K (Srivastava y col. 1997; B. Strasser 1997).

Por último, el tratamiento con el dador de electrones DPC mostró una reversión de la banda K en ambas variedades en los dos tiempos de ensayo. En este sentido, se observaron valores negativos de banda K en ambas variedades al D1 (Figura 9.3A y 9.3B); indicando un mayor flujo de electrones desde el OEC hacia los centros de reacción activos del FSII en presencia de DPC (Zubek y col. 2009; Krüger y col. 2014). A su vez, se ha reportado que la adición de el dador de electrones exógeno DPC disminuye el fotodaño, junto con una restitución del flujo de electrones del OEC (Zavafer y col. 2015). Asimismo, el tratamiento con DPC a D4, provocó reversiones parciales de la banda K principalmente en la variedad IR50. Lo observado, sugiere que a tiempos largos, la variedad IR50 no conserva la capacidad de aceptar y transferir electrones en el FSII. Contrariamente a lo observado en Koshihikari. Estos resultados son consistentes con el modelo de fotodaño en dos pasos, propuestos en condiciones de estrés por radiación lumínica. Donde se postula que inicialmente ocurre un deterioro en el OEC y, posteriormente un daño secundario en los centros de reacción del FSII (Hakala y col. 2005; Ohnishi y col. 2005). En este sentido, las menores reversiones de banda K en la variedad Koshihikari cuando es suplementada con el dador de electrones DPC, sugiere una mejor funcionalidad del FSII frente a la condición de estrés a tiempos cortos y en condiciones prolongadas de exposición a TS. Contrariamente la variedad IR50 presentó deficiencias en el lado dador de electrones desde el inicio del tratamiento de TS, evidenciando la participación del OEC en la respuesta del arroz a las bajas temperaturas.

3.5.4 Respuesta de las proteínas del OEC PsbP y PsbR, en el proceso fotosintético y su relación con la tolerancia a las bajas temperaturas en arroz.

Se ha reportado que en condiciones de estrés por frío, genes codificantes de componentes del FSII se encuentran desregulados (Suzuki y col. 2015; Calzadilla y col. 2016). En este sentido, a D1 de TS se observó una baja en la expresión relativa de PsbP, PsbQ y PsbR solamente en la variedad IR50 (Figura 10.3A). Estos resultados de expresión relativa de los genes del OEC coincidieron con la alteración temprana y contrastante de esta estructura (Figura 7.3). A su vez, en esta misma variedad, a D4 de TS junto con la baja de la expresión relativa de PsbP, PsbQ y PsbR, también se observó la regulación negativa del gen PsbO (Figura 10.3B). Resultados que son consistentes con el incremento sostenido en el desacople del OEC en IR50 en comparación con Koshihikari a lo largo del ensayo (Figura 7.3). Asimismo, la variedad Koshihikari redujo sus niveles de expresión relativa solamente para el gen PsbP al D4 de tratamiento a TS (Figura 10.3). Resultado que se puede asociar con el aumento en la banda K a este tiempo de ensayo (Figura 7.3). En línea con esto, se reportaron resultados similares en plantas de arroz, los cuales señalan que genes codificantes de proteínas del OEC, particularmente PsbP y PsbR se encuentran regulados negativamente bajo la condición de estrés por TS (Gazquez y col. 2018).

A su vez, plantas de arroz que sobre expresan genes de la familia de PsbR, no solo mostraron aumentos en la tasa fotosintética. Sino que también aumentaban la

45

expresión del gen PsbR en condiciones de estrés por frío, así como también la expresión de genes marcadores inducidos por el frío. Comportamiento que no fue observado en condiciones de estrés por sequia o estrés por altas temperaturas (Li y col. 2016). Esto indicaría, que la proteína PsbR tiene un rol específico en la respuesta y tolerancia al estrés por frío. Tal como muestran nuestros resultados, donde la variedad IR50 sensibles a la condición de TS, disminuye significativamente la expresión del gen PsbR en ambos tiempos de ensayo; en comparación con la variedad Koshihikari, donde la expresión de PsbR no se ve mayormente alterada (Figura 10.3). Lo que concuerda con la mejor respuesta de la variedad Koshihikari a las TS.

Estudios proteómicos realizados en diferentes especies vegetales en condiciones de estrés, mostraron modificaciones en la cantidad de las proteínas PsbP y PsbR (Goulas y col. 2006; Nestler y col. 2012; Tamburino y col. 2017). En arroz, nuestros resultados demostraron mayores perturbaciones en el contenido de las proteínas PsbP y PsbR en la variedad IR50 en comparación con la variedad Koshihikari (Figura 11.3).

Las cantidades de proteínas PsbP fueron coincidentes con los niveles de expresión relativa del gen PsbP en ambas variedades a los D1 y D4 de tratamiento a TS (Figura 10.3 y Figura 11.3). A su vez, la proteína PsbP fue la única que se mostró afectada a nivel de expresión génica tanto para IR50 (D1 y D4) como para Koshihikari (D4). Considerando que, la expresión génica de PsbR en Koshihikari a D4, no pueden justificar los cambios en los niveles de proteínas observados al mismo tiempo de ensayo (Figuras 10.3B y 11.3); una menor tasa de acumulación de PsbR podría estar asociada a una acumulación de estrés oxidativo causado por un menor contenido de PsbP. En este sentido, se ha reportado que plantas de tabaco transgénicas que expresan bajas cantidades de la proteína PsbP incrementan la acumulación de estrés oxidativo (Ifuku y col. 2005).

Aunque el comportamiento descripto para PsbP fue acompañado por un aumento en la banda K (Figura 7.3); y una disminución en la funcionalidad fotoquímica del FSII (Figura 2.3 y Figura 4.3) en ambas variedades. No se podría atribuir esta respuesta completamente a los cambios en dicha proteína. En línea con esto, se ha demostrado que en plantas deficientes en PsbP y PsbR, estas dos proteínas son esenciales para la estabilización y el ensamblado de súper complejos del FSII, y a su vez participan en la estabilidad del OEC (Ifuku y col. 2005; Suorsa y col. 2006; Yi y col. 2007b). Asimismo, se ha reportado que PsbR es importante para el ensamblado y acoplamiento de PsbP al FSII, y que la pérdida de PsbR no afecta la integridad del complejo de manganeso (Suorsa y col. 2006; Allahverdiyeva y col. 2007). Contrariamente, el grupo catalítico de manganeso se mostró marcadamente inestable en plantas deficientes en PsbP (Ifuku y col. 2005).

Por otra parte, las alteraciones en la transferencia de electrones en Q_a y Q_b, se encuentran principalmente reportadas en plantas donde la funcionalidad de las proteínas PsbP y PsbR fueron truncadas (Ifuku y col. 2005; Yi y col. 2007b; Allahverdiyeva y col. 2007). En línea con esto, nuestros resultados también sugirieron que la disminución en la actividad de los centros de reacción reducen Q_a y Q_b (Figuras 8.3B y 8.3C) coinciden con la disminución del contenido relativo de PsbP y PsbR (Figura 11.3). Por otra parte, la proteína PsbP interacciona a través de su extremos N-terminal con el citocromo b 559 (Cyt_b 559) del núcleo del FSII. Experimentos con proteínas PsbP truncadas en el extremo N-terminal demostraron una acumulación de Q_b reducido. Lo que sugiere que PsbP tiene la doble función de activar el transporte de electrones en el lado dador, y a su vez, asegurar la transferencia de electrones en lado aceptor (Nishimura y col. 2016).

Por lo anteriormente expuesto, se podría considerar que los cambios en la expresión génica, y los niveles proteicos de PsbP y PsbR (Figuras 10.3 y 11.3) podrían justificar la pérdida de funcionalidad de los centros de reacción que reducen Qa y Qb por una deficiencia en el transporte de electrones desde el OEC (lado dador de electrones), hacia los centros de reacción del FSII (lado aceptor de electrones). De hecho Zavafer y col. (2017), demostraron que en condiciones de estrés lumínico en tilacoides aislados, se afecta el transporte de electrones en ambos lados (dador y aceptor). Condición que se revertía en un proceso inducido por el dador artificial de electrones DPC, tal como lo muestran nuestros resultados (Figura 9.3). Lo mencionado también sugeriría que un posible desbalance en el transporte de electrones, producido particularmente en el OEC, estaría siendo inducido por las bajas temperaturas en arroz.

47

3.6 Conclusiones.

Se evaluó la respuesta fisiológica, molecular y bioquímica frente a las bajas temperaturas de dos variedades de *O. sativa*. Debido a la mayor reducción en el crecimiento bajo las condiciones de estrés, se consideró a la variedad IR50 sensible a las bajas temperaturas en comparación con la variedad Koshihikari. Se demostró que la variedad IR50 fue más afectada a nivel fotosintético desde el inicio del tratamiento de TS. Contrariamente, la variedad Koshihikari mantuvo su capacidad fotosintética durante períodos prolongados de exposición a TS.

Por su parte, la mayor acumulación de Q_a⁻ como consecuencia del frío en IR50, fue acompañado con un mayor desacople del OEC con respecto de Koshihikari. En paralelo a la acumulación de Q_a⁻ en la variedad sensible IR50, otros fenómenos asociados al FSII fueron registrados, tales como la reducción de las fracciones de los centros de reacción del FSII; Q_aRC, Q_bRC y OEC-RC. Siendo Q_aRC y OEC-RC los más afectados. Lo que indicaría una relación directa entre el funcionamiento del OEC, la actividad de los Q_aRC y la consecuente acumulación de Q_a⁻, evidenciando la participación del OEC en el balance redox en respuesta al frío. En este sentido, un desbalance en el transporte de electrones parecería estar afectando a las dos variedades de arroz evaluadas, en particular en los procesos primarios de absorción de energía. La reversión del desacople del OEC causada por un dador de electrones artificial estarían respaldando lo mencionado. La alteración de estos mecanismos que afectan directamente el balance entre la energía absorbida y la energía utilizada metabólicamente para fijar CO₂, podría explicar, al menos parcialmente, diferencias en la respuesta contrastante entre IR50 y Koshihikari a esta condición de estrés.

Asimismo, los resultados obtenidos sugieren un rol relevante de las proteínas PsbP y PsbR del OEC en la respuesta fotosintética del arroz al frío. La alteración en la expresión génica y en los niveles de PsbP y PsbR durante el tratamiento de estrés, coincidió con el mayor decaimiento en la eficiencia fotoquímica del FSII y con la mayor alteración en las estructuras que componen el FSII, fenómenos principalmente observados en la variedad IR50. En este sentido, PsbP y PsbR parecieran tener un impacto directo en el ensamblado y funcionamiento de los complejos del FSII activos, durante las bajas temperaturas en *O. sativa*.

Finalmente, nuestros resultados concuerdan con el hecho de que la condición de TS inicia el daño en el FSII mostrando una alteración de en las estructuras que componen al OEC, lado del FSII que dona electrones. Y luego se desencadena un daño posterior a nivel del P₆₈₀, que constituye el lado del FSII que acepta electrones.

3.7 Diagrama Resumen-Capítulo 1.

	CRECIMIENTO/FOTOSINTESIS	CENTROS DE REACCIÓN	BANDA K/OEC
RESULTADOS	Mayor reducción de crecimiento bajo TS en IR50. La variedad IR50 presentó daño en el FSII y en la fotosíntesis desde el inicio del tratamiento a TS a diferencia de Koshihikari que presento daño a tiempos largos de exposición a TS. El detrimento del desempeño del FSII esta vinculado mayormente a una disminución en el flujo y la eficiencia del transporte de electrones.	Aumento de Qa ⁻ en ambas variedades principalmente en IR50 Desde el inicio del tratamiento a TS se observó en IR50 una menor actividad en la fracción de centros de reacción promedio Sm/t _{Fmax} RCQa y centros de reacción activos de OEC OEC-RC. Estos efecto se observaron en parcialmente a tiempos largos de exposición a TS en Koshihikari.	Mayor banda K desde el inicio del tratamiento a TS en IR50. En Koshihikari se observo banda K a tiempos mas largos de tratamineto TS. El tratamiento con DPC revertio el fenotipo de banda K en ambas variedades. Los genes OEC se desregularon negativamente en solo IR50 durani todo el periodo de exposición a TS PsbP y PsbR disminuyeron desde D del tratamiento a TS en I.R50. A diferencia de Koshihikari que most una caída en los niveles de proteín a tiempos largos

4- CAPITULO 2: Obtención de nuevos cultivares de arroz tolerantes a frío. Relación entre el fenotipo fotosintético con la tolerancia a frío y el rendimiento de grano.

4.1 Introducción.

La obtención de nuevas variedades de especies vegetales de importancia nutricional. Que posean mayor capacidad de soportar estreses ambientales, y que al mismo tiempo posean un alto rendimiento de grano, es el mayor desafío para los programas de mejora vegetal (Vivekanandan y Saralabai 1997). Para lograr una eficiente selección vegetal, es necesaria la implementación de métodos de fenotipado rápidos, que permitan una cuantificación de la tolerancia al estrés. En este sentido, el análisis de la prueba OJIP se ha aplicado como un método no invasivo y una técnica de alto rendimiento para caracterizar el funcionamiento del FSII en plantas superiores (Strasser y col. 2000; Force y col. 2003; Harbinson y col. 2012).

En plantas C3 como el arroz, la capacidad de la fotosíntesis para utilizar la energía solar es limitada (Murchie y col. 2015). Esta menor capacidad fotosintética, se debe a una mayor preponderancia del metabolismo de la fotorrespiración (Zhu y col. 2010). En la línea con esto, condiciones fotorrespiratorias más altas en plantas C3, potencian el exceso de energía disipada, por lo tanto el control fotosintético del transporte de electrones es un concepto fundamental en la regulación de la fotosíntesis (Foyer y col. 2012).

A su vez, la senescencia foliar es un proceso que en plantas de cultivos anuales coincide con la fase reproductiva. En especies como el trigo, sorgo y cebada, las características del fenotipo de senescencia de la hoja bandera (HB), se evalúan con el objetivo de vincularlas con el rendimiento de la planta (Gregersen y col. 2013). En el proceso de senescencia de la HB, los cloroplastos están expuestos a la toxicidad de EROS debido a las condiciones de alta concentración de oxígeno e intensidad de luz (Panda y Sarkar 2013). En línea con esto, caracterizar los sistemas enzimáticos antioxidantes o moléculas indicativas de estrés oxidativo como el malondialdehído (MDA), es de utilidad para identificar fenotipos de senescencia de HB.

Por otra parte, mantener los niveles de clorofila y en consecuencia la capacidad de realizar la fotosíntesis, se vinculan fuertemente con funciones fisiológicas como el llenado de grano. Consecuentemente, las interacciones entre la fuente de absorción de energía y el destino final, el grano, son de vital importancia. Particularmente, el

52

transporte de fotosintatos, limita actualmente la explotación de capacidades fotosintéticas mejores en los cultivos de cereales modernos (Gregersen y col. 2014).

Por lo tanto, la búsqueda de fenotipos de plantas con mayor crecimiento en condiciones de TS, y con mejores capacidades para transformar la energía atrapada en fotoasimilados es de particular interés para los proyectos de mejoramiento.

4.2 Objetivo particular.

Seleccionar fenotipos de *O. Sativa* tolerantes a frío, mediante su capacidad de crecimiento y su respuesta fotosintética bajo condiciones de TS en estadio de plántula. A su vez, estudiar el comportamiento bioquímico y del FSII durante el llenado de grano y su implicancia con los potenciales de rendimiento.

4.3 Materiales y métodos

4.3.1 Condiciones de crecimiento y tratamientos.

Semillas de arroz fueron sembradas en placas de Petri utilizando papel de filtro Whatman Nº5, hidratadas con 7,00 ml de una solución acuosa de carbendazim al 0.025% p/v. Luego las semillas se incubaron a 30°C en oscuridad durante tres días. Las plántulas obtenidas se transfirieron a recipientes de 4 litros, y se cultivaron en condiciones hidropónicas con 3 litros de solución nutritiva Yoshida 1X (Yoshida y col. 1976). La composición de la solución nutritiva se encuentra definida en la Tabla 1 del Anexo 1.

El cultivo de las plántulas se realizó en una cámara de Percival E-30B (Percival Scientific[®], IA, EEUU), con fotoperiodo de 12/12 h (día/noche), 80,0% de humedad relativa, con una intensidad de luz de 260 µmol fotones m⁻² s⁻¹ de radiación fotosintéticamente activa (PAR, de sus siglas en Inglés) y un ciclo térmico de 24/26°C de temperatura (noche/día, condición de control o de temperatura óptima, TO). Se usaron plántulas de 7 días para todos los experimentos, con el fin de que los cultivares estén en la misma etapa fenotípica (tercera hoja).

El tratamiento de bajas temperaturas (tratamiento de estrés, TS) se realizó en otra cámara de cultivo Percival E-30B (Percival Scientific[®], IA, EEUU) con idénticas condiciones de luz y humedad que el tratamiento control, pero con un ciclo térmico de temperatura de crecimiento de 13/21°C (noche/día), temperatura TS durante 5 días.

Todas las determinaciones fisiológicas se realizaron en la tercera hoja en ambas condiciones, TO y TS. La solución de Yoshida se renovó cada tres días hasta el final del experimento.

4.3.2 Crecimiento en condiciones ambientales no controladas.

Plántulas cultivadas en condiciones de TS, descriptas en 4.3.1 se trasplantaron a macetas con un extracto de suelo mineral como sustrato. Las macetas se inundaron con agua dentro de piletas y se cultivaron en las instalaciones experimentales de INTECH Chascomús (35°37'23.9"S 57°59'40.3"O), en condiciones ambientales. La población F2 se cultivo durante la temporada de primavera/verano (octubre-marzo) de 2014/2015. Las condiciones térmicas fueron: media máxima de 30,0°C, media mínima de 17,0°C, con los siguientes episodios de temperaturas extremas: máxima de 35,0°C, y mínima de 8,0°C.

La línea estable 59-8-8-5, los parentales Rossi, Cr550, y la variedad comercial Yerua fueron cultivadas durante la temporada de primavera/verano (octubre-marzo) 2016/2017. Las condiciones térmicas fueron: media máxima 23,0°C, media mínima 17,3°C, con los siguientes episodios de temperaturas extremas: máxima de 33,2°C, y mínima de 10,2°C.

Para el análisis del comportamiento de la HB, se tomó como tiempo inicial la emergencia de la panoja. Luego, las mediciones fisiológicas y bioquímicas se tomaron a intervalos regulares de 7 días desde la emergencia de la panoja (7DDP, 14DDP, 21DDP y 28DDP) durante 28 del ciclo de llenado de grano.

4.3.3 Selección de germoplasma.

En el presente estudio, se generaron líneas tolerantes a frío mediante el cruzamiento de dos variedades de arroz General Rossi y Cr550 provenientes del programa arroz de la Facultad de Cs Agrarias y Forestales; Universidad Nacional de La Plata. La variedad Gral. Rossi fue elegida por su capacidad de tolerancia al frío, por otra parte, la variedad Cr550 fue elegida por sus buenas aptitudes agronómicas.

En todos los casos se evaluó la tasa de crecimiento a TS, considerando el tiempo cero (T₀) al momento de la emergencia de la hoja 3. Las sucesivas generaciones de los cruzamientos Gral. RossixCr550, fueron seleccionadas nuevamente por su capacidad de crecimiento a TS, proceso que continuó hasta llegar a la generación F6, donde se considero que las líneas alcanzaron la homocigosis práctica. Una información más detallada sobre el método de selección se puede encontrar en el Anexo 2.

4.3.4 Material vegetal

En el presente capítulo, se evaluaron las siguientes variedades de arroz: 3 líneas propias mejoradas por su tolerancia a frío, 54-9-44-9, 29-4-53-1, 59-8-8-5. Los parentales Rossi y Cr550, y 3 variedades comerciales; Yerua, Don Justo y Guri. Al Final del tratamiento de TS, parte de las plantas se cosecharon y fueron congeladas en N₂ líquido, para luego ser usadas en las posteriores determinaciones bioquímicas. Otro conjunto de plantas, fueron separadas para ser cultivadas en las condiciones ambientales descriptas en la sección 4.3.2. A este conjunto de plantas, se les midió variables fisiológicas en la hoja bandera (HB), a intervalo de 7 días durante 28 días. A su vez, a estos mismos tiempos se cosechó material vegetal y se lo congelo en N₂ líquido para posteriores determinaciones bioquímicas.

4.3.5 Análisis de la fluorescencia transitoria de la clorofila a (prueba OJIP).

Se realizó la prueba no invasiva OJIP (Strasser y col. 1995). Para ello, se implementó el protocolo de fotosistemas adaptados a la luz (Susplugas y col. 2000) utilizando un fluorómetro portátil HANDY PEA (Hansatech Instruments[®] Ltd., King's Lynn, Norfolk, Reino Unido). Hojas de plántulas de arroz tratadas a TO y TS, fueron pre adaptadas a la oscuridad durante 20 min. Luego, se expusieron a una luz actínica con una intensidad lumínica de 3000 µmol m⁻² s⁻¹ durante 1 s, a continuación las hojas fueron iluminadas con 60 µmol m⁻² s⁻¹ (2%) de luz actínica durante 120 s. Finalmente, las hojas pre-adaptadas a la luz se volvieron a iluminar con un pulso de luz actínica de 3000 µmol m⁻² s⁻¹ durante 1 s.

4.3.6 Determinación del contenido de azúcares libres y almidón.

Se determinó el contenido de azúcares libres y almidón en plántulas tratadas a TO, TS y en segmentos de HB, mediante el método de antrona adaptado de Yoshida y col. 1976. Las muestras fueron molidas utilizando N₂ en un mortero. Luego, 10 mg de muestra se utilizaron para la cuantificación de azúcares libres y almidón. Los azúcares libres se extrajeron agregando 1 ml de etanol al 80,0%, posteriormente se incubaron las muestras a 85°C durante 30 min. A continuación, los extractos se centrifugaron a 10.000 g por 10 min (estas operaciones se repitieron 3 veces). Luego, los sobrenadantes se utilizaron para la medición de azúcares libres, y el pellet resultante se utilizó para cuantificar el contenido de almidón, previa hidrólisis durante una noche con ácido HClO₄ 9,2 N. Se realizó la reacción de antrona colocando 0,2 ml de extracto y 0,8 ml del reactivo de antrona (200 mg/ml, en una solución de H₂SO₄ al 72,0%). Por último, se determinó la concentración de las soluciones patrón, azúcares libres y almidón midiendo la absorbancia a 630 nm usando un espectrofotómetro (Bio Tek Synergy H1. VT, USA).

4.3.7 Determinaciones de la actividad de enzimas antioxidantes

Se analizó la actividad de las enzimas catalasa (CAT) y ascorbato peroxidasa (APx) en plántulas tratadas a TO, TS y en segmentos de HB. Las muestras se molieron con N₂ líquido en un mortero. Luego, las proteínas se extrajeron mediante la utilización de una solución tampón de extracción (50,0 mM Tris-HCl ph=7; 3 mM MgCl₂; 1 mM EDTA; 1% PVP; 1 mM PMSF), en una relación 1:5 p/v. Luego, los homogenatos se centrifugaron a 10.000 g durante 20 min en frío (4°C), y el sobrenadante se utilizó en las determinaciones de la actividad enzimática.
Se determinó la actividad CAT [EC:1.11.1.6] midiendo la desaparición de H_2O_2 a 240 nm (Aebi 1984), mientras que la actividad APx [EC:1.11.1.11] se determinó monitoreando la oxidación del ascorbato por H_2O_2 a 290 nm (Hossain y Asada 1987). Para ambos casos, se definió una unidad enzimática (UE) como la actividad enzimática que consume 1 µmol de cofactor o sustrato por seg relativizado por la cantidad total de proteína.

4.3.8 Estimación de la peroxidación lipídica mediante determinación de MDA por HPLC.

Se estimó la peroxidación lipídica en plántulas tratadas a TO, TS y en segmentos de HB, a través de las sustancias reactivas al ácido tiobarbitúrico (TBA, de sus siglas en inglés). Para ello, se utilizó un método de detección del analito mediante HPLC de fase reversa desarrollado en el presente trabajo de Tesis. La extracción se realizó agregando 1 mL de la solución de extracción (etanol/agua 4:1 (v/v) y 0,01% de butilhidroxitolueno), a 40 mg de material vegetal, previamente molido con N_2 líquido. Posteriormente, las muestras se centrifugaron a 10.000 g por 10 min y 0,2 mL del sobrenadante se utilizó en la reacción, conteniendo: 0,2 mL de TBA 0,65% en ácido tricloroacético 20%, 0,1 mL de HCl 0,1 N. Luego, las muestras se calentaron a 90°C durante 30 min, y la reacción se detuvo agregando 0,1 mL de agua destilada. Posteriormente, se centrifugaron las muestras a 10.000 g por 10 min y se tomando 0,2 ml del sobrenadante para extraer el cromógeno en 0,2 ml de n-Butanol, se mezcló mediante vortex y se centrifugó para separar las fases a 10.000 g por 10 min. Las muestras fueron analizadas en un equipo de HPLC Waters[®] 1525 de bomba binaria y detector de fluorescencia de arreglos de diodos Waters® 2475. Se utilizó como fase móvil un flujo isocrático de acetonitrilo agua en una relación de 50:50 v/v. La separación analítica de la muestra se realizó en una columna de fase reversa C18 Phenomenex Luna[®] (2) 4,6 x 250 mm con un tamaño de partícula de 5 µm. Los datos obtenidos fueron integrados utilizando el programa Breeze® y luego se relativizaron al peso fresco de la muestra (PF), y se expresaron como equivalentes de malondialdehído (MDA, pmol g^{-1} PF).

4.3.9 Monitoreo de la senescencia de la hoja bandera mediante la prueba OJIP.

Tres hojas banderas por planta se pre-adaptaron a la oscuridad durante 20 min, luego se efectuó la prueba OJIP (Strasser y col. 1995), mediante la exposición de dichas hojas a una luz actínica con una intensidad lumínica de 3500 µmol m⁻² s⁻¹ durante 3 segundos. Las medidas fueron realizadas al atardecer (18:00-20:00 h) a distintos días después de la aparición de la panoja. Se utilizó para el análisis un fluorómetro portátil POCKET PEA (Hansatech Instruments[®] Ltd., King's Lynn, Norfolk, Reino Unido), los datos se procesaron a través del software PEAplus (Hansatech Instrument[®], Reino Unido) y Windows Excel (Microsoft WA, EEUU). Los términos utilizados en el análisis de la prueba OJIP se encuentran definidos en la Tabla 1.1 de la introducción general.

4.3.10 Índice de respuesta fotosintética (IRF).

Con el objetivo de evaluar la respuesta fotosintética durante el llenado de grano, los biomarcadores fotosintéticos obtenidos de la prueba OJIP a los 7, 14, 21, y 28 DDP, se analizaron usando el enfoque de IBR (del inglés, Integrated Biomarker Response), desarrollado por Beliaeff y Burgeot (2002); posteriormente modificado en Broeg y Lehtonen (2006); y descripto en detalle en Ferreira y col (2015a).

Una información más completa sobre la metodología de cálculo del IRF puede ser encontrar en el Anexo 2.

4.3.11 Cálculos de los componentes de rendimiento.

Las plantas fueron cosechadas manualmente y se evaluó: número de espiguillas por panoja (NEP), peso mil granos (PMG), porcentaje de semillas vacías (% SV), número de panojas por planta (NPP), peso total de grano (P.total) y peso de panoja (PP).

Los cálculos de los componentes de rendimiento se encuentran definidos en la Tabla 1 del Anexo 2.

4.3.12 Análisis estadístico.

En todos los casos, se consideró como unidad experimental a una planta cultivada individualmente. En plántulas, el análisis de las variables derivadas se realizó implementando un análisis de de la varianza (ANOVA, p<0,05), utilizando el paquete AGRICOLAE de R Studio. Para las comparaciones de a pares el análisis de las variables se realizó implementado la prueba-t de Student (p<0,05) en R Studio.

Para los ensayos en condiciones ambientales, excepto para la población F2, se implementó un diseño completamente aleatorizado con arreglo factorial en 2 factores fijos: factor "planta" con 4 niveles (59-8-8-5. Rossi, Cr550 y Yerua) y el factor "ambiente" para caracterizar el fenómeno de senescencia con 4 niveles de muestreo (7, 14, 21, 28 DDP). El análisis de las variables se realizó implementando un modelo bifactorial del análisis de la varianza (ANOVA, p<0,05), utilizando el paquete AGRICOLAE de R Studio. En todos los casos, se analizó la interacción entre ambos factores. Para los casos donde los factores no presentaron interacción en el modelo, se consideró el efecto aditivo entre ambos factores. Para los casos donde los factores presentaron interacción significativa en el modelo, se consideró el estadístico que representó la mayor significancia condicionando los niveles de un factor al otro factor, tomando a uno de los factores como un efecto fijo. En los casos donde los modelos estadísticos cumplieron los supuestos de normalidad y/o homocedasticidad se analizaron mediante una prueba de comparaciones múltiples de medias de Tukey (p<0,05). En los casos donde los modelos no cumplieron los supuestos de normalidad y/o homocedasticidad de las varianzas se realizó un análisis de comparación mediante el método de Kruskal Wallis.

Para la población F2, el estudio de las variables se realizó mediante un ordenamiento a través de un escalamiento multidimensional no métrico (MDS). En base a la matriz de distancias de Bray-Curtis, generada con los parámetros derivados de la prueba OJIP. Las diferencias entre los grupos de acuerdo a los DDP, se determinaron mediante un análisis permutacional de la varianza (PERMANOVA), implementando la función adonis del paquete VEGAN para el entorno R (Oksanen y

col. 2009). Para el análisis de componentes principales (ACP), se utilizó el paquete FactoMiner de R Studio (Lê y col. 2008).

Finalmente, se identificaron relaciones entre los parámetros derivados de la prueba OJIP y los componentes de rendimiento mediante el coeficiente MIC (del inglés, Maximal Information Coefficient), utilizando el paquete MINERVA de R Studio.

4.4 Resultados.

4.4.1 Capacidad de crecimiento contrastante y fenotipo a bajas temperaturas.

Los diferentes genotipos de arroz evaluados, presentaron un crecimiento diferencial entre ellos luego de 5 d de tratamiento de bajas temperaturas. En todos los casos, se observó un crecimiento menor cuando se compara cada accesión tarada a TS con la media general de crecimiento a TO (3,4 cm/día), de todos los genotipos evaluados (Figura 1.4). Las líneas desarrolladas para la presente tesis, 54-9-44-9, 59-8-8-5 y 29-4-53-1, exhibieron la mayor capacidad de crecimiento bajo TS (2 cm/día), comparada con el resto de las accesiones evaluadas a TS (Figura 1.4). Las variedades comerciales Don Justo, Yerua y el parental Rossi, presentaron un comportamiento de crecimiento a TS intermedio. Sin embargo, el parental Rossi mostró diferencias significativas en el crecimiento a TS con respecto a Don Justo y Yerua. En este sentido, las variedades Don Justo y Yerua crecieron 1,8 cm/día, mientras que la variedad Rossi creció 1,5 cm/día en condiciones de crecimiento a TS (Figura 1.4). Por último, el cultivar comercial Gurí y el parental Cr550, se mostraron como las accesiones más sensibles a las bajas temperaturas registrando un crecimiento de 1 cm/día (Figura 1.4).

Figura 1.4: Crecimiento de diferentes variedades de arroz en condiciones de TS. Barras negras representan los cultivares mejorados (54-9-44-9,59-8-8-5 y 29-4-53-1), la barra celeste representa al cultivar comercial Don Justo, barra naranja representa al cultivar comercial Yerua, las barras blancas representan los parentales (Rossi y Cr550), la barra gris representa la cultivar comercial Gurí. La línea roja de puntos horizontal, representa el crecimiento promedio a TO de todas las accesiones ensayadas (3,4 cm/día). Los datos presentados corresponden a la media ±DE de 15 réplicas biológicas (n=15). Letras diferentes indican diferencias estadísticas significativas según el test de Kruskal y Wallis (p<0.05).

Por otra parte, se determinó la relación Pl_{abs} adaptado a la luz y Pl_{abs} adaptado a la oscuridad (^IPl_{abs}/^OPl_{abs}), como criterio de clasificación de tolerancia al estrés en los diferentes cultivares. Acorde a lo descripto en Oukarroum y Strasser (2004), un mayor valor en la relación ^IPl_{abs}/^OPl_{abs} indicaría una mayor tolerancia a la condición de estrés. La variación en los valores de ^IPl_{abs}/^OPl_{abs} obtenidos, evidenció que las variedades de arroz responden diferencialmente al estrés por TS y por tanto poseen una tolerancia diferente al estrés por frío (Tabla 1.4). En este sentido, la línea 59-8-8-5 y la variedad Yerua fueron las accesiones con mayor valor en la relación ^IPl_{abs}/^OPl_{abs} (Tabla 1.4). Por lo tanto, se consideró a Yerua y 59-8-8-5 como las accesiones más tolerante a TS, utilizado el criterio de clasificación basado en la relación ^IPl_{abs}/^OPl_{abs}. Por otra parte, la variedad Gurí y el parental Cr550 mostraron los valores más bajos en la relación ^IPl_{abs}/^OPl_{abs} (Tabla 1.4). Estos últimos resultados descriptos, concuerdan con la menor capacidad de crecimiento a TS de la variedad comercial Gurí y el parental Cr550. Por lo

tanto, se puede clasificar a la variedad Gurí y al parental Cr550 como las accesiones más sensibles a la condición de frío.

Considerando los resultados obtenidos de fenotipado por crecimiento, y de fenotipado por fluorecencia de la clorofila. Se observó una relación directa entre el crecimiento en condiciones de TS y la viabilidad del FSII, representada por la relación ¹PI_{abs}/^OPI_{abs}.

Línea	Media ^I PI _{abs} / ^O P _{abs}	±DE		
59-8-8-5	0,267 a	± 0,026		
Yerua	0,232 ab	±0,024		
54-9-44-9	0,205 bc	± 0,034		
29-4-53-1	0,175 bcd	± 0,045		
Rossi	0,175 bcd	± 0,034		
Don Justo	0,161 cd	± 0,019		
Gurí	0,141 d	± 0,028		
Cr550	0,115 d	± 0,030		

Tabla 1.4: Relación ^I**PI**_{abs}/^o**PI**_{abs} en plantas de arroz sometidas a estrés por TS. Los datos son la media ±DE de 5 réplicas biológicas (n=5). Los datos fueron analizados estadísticamente mediante la prueba paramétrica de ANOVA. Letras diferentes indican diferencias estadísticas significativas según el test de Tukey (p<0.05).

La línea 59-8-8-5, los parentales Rossi y Cr5550, y la variedad comercial Yerua, fueron seleccionadas para el resto de los estudios. Debido a que la línea mejorada 59-8-8-5, y la variedad comercial Yerua, mostraron un buen comportamiento en condiciones de TS (Figura 1.4 y Tabla 1.4), se eligió comparar el comportamiento entre ambas accesiones. A su vez, la variedad mejorada 59-8-8-5 podría ser un potencial reemplazo comercial de la variedad Yerua, ya que ambas accesiones poseen como característica el mismo tipo de grano. Por otra parte, con el objetivo de caracterizar comportamientos bioquímicos y fisiológicos heredables se contrastó la variedad 59-8-8-5 con sus respectivos parentales (Rossi y Cr550).

4.4.2 Cambios en el contenido de carbohidratos y respuesta antioxidante en plántulas tratadas a temperaturas subóptimas.

Con el fin de evaluar la respuesta bioquímica causada por el tratamiento de frío, se midieron los niveles de azúcares libres y almidón en las cuatro accesiones de arroz seleccionadas para este estudio, luego de 5 d de tratamiento a TS (Figura 2.4). En este sentido, en la línea mejorada 59-8-8-5, no se observaron diferencias en los valores de azúcares libres entre la condición control (TO) y el tratamiento de frío (TS). Por el contrario, los parentales y la variedad Yerua presentaron aumentos en el contenido de azúcares libres bajo la condición de TS, en comparación con sus respectivos controles a TO (Figura 2.4A), siendo la variedad Yerua la que alcanzó la mayor diferencia en el contenido de azúcares libres, en comparación con su respectivo control. A su vez, los parentales Rossi y Cr550, mostraron aumentos similares en los niveles de azúcares bajo el condiciones de TS en comparación con la condición control de TO (Figura 2.4A). Por otra parte, en la línea 59-8-8-5 y el parental Rossi se observó una acumulación significativa de almidón como consecuencia del tratamiento de frío (Figura 2.4B), siendo este aumento de las mismas proporciones en ambos casos. Por su parte, el parental Cr550 y la variedad comercial Yerua no mostraron cambios significativos en el contenido de almidón entre los tratamientos de TO y TS (Figura 2.4B).

Figura 2.4: (A). Contenido de azúcares libres en arroz. (B) Acumulación de almidón en arroz. Barras blancas representan la condición control (TO) para todas las accesiones. Las barras amarillas representan la condición de frío (TS) para la línea 59-8-8-5, barras rojas representan la condición de frío (TS) para el parental Rossi, barras azules representan la condición de frío (TS) para el parental Cr550, barras negras representan la condición de frío (TS) para el variedad Yerua. Los datos son la media ±DE de 5 réplicas biológicas (n=5). Los asteriscos indican diferencias significativas entre los tratamientos para cada accesión, según la prueba t de Student (*p<0,05; **p<0,01; ***p<0,001), ns indica que no hay diferencias significativas entre los tratamientos para cada variedad.

Adicionalmente, se estimó la peroxidación lipídica mediante la determinación de MDA, como marcador de estrés oxidativo. Las diferentes variedades y la línea 59-8-8-5 no presentaron diferencias entre los tratamientos de TO y TS para este indicador respectivamente (Figura 1 en Anexo 2).

A su vez, se midió la capacidad de la respuesta antioxidante enzimática frente a la condición de estrés por frío mediante la determinación de las actividades CAT y APx. En este sentido, se observó una tendencia al aumento de la actividad CAT en todas las accesiones por acción del tratamiento a TS en comparación con sus respectivos controles a TO. Sin embargo, solamente se observaron diferencias significativas en los parentales, Rossi y Cr550 (Figura 3.4A). Por otra parte, únicamente el parental Cr550 mostro diferencias significativas de actividad APx, presentando una disminución de la misma en la actividad enzimática como consecuencia del tratamiento de TS, en comparación con su respectivo control a TO (Figura 3.4B).

Figura 3.4: (A). Análisis de la actividad CAT en arroz. (B) Análisis de la actividad APx en arroz. Barras blancas representan la condición control (TO) para todas las accesiones. Las barras amarillas representan la condición de frío (TS) para la línea 59-8-8-5, barras rojas representan la condición de frío (TS) para el parental Rossi, barras azules representan la condición de frío (TS) para el parental Cr550, barras negras representan la condición de frío (TS) para la variedad Yerua. Los datos son la media ±DE de 3 réplicas biológicas (n=3). Los asteriscos indican diferencias significativas entre los tratamientos para cada accesión, según la prueba t de Student (*p<0,05; **p<0,01), ns indica que no hay diferencias significativas entre los tratamientos para cada variedad.

4.4.3 Cambios en el contenido de carbohidratos y respuesta antioxidante enzimática en hoja bandera durante el llenado de grano.

Con el objetivo de caracterizar el comportamiento de la HB durante el periodo de llenado de grano. Se realizaron diferentes mediciones bioquímicas para determinar cómo el proceso natural de senescencia influyó en el metabolismo de la HB, y de este modo poder determinar cuan activa permaneció la HB durante el periodo de llenado de grano. En este sentido, se estimó la influencia de los factores "planta" y "ambiente" sobre los diferentes parámetros bioquímicos evaluados. Para el análisis, se utilizó un modelo estadístico lineal de ANOVA bifactorial (Tabla 2.4).

Medición FACTOR		p-valor	Resultado		
	Planta	***	Hay efecto del genotipo		
Azúcares	Ambiente	***	Hay efecto de los días		
	Interacción	***	No se rechaza interacción		
	Planta	*	Hay efecto del genotipo		
Almidón	Ambiente	***	Hay efecto de los días		
	Interacción	***	No se rechaza interacción		
	Planta	***	Hay efecto del genotipo		
САТ	Ambiente	* * *	Hay efecto de los días		
	Interacción	*	No se rechaza interacción		
	Planta	***	Hay efecto del genotipo		
APx	Ambiente	ns	No existe efecto de los días		
	Interacción	ns	Se rechaza la interacción		
	Planta	* * *	Hay efecto del genotipo		
MDA	Ambiente	***	Hay efecto de los días		
	Interacción	ns	Se rechaza la interacción		

Tabla 2.4: Análisis estadístico ANOVA bifactorial. En la tabla se muestran los resultados del modelado para las diferentes determinaciones bioquímicas (Azúcares, almidón, CAT, APx y MDA). Donde el factor "planta" se compone de 4 niveles correspondientes a las accesiones 59-8-8-9, Yerua, Rossi y Cr550. El factor "ambiente" se compone de 4 niveles correspondientes a los días de muestreo 7, 14, 21 y 28 DDP e "Interacción" corresponde a la interacción entre ambos factores (Planta | Ambiente). Los datos fueron analizados estadísticamente mediante un modelo bifactorial de ANOVA (p<0.05). Los asteriscos indican la significancia del efecto evaluado (*p<0,05; **p<0,01; ***p<0,001), ns indica que no hay efecto significativo.

El análisis estadístico de los valores de carbohidratos en HB durante el proceso de senescencia, indicó la existencia de interacción entre las accesiones y DDP (Tabla 2.4). Al haber una interacción significativa en el modelo estadístico. Las posibles combinaciones encontradas entre los factores, pueden presentar patrones diferentes causados por acción de efectos biológicos específicos. Por lo tanto, para el análisis se consideró como interacciona cada factor, comparando los contenidos de azúcares libres y almidón entre los días muestreados para cada accesión en particular. En este sentido, la línea mejorada 59-8-8-5 y el parental Rossi no mostraron variaciones significativas en el contenido de azúcares en HB (Figura 4.4A y Tabla 3 en Anexo 2). Por su parte, la variedad Yerua evidenció el nivel más bajo de azúcares libres a 7 DDP (Figura 4.4A y Tabla 3 en Anexo 2). Adicionalmente, la variedad Yerua mostró diferencias significativas en los niveles de azúcares a 7 DDP en comparación con 14, 21 y 28 DDP. Permaneciendo sin cambios significativos entre los días 14, 21 y 28 DDP (Figura 4.4A y Tabla 3 en Anexo 2).

Particularmente, el parental Cr550 presentó una acumulación significativa de azúcares a 14 DDP comparado con los restantes tres 3 días de muestreo (Figura 4.4A y Tabla 3 en Anexo 2).

Con respecto a los niveles de almidón, es interesante destacar que en la línea 59-8-8-5 y el parental Rossi, se observó una gran reserva de almidón significativa a 14 DDP en comparación con los restantes 3 días de muestreo (Figura 4.4B y Tabla 4 en Anexo 2). Por otra parte, el análisis de los niveles de almidón para el parental Cr550, evidenció un comportamiento particular en esta accesión. En línea con esto, se observó que a 7 y 14 DDP no había diferencias significativas entre sí en el contenido de almidón (Figura 4.4B y Tabla 4 en Anexo 2). El mismo comportamiento se observó al analizar entre sí los niveles de almidón a los 21 y 28 DDP (Figura 4.4 y Tabla 4 en Anexo 2). Sin embargo, cuando se compara 7 y 14 DDP contra 21 y 28 DDP se observa que entre estos dos bloques de días hay diferencias significativas entre los niveles de almidón en HB (Figura 4.4B y Tabla 4 en Anexo 2).

Por último, la variedad Yerua mostró un comportamiento diferente en relación a la acumulación de almidón en comparación con las otras accesiones. En este sentido, los

66

valores de almidón no se modificaron significativamente en la variedad Yerua durante el periodo ensayado (Figura 4.4B y Tabla 4 en Anexo 2).

Figura 4.4: (A). Contenido de azucares libres en HB de arroz. (B) Acumulación de almidón en HB de arroz. En amarillo se representa la línea 59-8-8-5, en rojo se representa el parental Rossi, en azul se representa el parental Cr550, en negro se representa la variedad Yerua. Los datos son la media ±DE de 5 réplicas biológicas (n=5). Los datos fueron analizados estadísticamente mediante la prueba paramétrica de ANOVA bifactorial. La barra vertical representa el día después de panoja (DDP) donde se registro el mayor o menor valor significativo observado de azucares libres y almidón según el test de Tukey (p<0.05). La línea discontinua representa una diferencia significativa en los valores de almidón según el test de Tukey (p<0.05).

Por otra parte, se estimó la concentración del indicador de estrés oxidativo MDA para monitorear la senescencia foliar durante el llenado de grano. Para el caso de la determinación de MDA, se observó que estadísticamente no existió interacción entre los factores "planta" y "ambiente" (Tabla 2.4). Por lo tanto, para el análisis se consideró un efecto aditivo entre ambos factores. En este sentido, la mayor acumulación de MDA se observó a 21 DDP para todas las accesiones evaluadas, en comparación con los valores observados a 7, 14 y 28 DDP (Figura 5.4 y Tabla 4.4). A este tiempo, 21 DDP, el parental Rossi se diferenció significativamente en el contenido de MDA en comparación con el parental Cr550 (Tabla 5 en Anexo 2). A su vez, la variedad Yerua y la línea 59-8-8-5 mostraron un comportamiento intermedio en los niveles del indicador MDA, en comparación con los parentales Cr550 y Rossi a 21 DDP (Tabla 5 en Anexo 2).

Asimismo, durante los 28 d de muestreo el parental Cr550 acumuló la mayor cantidad de MDA. Presentando diferencias significativas en los valores de este analito en comparación con las otras tres accesiones (Figura 5.4 y Tabla 4.4). Por su parte, la línea 59-8-8-5 presentó un comportamiento intermedio al encontrado para la variedad Yerua y el parental Rossi (Figura 5.4 y Tabla 4.4), siendo el parental Rossi el que presentó la menor acumulación de MDA durante la senescencia foliar (Figura 5.4 y Tabla 4.4).

Figura 5.4: Contenido de MDA en HB de arroz. En amarillo se representa la línea 59-8-8-5, en rojo se representa el parental Rossi, en azul se representa el parental Cr550, en negro se representa la variedad Yerua. Los datos son la media ±DE de 5 réplicas biológicas (n=5). Los datos fueron analizados estadísticamente mediante la prueba paramétrica de ANOVA bifactorial. La barra vertical representa el día después de panoja (DDP) donde se registro el mayor valor significativo observado de MDA según el test de Tukey (p<0.05).

Planta	Media ±DE	Días	Media ±DE
Cr550	49,6 ±12,6 a	21	50,2 ±15,0 a
Yerua	39,1 ±13,5 b	7	41,9 ±9,5 b
59-8-8-5	37,8 ±5,4 bc	14	34,3 ±8,1 bc
Rossi	31,1 ±7,0 c	28	33,2 ±7,7 c

Tabla 4.4: Contenido de MDA en HB de arroz durante el periodo de senescencia. En la tabla se muestra la media ±DE de cada accesiones durante los 4 días ensayados y la media ±DE de todas las accesiones evaluadas en para cada DDP en particular. Los datos fueron analizados estadísticamente mediante la prueba paramétrica de ANOVA bifactorial. Letras diferentes indican diferencias estadísticas significativas según el test de Tukey (p<0.05).

Al igual que en lo observado para azúcares libre y almidón, el modelado estadístico de los datos de actividad de la enzima CAT indicó que existe una interacción significativa entre ambos factores analizados (Tabla 2.4). En este sentido, cuando se comparó los 4 días de muestreo para cada accesión de forma individual, se observó que el parental Cr550 no presentó modificaciones significativas en la actividad de la enzima CAT a lo largo de los 28 d ensayados (Figura 6.4A y Tabla 6 en Anexo 2). Sin embargo, la línea 59-8-8-5 y el parental Rossi mostraron el nivel más bajo de actividad CAT a 7 DDP. Presentando diferencias significativas entre 28 DDP y 7 DDP; y no así entre 28, 21 y 14 DDP respectivamente (Figura 6.4A y Tabla 6 en Anexo 2).

Por el contrario, para la variedad Yerua el mayor valor significativo en la actividad CAT se registró a 28 DDP, en comparación con 7,14 y 21 DDP (Figura 6.4A y Tabla 6 en Anexo 2).

Por su parte, la actividad APx mostró un comportamiento diferente al observado para CAT, en los distintos días de muestreo. En primer lugar, el modelo estadístico indicó que el factor ambiental no contribuyó al modelo (Tabla 2.4). En segundo lugar el análisis estadístico dio como resultado que en términos generales, la variedad Yerua presentó la mayor actividad APx en comparación con la línea 59-8-8-5, y los parentales Cr550 y Rossi (Figura 6.4B).

Considerando en conjunto los análisis bioquímicos descriptos, se observó que la línea 59-8-8-5 y el parental Rossi regulan el metabolismo de hidratos de carbono de manera similar durante la senescencia de la HB. A su vez, la variedad Yerua, la línea 59-8-8-5, y el parental Rossi presentaron un menor estrés oxidativo evidenciado por los niveles de MDA medidos y los cambios en la respuesta de enzimas antioxidantes a lo largo del periodo ensayado. Por lo tanto, nuestros resultados sugieren que durante el periodo de llenado de grano estas tres accesiones presentarían una HB más activa a nivel metabólico. Este hecho, podría estar indicando un retardo en la senescencia foliar en la variedad Yerua, la línea 59-8-8-5, y el parental Rossi a diferencia de lo encontrado para el parental Cr550.

Figura 6.4: (A). Análisis de la actividad CAT en HB de arroz. (B) Análisis de la actividad APx en HB de arroz. En amarillo se representa la línea 59-8-8-5, en rojo se representa el parental Rossi, en azul se representa el parental Cr550, en negro se representa la variedad Yerua. Los datos son la media ±DE de 5 réplicas biológicas (n=5). Los datos fueron analizados estadísticamente mediante la prueba paramétrica de ANOVA de dos vías. La barra vertical representa el día después de panoja (DDP) donde se registro el mayor o menor valor significativo observado de CAT según el test de Tukey (p<0.05). En la tabla insertada se muestra la variación de la actividad de APx para cada variedad durante el periodo ensayado. Letras diferentes indican diferencias estadísticas significativas según el test de Tukey (p<0.05).

4.4.4 Análisis de los componentes de rendimiento.

Entre los cuatros tipos de planta de arroz estudiadas, el parental Cr550 fue el que mostró mayor porcentaje de semillas vacías (%SV), seguido de la variedad Yerua y el parental Rossi, siendo la línea 59-8-8-5 la que presentó el menor porcentaje de esterilidad en las semillas (Figura 7.4A). Con respecto al peso total de grano, la variedad Yerua mostró el mayor valor en este parámetro medido. Mientras que, la línea 59-8-8-5 y sus respectivos parentales, Cr550 y Rossi no presentaron diferencias en el valor de peso total de grano (Figura 7.4B). En cuanto al carácter Número de Espiguillas por Panoja (NEP), la línea 59-8-8-5, la variedad Yerua y el parental Cr550 no mostraron diferencias cuando se las compara entre sí. Sin embargo, el parental Rossi presentó el menor valor de NEP, mostrando diferencias cuando se lo comparó con las otros tres tipos de planta (Figura 7.4C). Por otra parte, el análisis de otras características de planta como Peso de panoja (PP) y Peso de Mil Granos (PMG) (Figuras 7.4D y 7.4E), indicaron que la línea 59-8-8-5 presentó un comportamiento intermedio, comparada con sus respectivos parentales (Cr550 y Rossi), y la variedad Yerua. En este sentido, la variedad Yerua mostró los valores más alto de PP, y fue una de las plantas con mayor PMG (Figura 7.4D y 7.4E), mientras que el parental Rossi fue el de menor PP (Figura 7.4D). Sin embargo, este parental no se diferenció de la variedad Yerua en el valor de PMG obtenido. Por su parte, el parental Cr550 fue el de menor PMG, en comparación con las otras tres accesiones (Figura 7.4E). Finalmente, la línea 59-8-8-5 y la variedad Yerua, mostraron un comportamiento contrastante para el carácter NPP (Figura 7.4F), presentando la línea 59-8-8-5 el menor NPP, y la variedad Yerua el mayor NPP, respectivamente. Asimismo, los parentales Cr550 y Rossi, tuvieron un comportamiento intermedio para el carácter NPP cuando se comparan las cuatro accesiones estudiadas (Figura 7.4F).

Como un todo, la línea 59-8-5 seguida por la variedad Yerua, mostraron la mayor acumulación de caracteres positivos de rendimiento respecto de las restantes accesiones (Tabla 7 en Anexo 2).

72

Figura 7.4: Caracteres de rendimiento en arroz. (A) Porcentaje de semillas vacías (%SV). **(B)** Peso total de grano (P total). **(C).** Número de espiguillas por panoja (NEP). **(D)** Peso de panoja (PP). **(E)** Peso de mil granos (PMG). **(F)** Número de panoja por planta (NPP). Barras amarillas representan la línea 59-8-8-5, barras rojas representan el parental Rossi, barras azules representan el parental Cr550, barras negras representan la variedad Yerua. Los datos son la media ±DE de 10 réplicas biológicas **(n=10)**. Los datos de peso total, NEP y Peso de panoja fueron analizados estadísticamente mediante la prueba paramétrica de ANOVA. Letras diferentes indican diferencias estadísticas significativas según el test de Tukey (p<0.05). Para porcentaje de semillas vacías, NPP y PMG letras diferentes indican diferencias estadísticas según el test de Kruskal y Wallis (p<0.05).

4.4.5 Índice de Respuesta Fotosintética (IRF) durante el llenado de grano.

Siguiendo el punto de vista del IBR, con las normalizaciones calculadas para cada variable fotoquímica medida en la HB durante periodo de llenado de grano, se generaron gráficas de estrellas (Figura 8.4). Se pudo observar que la línea 59-8-8-5 presentó la mayor cantidad de biomarcadores fotosintéticos individuales con valores más bajos a 14, 21 y 28 DDP (Figuras 8.4B, 8.4C y 8.4D). Mientras que para el caso de los parentales Rossi y Cr550, estos mostraron la mayor cantidad de valores bajos normalizados a 7 y 21 DDP respectivamente, en comparación con las otras dos accesiones (Figuras 8.4A y 8.4D). Por su parte, la variedad Yerua mostró un comportamiento intermedio a la línea 59-8-8-5, y sus respectivos parentales Rossi y Cr550 durante el periodo de muestreo.

Figura 8.4: Gráfica de estrella para cada biomarcador fotosintético.

(A) 7 DDP. (B) 14 DDP. (C). 21 DDP. (D) 28DDP. En amarillo se representa la línea 59-8-8-5, en rojo se representa el parental Rossi, en azul se representa el parental Cr550, en negro se representa la variedad Yerua. Los datos son la normalización de 10 réplicas biológicas (n=10). Los parámetros OJIP utilizados para el análisis son resumidos en la Tabla 1 de la Introducción General.

Los valores más bajos de cada biomarcador fotosintético (Figura 8.4), contribuyeron a valores más bajos de IRF (Figura 9.4). Un valor bajo de IRF (mejor puntuación), se corresponde con mejores actividades fotosintéticas durante el periodo de senescencia de la hoja bandera. En este sentido, la variedad Yerua y la línea 59-8-8-5 presentaron valores de IRF sin grandes fluctuaciones, con mejor puntuación y menor variación entre días durante el periodo de ensayo, particularmente a 14 y 28 DDP. Estos resultados indicaron un funcionamiento de FSII más eficiente para la variedad Yerua y la línea 59-8-8-5, en comparación con Cr550 y Rossi. Además, estos resultados también indicaron que a menor IRF, la hoja mantiene una mejor capacidad a nivel del FSII y por lo tanto un retardo en la senescencia. Hecho que es consistente con los resultados del análisis bioquímico durante antes descriptos.

Figura 9.4: Índice de respuesta fotoquímica (IRF) a 7 DDP, 14 DDP, 21 DDP, 28 DDP. Barras amarillas representan a la línea 59-8-8-5, barras en rojo representan el parental Rossi, barras en azul representan el parental Cr550, barras en negro representan a la variedad Yerua.

4.4.6 Análisis de caracteres de rendimiento y la actividad fotoquímica de la hoja bandera en una población segregante F2 de arroz.

Una población segregante F2, proveniente del cruzamiento RossixCr550, se seleccionó mediante su comportamiento de crecimiento a TS, generando un conjunto de datos de crecimiento a TS con una función distribución gaussiana (Figura 2 en Anexo 2). La variabilidad genética de esta población se utilizó para caracterizar la relación entre el comportamiento del AF de la HB, y su relación con los caracteres de rendimiento durante la senescencia de la HB.

Durante el proceso de senescencia foliar de la HB, se observó una diferencia de los parámetros derivados de la prueba OJIP entre los distintos días de muestreo (Tabla 5.4). A su vez, los diferentes parámetros fisiológicos, comenzaron a separarse a 21 DPP. Mostrando el mayor distanciamiento a 28 DDP, y una mayor superposición a los 7 y 14 (Figura 10.4).

PERMANOVA (999 Permutaciones)					
Categoría	Métrica	Pseudo-F estadistico	p-valor		
DDP	Bray- Curtis	83,80	0,001		

Tabla 5.4: Análisis de los parámetros derivados de la prueba OJIP durante el periodo de senescencia. Los datos corresponden al valor de parámetros fotoquímicos tomados en la HB de 100 plantas F2 (n=100). Para el análisis de PERMANOVA se consideraron los días después de emergencia de la panoja (7, 14, 21 y 28 DDP), basado en las matrices de distancias de *Bray-Curtis*.

Figura 10.4: Ordenamiento multidimensional no métrico (MDS). El análisis se realizó en base a las distancias de Bray-Curtis obtenidas a partir de los parámetros fotosintéticos medidos en HB de 100 plantas F2 (n=100) Puntos negros representa a 7DDP, cruces celestes, representa a 14DDP, cuadros verdes representa 21DDP, triángulos rojos representa a 28DDP.

Por otra parte, la variabilidad y la influencia de los parámetros fotoquímicos fueron evaluadas mediante un análisis de componentes principales (ACP). En línea con esto, el análisis de ACP mostró diferencias en la distribución entre los parámetros derivados de la prueba OJIP durante el periodo de muestreo. En este sentido, se observó una mayor contribución de los parámetros RC/CS y ABS/RC con respecto a la dimensión uno (PC1), dimensión que explica la mayor variabilidad del modelo. Mientras que, los parámetros Dl_o/CS y Sm, representan los parámetros que menos contribuyen a PC1 (Figura 11.4).

Figura 11.4: Análisis de componentes principales (ACP). Distribución de variables en base a la contribución de los autovectores a los componentes principales 1 y 2 (PC1 y PC2). La escala de colores representa el porcentaje de contribución de los autovectores a los componentes principales. Los datos corresponden a los valores de parámetros fotoquímicos tomados en la HB de 100 plantas F2 (n=100) a los 7, 14, 21 y 28 DDP.

Para explorar y clasificar las relaciones entre las variables asociadas del FSII en la HB, y los componentes de rendimiento de la población segregante F2, se utilizó el estimador MIC (Reshef y col. 2011). Para ello, se analizaron 14 parámetros derivados de la prueba OJIP y 6 caracteres de componentes de rendimiento. Del análisis, se destacaron las primeras 3 relaciones con mejor índice MIC de los parámetros OJIP (Tabla 6.4). Se observó que el parámetros Sm se relacionó con 4 de los seis caracteres de cosecha analizados; SV%, NEP, PP, y PMG, siendo este parámetro el que presentó mayor cantidad de relaciones, dentro de las variables OJIP mejor clasificadas. A su vez, los parámetros ABS/RC, TR_O/CS_O, PI_{abs} y RC/CS, se ubicaron dentro de las variables con mejor clasificación según el criterio MIC, presentando relaciones únicas con: %SV, P.total, NEP y PP respectivamente (Tabla 6.4).

%SV				Peso total de grano (Gr)					
Parámetro	MIC	Clasificación MIC	Pearson r	Clasificación Pearson	Parámetro	MIC	Clasificación MIC	Pearson r	Clasificación Pearson
%SV	1,000	1	1,000	1	P. total	1,000	1	1,000	1
Sm	0,580	2	0,245	4	Dlo/CSo	0,582	3	0,177	6
ABS/RC	0,560	3	-0,105	15	TRo/CSo	0,469	6	0,156	7
phi(Po)	0,509	4	0,126	10	phi(Po)	0,456	7	-0,117	9
		NEP					PP (Gr)		
Parámetro	MIC	Clasificación MIC	Pearson r	Clasificación Pearson	Parámetro	MIC	Clasificación MIC	Pearson r	Clasificación Pearson
NEP	1,000	1	1,000	1	PP	1,000	1	1,000	1
Sm	0,509	3	0,088	9	RC/CS	0,508	4	0,056	17
PI abs	0,459	7	0,073	11	ABS/CSo	0,503	5	0,195	7
ETo/CSo	0,442	8	0,048	15	Sm	0,475	7	-0,060	16
NPP					PMG				
Parámetro	MIC	Clasificación MIC	Pearson r	Clasificación Pearson	Parámetro	MIC	Clasificación MIC	Pearson r	Clasificación Pearson
NPP	0,994	1	1,000	1	PMG	1,000	1	1,000	1
ABS/CSo	0,485	5	0,121	6	ETo/CSo	0,616	2	0,216	6
ETo/CSo	0,442	6	-0,002	19	Sm	0,564	3	-0,076	15
DIo/CSo	0,419	7	0,010	17	Dlo/CSo	0,519	4	0,108	10

Tabla 6.4: Relación entre variables fotosintéticas derivadas de la prueba OJIP y los componentes de rendimiento. En la tabla se muestran las tres primeras relaciones con mejor clasificación MIC de los parámetros OJIP. Para generar las tablas de clasificación según el criterio MIC, cada componente de rendimiento se analizó contra las 14 variables OJIP, y los 5 parámetros de rendimiento restantes. En la primera línea de cada sub-tabla, se muestra la relación de carácter de cosecha comparado contra sí mismo. Se puede observar en cada caso la coincidencia entre el coeficiente MIC y el r de Pearson.

Por último, se analizó el comportamiento de los parámetros OJIP que presentaron mejor relación en el análisis MIC, durante la senescencia de la HB. Se observó una caída continua en los valores de Sm y RC/CS durante el periodo de llenado de grano (Figuras 12.4A y 12.4B), mientras que para los parámetros Pl_{abs} y TR_O/CS_O, se observó una disminución en los valores de estos parámetros a partir de los 14 DDP (Figuras 12.4C y 12.4D). Por su parte, ABS/RC presentó aumentos en su valor a partir de los 14 DDP (Figura 12.4E). Los cambios en estos parámetros, sugirieron que la senescencia de la HB afecta distintos procesos asociados con la actividad del FSII. Por lo tanto, el uso de la fluorescencia transitoria de la clorofila a, es una herramienta alternativa al clásico método de cuantificar el estado fotosintético de la hoja mediante la determinación indirecta del contenido de clorofila (Stay Green, del Inglés), utilizado en cultivos para relacionar fotosíntesis y rendimiento.

Figura 12.4: Comportamiento de los parámetros OJIP durante la senescencia de la HB. Los datos representados son la media ±EE de 100 plantas F2 (n=100). Se muestran los parámetros OJIP con mejor clasificación MIC.

4.5 Discusión.

4.5.1 Selección y evaluación de germoplasma de arroz en estrés por bajas temperaturas.

La selección de material vegetal por sus características fenotípicas, ha sido utilizada como una metodología para obtener líneas con diferentes tolerancias a estreses ambientales, en distintas especies de plantas (Khush 1995; FAO 2017). En el presente capítulo, se evaluó el fenotipo de 8 accesiones de arroz mediante dos enfoques; la capacidad de crecimiento y la respuesta fotosintética en condiciones de TS (Figura 1.4 y Tabla 1.4).

Por un lado, el análisis del crecimiento de plántulas bajo condiciones de TS, permitiendo clasificar la tolerancia al estrés de las distintas accesiones según su capacidad de crecimiento (Figura 1.4). La medición de la tasa de crecimiento, permite dar un enfoque cuantitativo a la selección de materiales tolerantes, a diferencia de los índices visuales de clasificación reportados en Kim y Tai (2011). En este sentido, se han reportado clasificaciones de variedades de arroz como tolerantes y sensibles, midiendo la tasa de crecimiento bajo condiciones de crecimiento a TS (Gazquez y col. 2015).

Por otro lado, la fluorescencia de la clorofila se ha utilizado como criterio de selección de tolerancia a frío en maíz y soja (Fracheboud y col. 1999, Strauss y col. 2005). Por esta razón, con el objetivo de caracterizar la respuesta del arroz a las bajas temperaturas, se evaluó la capacidad fotosintética mediante la relación ^IPl_{abs}/^OPl_{abs} (Tabla 1.4). El Pl_{abs} es un parámetro que muestra el desempeño fotosintético, y puede ser usado como un indicador de la vitalidad biológica del FSII (Strasser y col. 1995). Durante el tratamiento de estrés, las plantas con valores altos de la relación ^IPl_{abs}/^OPl_{abs}, coincidieron con las accesiones que presentaron mayor tasa de crecimiento. Se ha demostrado que el uso de la relación de estados fotosintéticos adaptados a la luz y la oscuridad, es útil para diferenciar genotipos sensibles de tolerantes, en diferentes tipos de estrés (Flexas y col. 2002; Oukarroum y Strasser 2004). Los resultados obtenidos, sugieren una relación directa entre la capacidad de crecimiento y el comportamiento del FSII, cuando se somete a plantas a TS. Este doble enfoque de fenotipado, mediante crecimiento y capacidad fotosintética, permitió identificar a la línea 59-8-8-5 y la variedad Yerua como las accesiones más tolerantes a

estrés por frío y al parental Cr550 como una accesión sensible a las bajas temperaturas. Además, esto sugirió que ambos enfoques de fenotipado, o una combinación de ellos, podría conformar una herramienta útil y rápida para la selección de variedades de arroz tolerantes a frío.

4.5.2 Efecto del estrés por frío en el metabolismo primario de la planta.

Las bajas temperaturas producen altos requerimientos metabólicos en las plantas para mantener los procesos fisiológicos. Estos cambios en las condiciones del entorno, produce que las plantas reprogramen sus flujos metabólicos. Se ha reportado que los tratamientos de frío en plantas sensibles modifican la actividad metabólica de: catalasa, piruvato descarboxilasa, glucosa-6-fosfato deshidrogenasa, fosfoenolpiruvato y carboxiquinasa (Lyons 1973; Rodziewicz y col. 2014). Por otra parte, cambios en el metabolismo del almidón, han sido reportados como participes en la respuesta global al estrés por frío en plantas (Janská y col. 2010; Calzadilla y col. 2016; Gazquez y col. 2018).

A su vez, la acumulación de azúcares libres en hojas, ha sido reportado como una estrategia que contribuye a la protección de las plantas, frente al desbalance osmótico provocado por las bajas temperaturas (Xiong y Zhu 2002; Vargas y col. 2007; L.Chen y col. 2014). Sin embargo, la variación en los niveles de azúcares observados en nuestra condición de ensayo a TS, no mostraron relación directa con la tolerancia al estrés por frío. De las accesiones evaluadas, la línea 59-8-8-5 caracterizada como tolerante, no mostró cambios en los niveles de azúcares libres por efecto del tratamiento de TS. Mientras que, las restantes accesiones estudiadas presentaron aumentos en el contenido de azúcares libres, como consecuencia de las bajas temperaturas (Figura 2.4A), indistintamente de su clasificación como tolerante o sensible a TS. Si bien se ha demostrado que la acumulación de sacáridos correlaciona con la tolerancia al estrés por frío, principalmente en plantas que poseen mecanismos de aclimatación al frio como el trigo (Savitch y col. 2000). Sin embargo, existen otros estudios realizados en frío que conducen a resultados contrarios, donde una excesiva acumulación de azúcares solubles, podría ser desventajosa en plantas de trigo sometidas a condiciones de bajas temperaturas (Xu y col. 2013). Por lo tanto, podría pensarse que los cambios en los contenidos de sacáridos frente a la condición de estrés por frío, es planta específica y depende de las condiciones de ensayo a las cuales son sometidas.

A su vez, se ha reportado que en plantas cultivadas en condiciones de estrés por frío, se produce una transición del metabolismo del almidón. Donde este se dirige hacia un metabolismo destinado a acumular oligosacáridos, principalmente mediada por la hidrólisis del almidón (Savitch y col. 2000; Rodziewicz y col. 2014; Maruyama y col. 2014). Contrariamente a lo esperado, el incremento en el contenido de azúcares libres registrado en Rossi, Cr550 y Yerua bajo tratamiento a TS, no fue acompañado de una disminución en el contenido de almidón, bajo condiciones de TS (Figura 2.4B). Estos resultados estarían indicando que, el aumento de azúcares libres no sería como consecuencia de sacáridos producto del metabolismo de degradación del almidón. En línea con esto, algunos autores han reportado que una acumulación de carbohidratos solubles puede ser producto de la supresión de la fotosíntesis (Von Schaewen y col. 1990; Stitt y col. 1990), hecho que concuerda con los resultados obtenidos solamente para el parental Cr550 (Tabla 1.4 y Figura 2.4A).

Por otra parte, una alta acumulación de azúcares libres en hojas puede funcionar como parte de un importante mecanismo de respuesta antioxidante no enzimática frente a condiciones de estrés (Liu y col. 2015; Han y col. 2017). A su vez, se ha descripto que cuando los azúcares solubles se acumulan en hojas por acción de factores estresantes, estos cumplen un rol de molécula señal, que activa respuestas antioxidantes de tipo enzimáticas (Bolouri-Moghaddam y col. 2010). Siendo las defensas antioxidantes, un aspecto importante para contrarrestar la acumulación de EROS producidas por acción de las bajas temperaturas (Sharma y Dubey 2004; Sharma y col. 2012). En línea con esto, la acumulación de sacáridos en hojas fue acompañada de cambios en la actividad de las enzimas CAT y APx en los parentales Rossi y Cr550, como consecuencia del tratamiento TS (Figura 3.4A y 3.4B). En este sentido, cabe señalar que no en todas las accesiones estudiadas se pudo constatar una relación directa entre el metabolismo de hidratos de carbono y la actividad enzimática del sistema antioxidante, en respuesta a la condición de TS. Evidenciando nuevamente un posible efecto planta específico vinculado a los metabolismos estudiados en respuesta a la condición de estrés.

83

En conjunto, una parte de los resultados obtenidos concuerda con la hipótesis de que una alta acumulación de azúcares solubles inducida por las TS, podría suprimir la fotosíntesis y consecuentemente la transferencia de electrones. Esto a su vez, promovería la producción de EROS, desencadenado finalmente una respuesta enzimática anti-oxidante. Sin embargo, se deberían diseñar nuevos ensayos con metodologías más precisas, para poder determinar el rol fisiológico de la acumulación observada en los niveles azúcares, en las plantas arroz cultivadas en estrés por TS.

4.5.2 Comportamiento metabólico durante la senescencia de la HB y su relación con el llenado de grano.

El proceso de llenado de grano depende de las reservas de carbohidratos en los tallos antes del panojamiento, y de la posterior producción de carbohidrato generados durante la fotosíntesis después de la emergencia de la panoja. La removilización de fotosintatos, es un proceso complejo que involucra un balance entre la fuente (hoja) y el destino (panoja). En el arroz, entre el 60% y el 90% del carbono acumulado en la panoja proviene del metabolismo de la HB, siendo este órgano el que más contribuye al llenado de grano (Yoshida 1981; Nakano y col. 1995).

En este sentido, se realizaron mediciones de carbohidratos totales para determinar si los cambios en el destino, se reflejan en la actividad metabólica de la fuente. En las accesiones evaluadas, nuestros resultados mostraron diferentes comportamientos en el metabolismo de carbohidratos de la HB durante el llenado de grano (Figura 4.4). La variedad Yerua, mostró una acumulación inicial de azúcares que luego se sostuvo en el tiempo sin cambios desde 14 DDP a 28 DDP (Figura 4.4A). Siendo este aumento, prácticamente independiente de los cambios en el contenido de almidón. Ya que este no varió durante los 28 d de ensayo en la variedad Yerua (Figura 4.4B). Por otra parte, el parental Rossi y la línea 59-8-8-5 presentaron comportamientos metabólicos similares. Mostrando niveles estables de azúcares libres en HB durante los 28 d de llenado de grano y una acumulación temprana de almidón a los 14 DDP (Figuras 4.4A). 4.4B).

Por su parte, el parental Cr550 no pudo mantener los niveles de carbohidratos en la HB después de los 14 DDP (Figuras 4.4A y 4.4B). Asimismo, el parental Cr550

presentó un particular quiebre en los niveles de almidón a partir de 14 DDP, evidenciando un temprano agotamiento en las reservas de almidón (Figura 4.4B). En este sentido, el parental Cr550 mostró el mayor %SV (Figura 7.4A), pero el mismo NEP que presentaron la variedad Yerua y la línea 59-8-8-5 (Figura 7.4C). Esto indicaría que el esfuerzo inicial en acumular azúcares del parental Cr550, sumado a la repentina pérdida de almidón, no sería suficientes para satisfacer los destinos receptores en la panoja (Figuras 4.4A, 4.4B, 7.4A y 7.4C).

Por su parte, el parental Rossi mostró como estrategia adaptar el número de destinos a los requerimientos del metabolismo de carbohidratos, ya que presentó el menor NEP (Figura 7.2C) y un %SV intermedio (Figura 7.2A) respecto del resto de las accesiones. En este sentido, nuestros resultados indicaron que el mayor NEP podría ser la consecuencia de una mayor remoción de fotoasimilados de las hojas hacia los granos, causando la aceleración del proceso de senescencia de la hoja.

Particularmente, la línea 59-8-8-5 presentó el menor %SV (Figura 7.2A) y una gran acumulación inicial de almidón (Figura 4.4B). La acumulación temprana de almidón, y su posterior transporte hacia el grano, ha sido descripto en arroz como una estrategia que conduce a un mayor potencial de rendimiento (Yoshida 1981; Hirose y col. 2006), siendo el almidón el componente mayoritario en el grano de arroz (Bao 2018).

Los resultados obtenidos estarían indicando una fuerte interacción entre la fuente y destino, que incidiría en el metabolismos y en la removilización de carbohidratos durante el llenado de grano, hecho consistente con lo anteriormente reportado en arroz (Yang y col. 2001; Kashiwagi y col. 2006). Por otra parte, en diferentes especies de plantas, se ha postulado que cambios en los niveles de azúcares; poseen un rol en la integración de las señales ambientales, que pueden desencadenar el proceso de senescencia de la hoja (Wingler y col. 2006; Bolouri-Moghaddam y col.2010).

Durante el proceso natural de senescencia foliar que presentan los cultivos de ciclos anuales en la etapa de llenado de grano, se producen gran cantidad de EROS, generada principalmente por un deterioro de la actividad cloroplástica (Krupinska y col. 2012; Panda y Sarkar 2013). A su vez, la acumulación EROS genera la peroxidación de ácidos grasos poli-insaturados dando lugar a productos de oxidación como el MDA (Møller y Hansson 2007). Por lo tanto, se puede considerar que, la acumulación de

MDA es un indicativo de la senescencia foliar (Munné-Bosch y Alegre 2002). Nuestros resultados mostraron un efecto aditivo entre la edad de la hoja y la acumulación de MDA. En línea con lo mencionado anteriormente, la mayor acumulación de este indicador fue observada en el parental Cr550, seguida de la variedad Yerua. Por otra parte, línea 59-8-8-5 presentó la menor acumulación de este indicativo de estrés oxidativo junto con el parental Rossi (Tabla 4.4 y Figura 5.4). En este sentido, se ha reportado una menor acumulación del analito MDA en plantas que presentan retardos en la senescencia (Jiao Ji y Li 2003; Morsy y col. 2007).

Por otra parte, cambios en la actividad de sistemas antioxidantes enzimáticos en hojas, también han sido caracterizados en condiciones de senescencia foliar durante el llenado de grano (Kar y Mishra 1976). En línea con esto, el proceso de senescencia modificó significativamente la actividad CAT a los 28 DDP solamente en la variedad Yerua (Figura 6.4A). Sin embargo, APx mostró una conducta independiente de la edad de la hoja en todas las accesiones (Tabla 2.4). En este sentido, se observó un comportamiento diferencial de la actividad APx en la variedad Yerua. Presentando esta accesión valores de actividad APx mayores al resto de las tres accesiones durante los 28 d ensayados (Figura 6.4B). Diferentes autores han postulado que, el mantenimiento de una mejor capacidad antioxidante de la HB durante el llenado del grano minimiza la senescencia (Prochazkova y col. 2001; Tang y col. 2010). En este sentido, a pesar de que el parental Rossi y la línea 59-8-8-5 incrementaron la actividad CAT de manera tardía a 28 DDP, los resultados sugirieron que Yerua presentó una tendencia a mantener alto el nivel de actividad CAT durante todo el periodo de llenado de grano y un nivel alto de APx a tiempo largo, en comparación con las otras accesiones (Figura 6.4).

En relación con lo observado, la mayor acumulación de caracteres positivos de rendimiento presentados por la línea 59-8-8-5; un menor %SV y NPP y mayor NEP. Seguido de la variedad Yerua podría explicarse en base a una mejor actividad metabólica que retarda la senescencia de la HB, dando por consiguiente una hoja más activa durante el llenado de grano. En línea con lo mencionado anteriormente, el comportamiento metabólico estaría indicando que para la variedad Yerua, el retardo en la senescencia estaría vinculado en mayor medida, con una mejor eficiencia en los

86

sistemas enzimáticos antioxidantes. Acompañado por un metabolismo de hidratos de carbono que se comportó de manera estable en el tiempo ensayado.

Contrariamente a lo observado para la variedad Yerua. En la línea 59-8-8-5 el retardo en la senescencia estaría relacionado con una mejor regulación del metabolismo de carbohidratos, sin grandes cambios en la actividad del sistema antioxidante durante el período de llenado de grano. Este hecho posiblemente esté vinculado a un mejor desempeño fotosintético que genere menos EROS dentro del cloroplasto. Resultados que serán discutidos a continuación.

4.5.3 La eficiencia fotosintética durante el llenado de grano, y su relación con la senescencia de HB y las características de rendimiento.

La regulación de la senescencia foliar es un rasgo agrícola relevante, ya que este proceso podría modular una mayor eficiencia en la captura y transmisión de energía solar y un incrementando de la capacidad fotosintética (Gregersen y col. 2013). Como consecuencia, plantas con fenotipos de stay green (del inglés, permanencia verde) de la HB tendrían un rasgo que podría estar relacionado con el rendimiento de la planta (Thomas y Howarth 2000).

En el presente trabajo, se evaluó la capacidad fotosintética en diferentes accesiones para caracterizar fenotipos de senescencia. Para ello se utilizó la fluorescencia de la clorofila a, como una metodología alternativa a las clásicas medida de contenido de clorofila. A su vez, se diseñó un índice de respuesta fotosintética (IRF) en base a diferentes parámetros derivados de la prueba OJIP que se utilizaron a modo de biomarcadores. De las accesiones evaluadas, la línea 59-8-8-5 presentó en general, mejores biomarcadores fotosintéticos (valores más bajos) a lo largo del proceso de senescencia en comparación con las otras accesiones evaluadas. Principalmente, las mejores puntuaciones de los biomarcadores fotosintéticos fueron dadas por una mayor eficiencias del uso de la luz (Fv/Fm, psi(Eo), phi(Eo) y Plabs) a los 7,14 y 21 DDP (Figura 8.4A, 8.4B y 8.4C); un mayor número de centro Qa oxidados (Sm), durante 14-28 DPP (Figura 8.4C y 8.4D); una mayor capacidad del potencial eléctrico generado (ETo/RC, ETo/CS) y una menor disipación de energía (Dlo/RC, Dlo/CS) en la etapa final del llenado de grano 28 DDP (Figura 8.4D). Estos resultados sugieren que, la línea 59-8-

8-5 presentó un fenotipo de stay green durante el llenado de grano, caracterizado por un retardo en la senescencia debido al mantenimiento de la funcionalidad del FSII. A su vez, estos resultados son consistentes con el hecho de que esta accesión presentó buenas aptitudes en los componentes de rendimiento analizados (Figura 7.4). Por su parte, la variedad Yerua que también presentó buenos rasgos de rendimiento (Figura 7.4), demostró tener una eficaz regulación entre el potencial de transporte de electrones (ET₀/RC, ET₀/CS) y la disipación de energía (Dl₀/RC, Dl₀/CS), durante el llenado de grano (Figura 8.4). Resultados que concuerdan con la alta capacidad anti oxidante presentada por la variedad Yerua (Figura 6.4). Los resultados indicaron que la variedad Yerua regula de manera eficiente las reacciones fotoquímicas del FSII, ya que un aumento en la disipación de energía y una disminución del transporte de electrones, son eventos comúnmente asociados con una caída del rendimiento del FSII (Chen y col. 2014).

A su vez, en el presente estudio, se pretendió proporcionar un índice unificador del comportamiento fotosintético, acoplando todas las variables relevantes desde el punto de vista fotoquímico. En este sentido, el índice de respuesta fotosintético o IRF proporciona un único valor explicativo para ser potencialmente utilizado en programas de mejoras con el fin de identificar fenotipos de stay green. Para esta propuesta, se eligió el enfoque IBR (Beliaeff y Burgeot 2002; Broeg y Lehtonen 2006; Ferreiray col. 2015a; Ferreira y col. 2015b). Este enfoque permite la integración de un gran número de variables mediante un proceso de estandarización estadística, lo que permite una comparación entre variables con diferentes órdenes de magnitud. A su vez, esta metodología fue utilizada en caracterizaciones eco-fisiológicas para diferencias poblaciones de plantas más desarrolladas en lechos marinos (Duarte y col. 2017).

El IRF, mostró que las accesiones con mejor desempeño fotoquímico durante la senescencia de la HB, presentaron valores más bajos en los componentes parciales normalizados (Figura 8.4). Esto conduce a que el valor unificado IRF sea más bajo; lo que se traduce en un indicativo de un mejor desempeño global del FSII. Nuestros resultados indicaron que la variedad Yerua y la línea 59-8-8-5, mantuvieron valores de IRF con tendencia a la baja durante el llenado de grano, o lo que es equivalente a un mejor funcionamiento del FSII (Figura 9.4). La única excepción, se registró al 21 DDP

donde los parentales Rossi y Cr550 presentaron los valores más bajos de IRF. Estos resultados son consistente con la hipótesis de que un retardo en la senescencia, como producto de una mayor actividad fotosintética, podría conducir a un mayor potencial de rendimiento (Chen y col. 2010; Yemata y col. 2014; Gregersen y col. 2014). Esto concuerda con lo registrado en los parentales Rossi y Cr550, los cuales no pudieron mantener la capacidad fotosintética al final del ciclo de llenado de grano, y a su vez presentaron menores aptitudes en los componente de rendimiento (Figuras 7.4 y 9.4).

En resumen, el índice IRF hizo visible numéricamente, la vinculación de los procesos funcionales y estructurales del FSII. Por lo que su uso, potencialmente conduciría a seleccionar fenotipos de stay green con mayor precisión y exactitud. Por lo tanto, el IRF podría conformar una herramienta rápida y potencialmente eficaz para seleccionar fenotipos de stay green en arroz.

4.5.4 Incidencia de parámetros particulares de la prueba OJIP sobre la senescencia de la HB y su relación con los componentes de rendimiento.

Por último, para validar nuestra hipótesis acerca de la relación entre el retardo de la senescencia, el rendimiento fotosintético en la HB y los componentes del rendimiento, se determinó la capacidad del FSII en HB de una población segregante F2, durante el llenado de grano. El uso de poblaciones F2 son una herramienta de utilidad para detectar rasgos fenotípicos con alto grado de relación, en individuos altamente emparentados (Frankham 2015). El análisis permutacional mostró diferencias en el comportamiento fotosintético a lo largo del periodo de senescencia (Tabla 3.4), siendo estas diferencias comparativamente mayores a 28 DDP, tal como lo indicó el análisis de MDS (Figura 10.4). En base a este resultado podría pensarse que es crítico mantener alta la actividad FSII en las etapas finales de llenado de grano.

El ordenamiento basado en el análisis de ACP (Figura 11.4), mostró diferencias entre los procesos a nivel de CS, RC y las eficiencias cuánticas, evidenciando un comportamiento contrastante principalmente entre los flujos específicos. Adicionalmente, los parámetros ABS/RC y RC/CS contribuyeron de manera relevante al modelo, indicando que la actividad de los RC, es importante en el proceso de senescencia y regularía la absorción de energía que incide en el fotosistema (FS). Asimismo, en estudios realizados en trigo, se demostró que los RC siguen siendo funcionales en las HB senescentes, aunque se produzca una caída de la eficiencia del FSII o F_v/F_m, asociado con el cierre parcial de RC por acción de la senescencia (Verlag y col. 2002). En este sentido, el parámetro F_v/F_m ha sido reportado que carece de sensibilidad para detectar fenotipos de stay green (Zhang y col. 2015).

El rendimiento de grano, es un proceso que depende de múltiples factores. Por lo tanto, relacionarlo con conjuntos de datos complejos como los que brinda la prueba OJIP, requiere de herramientas estadísticas que posean capacidad de examinar todas las relaciones potencialmente interesantes, en un conjunto de datos independientes. En este sentido, los estimadores MIC (Reshef y col. 2011; Reshef y col. 2013; Albanese y col. 2018), permiten identificar y clasificar relaciones entre conjuntos de datos numerosos y complejos, sin restricción en la magnitud que posea el dato, y sin necesidad de ajustar los datos a supuestos de linealidad, o transformaciones de variables.

Los resultados de las asociaciones entre los componentes de rendimiento y los parámetros OJIP durante la senescencia de la hoja indicaron que el parámetro Sm se relaciona con la mayoría de los rasgos que definen a los componentes de rendimiento; %SV, NEP, PP, PMG (Tabla 4.4). El parámetro Sm, es una medida de la energía necesaria para el transporte de electrones, y de este modo cerrar todos los RC (Oukarroum y Strasser 2004), lo que equivalente a decir, que el Sm indica el estado funcional del complejos de quinonas (Q_a/Q_b). Por lo tanto, este parámetro indica la vitalidad de las plantas durante el proceso de senescencia. La caída de los valores de Sm durante el tiempo de llenado de grano (Figura 12.4A), indicó que el proceso de senescencia foliar está asociado a una menor eficiencia para transferir electrones. Se podría pensar que, regular el mantenimiento de este parámetro podría contribuir a seleccionar fenotipos, con potenciales de rendimientos elevados debido al alto grado de relación con los componentes de rendimiento (Tabla 4.4). Estos datos son consistentes a los reportados en líneas de arroz transgénico con mayor contenido en el complejo citocromo b6f (cytb6/f), donde cambios en las tasas de transporte de electrones fotosintéticos mejoraron la capacidad fotosintética y el rendimiento de grano (Yamori y col. 2016).

90

A su vez, cambios en el transporte de electrones más allá de Q_a durante la senescencia de la hoja bandera, determinan cambios en el Pl_{abs} (Zhang y col. 2010). Con respecto a Pl_{abs}, este parámetro se asoció con el NEP (Tabla 4.4). Esto último, sugiere que el tamaño de los destinos, determinados por NEP se asoció con un detrimento del FSII (Figura 12.4D) o un aumento de la senescencia de la hoja. Numerosos autores informaron que un número elevado de destinos o NEP, aceleran la senescencia de la HB en el arroz (Biswas y Mondal 1986; Nakano y col. 1995). En este sentido, se ha reportado que el parámetro Pl_{abs} mantiene valores altos durante el proceso de senescencia, en líneas de arroz de alto rendimiento (Zhang y col. 2015).

Por otra parte, la caída de los niveles de clorofila está relacionada directamente con la senescencia foliar. Sin embargo, no toda la clorofila es funcional o fotosintéticamente activa, y por lo tanto, no toda la energía que absorben estos pigmentos se utiliza en el destino para formar biomasa, ya que se disipa a nivel de cloroplasto. En este sentido, hay descriptos cinco tipos de stay green, de los cuales no todos son funcionales (Thomas yHowarth 2000). Mientras tanto, el parámetro ABS/RC (tamaño aparente de antena o energía absorbida por centro de reacción), está asociado con el contenido de clorofila en la hoja, ya que relaciona la energía absorbida por las clorofilas fotosintéticamente activas por RC. En este sentido, el aumento en ABS/RC, observado a partir de 21DDP (Figura 12.4E), coincide con la disminución de RC/CS, sin grandes cambios en la energía atrapada (TR₀/CS), al mismo día de muestreo (Figura 12.4B y 12.4C). Estos resultados sugieren, que el contenido de clorofila activa no disminuye, sino que hay una menor cantidad de RC activos, por lo que medir niveles de clorofila y asociarlo con la funcionalidad de la fotosíntesis podría conducir a errores de apreciación. A su vez estos parámetros, se relacionan con %SV, PP y P.total de grano. Por lo tanto, los resultados obtenidos en la población F2 se pueden atribuir a un retraso de la senescencia y la relación fuente-destino en el llenado de grano. A su vez, la prueba OJIP sería un método apropiado para caracterizar tanto la senescencia funcional asociada al rendimiento del FSII como la senescencia no funcional asociada a la caída del contenido de clorofilas.

4.6 Conclusiones

Se obtuvieron nuevos materiales de arroz tolerantes a frío mediante la selección de individuos con mayor capacidad de crecimiento en condiciones de TS. A su vez, se demostró que las accesiones más tolerante a frío poseen un fenotipos de mejor capacidad fotosintética evidenciado por un mayor valor de la relación ^IPl_{abs}/^OPl_{abs}. Por lo tanto, estos dos enfoques juntos podrían usarse como criterios de selección en proyectos de mejoramiento vegetal.

El análisis de los componentes de rendimiento, demostró que la línea 59-8-8-5 presentó las mejores aptitudes de rendimiento, seguida de la variedad Yerua. Por otro lado, se caracterizó la senescencia de la HB durante el llenado de grano mediante un enfoque combinado que involucró análisis bioquímicos y fisiológicos. El análisis del metabolismo de hidratos de carbono demostró la relevancia de la removilización de fotoasimilados y la contribución de este fenómeno en el llenado de grano de estos dos mecanismos. Particularmente la línea 59-8-8-5 estaría evidenciando una regulación más sincronizada en el metabolismo de hidratos de carbono. Lo que podría explicar en parte sus mejores aptitudes de rendimiento de grano.

A su vez, la acumulación de MDA, así como las perturbaciones en la actividad de CAT y APx indicaron que la variedad Yerua y línea 59-8-8-5 retardan la senescencia de la HB. En este sentido, los resultados obtenidos indicaron que la variedad Yerua, parecería tener mecanismos enzimáticos antioxidantes más activos que ayudan en la desintoxicación de EROS. Estos resultados sugieren que la línea 59-8-8-5 y la variedad Yerua retardan su senescencia, y presentan HB más activas en el tiempo regulando de manera más eficiente las vías metabólicas asociadas a procesos energéticos en el FSII.

En paralelo, se observó que la capacidad de mantener metabólicamente activa la HB coincidió con una mayor eficiencia del FSII. Esto fue evidenciado por los valores del índice IRF basado en biomarcadores fotosintéticos desarrollado en el presente trabajo de tesis, donde la línea 59-8-8-5 y la variedad Yerua presentaron una tendencia a mantener una alta actividad fotoquímica durante el llenado de grano. Estos resultados sugieren que fenotipos con capacidad de mantener una mayor eficiencia del FSII durante el llenado de grano poseen mayor potencial de rendimiento de grano.
Asimismo, el enfoque IRF demostró ser un método más eficiente para caracterizar fenotipos con stay green en arroz, en comparación con los métodos clásicos y los métodos basados en determinaciones bioquímicas.

Finalmente, del análisis de la población F2 se desprende que parámetros derivados de la prueba OJIP, como Sm y Pl_{abs}, que representan el potencial fotosintético, se relacionan estadísticamente con los componentes de rendimiento. A su vez, esto indicaría que la senescencia y el llenado de grano, estarían regulados en parte por la actividad de Q_a y Q_b. Lo anteriormente expuesto indicaría que componentes estructurales específicos del FSII como Q_a y Q_b pueden ser blancos para la mejora genética en búsqueda de mayores potenciales de rendimiento. Por otra parte se observó que determinar la eficiencia de los FS mediante el análisis OJIP para determinar fenotipos de stay green es una herramienta alternativa y más eficaz que la clásica medición de clorofilas mediante el índice SPAD.

4.7 Diagrama Resumen-Capítulo 2.

OBJETIVOPARTICULAR Seleccionar fenotipos de *O. Sativa* tolerantes a frío, mediante su capacidad de crecimiento y su respuesta fotosintética bajo condiciones de TS en estadio de plántula. A su vez, estudiar el comportamiento bioquímico y del FSII durante el llenado de grano y su implicancia con los potenciales de rendimiento.

RESULIADOS	Cr550	Rossi	Yerua	59-8-8-5	RESULTADOS	POBLACIÓN F2		
Crecimiento (13/21°C)	Aumenta				Pemanova	Efecto de los días sobre la actividad del FSII		
^I PI _{abs} / ^o PI _{abs}	Aumenta				MDS	Hay una cambio en la actividad del FSII a part de 21DDP con un mayor distanciamiento a 28		
Azúcares libres (HB)	14 DDP	= (7-28 DDP)	= (14-21DDP)	= (7- 28DDP)	АСР	RC y ABS/RC influyen en mayor medida en el proceso de senescencia		
Almidón (HB)	14 DDP	14 DDP	= (7-28 DDP)	14 DDP	MIC	Se encontraron relaciones entre la componentes estructurales y funcionales del FSII con los rasgos de rendimiento.		
MDA(HB, 21 DDP)	++++	+	+++	++				
CAT (HB)	= (7-28 DDP)	= (14-28 DDP)	28 DDP	= (14-28 DDP)	OJIP	La senescencia de la HB afecta distintos procesos asociados con la actividad del FSII.		
APx (HB)	+	+	++	+				
Rendimineto	+	++	+++	++++				
IRF (HB)	+	++	+	+++				

5- CAPITULO 3: Análisis de la arquitectura genética del Fotosistema II mediante un estudio de asociación del genoma completo (GWAS) y su relación con el llenado de grano.

5.1 Introducción.

Describir el fenotipo de plantas en respuesta al ambiente, ofrece una comprensión de la fisiología de las plantas con una perspectiva "omica" (Furbank y Tester 2011). Actualmente, en el mejoramiento de cultivos se vinculan tanto la secuenciación de ADN, así como la cuantificación precisa de los rasgos fenotípicos de las plantas. La convergencia entre las tecnologías para definir fenotipos, con poblaciones de plantas caracterizadas genéticamente, permite identificar genes específicos vinculados al fenotipo. En este sentido, la mejora vegetal asistida por marcadores moleculares, es una técnica poderosa que aplicada a la agricultura, permite obtener nuevas variedades de plantas con mejores aptitudes. La correlación entre características fenotípicas deseables, con marcadores genéticos específicos, es posible gracias a la implementación de modelos estadísticos que relacionan la variación de rasgos del fenotipo, con la variación en valores de marcadores genéticos.

Debido a los rápidos avances en las tecnologías de secuenciación de ADN, la fenotipificación de las plantas es ahora un cuello de botella en el avance de los rendimientos de los cultivos (Fahlgren y col. 2015). En línea con esto, la disponibilidad de datos arrojados por la prueba OJIP (Strasser y col. 1995), brinda información de cómo se absorbe y transporta la luz a nivel estructural y funcional dentro del FSII. Esto, permitiría analizar los determinantes genéticos de las numerosas propiedades del proceso fotosintético. A su vez, la prueba OJIP ofrece datos fisiológicos que son sumamente adecuados como rasgos cuantitativos para el mapeo genético mediante un análisis de GWAS. Asimismo, los mapeos asociativos basados en GWAS son un método que permite identificar QTLs. Dicha metodología, analiza la variabilidad del genoma en función de los SNPs, y determina su asociación estadística a un carácter fenotípico de interés.

Por otra parte, la fotosíntesis es un determinante importante de la producción vegetal, por lo tanto, es de particular interés en la mejora genética para aumentar la productividad (Harbinson y col. 2012). Consecuentemente, para mejorar la productividad en arroz, es necesario desarrollar nuevos cultivares con mejores eficiencias en la captación de la energía lumínica.

96

Finalmente, es importante destacar que existe una brecha en el conocimiento acerca de la estructura genética que controla los parámetros que caracterizan al proceso fotosintético en condiciones de crecimiento no estresantes, y su posible connotación con el rendimiento de grano.

El objetivo del presente capítulo, fue utilizar la variabilidad natural dentro de la especie *O. sativa* para descubrir regiones genómicas, o genes que regulan la capacidad de las plantas de arroz para asimilar la energía lumínica durante el período de crecimiento vegetativo, y analizar la vinculación de dicha capacidad con el proceso de llenado de grano.

5.2 Objetivo particular.

Estudiar la asociación entre el fenotipo de parámetros fisiológicos asociados al desempeño del Fotosistema II y el estado funcional del aparato fotosintético, con marcadores polimórficos del genoma de arroz que permitan identificar genes específicos vinculados a los caracteres fenotípicos de interés.

5.3 Materiales y métodos

5.3.1 Germoplasma utilizado para el análisis de GWAS.

Se utilizaron semillas provenientes de una colección de 435 accesiones pertenecientes al panel de diversidad de arroz RDP-1 (del inglés, Rice Diversity Panel 1, USDA, USA), que representan las cinco sub poblaciones principales de *O. sativa*. A su vez, dicho panel fue genotipado mediante una matriz de arroz de alta densidad (HDRA, del inglés) compuesta por 700.000 SNPs (McCouch y col. 2016). La colección de germoplasma de la que se extrajeron las accesiones utilizadas en este estudio se encuentran detalladas en la Tabla 1 del Anexo 3.

5.3.2 Diseño experimental y ubicaciones.

Semillas de la colección RDP-1 se sembraron en placas de Petri utilizando papel de filtro Whatman Nº5, hidratadas con 7,00 ml de una solución acuosa de carbendazim al 0.025% p/v. Luego las semillas se incubaron a 30°C en oscuridad durante tres días hasta la germinación. Las plántulas obtenidas pos germinación se transfirieron a recipientes plásticos de 750 ml, conteniendo extracto de suelo mineral como sustrato y cultivadas en invernadero en condiciones de inundación durante dos semanas. Posteriormente, 3 plántulas por accesión fueron trasplantadas en condiciones de campo a macetas que contenían extracto de suelo mineral.

Los experimentos de campo se realizaron en paralelo en dos locaciones, INTECH, Chascomús-Argentina (Ch), 35°37'23.0" S 57°59'39.0" O y EE INTA Concepción del Uruguay, Entre Ríos (ER). -32°29'24.9"S 58°20'55.9" O.

Ambos experimentos fueron realizados durante la temporada de primavera/verano 2017/2018 (octubre/marzo). Las condiciones térmicas de crecimiento para la ubicación de Ch fueron: media máxima de 24,1°C, media mínima de 12,0°C con episodios extremos de 32°C de máxima y 9,0°C de mínima. Las condiciones térmicas de crecimiento para la ubicación de ER fueron: media máxima de 31,0°C, media mínima de 15,7°C con episodios extremos de 38,5°C de máxima y 5,4°C de mínima. Las mediciones fisiológicas se realizaron en plantas de 11 semanas de edad en ambas locaciones.

5.3.3 Fenotipado mediante fluorescencia transitoria de la clorofila a (prueba OJIP) y SPAD.

Se realizó la prueba no invasiva OJIP (Strasser y col. 1995), implementando el protocolo denominado experimento de doble pulso, adaptado de Appenroth y col. 2001, utilizando un fluorómetro portátil HANDY PEA (Hansatech Instruments[®] Ltd., King's Lynn, Norfolk, Reino Unido).

Para ello, la última hoja completamente expandida fue pre adaptada a la oscuridad durante 20 min. Luego, las hojas se expusieron dos veces durante 1 s a un pulso de luz actínica en condiciones de saturación en un intervalo de 0,5 s de oscuridad entre cada pulso de luz.

98

La fracción de centros de reacción que reducen Q_b se calculó de la siguiente manera:

$$Q_bRC = [1 - (F_0 / F_M) (2^{\circ}pulso) / 1 - (F_0 / F_M) (1^{\circ}pulso)] = \Phi^*_{po} / \Phi_{po}$$

No-Q_bRC = 1-
$$\phi^*_{po}$$
 / ϕ_{po} = 1-Q_bRC

Los datos se procesaron a través del software PEAplus (Hansatech Instrument[®], Reino Unido) y Windows Excel (Microsoft WA, EEUU). Los términos utilizados en el análisis de la prueba OJIP se encuentran definidos en la Tabla 1 de la introducción general.

Para cuantificar el contenido total de clorofila en la hoja, se usó un medidor de clorofila (Cavadevices[®], Argentina). Para cada hoja, el contenido de clorofila se estimó en unidades SPAD como la media de cinco mediciones del contenido de clorofila en diferentes posiciones de la sección central en la última hoja completamente expandida.

5.3.4 Determinación de componentes de rendimiento.

Las semillas fueron cosechadas manualmente y procesadas con un descascarador JLGJ-45. Posteriormente, se evaluaron los siguientes componentes de rendimiento: Número de panojas por planta (NPP), peso de mil granos (PMG), número de espiguillas por panoja (NEP), porcentaje de granos fértiles (%F), porcentaje de granos infértiles calculado (%In) y peso de panoja (PP). Los cálculos de los componentes de rendimiento se encuentran definidos en la Tabla 2 del Anexo 3.

5.3.5 Mapeo por GWAS.

Los estudios de GWAS se realizaron sobre la base del conjunto de datos HDRA que consta de 700,000 SNP descriptos en McCouch y col. (2016). Los diferentes GWAS fueron realizados mediante el cálculo del modelo lineal mixto MLMM (del inglés, Multitrait Lineal Mixed Model), ejecutados en EMMAX vs beta 07Mar2010 (Z. Zhang y col. 2010). En cada caso, se tuvo en cuenta las correcciones de estructura de la población subyacente Q, al incluir dos matrices de parentesco K (hBN y hIBS) como covariable para modelar la covarianza. Estas matrices fueron implementadas modificando el modelo MLMM descripto por Segura y col. 2012 que tiene en cuenta la estructura de las poblaciones como cofactor.

Para todas las ejecuciones de GWAS, se uso la ecuación:

$$Y = \alpha X + \mu K + \epsilon$$

Donde Y representa al vectores fenotipo, X representa el vector genotipo (SNP); P es una matriz que contiene los residuos de las CP, μ -N(0, $\sigma^2 K$) y ϵ -N(0, σ^2_{el}). Donde el vector μ se distribuye independientemente del vector ϵ (error), K representa una matriz de corrección de efectos aleatorios de parentescos.

La tasa máximas de datos faltantes se fijó en 10% por accesión y 25% por SNP. Se aplicó un umbral de frecuencia de alelo menor de 0.05 (MAF <0.05) con alelos muy raros según Aulchenko y col. (2007). Los cálculos de identidad por matriz de estado se realizaron utilizando PLINK. El umbral de significación se estableció en p <1 x 10⁻⁷ para cada rasgo, utilizando el criterio de Bonferroni.

5.3.6 Estructura de la población.

El análisis de componentes principales (ACP) se realizó utilizando el software INFOSTAT (Universidad Nacional de Córdoba, Argentina; Di Rienzo y col. 2008), utilizando los SNP presentes en todas las accesiones. El comando choiceK.py se usó para identificar la complejidad del modelo maximizando la probabilidad marginal.

El desequilibrio de enlace de GWAS (LD) entre los marcadores en cada cromosoma, se estimó utilizando la comparación entre pares r² entre los SNP, que se calculó utilizando el comando --r² --ld-window 99999 --ld-window-r² 0 en PLINK69 (Purcell y col. 2007).

El umbral crítico utilizado fue de 0.2 (McCouch y col. 2016). Luego, para cada marcador significativo, se calculó el valor LD aguas arriba y aguas abajo en el mismo cromosoma como un valor LD promedio mediante el trazado de r² 1,000 SNP para cada cromosoma versus distancia genética entre marcadores. Se definieron ambos límites del intervalo de confianza como la intersección del "LD crítico umbral" y la curva ajustada de regresión r². Se utilizó un modelo no lineal descrito por Remington y Thornsberry. (2001) para ajustar la desintegración de LD. Este modelo estima LD (r²) utilizando la tasa de recombinación y el tamaño efectivo de la población, y se ajusta a un bajo nivel de mutación y tamaño de muestra (Sved 1971; Remington y Thornsberry 2001). La función R nls(), método de mínimos cuadrados no lineales se utilizó para ajustar el modelo.

5.3.7 Análisis estadísticos.

Los diagramas de caja, correlaciones y análisis GWAS se construyeron utilizando la media de cada fenotipo para cada accesión. Los gráficos de Manhattan y los diagramas cauntil-cuantil (QQ-plots) se realizaron utilizando el paquete qqman () en R. Los valores P para los coeficientes de correlación de Pearson se calcularon con una prueba t utilizando la función cor.test () en R.

El análisis de varianza se realizó para genotipo, ambiente y la interacción genotipoambiente utilizando la función lme4 () en R.

5.3.8 Análisis de genes candidatos.

La lista de los genes candidatos se construyó en base a los genes con notación funcional, utilizando la base de datos Rice Genome Annotation Project http://rice.plantbiology.msu.edu/cgi-bin/batch_download.pl.

Por otro lado, se realizó un análisis de enriquecimiento de los términos GO (del inglés, Gene Ontology), mediante la herramienta de análisis agriGO <u>http://systemsbiology.cau.edu.cn/agriGOv2</u> (Du y col. 2010). Para este análisis se utilizó la lista de genes candidatos derivados del mapeo de GWAS utilizando como referencia la base de datos del *O. sativa* MSU en agriGO. El análisis se realizó empleando el método estadístico de Fisher para detectar términos ontológicos significativamente enriquecidos. Los factores de transcripción (FT) identificados, se clasificaron según la herramienta web PInTFDB (del Inglés, the Plant Transcription Factor Database); <u>http://pIntfdb.bio.uni-potsdam.de/v3.0</u> (Pérez-Rodríguez y col. 2009).

5.4 Resultados

5.4.1 Panel de diversidad y estructura de la población.

El panel de diversidad de arroz RDP-1, consta de 435 accesiones endogámicas de O. *sativa* provenientes de 82 países diferentes (Zhao y col. 2011). En la Tabla 1 del Anexo 3, se encuentra el detalle del nombre, el número de identificador, el país de origen y la procedencia de la semilla correspondiente de cada accesión del RDP-1

De las 435 accesiones del RDP1, se cultivaron 355 accesiones (Tabla 3 en Anexo 3) en condiciones de campo en dos locaciones ambientales diferentes, Chascomús (Ch) y Entre Ríos (ER). Luego, plantas de estas 355 accesiones que fenológicamente se encontraban en estado vegetativo, fueron fenotipadas para rasgos fotosintéticos (RF) mediante la medición de la fluorescencia de la clorofila a (prueba OJIP) y el índice SPAD. Posteriormente, para el análisis de GWAS se utilizaron un total de 283 accesiones, en las cuales se encontraron representadas todas las sub poblaciones de arroz: 45 aus, 59 indica, 58 japónica templada, 76 japónica tropical, 8 aromática, 37 admixed (Tabla 4 del Anexo3).

Por otra parte, se utilizó un análisis de componentes principales (ACP) para describir la variación genética global en el RDP-1. La población presento una clara estructuración de las accesiones analizadas provocada por el factor ambiental (Figura 1.5). A su vez, el análisis ACP, indicó que los dos primeros ACP, explicaron un 95,17% de la variación genética dentro del panel (Figura 1.5). En línea con esto, se utilizaron los tres primeros componentes principales, asumiendo a estas componentes como vectores fenotípicos. Asimismo, se incluyeron dos matrices de kindship (hIBS y hBN) como covariable. Para de este modo, corregir la estructura de parentesco dentro de la población.

Figura 1.5: Estructura genética de la población. Análisis de ACP para los dos primeros CP. En celeste se representa el ambiente ER y en rosa se representa el ambiente Ch.

5.4.2 Análisis de la varianza y fenotípico.

Un total de 29 rasgos fotosintéticos (RF) fueron medidos en la población fenotipada del RDP-1, en dos ambientes diferentes (Ch y ER), donde 28 de estos rasgos fueron derivados del análisis de fluorescencia de clorofila, prueba OJIP (fenotipos de fluorescencia). Mientras que, el rasgo restante analizado fue el índice SPAD, que proporciona un valor del contenido de clorofila en hoja (Tabla 1.5). En este sentido, el análisis de la varianza (ANOVA) mostró efectos significativos en el componente genético que implica cada genotipo (G), el factor ambiental (A) y su interacción entre ambos factores (GxA) en la mayoría de los fenotipos analizados (Tabla 1.5). Sin embargo, los fenotipos δ (Ro) y RE_o/CS no mostraron efectos significativos con el factor **A**. Por su parte, el fenotipo PI_{total} tampoco presentó efecto significativo cuando se evaluó los efectos de **G**, **A** y su interacción **GxA** (Tabla 1.5).

Fenotipo Cálculo		Definición		Α	GxA
Fo		Fluorescencia máxima, centro de reacción del FSII abiertos.	***	***	***
Fm Fo/Fm		Fluorescencia máxima registrada. Fluorescencia relativa entre el valor inicial y máximo.	*** ***	*** ***	*** ***
F _v /F _m	(F _m -F ₀)/F ₀	Rendimiento cuántico máximo fotoquímico primario del	***	***	***
Sm	$\int_{Fo}^{Fm} (Fm - Ft) dt$	Área complementaria normalizada. Relaciona el número de transportadores de electrones por cadena transportadora de electrones, o energía necesaria para cerrar todos los centros de reacción.	***	***	***
Ν	$(Area/(F_m - F_0)) \times M_0 \times (1/VJ)$	Número de eventos de reducción y oxidación de Q_{a} entre el tiempo cero y $F_{\text{m}}.$	***	***	***
ABS/RC	M ₀ .(1/V _J).(1/TR ₀ /ABS)	Energía absorbida por centro de reacción o tamaño aparente de antena.	***	***	***
DI _o /RC	(ABS/RC) – (TR ₀ /RC)	Energía disipada por centro de reacción.	***	***	***
	$M_{0}\left(1/V_{0}\right)$	Energía atrapada por centro de reacción	***	**	***
ET _o /RC	$M_{0.}(1/V_{J}).(ET_{0}/TR_{0})$	Transporte de e por centro de reacción.	***	***	***
RE ₀ /RC	(M_0/V_J) . Ψ_{R0}	Transporte de e ⁻ transferidos desde Q _a -hasta el aceptor final del FSI por centro de reacción activo del FSII	***	***	***
psi(E ₀)	$\Psi_{\text{Eo}}\text{=}\text{ET}_{\text{O}}/\text{TR}_{\text{O}}\text{=}\text{1-V}_{\text{j}}$	Probabilidad de atrapar un exiton y mover un e ⁻ dentro de la cadena transportadora después de Q _A .	***	***	***
phi/E_)	(0 ET- /ABS	Pondimiento cuántico máximo do transporto do o-	***	***	***
δ(Ro)	$\delta(\text{Ro}) = \text{RE}_0/\text{ET}_0 = (1-V_i)/(1-V_j)$	Eficiencia de transporte de e ⁻ desde PQH ₂ al último aceptor del FSI.	***	ns	***
phi(R _o)	ϕ_{Ro} = RE ₀ /ABS	Rendimiento cuántico máximo del transporte de e ⁻ desde Q_a al aceptor final del FSI.	***	***	***
ABS/CS	(ABS/CS ₀) - (TR ₀ /CS ₀)	Energía absorbida por sección transversal.	***	***	***
DI₀/CS TR₀/CS	(TR ₀ /ABS).(ABS/Cs) (TR ₀ /ABS).(ET ₀ /TR ₀).(ABS/Cs)	Energía disipada por sección transversal Energía atrapada por sección transversal	*** ***	*** ***	***
ET ₀ /CS	$(ET_0/ABS) \times (ABS/CS)$	Transporte de e ⁻ por sección transversal	***	***	***
RE ₀ /CS	(RE ₀ /ABS).(ABS/CS)	Transporte de e ⁻ transferida desde Q _a ⁻ hasta el aceptor final del FSI por sección transversal.	***	ns	***
$\frac{\gamma RC}{(1-\gamma RC)}$	ChIRC/ChIAntenna=RC/ABS	YRC es la fracción de clorofila del centro de reacción y RC/ABS representa la contribución al Pl _{abs} de los centros de reacción de las clorofilas activas	***	***	***
$\frac{\varphi P0}{(1-\varphi P0)}$		Contribución de las reacciones lumínicas sobre la fotoquímica primaria.	***	***	***
$\frac{\Psi EO}{(1 - \Psi EO)}$		Contribución de las reacciones oscuras sobre la fotoquímica primaria.	***	***	***
Plabs	$\frac{\gamma RC}{(1-\gamma RC)} \cdot \frac{\varphi PO}{(1-\varphi PO)} \cdot \frac{\Psi EO}{(1-\Psi EO)}$	Índice del estado del FSII, es la energía que se conserva desde la absorción de un fotón por FSII hasta la reducción de la quinona B	***	***	***
PI_{total}	Plabs. $\frac{\delta R0}{(1 - \delta R0)}$	Índice total del estado del FSII, es la energía que se conserva desde la absorción de un fotón por FSII hasta la reducción de la quinona B	ns	ns	ns
DF_{abs}	Log(PI _{ABS})	Conservación de energía de fotones absorbidos por PSII para reducción Qa.	***	***	***
Q _b RC	φ [*] _{po} /φ _{po}	Centros de reacción que reducen Q _b .	***	***	***
1-Q _b RC	$1-Q_b$ reducing center	Centros de reacción que no reducen Q _b .	***	***	***
SPAD		Contenido de clorofilas en hoja	***	***	***

Tabla 1.5: Análisis de los fenotipos fotosintéticos. Cálculos y definiciones de los fenotipos de fluorescencia (Strasser y col. 2000), índice SPAD y análisis de la varianza ANOVA del ambiente (A), genotipo (G) e interacción genotipo-ambiente (GxA). Los asteriscos indican diferencia entre los factores, *p< 0.05; **p< 0.01; ***p< 0.001; ns indica que no hay diferencias significativas entre los factores.

5.4.2 Análisis de los rasgos fotosintéticos mediante GWAS.

En el presente estudio, un total de 388.084 SNPs con MAF ≥ 5% fueron identificados, dentro de los 12 cromosomas de arroz. La intersección del análisis de las matrices hIBS y hBN, dio como resultado un total de 110 asociaciones significativas entre SNPs y RF (SNP-RF) identificadas. A su vez, 11 de estas asociaciones significativas SNP-RF correspondieron a las plantas cultivas en Ch, mientras que, 99 asociaciones significativas SNP-RF pertenecieron a plantas cultivadas en las condiciones ambientales de ER (Tabla 2.5). En línea con esto, los SNPs identificados en el presente estudio fueron únicos para cada ambiente, ya que de los SNPs encontrados para Ch no fueron localizados en el ambiente ER y viceversa (Tabla 4 en Anexo 3). Asimismo, de los RF analizados en ambos ambientes, solo los fenotipos de fluorescencia presentaron asociaciones significativas con SNPs (Tabla 2.5 y Tabla 4 en Anexo 3). En línea con esto, se detectaron 6 fenotipos de fluorescencia significativos para el ambiente Ch (Tabla 2.5). Mientras que para el ambiente ER, un total de 13 fenotipos de fluorescencia fueron asociados significativamente a algún SNP (Tabla 2.5). Del total de los fenotipos de fluorescencia que registraron asociaciones significativas con SNPs, 5 de ellos, F_o/F_m, F_v/F_m , DI_o/RC , $\delta(Ro)$ y PI_{abs} fueron identificados en ambos ambientes (Tabla 2.5). En este sentido, las plantas cultivadas en el ambiente Ch mostraron un valor medio menor en los fenotipos F_v/F_m y Pl_{abs}, con respecto al ambiente ER. Siendo estas diferencias de 7,23% y 57,27% respectivamente, cuando se compara ambos ambientes (Figuras 2.5A y 2.5B). Sin embargo, para los fenotipos F_0/F_m , DI₀/RC, y δ (Ro) las plantas cultivadas en el ambiente Ch mostraron valores medios mayores comparadas con las plantas cultivadas en el ambiente ER. Siendo estas diferencias de 26,17% para el fenotipos F_o/F_m , 31,55% para el fenotipo DI_o/RC, y 31,77% para el fenotipo δ (Ro) (Figuras 2.5A y 2.5B).

A su vez, entre los 110 SNPs identificados para ambos ambientes, 70 SNPs se asociaron a solo un fenotipo de fluorescencia (Tabla 4 en Anexo 3). En este sentido, de las 11 asociaciones encontradas para Ch, los fenotipos F_o/F_m , F_v/F_m , DI_o/RC (energía disipada por centro de reacción) y DF_{abs} comparten el mismo SNP; SNP-5.11015630 (Tabla 4 en Anexo 3). Mientras que las 6 asociaciones identificadas para el fenotipo $\delta(Ro)$ fueron únicas para este fenotipo, así como también el único SNP identificado

para el fenotipo Pl _{abs} correspondió solamente a este parámetro (Tabla 2.5 y Tabla 4 en	
Anexo 3).	

Fenotipo	Cromosoma	Nº de SNP	Ambiente		
		significativos			
Fo/Fm	5	1	Ch		
F _v /F _m	5	1	Ch		
Dl₀/RC	5	1	Ch		
DFabs	5	1	Ch		
δ(Ro)	3, 4, 5, 6, 7, 8	6	Ch		
Plabs	9	9 1			
Fo/Fm	6	1	ER		
F _v /F _m	6	1	ER		
Sm	1,2,3,4,5,6,10,12	9	ER		
N	1,2,3,4,5,6,7,8,10,11,12	24	ER		
ET₀/RC	3,8,11	3	ER		
Dl₀/RC	1,2,3,4,5,8,10,11,12	24	ER		
RE₀/RC	1,2,3,4,5,7	6	ER		
DI₀/CS	1,2,3,4,6,8,10,11	10	ER		
δ(Ro)	3,6,8,10	5	ER		
Plabs	1	1	ER		
Pltotal	2,3,5,6,9	6	ER		
Q₅RC	1,3,4,7,12	8	ER		
1-Q _b RC	1	1	ER		

Tabla 2.5: Resumen de las asociaciones significativas entre SNPs y fenotipos de fluorescenciade la clorofila en los ambientes Chascomús (Ch) y Entre Ríos (ER).

Figura 2.5: Diagramas de cajas de los fenotipos de fluorescencia con asociaciones significativas en el análisis de GWAS. La línea dentro de la caja representa el valor medio de cada fenotipo, la parte superior e inferior de la cada representa el 1^{er} y 3^{er} cuartil. Los círculos abiertos representan datos atípicos dentro del conjunto de datos. **(A).** Cajas grises fenotipos correspondientes al ambiente Ch. **(B).** Cajas blancas fenotipos correspondientes al ambiente ER.

Por otra parte, para el ambiente ER, 63 SNPs se encontraron asociados a un único fenotipo de fluorescencia respectivamente (Tabla 4 en Anexo 3). A su vez, al igual que para el ambiente Ch, el fenotipo Pl_{abs} se asoció a un único SNP, pero en este caso la asociación fue identificada en el cromosoma 1 (SNP-1.35479825). Diferenciándose de este modo de la asociación identificada para el ambiente Ch para el mismo fenotipo.

Por otra parte, 12 SNPs y 4 SNPs se asociaron conjuntamente a dos y tres fenotipos de fluorescencia respectivamente (Tabla 4 en Anexo 3). Entre los 28 fenotipos de fluorescencia analizados, el número de eventos de reducción y oxidación de Q_a entre el tiempo cero y la fluorescencia máxima (N), y la energía disipada por centros de reacción activos del FSII (DI_o/RC), se asociaron con el mayor número de SNPs (24 SNPs para ambos fenotipos).

Asimismo, un total de 69 QTL fueron identificados para 14 de 29 RF analizados en los dos ambientes ensayados, donde los QTL identificados pertenecieron a tres clases. Una primer clase de QTL se definió para los casos donde un solo SNP se asoció a un único fenotipo, una segunda clase de QTL se identificó cuando un SNPs se asoció con dos o más fenotipos (QTL multifenotipo). Por último, una tercer clase de QTL encontrado, correspondió a la situación donde dos o más SNPs separados por una distancia de ~ 55 kb (Ortiz y col. 2017) se asociaron a un fenotipo en particular (QTL multi-SNP). En línea con esto, para el ambiente Ch se identificó un único QTL multifenotipo en el cromosoma 5 (Figura 2.5A), donde un único SNP se asoció a los fenotipos F_o/F_m, F_v/F_m, DI/RC y DF_{abs} (SNP-5.11015630).

Figura 3.5: Gráficas de Manhattan para los fenotipos significativos encontrados mediante GWAS para el ambiente Ch. (A). Gráfica de Manhattan para los fenotipos F_o/F_m , F_v/F_m Dl_o/RC y DF_{abs}, el recuadro en rojo identifica el QTL multifenotipo. (B). Gráfica de Manhattan para los fenotipos $\delta(R_o)$ y Pl_{abs}. Cada SNP está representado por un punto gris o negro. En el eje x se muestran cada uno de los 12 cromosomas de arroz, el eje y representa el logaritmo negativo en base diez (-log₁₀) de cada valor p correspondiente a un SNP particular. La línea azul que corta el eje y representa el valor umbral de significancia para cada SNP.

Por su parte, para el ambiente ER se identificaron 4 QTL multifenotipos en los cromosomas 2, 3, 4 y 6 (Figura 4.5A), donde los fenotipos RE_o/RC, N y Sm compartieron el SNP SNP-2.18755532. Al mismo tiempo, los fenotipos δ (Ro), DI_o/CS y DI_o/RC compartieron el SNP-3.7631091. A su vez, el fenotipo DI_o/RC compartió el SNP-4.3532129 con los fenotipos N y RE_o/RC. Finalmente, los fenotipos F_o/F_m, F_v/F_m y δ (Ro) se asociaron conjuntamente al SNP-6.21617771 (Figura 3.5A).

Además, otros 4 QTL multifenotipo fueron identificados para Sm y N en los cromosomas 1, 4, 5 y 10 (SNPs 1.32181171, 4.19830956, 5.13606968 y 10.2073752). A su vez otro QTL multifenotipo de interés fue el encontrado para los fenotipos de disipación de energía Dlo/RC y Dlo/CS, en el cromosoma 11; SNP11.9898109 (Figura 3.5A). Por último, 5 QTL multi-SNP fueron detectados, 3 de estos se vincularon al fenotipo Dl_o/RC en los cromosomas 1, 3 y 5; y dos para el fenotipo Q_bRC en los cromosomas 7 y 11. Los restantes QTL encontrados correspondieron al tipo de un único SNP por fenotipo (Figura 4.5B).

Figura 4.5: Gráficas de Manhattan para los fenotipos significativos encontrados mediante GWAS para el ambiente Ch. Cada SNP está representado por un punto gris o negro. En el eje x se muestran cada uno de los 12 cromosomas de arroz, el eje y representa el logaritmo negativo en base diez (-log₁₀) de cada valor p correspondiente a un SNP particular. La línea azul que corta el eje y representa el valor umbral de significancia para cada SNP. (A). Gráfica de Manhattan para los fenotipos Fo/Fm, Fv/Fm, $\delta(R_0)$, Dlo/RC, Dlo/CS, REo/RC, N y Sm, el recuadro en rojo y la línea de puntos naranja identifican QTL multifenotipo. El recuadro en verde identifica a los QTL multi-SNP (B). Gráfica de Manhattan para los fenotipos ETo/RC, Plabs, Pltotal, QbRC y 1- QbRC. El recuadro en verde identifica a los QTL multi SNP

5.4.3. Análisis de enriquecimiento de términos GO e identificación de genes candidatos.

Para identificar genes candidatos, se utilizó la función de descarga de datos genómico de "Rice AnnotationProjet" <u>http://rice.plantbiology.msu.edu/index.shtml</u>, basados en el criterio de anotación de genes MSU7. Para este fin, se utilizo la distancia de desequilibrio (LD) calculada (Figuras 4, 5 y 6 en Anexo 3) para estipular la selección de genes candidatos.

A partir de la lista total de genes candidatos identificados (Tabla 5 en Anexo 3), se realizó un análisis de enriquecimiento de términos GO. Los principales términos GO inducidos comprendieron a funciones moleculares y procesos biológicos (Tabla 3.5). En relación a las funciones moleculares, principalmente se observó significancia en términos GO relacionados a biosíntesis celular (GO: 0044249). Además, 3 de los 7 términos GO se asociaron a procesos de regulación a nivel metabólico, expresión génica y procesos macromoleculares (GO: 0019222, GO: 0010468, GO: 0060255). A su vez, procesos relacionados a la muerte celular, biosíntesis celular de macromoléculas, y biosíntesis de macromoléculas (GO: 0008219, GO: 0034645, GO: 0009059) también mostraron enriquecimiento significativo.

Con respecto a los términos más representados vinculados a procesos biológicos, los mismos se encontraron relacionados a procesos de hidrólisis de ácidos, grupos fosfatos y éster (GO: 0016817, GO: 0017111, GO: 0016818, GO: 0016462 y GO: 0016788) y unión a nucleótidos (GO: 0000166).

113

Termino GO	Ontología	Descripción	Número de entradas	Número anotado	p-valor
0044249	Función Molecular	Biosíntesis celular	13	890	1,40x10 ⁻⁶
0019222	Función Molecular	Regulación metabólica	6	188	1,80x10 ⁻⁵
0010468	Función Molecular	Regulación de expresión de genes	6	188	1,80x10 ⁻⁵
0060255	Función Molecular	Regulación de procesos metabólico macromoleculares	6	188	1,80x10 ⁻⁵
0008219	Función Molecular	Muerte celular	8	478	6,70x10 ⁻⁵
0034645	Función Molecular	Biosíntesis celular de macromoléculas	9	890	9,30x10 ⁻⁴
0009059	Función Molecular	Biosíntesis de macromoléculas	9	890	9,30x10 ⁻⁴
0016817	Proceso Biológico	Actividad hidrolasa de ácidos anhidros	7	109	3,80x10 ⁻⁸
0017111	Proceso Biológico	Actividad nucleosido-trifosfatasa	7	109	3,80x10 ⁻⁸
0016818	Proceso Biológico	Actividad hidrolasa de ácidos anhidros fosforados	7	109	3,80x10 ⁻⁸
0016462	Proceso Biológico	Actividad piro fosfatasa	7	109	3,80x10 ⁻⁸
0000166	Proceso Biológico	Unión a nucleótidos	29	3490	5,50x10 ⁻⁸
0016788	Proceso Biológico	Actividad hidrolasa sobre enlaces ester	6	258	1,00x10 ⁻⁴

Tabla 3.5: Análisis de enriquecimiento de términos GO en base a los genes candidatos identificados. Se muestran los términos GO estadísticamente más representativos. El análisis GO describe los productos genéticos en términos de sus procesos biológicos asociados, y funciones moleculares independientes de las especies.

Los principal término GO inducido fueron la biosíntesis celular, GO: 0044249 y la unión a nucleótidos, GO: 0000166 (Tabla 3.5). En función a los genes vinculados a estos términos GO más representativos, se eligieron 38 genes candidatos (Tabla 4.5), de los 157 genes candidatos totales encontrados. Una descripción del total de los 157 genes candidatos identificados se puede encontrar en la Tabla 5 del Anexo 3.

De los 38 genes candidatos seleccionados mediante el análisis de GO (Tabla 4.5), se destacaron 8 genes encontrados que correspondieron a genes vinculados con vías relacionadas con la respuesta de estrés biótico y abiótico (LOC Os01g02250, LOC Os03g59600, LOC Os05g44340, LOC Os06g30430, LOC Os08g28470, LOC_Os09g26620, LOC_Os12g03750, LOC_Os12g30150). Además, 5 genes fueron identificados como factores de transcripción (LOC Os03g17130, LOC Os03g20900, LOC_Os05g23780, LOC_Os05g44400, LOC_Os10g39030), un gen fue identificado con notación asignada al Ciclo de Calvin (LOC_Os05g44922); y un gen que codifica a nivel cloroplástico (LOC Os01g55870). Asimismo, tres genes identificados se encuentran vinculados a funciones asociadas con caracteres de grano (LOC_Os05g02670, LOC_Os05g44560 y LOC_Os10g39030); y finalmente se identificó un gen con notación funcional vinculada a procesos de senescencia (LOC_Os05g44970). Basado en estos resultados, se podría decir que la arquitectura genética de la funcionalidad de los FSII, puede ser asociada a nivel genético con procesos vinculados al llenado de grano entre otros procesos.

SNP	Términos GO	ID	Anotación funcional	Ambiente	Fenotipo
SNP-9.16154636	GO: 0000166	LOC_Os09g26620	Auxinrepressedprotein	Chascomús	Plabs
SNP-5.920701	GO: 0000166	LOC_Os05g02670	Proteína que contiene el dominio motor de Kinesina	Chascomús	δ(Ro)
SNP-10.20737522 SNP-3.11832167 SNP-3.11839954 SNP-3.11840203	GO:0044249	LOC_Os10g39030	Dominio homeobox	Entre Ríos	Sm N DIo/RC
SNP-5.13606968	GO:0044249	LOC_Os05g23780	Familia de genes OsMADS70 - MADS-box con M-alphatype-box expresado	Entre Ríos	Sm N
SNP-1.32181171	GO:0044249	LOC_Os01g55870	Precursor cloroplastico de la Corismatomutasa	Entre Ríos	Sm N
SNP-1.32181171	GO:0044249	LOC_Os01g55890	Quinasa de aminoácidos	Entre Ríos	Sm N
SNP-5.26255003. SNP-5.26255003	GO:0044249 GO: 0000166	LOC_Os05g45340 LOC_Os05g45340	Proteína de union a ATP	Entre Ríos	DIo/RC
SNP-5.25755857	GO:0044249	LOC_Os05g44360	Oligosacarido Transferasa	Entre Ríos	DIo/RC
SNP-3.9505313	GO:0044249	LOC_Os03g17120	biosíntesis de arginina, proteína bifuncional argJ	Entre Ríos	QbRC
SNP-3.9505313	GO:0044249	LOC_Os03g17130	Factor de transcripciónbHelix- loop-helix	Entre Ríos	QbRC
SNP-5.25752878 SNP-5.25755857	GO:0044249	LOC_Os05g44390	peptidil-tRNA hidrolasa	Entre Ríos	DIo/RC
SNP-5.25752878 SNP-5.25755857	GO:0044249	LOC_Os05g44400	Dominio GATA dedo de zinc	Entre Ríos	DIo/RC
SNP-3.11913691 SNP-3.11909250	GO:0044249	LOC_Os03g20970	Trasnportado de fosfo- lípidos del tipo ATPasa 1	Entre Ríos	DIo/RC
SNP-3.11832167 SNP-3.11840203 SNP-3.11839954	GO:0044249	LOC_Os03g20900	Factor de trascripción Myb	Entre Ríos	DIo/RC
SNP-1.672866	GO: 0000166	LOC_Os01g02250	RGA-1	Entre Ríos	DIo/RC
SNP-1.2950882	GO: 0000166	LOC_Os01g06240	Proteína quinasa	Entre Ríos	DIo/RC
SNP-1.3777578	GO: 0000166	LOC_Os01g07870	Proteínas de la familia de transportadores tipo ABC	Entre Ríos	DIo/RC
SNP-1.20577084	GO: 0000166	LOC_Os01g36920	RNA helicasa DEAD-box dependiente de ATP	Entre Ríos	N 1-QbRC
SNP-1.32181171	GO: 0000166	LOC_Os01g55880	Proteína de unión al do minio hemimetilado del DNA	Entre Ríos	Sm N
SNP-2.18755532	GO: 0000166	LOC_Os02g31290	AML1	Entre Ríos	REo/RC Sm N
SNP-3.6370379	GO: 0000166	LOC_Os03g12150	Precursor de proteína quinasa de receptor Serina/treonina	Entre Ríos	N

SNP	Términos GO	ID	Anotación funcional	Ambiente	Fenotipo
SNP-3.33035702	GO: 0000166	LOC_Os03g59600	RhoGTPasa1 Mitocondrial	Entre Ríos	DIo/RC
SNP-3.33935702	GO: 0000166	LOC_Os03g59620	Fosfolipasa de la familia patatin	Entre Ríos	DIo/RC
SNP-5.13606968	GO: 0000166	LOC_Os05g23800	Motivo de reconocimiento de RNA	Entre Ríos	Sm N
SNP-5.25752878 SNP-5.25755857	GO: 0000166	LOC_Os05g44340	Proteína de choque térmico (heat shock protein 101)	Entre Ríos	DIo/RC
SNP-5.25860213 SNP-5.25870238	GO: 0000166	LOC_Os05g44560	Proteína que contiene el dominio motor de Kinesina	Entre Ríos	DIo/RC
SNP-5.26037406 SNP-5.26067844	GO: 0000166	LOC_Os05g44922	6-fosfofructoquinasa	Entre Ríos	DIo/RC
SNP-5.26037406 SNP-5.26067844	GO: 0000166	LOC_Os05g44930	Receptor del tipo proteína quinasa	Entre Ríos	DIo/RC
SNP-5.26067844	GO: 0000166	LOC_Os05g44940	Proteína que contiene dominio de proteína quinasa	Entre Ríos	DIo/RC
SNP-5.26067844	GO: 0000166	LOC_Os05g44970	Precursor de receptor de senescencia del tipo proteína quinasa de Serina/Treonina	Entre Ríos	DIo/RC
SNP-6.17586886	GO: 0000166	LOC_Os06g30430	Proteína de resistencia a enfermedades RPM1	Entre Ríos	N
SNP-8.17383104	GO: 0000166	LOC_Os08g28470	Proteína de resistencia a enfermedades RPM	Entre Rios	Ν
SNP-11.9898109	GO: 0000166	LOC_Os09g02400	Región RNP de unión a RNA	Entre Rios	DIo/RC
SNP-9.8690732	GO: 0000166	LOC_Os09g14660	Lectinas de leguminosas que contienen proteínas del dominio beta	Entre Ríos	Pitotal
SNP-12.1522824	GO: 0000166	LOC_Os12g03750	Familia de proteínas Rica en Leucina	Entre Ríos	DIo/RC
SNP-12.18066755	GO: 0000166	LOC_Os12g30150	CAMK_CAMK_del tipo 47 - CAMK incluye proteínas quinasas dependientes de calcio/calmodulina	Entre Rios	QbRC
SNP-12.18757106 SNP-12.19687181 SNP-12.19687181	GO: 0000166	LOC_Os12g31200 LOC_Os12g32680	Dominio que contiene NB-ARC	Entre Ríos	QbRC
SNP-12.19687181	GO: 0000166	LOC_Os12g32670	Proteína de resistencia CC-NBS-LRR	Entre Ríos	Ν

Tabla 4.5: Resumen de los genes candidatos identificados mediante el análisis de GWAS vinculados a los términos GO más representativos.

5.4.4 El análisis fenotípico reveló efectos ambientales y relaciones entre los rasgos de panoja y parámetros del FSII.

Al final del período de cultivo de cada accesión del panel en ambos ambientes (Ch y ER), se cosecharon las plantas manualmente y se estimaron 6 rasgos de panoja vinculados a los componentes de rendimiento; Número de Panojas por Planta (NP), Peso de Mil Granos (PMG), Porcentaje de Fertilidad calculado (%F), Porcentaje de Infertilidad calculado (%In), Número de Espiguillas por Panoja (NEP) y Peso de Panoja (PP).

Los rasgos de panoja mostraron diferente distribución dependiendo del ambiente en cual fueron cultivadas las accesiones del panel RDP-1. Las plantas cultivadas en las condiciones ambientales de ER mostraron mayor NP, NEP, %In y PP, comparadas con las plantas cultivadas en las condiciones ambientales de Ch; siendo estas diferencias de 15,1%, 45,6%, 26,1% y 27,4% respectivamente (Figura 5.5). Mientras que, los rasgos PMG y %F fueron un 10,3% y 19,80% menores para en ambiente ER comparado con el ambiente Ch (Figura 5.5).

A su vez, se calcularon correlaciones entre los fenotipos de fluorescencia vínculos a los genes candidatos identificados (Tabla 4.5), y los rasgos de panoja en ambas condiciones ambientales (Ch y ER). En este sentido, para el ambiente Ch, el rasgo NP presentó una correlación negativa con el fenotipo Pl_{abs} y una correlación positiva con el fenotipo δ (Ro). A su vez, se observó una correlación negativa entre el fenotipo δ (Ro) y el rasgo NEP (Figura 6.5).

Por otra parte, el análisis de correlaciones para el ambiente ER reflejó que en general, las correlaciones entre fenotipos de fluorescencia y rasgos de panoja fueron muy significativas entre sí. En línea con esto, la media del coeficiente r de Pearson entre pares de fenotipos de fluorescencia y rasgos de panoja, que resultaron estadísticamente significativos fue de r = 0,14. Por este motivo, para el ambiente ER, se analizaron las correlaciones que presentaron un r > 0,14 (Figura 7.5).

En el diagrama de correlaciones (Figura 7.5), se pudo apreciar que el rasgo %In correlacionó positivamente con los fenotipos N y DI_o/RC (Figura 7.5). Además, el rasgo NEP correlacionó de forma positiva con el fenotipo RE_o/RC, que a su vez, correlacionó de forma negativa con el fenotipo PI_{total}. Por su parte, el rasgo PP presentó 4

correlaciones significativas con fenotipos de fluorescencia, siendo el rasgo que presentó mayor cantidad de correlaciones. De las 4 correlaciones, 3 fueron de forma negativa con los fenotipos N, Dlo/RC y Pl_{total}, mientras que la restante correlación fue de manera positiva con el fenotipo REo/RC (Figura 7.5).

Figura 5.5: Diagrama de cajas de los rasgos de panojas analizados. Cajas grises representan a plantas cultivadas en el ambiente Ch. Cajas blancas representan a plantas cultivadas en el ambiente ER. La línea dentro de la caja representa el valor medio de cada fenotipo, la parte superior e inferior de la cada representa el 1^{er} y 3^{er} cuartil. Los círculos abiertos representan datos atípicos dentro del conjunto de datos.

Al mismo tiempo, los rasgos PMG y %F correlacionaron significativamente con los mimos fenotipos de fluorescencia, N y DIo/RC; siendo en ambos casos correlaciones negativas (Figura 7.5). Finalmente, el rasgo NP solamente correlacionó significativamente y de forma negativa con el fenotipo de fluorescencia PI_{total} (Figura 7.5).

En base a estos resultados, se realizaron nuevos análisis de mapeo por asociación (GWAS) utilizando como vectores a los rasgos de panoja analizados. Nos propusimos como objetivo, analizar si estos rasgos de panoja compartían los mismos SNP, QTL o genes candidato. Sin embargo, estos análisis no arrojaron resultados satisfactorios, en base al objetivo trazado.

Figura 6.5: Diagrama de correlaciones entre rasgos de cosecha y fenotipos de fluorescencia para el ambiente Ch. Los asteriscos indican correlación significativa según el método de correlación de a pares de Pearson (*p<0.05).

Figura 7.5: Diagrama de correlaciones entre rasgos de cosecha y fenotipos de fluorescencia para el ambiente ER. Los asteriscos indican correlación significativa según el método de correlación de a pares de Pearson (*p<0.05). En el diagrama de correlaciones solo se muestra el nivel de significancia (*) para aquellas correlaciones entre fenotipos de fluorescencia y rasgos de panoja con r de Pearson > 0,14.

5.5 Discusión

5.5.1 Efectos del ambiente sobre la estructura de la población

Las herramientas para la identificación precisa de alelos vinculados a caracteres fenotípicos particulares en plantas, han evolucionado notablemente en los últimos años. En el presente trabajo de tesis se utilizó la estrategia de mapeo por asociación del genoma completo o GWAS para identificar marcadores moleculares asociados a la funcionalidad del FSII y su posible vínculo con el rendimiento de grano.

El desarrollo de paneles genotipados de germoplasma de élite, de diferentes especies vegetales de interés agronómicos como caña de azúcar, soja, sorgo y cebada; han sido utilizados en numerosos estudios de mapeos por asociación con el objetivo de vincular regiones del genoma con caracteres fenotípicos cuantitativos (Gutiérrez y col. 2011; von Zitzewitz y col. 2011; Racedo y col. 2016; Herritt y col. 2016; Ortiz y col.2017). Particularmente en arroz, el RDP-1 se utilizó para encontrar regiones genómicas vinculadas a rasgos de panoja e identificar genes de resistencia a estreses ambientales como el frío (Zhao y col. 2011; Begum y col. 2015; Crowell y col. 2016; Shakiba y col. 2017).

Mapear regiones genéticas que controlan rasgos cuantitativos de la funcionalidad del FSII es una tarea dificultosa, debido a que los procesos fotosintéticos poseen una arquitectura compleja y poligénica. Además, la actividad del FSII está ampliamente influenciada por la radiación ambiental que absorbe el cloroplasto (Foyer y col. 2012). Nuestros resultados mostraron un claro efecto del ambiente sobre la estructura genética poblacional, evidenciado por la segregación en dos grupos de individuos diferentes representados por plantas cultivados en el ambiente Ch y plantas cultivadas en el ambiente ER (Figura 1.5). En este sentido, la introducción del ACP un vector fenotípico en el modelado de los diferentes GWAS ensayados, maximiza la detección de asociaciones verdaderas (Crowell y col. 2016; Racedo y col. 2016). A su vez, cuando se incluye el ACP como componente aleatorio en el análisis de GWAS, los primeros ACP que representan la mayor variación (Figura 1.5), capturan las asociaciones más representadas, mientras que las relaciones más sutiles se capturan con los restantes PCA significativos (Racedo y col. 2016). Por lo tanto, la introducción de los ACP en el modelo del GWAS nos permite encontrar asociaciones de mayor calidad, minimizando

los efectos aleatorios del modelo experimental de plantas creciendo en condiciones ambientales no controladas.

5.5.2 Efectos ambientales, del genotipo e interacción genotipo/ambiente sobre los fenotipos de fluorescencia de la clorofila a.

En plantas, la fluorescencia de la clorofila ha sido estudiada de manera exhaustiva para examinar extensivamente la influencia de diversos tipos de estreses abióticos sobre las reacciones dependiente de la luz, tales como: frío, déficit nutricional, sequía y salinidad (Fracheboud y col. 1999; Huang y col. 2004; Silvestre y col. 2014; Rachoski y col. 2015) Sin embargo, a pesar de la versatilidad del uso de la fluorescencia de la clorofila como método de fenotipado rápido, y de gran capacidad para evaluar numerosas accesiones de plantas a un mismo tiempo, existen pocos reportes que estudien el mapeo de regiones, o la variación genética de los fenotipos de fluorescencia en condiciones ambientales. No obstante, QTLs para fenotipos fotosintéticos asociados a las reacciones lumínicas han sido exitosamente mapeados en algunas especies de importancia agronómica como trigo, maíz, soja y sorgo (Šimić y col. 2014; Herritt y col. 2016; Ortiz y col. 2017), siendo este el primer reporte al día de la fecha en arroz en condiciones de cultivo ambientales.

Los procesos reactivos del FSII son sensibles a la luz, y a su vez, la luz que impacta sobre el FSII depende fuertemente de las condiciones ambientales. El estudio de la incidencia de las variaciones naturales sobre dichos procesos, es un enfoque importante para identificar nuevas opciones que conduzcan a mejorar la eficiencia del uso de la luz del cultivo. Dado que la variación fenotípica de la funcionalidad del AF del RDP-1 fue medida en condiciones normales no estresantes en dos locaciones ambientales, se pudo evaluar el impacto ambiental en la arquitectura genética del AF. Nuestros resultados indican que la mayoría de los fenotipos de fluorescencia evaluados, están altamente influenciados por el genotipo, las condiciones ambientales y la interacción genotipo-ambiente (Tabla 1.5 y Figura 2.5). Resultados similares fueron encontrados en estudios en soja, donde se analizaron fenotipos de fluorescencia de clorofila en diversos ambientes (Herritt y col. 2016). Por otra parte, se ha demostrado en arroz, que el análisis de otros parámetros fotosintéticos como la conductancia

estomática (Gs), la tasa de fotosíntesis neta (Asat) y el rendimiento fotoquímico o F_v/F_m también fueron afectados significativamente por factores ambientales, genotípicos y su interacción entre ambos (Qu y col. 2017).

En otras palabras, los resultados obtenidos mostraron que la variación natural significativa en cada fenotipo de fluorescencia de clorofila observada entre los diversos genotipos de arroz, indican que la selección de estos rasgos fotosintéticos como criterio de mejora podría ser posible.

5.5.3 Identificación de marcadores SNPs y QTLs asociados a los fenotipos de fluorescencia.

En el presente estudio, combinamos el fenotipado de plantas mediante la determinación de 29 RF junto al genotipado de alta densidad (HDRA), con la finalidad de realizar un análisis GWAS. Para ello, se utilizó una colección de accesiones de arroz fenotípica y genéticamente diversas. A las cuales se les corrigió la estructura y el parentesco de la población, para dilucidar el control genético de la actividad de FSII en dos ambientes.

Se observó un mayor número de asociaciones significativas en plantas del RDP-1 cultivadas en la locación ER en comparación con la locación Ch (Tabla 2.5, Figuras 3.5 y 4.5). A su vez, para el ambiente ER se obtuvo un mayor número de fenotipos de florescencia significativos comparado con el ambiente Ch, resultados que nuevamente estarían evidenciando un efecto ambiental directo sobre la actividad del FSII.

En este sentido, de los fenotipos con SNP significativos encontrados en ambos ambientes F_0/F_m , F_v/F_m , DI_0/RC , PI_{abs} y $\delta(Ro)$, se observó que los valores promedios obtenidos para el ambiente ER fueron mayores comparados con el ambiente Ch (Figuras 2.5A y 2.5B). En línea con esto, el fenotipo F_0/F_m es la base de todas las expresiones derivadas del test OJIP. Por lo tanto, este fenotipo, permite la cuantificación fenomenológica del comportamiento de la fluorescencia de una muestra, y a la vez, permite comparar y clasificar diferentes tipos muestras (R. Strasser y col. 2000). A su vez, F_v/F_m es un parámetro históricamente usado para cuantificar el estado fisiológico de las plantas (Baldassarre y col. 2011). Por su parte el fenotipo PI_{abs} indica la vitalidad general del FSII, desde la absorción de un fotón por FSII hasta la reducción de la Q_b (Stirbet y Govindjee 2011b). Finalmente, los fenotipos DI_o/RC y δ (Ro) explican la disipación de energía por centro de reacción activo y la eficiencia del transporte de electrones hasta el último aceptor del FSI respectivamente (Stirbet y col. 2018). Desde esta perspectiva, los resultados obtenidos estarían indicando una mayor expresión fenotípica relativa que se podría traducir en una mejor actividad fotosintética en el ambiente ER.

Estudios de GWAS usando fluorescencia de la clorofila en condiciones de estrés y de crecimiento óptimas, han sido reportados en soja, maíz y sorgo (Hao y col. 2012; Strigens y col. 2013; Fiedler y col. 2016). En todos estos casos, los rasgos fenotipos fotosintéticos se asociaron con múltiples regiones dentro del genoma. En línea con esto, nuestros resultados arrojaron QTLs en todos los cromosomas, e incluso un mismo fenotipo se asoció en más de una región dentro de un mismo cromosoma, concordando con dichos reportes previos (Figuras 3.5A, 4.5A y 4.5B). Particularmente, para el ambiente Ch, se identificó un único QTL en el cromosoma 9 para el fenotipo Pl_{abs}. Este fenotipo posee una única asociación en dicho cromosoma, y a su vez, esta fue la única asociación encontrada en este cromosoma (Figura 3.5B). Este hecho hace del fenotipo Pl_{abs} un interesante blanco de estudio en proyectos de mejora vegetal, ya que este tipo de asociaciones son una excepción a los resultados encontrados convencionalmente en estudios de GWAS para fenotipos de fluorescencia de la clorofila.

Además de la diferencia en el número de SNPs, y de la variación fenotípica observada entre los ambientes, también se identificaron una mayor cantidad de QTLs para el ambiente ER. En línea con lo mencionado, estudios de GWAS en *Arabidopsis thaliana* YELLOW SEEDLIN G1 (YS1), revelaron diversidad en la aclimatación fotosintética en condiciones de alta radiación, en donde se encontró una mayor cantidad de QTLs que en condiciones de baja radiación (Van Rooijen y col. 2017).

El análisis de los QTL para el ambiente Ch arrojó un único QTL multifenotipo en el cromosoma 5 (Figura 3.5A), a diferencia del ambiente ER en donde se pudo identificar 4 QTL multifenotipos (Figura 4.5A). En ambos ambientes, los fenotipos F_o/F_m, F_v/F_m y DI_o/RC compartieron el mismo QTL en el cromosoma 5 para plantas en Ch y el cromosoma 6 en plantas de ER. Resultados idénticos se obtuvieron en estudios

realizados en soja (Herritt y col. 2016), donde los fenotipos de la relación entre fluorescencia máxima y mínima (F_o/F_m), rendimiento cuántico máximo del FSII (F_v/F_m), y disipación de energía por centro de reacción activo (DI_o/RC), compartirían la misma región dentro del cromosoma.

Entonces, nuestros resultados sugieren que existe un agrupamiento de fenotipos que funcionan de manera coordinada. A su vez, estos agrupamientos dependen fuertemente de la condición donde las plantas fueron cultivadas, indicando que los factores ambientales podrían inducir cambios a nivel de los cromosomas donde se vinculan este grupo de fenotipos. Esta combinación de eventos, traería como consecuencia cambios sustanciales en la actividad fotosintética y en los procesos asociados con la fotosíntesis.

5.5.4 El fotosistema regula procesos biológicos, moleculares y rasgos de panoja.

Las regiones del genoma encontradas por los marcadores moleculares para los fenotipos de fluorescencia, contuvieron grupos de genes que son importantes para el funcionamiento metabólico y molecular del arroz. Adicionalmente, estas regiones abarcaron genes individuales que tienen un impacto significativo en las funciones del llenado de grano. Por lo tanto, los valores de algunos fenotipos de fluorescencia de clorofila podrían influir directamente en el rendimiento de grano del arroz. El examen de las anotaciones genéticas vinculado al análisis de enriquecimiento de términos GO identificadas en este estudio, reveló 38 genes candidatos (Tabla 4.5). A su vez, de los genes candidatos identificados, aquellos con notaciones de actividad catalítica formaron el grupo mayoritario (Tablas 3.5 y 4.5).

Cuando se analizó cómo los fenotipos de fluorescencia se relacionaban con los genes identificados, se observó que los fenotipos Sm y N en general se asociaron a los mismos genes candidatos (Tabla 4.5). El fenotipo N indica el número de eventos de reducción y oxidación de Q_a entre el tiempo cero y F_m (R. Strasser y col. 2000). A su vez, el fenotipo Sm indica la energía necesaria para el transporte de electrones, y de este modo, cerrar todos los centros de reacción (Oukarroum y Strasser 2004). Esto es equivalente a decir, que el Sm indica la funcionalidad del complejos de quinonas (Q_a/Q_b) . Ambos fenotipos están altamente relacionados al funcionamiento del

conjunto de quinonas. Por lo tanto, esto puede explicar que estos dos fenotipos estén ligados a los mismos genes. En este sentido, de los 5 factores de transcripción (FT) identificados, dos de ellos colocalizaron con ambos fenotipos N y Sm (LOC_Os10g39030, LOC_Os05g23780). La notación funcional asignada para el primer FT correspondió al dominio homeobox (HD) mientras que el segundo FT codifica para la familia de genes OsMADS70-MADS-box con M-alpha type-box (MADS-BOX). En estudios de GWAS donde se analizaron rasgos de panoja en poblaciones de RDP-1, se identificaron genes candidatos conteniendo los dominios HD y MADS-BOX. En estos estudios, el tiempo de floración se vinculó con el dominio HD, y el rasgo altura de planta se encontró ligado a ambos dominio HD y MADS-BOX (Begum y col. 2015).

El dominio HD es un segmento muy conservado que se encuentra presente en muchos FT. Al mismo tiempo, trabajos realizados con plantas de arroz mutantes para el dominio HD en diferentes FT que controlan rasgos de panoja. Demostraron que el dominio HD es esencial para la regulación del macollaje, la esterilidad y el tiempo de floración en arroz (Mjomba y col. 2016; Wei y col. 2016). Por otra parte, en arroz los FT MADS-BOX además de estar involucrados en la especificación de los órganos florales, también se han implicado en varios aspectos del crecimiento y desarrollo de las plantas (Arora y col. 2007). En este sentido, Lee y col. (2004) demostraron que mutantes de la familia de MADS-BOX de arroz, presentaban plantas con fenotipos de retardo en la floración. Mientras que en plantas de arroz que sobre-expresaban genes de la familia MADS-BOX, se observaba floración extremadamente temprana.

De los restantes tres FT señalados anteriormente, uno fue asociado al fenotipo Q_bRC (β Helix-loop-helix), mientras que los dos FT restantes identificados, fueron asociados a DI_o/RC y asignados a proteínas con Dominio GATA dedo de zinc y Myb. En general, estos FT son asociados con respuestas desencadenas por diferentes tipos de estrés abióticos (Su y col. 2010; J.Kim y col. 2010; T. Chen y col. 2014; Gupta y col. 2017). En este sentido, los procesos de disipación de energía han sido descriptos como un mecanismo fundamental en la fotoprotección de las plantas, en respuesta al excedente de luz que incide sobre el complejo antena del cloroplasto (Müller y col. 2001).

Por otra parte, el fenotipo DI_o/RC también se vinculó al FT HD colocalizando con los fenotipos N y Sm. Asimismo, el fenotipo DI_o/RC presentó una gran cantidad de genes identificados, principalmente en plantas que fueron cultivadas en el ambiente ER, donde en general, los genes identificados se asociaron únicamente al fenotipo DI_o/RC.

Entre los genes candidatos identificados asociados con el fenotipo Dl_o/RC, se pueden destacar los genes con notación LOC_Os05g44922 y LOC_Os05g44560. Para el primero de estos dos genes, la notación funcional asignada correspondió a 6-fosfofructoquinasa (PFK), enzima intermediaria de la vía de glucolisis conducido por el ciclo de Calvin. En este sentido, se ha descripto que PFK es un intermediario clave en la síntesis de almidón principal componente del grano de arroz (Chang y col. 2017). Para el segundo gen candidato, la notación funcional correspondió a genes de la familia de las kinesinas. En arroz, las kinesinas están vinculadas a procesos de división celular, dichos genes, se expresan tanto en granos de polen como en tejidos somáticos (Sasaki y Ashikari 1998). A su vez, estudios realizados en arroz indicaron que genes de la familia de las kinesinas regulan la altura de planta y la longitud de la semilla (Mu Zhang y col. 2010; Kitagawa y col. 2010).

Por otra parte $\delta(Ro)$, uno de los dos fenotipos más representativos obtenidos para el ambiente Ch, se asoció a un gen que contenía el dominio motor de las kinesinas, resultado similar al encontrado para el fenotipo DI_o/RC. Finalmente, el fenotipo PI_{abs} fue vinculado al gen LOC_Os09g26620 que codifica para una proteína reprimible por auxinas. En este sentido, estudios en arroz han descripto que genes de esta familia regulan el macollaje (N. Zhang y col. 2018). En línea con lo anteriormente mencionado, se ha reportado que un gran número de macollos limita la removilización de recursos generados por la fotosíntesis hacia el destino final, el grano, limitando el potencial de rendimiento y aumentando la biomasa (Khush 1995).

En resumen, parte de nuestros resultados asociaron la arquitectura genética de los fenómenos cloroplásticos con procesos relacionados con el llenado de grano, y estos, pueden ser caracterizados mediante el uso de fenotipos de fluorescencia de la clorofila.

128
5.5.5 El fenotipado fotosintético como herramienta de selección genética de germoplasma de arroz.

El análisis de los rasgos de panoja mostró una mayor acumulación de caracteres positivos como NP, NEP y PP en las plantas cultivadas en ER, comparadas con las plantas cultivadas en Ch (Figura 5.5). Sin embargo, a pesar de que las plantas cultivadas en ER mostraron un mayor número de destinos en sus rasgos de panoja estas presentaron un mayor %In (Figura 5.5). La causa del mayor %In, podría radicar en que para el ambiente ER la variabilidad de genotipos que lograron llegar a estadio reproductivo fue más diversa dentro de las sub-poblaciones del RDP-1.

La vinculación entre los fenotipos de fluorescencia con genes asociados a caracteres de grano, sumado a las correlaciones encontradas entre los rasgos de panoja y los fenotipos de fluorescencia (Figuras 6.5 y 7.5), sugirió que estos dos fenómenos complejos puedan ser relacionados con cierto grado de exactitud. Al mismo tiempo, esto indicaría una estrecha relación entre el desempeño del FSII influenciado por el ambiente, y los rasgos de rendimiento de grano.

Del diagrama de correlaciones para Ch se observó que el fenotipo Pl_{abs} correlacionó negativamente con el rasgo NP, o lo que es equivalente a decir, que cuando aumenta Pl_{abs} hay un menor número de panojas por planta. Este resultado coincide con el menor valor de NP encontrado en plantas de Ch en comparación con plantas cultivadas en ER (Figura 5.5), y con la función descripta para el gen identificado ligado a este fenotipo. En línea con esto, se ha reportado que una mayor tendencia de las plantas a incrementar su macollaje, induce la utilización de recursos fotosintéticos para generar biomasa, a expensas de limitar recursos destinados al panojamiento (Khush 1995). Con respecto al fenotipo $\delta(Ro)$, este correlaciono negativamente con NEP y positivamente con NP. Nuevamente, estos resultados son consistentes con el gen identificado para este fenotipo, las kinesinas, cuya principal función es la proliferación celular ya que a mayor valor de $\delta(Ro)$ se tiene un mayor NP, aunque un menor NEP.

Para el ambiente ER, de los fenotipos a los cuales se les pudo asociar genes. El fenotipo N correlacionó negativamente con los caracteres de panoja, PP, PMG y %F,

positivamente con el rasgo %In, a su vez REo/RC correlacionó positivamente con NEP y PP (Figura 7.5). Esto sugirió que un menor número de ciclos de reducción y oxidación de Q_a y un mayor transporte de electrones favorece al rendimiento de panoja. Finalmente, el fenotipo DI_o/RC mostró las mismas correlaciones que presentó el fenotipo N. Asimismo, estos fenotipos se vincularon a genes descriptos como esenciales para el rendimiento de grano. En particular, la disipación de energía ha sido descripta como un mecanismo de fotoprotección para lograr optimizar la eficiencia fotosintética a nivel de canopeo, logrando de este modo un aumento de biomasa y rendimiento en arroz (Murchie y col. 2015).

La radiación solar es esencial para la fotosíntesis y la productividad global de los cultivos. Sin embargo, la radiación solar es variable dependiendo de las condiciones ambientales, y con frecuencia limita o excede los requerimientos de las plantas. En este sentido, nuestros resultados dan evidencia de que la actividad de FSII tendría un impacto en la producción de biomasa y en la producción final de grano en la panoja.

5.6 Conclusiones.

La aplicación de la prueba OJIP en los diversos genotipos de arroz del RDP-1, cultivados en dos ambientes diferentes, demostraron una gran variabilidad en fenotipos de fluorescencia de clorofila. El análisis de GWAS de todo el genoma basado en estos genotipos, y en los fenotipos de fluorescencia de clorofila condujo a la identificación de SNP únicos. En base a estos SNP, se identificaron QTL para los ambiente Ch y ER; siendo este último ambiente en el que mayor cantidad de QTL se pudo identificar. A pesar de que las condiciones de crecimiento en ambos ambientes no fueron extremadamente diferentes, se registraron más fenotipos con asociaciones significativas para el ambiente ER. Asimismo, ciertas caracterizaciones fenotípicas presentaron valores diferenciales de manera dependiente del ambiente en el cual se cultivaron las plantas.

Una búsqueda en las regiones genómicas enriquecidas por términos funcionales GO, resultó en genes con anotaciones vinculadas a procesos de llenado de grano. Estos genes identificados, se asociaron principalmente a fenotipos que explican la funcionalidad de Q_a/Q_b , el transporte de electrones por RC, la eficiencia del transporte de electrones desde el FSII hacia el ultimo aceptor del FSI (REo/RC y δ (Ro)), y la disipación de energía por RC (DIo/RC).

Los QTLs identificados en el presente trabajo, podrían ser útiles para desarrollar una mejor comprensión de la base genética de las reacciones fotosintéticas dependientes de la luz en su conjunto, así como de los componentes estructurales y funcionales de la cadena de transporte de electrones y fenómenos de disipación de energía en arroz.

Dado que muchos de los rasgos de fluorescencia de clorofila respondieron a los cambios en las condiciones ambientales, y se asociaron a regiones genómicas que codifican para genes de respuesta a estrés. La caracterización cuidadosa de los loci identificados aquí, también puede conducir a caminos para mejorar la tolerancia al estrés en arroz.

En resumen, nuestros resultados muestran un panorama integral entre la capacidad de los fenotipos fotoquímicos, y la estructura genética que domina a estos procesos. Al mismo tiempo, parte de estos genes identificados dominan procesos

vinculados al rendimiento de grano, lo que estaría indicando una vinculación entre ambos procesos. Los resultados de los análisis de GWAS mostraron una relación aproximada entre la eficiencia fotoquímica y su implicancia en el rendimiento de grano en arroz, ya que la arquitectura genética del FSII se vinculó a genes con funcionalidades asociadas al proceso de llenado de grano.

5.7 Diagrama Resumen-Capítulo 3

	ACP/ANOVA	GWAS	GENES CANDIDATO
RESULTADOS	Se observo una estructuración genética influenciada por el ambiente. En la mayoría de los fenotipos	El número de SNPs Identificados fue influenciado por el ambiente .	Se identificaron genes candidatos vinculados a procesos que influyen en e llenado de grano (Principalmente FT).
	se observo interacción significativa GxA.	Se identificaron QTLs en los 12 cromosomas de arroz.	Los fenotipos vinculados a los genes identificados correlacionaron con caracteres de rendimiento de grano

6- Conclusiones generales.

En el presente trabajo de tesis, se describió la respuesta fotosintética de *Oryza sativa L.* en diferentes estadios fenológicos y en variadas condiciones de crecimiento. De esta manera, se profundizó sobre la contribución del FSII en la respuesta fisiológica de la planta.

En primer lugar, se analizó el comportamiento frente a las TS de dos variedades de arroz. Según un análisis de crecimiento de plántulas bajo condición de estrés, se consideró a la variedad IR50 como sensible a las bajas temperaturas en comparación con la variedad Koshihikari. Se determinaron parámetros fisiológicos vinculados al AF mediante fluorescencia de la clorofila a (prueba OJIP) e intercambios de gases derivados de la fotosíntesis en ambas variedades. El daño a los FS inducido por la condición de TS influenció diferencialmente en ambas variedades, siendo la variedad IR50 más afectada que la variedad Koshihikari desde el inicio del tratamiento de frío.

Por otro lado, mediante un análisis más detallado de los datos extraídos de la prueba OJIP se observó que la condición de TS afecto estructuras funcionales y centros de reacción vinculado al transporte de electrones del FSII tales como Qa, Qb y OEC, siendo estos daños mayores en la variedad IR50 en comparación con la variedad Koshihikari. Principalmente en la variedad IR50, se observó que en plantas expuestas a TS el transporte de electrones fue afectado desde el inicio del tratamiento a diferencia de lo observado en la Koshihikari, que solo mostró los efectos adversos de las bajas temperaturas sobre el transporte de electrones al final del tratamiento a TS. Se observó que esta diferencia en el transporte de electrones entre ambas variedades, causada por la condición de estrés fue debido a una respuesta diferencial en el OEC entre las variedades estudiadas, inducida por el tratamiento de TS. Los datos obtenidos del análisis molecular y bioquímico mostraron que la expresión de genes de proteínas del OEC se redujo fuertemente desde el inicio del tratamiento de frío en la variedad IR50, mientras que en la variedad Koshihikari solo uno de los genes vio afectada su expresión como consecuencia de la condición de estrés. Al mismo tiempo los niveles de proteínas PsbP y PsbR también se redujeron fuertemente después de 1D de exposición a las bajas temperaturas principalmente en la variedad IR50, hecho que es consistente con el daño observado desde el inicio del tratamiento a TS en esta variedad. Por otra parte, experimentos realizados con un dador artificial de electrones (DPC) mostró reversiones en el efecto causado en el OEC como consecuencia del estrés por frío. La respuesta observada indicaría que la condición de estrés por frío primero daña la estructura del OEC (lado donor de electrones) y posteriormente daña el P₆₈₀ (lado aceptor de electrones).

Debido a las diferencias intrínsecas observadas en el comportamiento del FSII, se generaron líneas de arroz mejoradas. Para ello, se seleccionaron plántulas de arroz utilizando un doble criterio fenotípico: una mayor capacidad de crecimiento bajo condiciones de TS, y una mejor respuesta a nivel del FSII. Además de las características antes mencionadas, también se evaluó en estadio reproductivo la capacidad fotosintética de la HB y los componentes de rendimientos en plantas segregantes. Estos dos criterios fenotípicos, también fueron utilizados para seleccionar individuos que sirvieron de base para generar la siguiente generación hasta llegar a la generación de plantas F6.

Los datos obtenidos mostraron una relación directa entre la capacidad de crecimiento a TS y la funcionalidad del FSII en condiciones de estrés por frío permitiendo caracterizar accesiones sensibles y tolerantes al frío. Al mismo tiempo se evaluó la respuesta metabólica en plántulas de arroz. En este sentido, nuestros resultados no fueron concluyentes para determinar comportamientos diferenciales vinculados a la tolerancia a frío desde el punto de vista metabólico.

Con el objetivo de caracterizar el fenotipo de senescencia, se realizaron determinaciones bioquímicas en la HB en diferentes accesiones durante el estadio de llenado de grano. Nuestros resultados indicaron un comportamiento bioquímico similar entre la línea mejorada 59-8-8-5 y su parentales Rossi. Sin embargo, la variedad comercial Yerua mostro un comportamiento diferente a nivel bioquímico comparado con las otras tres accesiones. Estas diferencias a nivel metabólico podrían explicar en parte la diferencia encontrada en los componentes de rendimientos entre las accesiones evaluadas. Al mismo tiempo, presentamos por primera vez, un índice integral de respuesta fotosintética (IRF) para caracterizar fenotipos de stay green en arroz. Este índice indicó que la línea mejorada 59-8-8-5 mantuvo una mejor actividad fotosintética durante los días ensayados, mostrando una relación con los mejores

135

caracteres de panoja presentados por esta accesión. Estos resultados fueron apoyados a partir de la exploración del comportamiento del FSII en la HB de una población segregante F2 construida sobre la misma base genética que nuestra línea mejorada 59-8-8-5. Se observó que el mantenimiento de la actividad del FSII está asociado estadísticamente a los componentes de rendimientos, sugiriendo además que mantener la actividad del FSII más allá de 21 DDP es crítico en la interacción fuentedestino.

Por último, se estudio la arquitectura genética del FSII mediante un análisis de GWAS. Nuestros resultados pusieron en evidencia el impacto génico diferencial que impone las condiciones ambientales sobre las plantas de arroz, ya que de los 110 de SPNs encontrados, la mayor parte fueron identificados para el ambiente de ER. Asimismo, una mayor expresión de fenotipos de fluorescencia fue identificada en el ambiente ER principalmente en los fenotipos asociados a la disipación de energía y transporte de electrones. En este sentido, la actividad fotosintética pareciera tener un gran impacto en la producción de biomasa en los cultivos. Esto puede ser especialmente sensible en arroz, ya que generalmente está expuesto a altos niveles de luz por ser un cultivo principalmente de origen tropical.

Por otra parte, los genes encontrados se vincularon con los procesos de diferenciación celular que afectan al llenado de grano y al rendimiento de panoja en arroz. En conjunto, los resultados presentados a lo largo de la presente tesis, indicarían que una mayor eficiencia fotosintética en estadio de plántula resulta en una mayor tolerancia al estrés por frío. A su vez, en estadio reproductivo, esta mayor eficiencia del FSII se traduce en una HB más activa durante el período de llenado, hecho que impacta directamente en los componentes de rendimiento en arroz. Por otra parte, siendo este el primer reporte que relaciona el fenotipo del FSII con el genotipo en arroz. El análisis de GWAS confirma la relación de la base genética del FSII con procesos vinculados al llenado de grano. Asimismo, los resultados del presente trabajo de tesis constituyen un aporte al conocimiento científico de las respuestas del FSII en *Oryza sativa L* en diferentes condiciones de crecimiento.

7- Referencias

- Adam S., Murthy S.D.S. (2014) Effect of Cold Stress on Photosynthesis of Plants and Possible Protection Mechanisms. In: Gaur R., Sharma P. (eds) Approaches to Plant Stress and their Management. Springer, New Delhi.
- Aebi, Hugo. 1984. "Oxygen Radicals in Biological Systems." *Methods in Enzymology* 105 (1947): 121–26. https://doi.org/10.1016/S0076-6879(84)05016-3.
- Aghaee, A, F Moradi, F Zarinkamar, H Pour Irandoost, and P Sharifi. 2011. "Physiological Responses of Two Rice (Oryza Sativa L .) Genotypes to Chilling Stress at Seedling Stage" 10 (39): 7617–21. https://doi.org/10.5897/AJB11.069.
- Albanese, Davide, Samantha Riccadonna, Claudio Donati, and Pietro Franceschi. 2018.
 "A Practical Tool for Maximal Information Coefficient Analysis." *GigaScience* 7 (4): 1–8. https://doi.org/10.1093/gigascience/giy032.
- Allahverdiyeva, Yagut, Fikret Mamedov, Maija Holmström, Markus Nurmi, Björn Lundin, Stenbjörn Styring, Cornelia Spetea, and Eva Mari Aro. 2009. "Comparison of the Electron Transport Properties of the Psbo1 and Psbo2 Mutants of Arabidopsis Thaliana." *Biochimica et Biophysica Acta - Bioenergetics* 1787 (10): 1230–37. https://doi.org/10.1016/j.bbabio.2009.05.013.
- Allahverdiyeva, Yagut, Fikret Mamedov, Marjaana Suorsa, Stenbjörn Styring, Imre Vass, and Eva Mari Aro. 2007. "Insights into the Function of PsbR Protein in Arabidopsis Thaliana." *Biochimica et Biophysica Acta - Bioenergetics* 1767 (6): 677–85. https://doi.org/10.1016/j.bbabio.2007.01.011.
- Allahverdiyeva, Yagut, Marjaana Suorsa, Fabio Rossi, Andrea Pavesi, Martin M. Kater, Alessia Antonacci, Luca Tadini, et al. 2013. "Arabidopsis Plants Lacking PsbQ and PsbR Subunits of the Oxygen-Evolving Complex Show Altered PSII Super-Complex Organization and Short-Term Adaptive Mechanisms." *Plant Journal* 75 (4): 671– 84. https://doi.org/10.1111/tpj.12230.
- Allen, Damian J, and Donald R Ort. 2001. "Impacts of Chilling Temperatures on Photosynthesis in Warm-Climate Plants" 6 (1): 36–42.
- Andaya, V. C., &Mackill, D. J. 2003. Mapping of QTLs associated with cold tolerance during the vegetative stage in rice. *Journal of experimental botany*, 54(392), 2579-2585.

- Appenroth, K, and J Sto. 2001. "Multiple e 🛛 Ects of Chromate on the Photosynthetic Apparatus of Spirodela Polyrhiza as Probed by OJIP Chlorophyll a ⁻ Uorescence Measurements" 115.
- Arguissain GG 2006. Ecofisiología del cultivo de arroz. En: El arroz, su cultivo y sustentabilidad en Entre Ríos. Editor: Benavides R.A. Editorial, Universidad Nacional del Litoral, Entre Ríos, Argentina.
- Arguissain y col. (2011) ResultadosExperimentalesProarroz 2010-2011. <u>http://proarroz.com.ar</u>.
- Aro, E-M., E. Tyystjärvi, and A. Nurmi. "Effects of Light and Temperature on PSII Heterogeneity." *Current Research in Photosynthesis*. Springer, Dordrecht, 1990. 1399-1402.
- Arora, Rita, Pinky Agarwal, Swatismita Ray, Ashok Kumar Singh, Vijay Pal Singh,
 Akhilesh K. Tyagi, and Sanjay Kapoor. 2007. "MADS-Box Gene Family in Rice:
 Genome-Wide Identification, Organization and Expression Profiling during
 Reproductive Development and Stress." *BMC Genomics* 8.
 https://doi.org/10.1186/1471-2164-8-242.
- Aulchenko, Y. S., Ripke, S., Isaacs, A., & Van Duijn, C. M. (2007). GenABEL: an R library for genome-wide association analysis. *Bioinformatics*, 23(10), 1294-1296.
- Akahashi S, Murata N. 2008. How do environmental stresses accelerate photoinhibition?. Trends in plant science 13, 178-182.
- Baldassarre, V., G. Cabassi, and A. Ferrante. 2011. "Use of Chlorophyll a Fluorescence for Evaluating the Quality of Leafy Vegetables." *Australian Journal of Crop Science* 5 (6): 735–41.
- Bolhàr-nordenkampf HR, Long SP, Baker NR, Oquist G, Schreiber, ULEG, Lechner EG. 1989. Chlorophyll fluorescence as a probe of the photosynthetic competence of leaves in the field: a review of current instrumentation. Functional Ecology 3, 497-514.
- Bao, Jinsong. 2018. *Rice Starch. Rice*. AACCI. Published by Elsevier Inc. in cooperation with AACC International. https://doi.org/10.1016/b978-0-12-811508-4.00003-4.

- Begum, Hasina, Jennifer E. Spindel, Antonio Lalusin, Teresita Borromeo, Glenn Gregorio, Jose Hernandez, Parminder Virk, Bertrand Collard, and Susan R. McCouch. 2015. "Genome-Wide Association Mapping for Yield and Other Agronomic Traits in an Elite Breeding Population of Tropical Rice (Oryza Sativa)." *PLoS ONE* 10 (3): 1–19. https://doi.org/10.1371/journal.pone.0119873.
- Beliaeff, Benoit, and Thierry Burgeot. 2002. "Integrated Biomarker Response: A Useful Tool for Ecological Risk Assessment." *Environmental Toxicology and Chemistry* 21 (6): 1316–22. https://doi.org/doi:10.1002/etc.5620210629.
- Biswas, A K, and S K Mondal. 1986. "Regulation by Kinetin and Abcisic Acid of Correlative Senescence in Relation to Grain Maturation, Source-Sink Relationship and Yield of Rice (Oryza Sativa L.)." *Plant Growth Regulation* 4 (3): 239–45. https://doi.org/10.1007/BF00028167.
- Blankenship, R.E. 2014. Molecular Mechanisms of Photosynthesis. 2nd ed. Chichester, UK: Wiley.
- Bolhàr-nordenkampf HR, Long SP, Baker NR, Oquist G, Schreiber, ULEG, Lechner EG. 1989. Chlorophyll fluorescence as a probe of the photosynthetic competence of leaves in the field: a review of current instrumentation. Functional Ecology 3, 497-514.
- Bolouri-Moghaddam, Mohammad Reza, Katrien Le Roy, Li Xiang, Filip Rolland, and Wim Van Den Ende. 2010. "Sugar Signalling and Antioxidant Network Connections in Plant Cells." *FEBS Journal* 277 (9): 2022–37. https://doi.org/10.1111/j.1742-4658.2010.07633.x.
- Bonnecarrère, Victoria, Omar Borsani, Pedro Díaz, Fabián Capdevielle, Pedro Blanco, and Jorge Monza. 2011. "Response to Photoxidative Stress Induced by Cold in Japonica Rice Is Genotype Dependent." *Plant Science* 180 (5): 726–32. https://doi.org/10.1016/j.plantsci.2011.01.023.
- Broeg, Katja, and Kari K. Lehtonen. 2006. "Indices for the Assessment of Environmental Pollution of the Baltic Sea Coasts: Integrated Assessment of a Multi-Biomarker Approach." *Marine Pollution Bulletin* 53 (8–9): 508–22. https://doi.org/10.1016/j.marpolbul.2006.02.004.

- Calzadilla, Pablo I., Santiago J. Maiale, Oscar A. Ruiz, and Francisco J. Escaray. 2016. "Transcriptome Response Mediated by Cold Stress in Lotus Japonicus." *Frontiers in Plant Science* 7 (March). https://doi.org/10.3389/fpls.2016.00374.
- Calzadilla, Pablo Ignacio, Santiago Signorelli, Francisco Jose Escaray, Ana Bernardina Menéndez, Jorge Monza, Oscar Adolfo Ruiz, and Santiago Javier Maiale. 2016. "Photosynthetic Responses Mediate the Adaptation of Two Lotus Japonicus Ecotypes to Low Temperature." *Plant Science* 250: 59–68. https://doi.org/10.1016/j.plantsci.2016.06.003.
- Calzadilla, Pablo Ignacio, Juan Manuel Vilas, Francisco José Escaray, Fernando Unrein, Pedro Carrasco, and Oscar Adolfo Ruiz. 2019. "The Increase of Photosynthetic Carbon Assimilation as a Mechanism of Adaptation to Low Temperature in Lotus Japonicus," no. November 2018: 1–15. https://doi.org/10.1038/s41598-018-37165-7.
- Chang, Tao Shan, Chih Wei Liu, Yu Ling Lin, Chao Yi Li, Arthur Z. Wang, Min Wei Chien,
 Chang Sheng Wang, and Chien Chen Lai. 2017. "Mapping and Comparative
 Proteomic Analysis of the Starch Biosynthetic Pathway in Rice by 2D PAGE/MS."
 Plant Molecular Biology 95 (4–5): 333–43. https://doi.org/10.1007/s11103-017-0652-2.
- Chen, Junbo, Yun Liang, Xueyun Hu, Xianxiang Wang, Feiquan Tan, Huaiqiong Zhang,
 Zhenglong Ren, and Peigao Luo. 2010. "Physiological Characterization of 'stay
 Green' Wheat Cultivars during the Grain Filling Stage under Field Growing
 Conditions." Acta Physiologiae Plantarum 32 (5): 875–82.
 https://doi.org/10.1007/s11738-010-0475-0.
- Chen, L. J., H. Z. Xiang, Y. Miao, L. Zhang, Z. F. Guo, X. H. Zhao, J. W. Lin, and T. L. Li. 2014. "An Overview of Cold Resistance in Plants." *Journal of Agronomy and Crop Science* 200 (4): 237–45. https://doi.org/10.1111/jac.12082.
- Chen, Shiguo, Reto Jörg Strasser, and Sheng Qiang. 2014. "In Vivo Assessment of Effect of Phytotoxin Tenuazonic Acid on PSII Reaction Centers." *Plant Physiology and Biochemistry* 84: 10–21. https://doi.org/10.1016/j.plaphy.2014.09.004.

- Chen, Tianzi, Wenjuan Li, Xuehong Hu, Jiaru Guo, Aimin Liu, and Baolong Zhang. 2014.
 "A Cotton MYB Transcription Factor, GbMYB5, Is Positively Involved in Plant Adaptive Response to Drought Stress." *Plant and Cell Physiology* 56 (5): 917–29. https://doi.org/10.1093/pcp/pcv019.
- Cobb, Joshua N., Genevieve DeClerck, Anthony Greenberg, Randy Clark, and Susan McCouch. 2013. "Next-Generation Phenotyping: Requirements and Strategies for Enhancing Our Understanding of Genotype-Phenotype Relationships and Its Relevance to Crop Improvement." *Theoretical and Applied Genetics* 126 (4): 867– 87. https://doi.org/10.1007/s00122-013-2066-0.
- Collard, B. C.Y., M. Z.Z. Jahufer, J. B. Brouwer, and E. C.K. Pang. 2005. "An Introduction to Markers, Quantitative Trait Loci (QTL) Mapping and Marker-Assisted Selection for Crop Improvement: The Basic Concepts." *Euphytica* 142 (1–2): 169–96. https://doi.org/10.1007/s10681-005-1681-5.
- Crowell, Samuel, Pavel Korniliev, Alexandre Falcão, Abdelbagi Ismail, Glenn Gregorio, Jason Mezey, and Susan McCouch. 2016. "Genome-Wide Association and High-Resolution Phenotyping Link Oryza Sativa Panicle Traits to Numerous Trait-Specific QTL Clusters." *Nature Communications* 7: 10527. https://doi.org/10.1038/ncomms10527.
- Dabrowski, P., A. H. Baczewska, B. Pawluškiewicz, M. Paunov, V. Alexantrov, V. Goltsev, and M. H. Kalaji. 2016. "Prompt Chlorophyll a Fluorescence as a Rapid Tool for Diagnostic Changes in PSII Structure Inhibited by Salt Stress in Perennial Ryegrass." *Journal of Photochemistry and Photobiology B: Biology* 157 (February): 22–31. https://doi.org/10.1016/j.jphotobiol.2016.02.001.
- De Las Rivas, J., Heredia, P., &Roman, A. (2007). Oxygen-evolving extrinsic proteins (PsbO, P, Q, R): bioinformatic and functional analysis. *Biochimica et Biophysica Acta (BBA)-Bioenergetics*, 1767(6), 575-582.
- Du, Zhou, Xin Zhou, Yi Ling, Zhenhai Zhang, and Zhen Su. 2010. "AgriGO: A GO Analysis
 Toolkit for the Agricultural Community." *Nucleic Acids Research* 38 (SUPPL. 2): 64–70. https://doi.org/10.1093/nar/gkq310.

- De Las Rivas, J., Balsera, M., & Barber, J. (2004). Evolution of oxygenic photosynthesis: genome-wide analysis of the OEC extrinsic proteins. *Trends in plant science*, 9(1), 18-25.
- Duarte, Bernardo, Sílvia Pedro, João Carlos Marques, Helena Adão, and Isabel Caçador.
 2017. "Zostera Noltii Development Probing Using Chlorophyll a Transient Analysis (JIP-Test) under Field Conditions: Integrating Physiological Insights into a Photochemical Stress Index." *Ecological Indicators* 76: 219–29. https://doi.org/10.1016/j.ecolind.2017.01.023.
- Fahlgren, Noah, Malia A Gehan, and Ivan Baxter. n.d. "ScienceDirect Lights, Camera, Action: High-Throughput Plant Phenotyping Is Ready for a Close-Up." Current Opinion in Plant Biology 24: 93–99. https://doi.org/10.1016/j.pbi.2015.02.006.
- FAO. 2009. Increasing Crop Production Sustainably. The Perspective of Biological Processes (Food and Agriculture Organization of the United Nations, Rome, 2009).
- FAO. 2017. "Versión Resumida." *El Futuro de La Agricultura y La Alimentación*, 44. https://doi.org/10.1515/nleng-2015-0013.
- Ferreira, Nuno G.C., Diogo N. Cardoso, Rui Morgado, Amadeu M.V.M. Soares, and Susana Loureiro. 2015. "Long-Term Exposure of the Isopod Porcellionides Pruinosus to Nickel: Costs in the Energy Budget and Detoxification Enzymes." *Chemosphere* 135: 354–62. https://doi.org/10.1016/j.chemosphere.2015.04.025.
- Ferreira, Nuno G.C., Rui Morgado, Miguel J.G. Santos, Amadeu M.V.M. Soares, and Susana Loureiro. 2015a. "Biomarkers and Energy Reserves in the Isopod Porcellionides Pruinosus: The Effects of Long-Term Exposure to Dimethoate." Science of the Total Environment 502: 91–102. https://doi.org/10.1016/j.scitotenv.2014.08.062. 2015b. "Corrigendum to 'Biomarkers and Energy Reserves in the Isopod Porcellionides Pruinosus: The Effects of Long-Term Exposure to Dimethoate' [Science of the Total Environment 502 (2015) 91-102] DOI: 10.1016/j.Scitotenv.2014.08.062." Science of the Total *Environment* 511: 829. https://doi.org/10.1016/j.scitotenv.2015.01.010.

143

- Fiedler, Karin, Wubishet A. Bekele, Claudia Matschegewski, Rod Snowdon, Silke Wieckhorst, Arndt Zacharias, and Ralf Uptmoor. 2016. "Cold Tolerance during Juvenile Development in Sorghum: A Comparative Analysis by Genomewide Association and Linkage Mapping." *Plant Breeding* 135 (5): 598–606. https://doi.org/10.1111/pbr.12394.
- Flexas, Jaume, José Mariano Escalona, Sebastian Evain, Javier Gulías, Ismaël Moya, Charles Barry Osmond, and Hipólito Medrano. 2002. "Steady-State Chlorophyll Fluorescence (Fs) Measurements as a Tool to Follow Variations of Net CO2 Assimilation and Stomatal Conductance during Water-Stress in C3 Plants." *Physiologia Plantarum* 114 (2): 231–40. https://doi.org/doi:10.1034/j.1399-3054.2002.1140209.x.
- Force, Lesleigh, Christa Critchley, and Jack J S Van Rensen. 2003. "New Fluorescence Parameters for Monitoring Photosynthesis in Plants." *Photosynthesis Research* 78: 17–33.

https://link.springer.com/content/pdf/10.1023%2FA%3A1026012116709.pdf.

- Foyer, Christine H. 2018. "Reactive Oxygen Species, Oxidative Signaling and the Regulation of Photosynthesis." *Environmental and Experimental Botany* 154 (May): 134–42. https://doi.org/10.1016/j.envexpbot.2018.05.003.
- Foyer, Christine H., Jenny Neukermans, Guillaume Queval, Graham Noctor, and Jeremy Harbinson. 2012. "Photosynthetic Control of Electron Transport and the Regulation of Gene Expression." *Journal of Experimental Botany* 63 (4): 1637–61. https://doi.org/10.1093/jxb/ers013.
- Foyer, Christine H., Hélène Vanacker, Leonardo D. Gomez, and Jeremy Harbinson.
 2002. "Regulation of Photosynthesis and Antioxidant Metabolism in Maize Leaves at Optimal and Chilling Temperatures: Review." *Plant Physiology and Biochemistry* 40 (6–8): 659–68. https://doi.org/10.1016/S0981-9428(02)01425-0.
- Fracheboud, Y., P. Haldimann, J. Leipner, and P. Stamp. 1999. "Chlorophyll Fluorescence as a Selection Tool for Cold Tolerance of Photosynthesis in Maize (Zea Mays L.)." Journal of Experimental Botany 50 (338): 1533–40. https://doi.org/10.1093/jxb/50.338.1533.

- Frankham, Richard. 2015. "Genetic Rescue of Small Inbred Populations: Meta-Analysis Reveals Large and Consistent Benefits of Gene Flow." *Molecular Ecology* 24 (11): 2610–18. https://doi.org/10.1111/mec.13139.
- Furbank, Robert T., and Mark Tester. 2011. "Phenomics Technologies to Relieve the Phenotyping Bottleneck." *Trends in Plant Science* 16 (12): 635–44. https://doi.org/10.1016/j.tplants.2011.09.005.
- Garris, Amanda J., Thomas H. Tai, Jason Coburn, Steve Kresovich, and Susan McCouch.
 2005. "Genetic Structure and Diversity in Oryza Sativa L." *Genetics* 169 (3): 1631–38. https://doi.org/10.1534/genetics.104.035642.
- Gazquez, a., S. J. Maiale, M. M. Rachoski, a. Vidal, O. a. Ruiz, a. B. Menéndez, and a. a.
 Rodríguez. 2015. "Physiological Response of Multiple Contrasting Rice (*Oryza Sativa* L.) Cultivars to Suboptimal Temperatures." *Journal of Agronomy and Crop Science* 201 (2): 117–27. https://doi.org/10.1111/jac.12095.
- Gazquez, A., J.M. Vilas, J.E. Colman Lerner, S.J. Maiale, P.I. Calzadilla, A.B. Menéndez, and A.A. Rodríguez. 2018. "Rice Tolerance to Suboptimal Low Temperatures Relies on the Maintenance of the Photosynthetic Capacity." *Plant Physiology and Biochemistry* 127. https://doi.org/10.1016/j.plaphy.2018.04.035.
- Gesch, R. W., & Heilman, J. L. (1999). Responses of photosynthesis and phosphorylation of the light-harvesting complex of photosystem II to chilling temperature in ecologically divergent cultivars of rice. *Environmental and experimental botany*, 41(3), 257-266.
- Goulas, Estelle, Maria Schubert, Thomas Kieselbach, Leszek a. Kleczkowski, Per Gardeström, Wolfgang Schröder, and Vaughan Hurry. 2006. "The Chloroplast Lumen and Stromal Proteomes of Arabidopsis Thaliana Show Differential Sensitivity to Short- and Long-Term Exposure to Low Temperature." *Plant Journal* 47 (5): 720–34. https://doi.org/10.1111/j.1365-313X.2006.02821.x.
- Gregersen, Per L., Andrea Culetic, Luca Boschian, and Karin Krupinska. 2013. "Plant Senescence and Crop Productivity." *Plant Molecular Biology* 82 (6): 603–22. https://doi.org/10.1007/s11103-013-0013-8.

- Gregersen, Per L, Christine H Foyer, and Karin Krupinska. 2014. "Photosynthesis and Leaf Senescence as Determinants of Plant Productivity." In *Biotechnological Approaches to Barley Improvement*, edited by Jochen Kumlehn and Nils Stein, 113–38. Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-662-44406-1_7.
- Gupta, P., Nutan, K. K., Singla-Pareek, S. L., & Pareek, A. (2017). Abiotic stresses cause differential regulation of alternative splice forms of Gata transcription factor in rice. *Frontiers in plant science*, *8*, 1944.
- Gururani, Mayank Anand, Jelli Venkatesh, Markkandan Ganesan, Reto Jörg Strasser, Yunjeong Han, Jeong-Il Kim, Hyo-Yeon Lee, and Pill-Soon Song. 2015. "In Vivo Assessment of Cold Tolerance through Chlorophyll-a Fluorescence in Transgenic Zoysiagrass Expressing Mutant Phytochrome A." *Plos One* 10 (5): e0127200. https://doi.org/10.1371/journal.pone.0127200.
- Gutiérrez, Lucía, Alfonso Cuesta-Marcos, Ariel J. Castro, Jarislav von Zitzewitz, Mark Schmitt, and Patrick M. Hayes. 2011. "Association Mapping of Malting Quality Quantitative Trait Loci in Winter Barley: Positive Signals from Small Germplasm Arrays." *The Plant Genome Journal* 4 (3): 256. https://doi.org/10.3835/plantgenome2011.07.0020.
- Hakala, Marja, Ilona Tuominen, Mika Keränen, Taina Tyystjärvi, and Esa Tyystjärvi.
 2005. "Evidence for the Role of the Oxygen-Evolving Manganese Complex in Photoinhibition of Photosystem II." *Biochimica et Biophysica Acta Bioenergetics* 1706 (1–2): 68–80. https://doi.org/10.1016/j.bbabio.2004.09.001.
- Han, Qiao-Hong, Bo Huang, Chun-Bang Ding, Zhong-Wei Zhang, Yang-Er Chen, Chao Hu, Li-Jun Zhou, et al. 2017. "Effects of Melatonin on Anti-Oxidative Systems and Photosystem II in Cold-Stressed Rice Seedlings." *Frontiers in Plant Science* 8 (May): 1–14. https://doi.org/10.3389/fpls.2017.00785.

- Hao, Derong, Maoni Chao, Zhitong Yin, and Deyue Yu. 2012. "Genome-Wide Association Analysis Detecting Significant Single Nucleotide Polymorphisms for Chlorophyll and Chlorophyll Fluorescence Parameters in Soybean (Glycine Max) Landraces." *Euphytica* 186 (3): 919–31. https://doi.org/10.1007/s10681-012-0697-x.
- Harbinson, Jeremy, Aina E. Prinzenberg, Willem Kruijer, and Mark G M Aarts. 2012.
 "High Throughput Screening with Chlorophyll Fluorescence Imaging and Its Use in Crop Improvement." *Current Opinion in Biotechnology* 23 (2): 221–26. https://doi.org/10.1016/j.copbio.2011.10.006.
- Hirose, Tatsuro, Takashi Ohdan, Yasunori Nakamura, and Tomio Terao. 2006. "Expression Profiling of Genes Related to Starch Synthesis in Rice Leaf Sheaths during the Heading Period." *Physiologia Plantarum* 128 (3): 425–35. https://doi.org/10.1111/j.1399-3054.2006.00758.x.
- Hirotsu, Naoki, Amane Makino, Ayuko Ushio, and Tadahiko Mae. 2004. "Changes in the Thermal Dissipation and the Electron Flow in the Water-Water Cycle in Rice Grown under Conditions of Physiologically Low Temperature." *Plant and Cell Physiology* 45 (5): 635–44. https://doi.org/10.1093/pcp/pch075.
- Horton, P. 2000. "Prospects for Crop Improvement through the Genetic Manipulation of Photosynthesis: Morphological and Biochemical Aspects of Light Capture." *Journal of Experimental Botany* 51 Spec No (February): 475–85. https://doi.org/10.1093/jexbot/51.suppl_1.475.
- Hossain M, Asada K (1987) Ascorbate-regenerating enzymes in chloroplasts. Indian journal of biochemistry & biophysics 24:suppl–52.
- Huang, Z, D Jiang, Y Yang, J Sun, and S Jin. 2004. "Effects of Nitrogen Deficiency on Gas Exchange, Chlorophyll Fluorescence, and Antioxidant Enzymes in Leaves of Rice Plants." *Photosynthetica* 42 (3): 357–64. https://doi.org/10.1023/B:PHOT.0000046153.08935.4c.
- Huner, Norman P a, Gunnar Öquist, and Fathey Sarhan. 1998. "Energy Balance and Acclimation to Light and Cold." *Trends in Plant Science* 3 (6): 224–30. https://doi.org/10.1016/S1360-1385(98)01248-5.

- Huner NP, Öquist, G Melis, A. 2003. Photostasis in plants, green algae and cyanobacteria: the role of light harvesting antenna complexes. In: Green BR, Parson WW, eds. *Light-Harvesting Antennas in Photosynthesis*. Dordrecht: Springer, 401-421.
- Ifuku, Kentaro, Yumiko Yamamoto, Taka-Aki Ono, Seiko Ishihara, and Fumihiko Sato. 2005. "PsbP Protein, but Not PsbQ Protein, Is Essential for the Regulation and Stabilization of Photosystem II in Higher Plants." *Plant Physiology* 139 (3): 1175– 84. https://doi.org/10.1104/pp.105.068643.
- Imin, Nijat, Tursun Kerim, Jeremy J. Weinman, and Barry G. Rolfe. 2006. "Low Temperature Treatment at the Young Microspore Stage Induces Protein Changes in Rice Anthers." *Molecular & Cellular Proteomics* 5 (2): 274–92. https://doi.org/10.1074/mcp.M500242-MCP200.
- Ioannidis, Nikolaos E., Wiebke Zschiesche, Olaf Barth, Christos Kotakis, Eleni Navakoudis, Klaus Humbeck, and Kiriakos Kotzabasis. 2014. "The Genetic Reprogramming of Polyamine Homeostasis During the Functional Assembly, Maturation, and Senescence-Specific Decline of the Photosynthetic Apparatus in Hordeum Vulgare." Journal of Plant Growth Regulation 33 (1): 77–90. https://doi.org/10.1007/s00344-013-9387-8.
- Janská, A., P. Maršík, S. Zelenková, and J. Ovesná. 2010. "Cold Stress and Acclimation -What Is Important for Metabolic Adjustment?" *Plant Biology* 12 (3): 395–405. https://doi.org/10.1111/j.1438-8677.2009.00299.x.
- Jedmowski, Christoph, and Wolfgang Brüggemann. 2015. "Imaging of Fast Chlorophyll Fluorescence Induction Curve (OJIP) Parameters, Applied in a Screening Study with Wild Barley (Hordeum Spontaneum) Genotypes under Heat Stress." *Journal of Photochemistry and Photobiology B: Biology* 151: 153–60. https://doi.org/10.1016/j.jphotobiol.2015.07.020.
- Jeong, S. W., Choi, S. M., Lee, D. S., Ahn, S. N., Hur, Y., Chow, W. S., & Park, Y. I. (2002). Differential susceptibility of photosynthesis to light-chilling stress in rice (Oryza sativa L.) depends on the capacity for photochemical dissipation of light. *Molecules and cells*, 13(3), 419-428.

- Jiao, Demao, Benhua Ji, and Xia Li. 2003. "Characteristics of Chlorophyll Fluorescence and Membrane-Lipid Peroxidation during Senescence of Flag Leaf in Different Cultivars of Rice." *Photosynthetica*. https://doi.org/10.1023/A:1025848110029.
- Kabaki N. 1983. Physiological analysis of growth retardation of rice seedlings caused by low temperature. Japon Agricultural Research Quarterly 17, 161-165.
- Kalaji, H. M., A. Rastogi, M. Živčák, M. Brestic, A. Daszkowska-Golec, K. Sitko, K. Y. Alsharafa, et al. 2018. "Prompt Chlorophyll Fluorescence as a Tool for Crop Phenotyping: An Example of Barley Landraces Exposed to Various Abiotic Stress Factors." *Photosynthetica* 56 (3): 953–61. https://doi.org/10.1007/s11099-018-0766-z.
- Kalaji, Hazem M., Anjana Jajoo, Abdallah Oukarroum, Marian Brestic, Marek Zivcak, Izabela A. Samborska, Magdalena D. Cetner, Izabela Łukasik, Vasilij Goltsev, and Richard J. Ladle. 2016. "Chlorophyll a Fluorescence as a Tool to Monitor Physiological Status of Plants under Abiotic Stress Conditions." Acta Physiologiae Plantarum 38 (4). https://doi.org/10.1007/s11738-016-2113-y.
- Kalaji, Mohamed H., Vasilij N. Goltsev, Krystyna Zuk-Golaszewska, Marek Zivcak, and Marian Brestic. 2017. Chlorophyll Fluorescence, Understanding Crop Performance. Chlorophyll Fluorescence, Understanding Crop Performance. https://doi.org/10.1201/9781315153605.
- Kar, M., and D. Mishra. 1976. "Catalase, Peroxidase, and Polyphenoloxidase Activities during Rice Leaf Senescence." *Plant Physiology* 57 (2): 315–19. https://doi.org/10.1104/pp.57.2.315.
- Kabaki N. 1983. Physiological analysis of growth retardation of rice seedlings caused by low temperature. JaponAgriculturalResearchQuarterly17, 161-165.
- Kashiwagi, Takayuki, Yuka Madoka, Naoki Hirotsu, and Ken Ishimaru. 2006. "Locus Prl5 Improves Lodging Resistance of Rice by Delaying Senescence and Increasing Carbohydrate Reaccumulation." *Plant Physiology and Biochemistry* 44 (2–3): 152– 57. https://doi.org/10.1016/j.plaphy.2006.02.004.
- Khush, G S. 1995. Breaking the Yield Barrier of Rice. Geo. J. Vol. 35.

- Kim, Joo Y., Won Y. Kim, Kyung J. Kwak, Seung H. Oh, Yeon S. Han, and Hunseung Kang.
 2010. "Zinc Finger-Containing Glycine-Rich RNA-Binding Protein in Oryza Sativa
 Has an RNA Chaperone Activity under Cold Stress Conditions." *Plant, Cell and Environment* 33 (5): 759–68. https://doi.org/10.1111/j.1365-3040.2009.02101.x.
- Kim, Sang Ic, and Thomas H. Tai. 2011. "Evaluation of Seedling Cold Tolerance in Rice Cultivars: A Comparison of Visual Ratings and Quantitative Indicators of Physiological Changes." *Euphytica* 178 (3): 437–47. https://doi.org/10.1007/s10681-010-0343-4.
- Kitagawa, Kanako, Shigeru Kurinami, Katsuyuki Oki, Yuki Abe, Tsuyu Ando, Izumi Kono, Masahiro Yano, Hidemi Kitano, and Yukimoto Iwasaki. 2010. "A Novel Kinesin 13 Protein Regulating Rice Seed Length." *Plant and Cell Physiology* 51 (8): 1315–29. https://doi.org/10.1093/pcp/pcq092.
- Knecht, Avi C., Malachy T. Campbell, Adam Caprez, David R. Swanson, and Harkamal Walia. 2016. "Image Harvest: An Open-Source Platform for High-Throughput Plant Image Processing and Analysis." *Journal of Experimental Botany* 67 (11): 3587–99. https://doi.org/10.1093/jxb/erw176.
- Krüger, G.H.J., M.F. De Villiers, a.J. Strauss, M. de Beer, P.D.R. van Heerden, R. Maldonado, and R.J. Strasser. 2014. "Inhibition of Photosystem II Activities in Soybean (Glycine Max) Genotypes Differing in Chilling Sensitivity." South African Journal of Botany 95: 85–96. https://doi.org/10.1016/j.sajb.2014.07.010.
- Krupinska, Karin, Maria Mulisch, Julien Hollmann, Krzysztof Tokarz, Wiebke Zschiesche, Henning Kage, Klaus Humbeck, and Wolfgang Bilger. 2012. "An Alternative Strategy of Dismantling of the Chloroplasts during Leaf Senescence Observed in a High-Yield Variety of Barley." *Physiologia Plantarum* 144 (2): 189–200. https://doi.org/10.1111/j.1399-3054.2011.01545.x.
- De Las Rivas, Javier De, Mónica Balsera, and James Barber. 2004. "Evolution of Oxygenic Photosynthesis: Genome-Wide Analysis of the OEC Extrinsic Proteins." *Trends in Plant Science* 9 (1): 18–25. https://doi.org/10.1016/j.tplants.2003.11.007.

- De Las Rivas, Javier De, Pedro Heredia, and Angel Roman. 2007. "Oxygen-Evolving Extrinsic Proteins (PsbO,P,Q,R): Bioinformatic and Functional Analysis." Biochimica et Biophysica Acta - Bioenergetics 1767 (6): 575–82. https://doi.org/10.1016/j.bbabio.2007.01.018.
- Di Rienzo, J. A., Casanoves, F., Balzarini, M. G., Gonzalez, L., Tablada, M., & Robledo, C.
 W. (2008). InfoStat, versión 2008. *Grupo infostat, fca, universidad nacional de córdoba, argentina*, 115.
- Lê, S., Josse, J. & Husson, F. (2008). <u>FactoMineR: An R Package for Multivariate</u> <u>Analysis</u>. *Journal of Statistical Software*. **25(1)**. pp. 1-18.
- Lee, Shinyoung, Joonyul Kim, Jong Jin Han, Min Jung Han, and Gynheung An. 2004. "Functional Analyses of the Flowering Time Gene OsMADS50, the Putative Suppressor of Overexpression of CO 1/Agamous-Like 20 (SOC1/AGL20) Ortholog in Rice." *Plant Journal* 38 (5): 754–64. https://doi.org/10.1111/j.1365-313X.2004.02082.x.
- Li, Lihua, Taozhi Ye, Xiaoling Gao, Rongjun Chen, Jinghong Xu, and Chen Xie. 2016. "Molecular Characterization and Functional Analysis of the OsPsbR Gene Family in Rice." *Molecular Genetics and Genomics*. https://doi.org/10.1007/s00438-016-1273-1.
- Li, Qian Feng, Samuel S.M. Sun, Ding Yang Yuan, Heng Xiu Yu, Ming Hong Gu, and Qiao Quan Liu. 2009. "Validation of Candidate Reference Genes for the Accurate Normalization of Real-Time Quantitative RT-PCR Data in Rice during Seed Development." *Plant Molecular Biology Reporter* 28 (1): 49–57. https://doi.org/10.1007/s11105-009-0124-1.
- Liu, Jianlong, Weixiang Wang, Liying Wang, and Yan Sun. 2015. "Exogenous Melatonin Improves Seedling Health Index and Drought Tolerance in Tomato." *Plant Growth Regulation* 77 (3): 317–26. https://doi.org/10.1007/s10725-015-0066-6.
- Liu, Qingdai, Yerong Zhu, Hanlin Tao, Ningning Wang, and Yong Wang. 2006. "Damage of PS II during Senescence of Spirodela Polyrrhiza Explants under Long-Day Conditions and Its Prevention by 6-Benzyladenine." *Journal of Plant Research* 119 (2): 145–52. https://doi.org/10.1007/s10265-006-0259-1.

- Livore A.B. 2006. Los cultivares de arroz. En: El arroz, su cultivo y sustentabilidad en Entre Ríos. Editor: Benavides R.A. Editorial, Universidad Nacional del Litoral, Entre Ríos, Argentina.
- Lovyagina, E. R., and B. K. Semin. 2016. "Mechanism of Inhibition and Decoupling of Oxygen Evolution from Electron Transfer in Photosystem II by Fluoride, Ammonia and Acetate." *Journal of Photochemistry and Photobiology B: Biology* 158: 145– 53. https://doi.org/10.1016/j.jphotobiol.2016.02.031.
- Lyons, James M. 1973. "Chilling Injury in Plants." *Annual Review of Plant Physiology* 24 (1): 445–66. https://doi.org/10.1146/annurev.pp.24.060173.002305.
- Maruyama, K., K. Urano, K. Yoshiwara, Y. Morishita, N. Sakurai, H. Suzuki, M. Kojima, et al. 2014. "Integrated Analysis of the Effects of Cold and Dehydration on Rice Metabolites, Phytohormones, and Gene Transcripts." *Plant Physiology* 164 (4): 1759–71. https://doi.org/10.1104/pp.113.231720.
- McCouch, Susan R, Mark H Wright, Chih-Wei Tung, Lyza G Maron, Kenneth L McNally, Melissa Fitzgerald, Namrata Singh, et al. 2016. "Open Access Resources for Genome-Wide Association Mapping in Rice." Nat. Commun 7: 10532. https://doi.org/10.1038/ncomms10532.
- Meacham, Katherine, Xavier Sirault, W. Paul Quick, Susanne von Caemmerer, and Robert Furbank. 2017. "Diurnal Solar Energy Conversion and Photoprotection in Rice Canopies." *Plant Physiology* 173 (1): 495–508. https://doi.org/10.1104/pp.16.01585.
- Melis A. 1999. Photosystem-II damage and repair cycle in chloroplasts: what modulates the rate of photodamage in vivo?. Trends in Plant Science **4**, 130-135.
- Mishra, Kumud B., Anamika Mishra, Jiří Kubásek, Otmar Urban, Arnd G. Heyer, and Govindjee. 2018. "Low Temperature Induced Modulation of Photosynthetic Induction in Non-Acclimated and Cold-Acclimated Arabidopsis Thaliana: Chlorophyll a Fluorescence and Gas-Exchange Measurements." *Photosynthesis Research* 0 (0): 0. https://doi.org/10.1007/s11120-018-0588-7.

- Mjomba, Fredrick Mwamburi, Yan Zheng, Huaqing Liu, Weiqi Tang, Zonglie Hong, Feng Wang, and Weiren Wu. 2016. "Homeobox Is Pivotal for OsWUS Controlling Tiller Development and Female Fertility in Rice." *G3: Genes, Genomes, Genetics* 6 (7): 2013–21. https://doi.org/10.1534/g3.116.028837.
- Møller, Ian M, Poul Erik Jensen, and Andreas Hansson. 2007. "Oxidative Modifications to Cellular Components in Plants." *Annual Review of Plant Biology* 58: 459–81. https://doi.org/10.1146/annurev.arplant.58.032806.103946.
- Morsy, Mustafa R., Laurent Jouve, Jean François Hausman, Lucien Hoffmann, and James Mc D. Stewart. 2007. "Alteration of Oxidative and Carbohydrate Metabolism under Abiotic Stress in Two Rice (Oryza Sativa L.) Genotypes Contrasting in Chilling Tolerance." Journal of Plant Physiology 164 (2): 157–67. https://doi.org/10.1016/j.jplph.2005.12.004.
- Müller, P., X. P. Li, and K. K. Niyogi. 2001. "Non-Photochemical Quenching. A Response to Excess Light Energy." *Plant Physiology* 125 (4): 1558–66. https://doi.org/10.1104/pp.125.4.1558.
- Munné-Bosch, S., and L. Alegre. 2002. "Plant Aging Increases Oxidative Stress in Chloroplasts." *Planta* 214 (4): 608–15. https://doi.org/10.1007/s004250100646.
- Murata, Norio, Shunichi Takahashi, Yoshitaka Nishiyama, and Suleyman I Allakhverdiev. 2007. "Photoinhibition of Photosystem II under Environmental Stress" 1767: 414–21. https://doi.org/10.1016/j.bbabio.2006.11.019.
- Murchie, Erik H., Asgar Ali, and Tiara Herman. 2015. "Photoprotection as a Trait for Rice Yield Improvement: Status and Prospects." *Rice* 8 (1): 31. https://doi.org/10.1186/s12284-015-0065-2.
- Nakagahra, M., Okuno, K., & Vaughan, D. (1997).Rice genetic resources: history, conservation, investigative characterization and use in Japon. In *Oryza: From Molecule to Plant* (pp. 69-77). Springer, Dordrecht.
- Nakano, Hiromi, Amane Makino, and Tadahiko Mae. 1995. "Effects of Panicle Removal on the Photosynthetic Characteristics of the Flag Leaf of Rice Plants during the Ripening Stage." *Plant and Cell Physiology* 36 (4): 653–59. http://pcp.oxfordjournals.org/content/36/4/653.abstract.

- Nestler, Holger, Ksenia J. Groh, René Schönenberger, Rik I.L. Eggen, and Marc J.F. Suter. 2012. "Linking Proteome Responses with Physiological and Biochemical Effects in Herbicide-Exposed Chlamydomonas Reinhardtii." *Journal of Proteomics* 75 (17): 5370–85. https://doi.org/10.1016/j.jprot.2012.06.017.
- Nishimura, Taishi, Ryo Nagao, Takumi Noguchi, Jon Nield, and Fumihiko Sato. 2016. "The N-Terminal Sequence of the Extrinsic PsbP Protein Modulates the Redox Potential of Cyt b 559 in Photosystem II." *Nature Publishing Group*, no. October 2015: 1–11. https://doi.org/10.1038/srep21490.
- Noctor, G., Mhamdi, A., & Foyer, C. H. (2014). The roles of reactive oxygen metabolism in drought: not so cut and dried. *Plant physiology*, *164*(4), 1636-1648.
- Ohnishi, Norikazu, Suleyman I. Allakhverdiev, Shunichi Takahashi, Shoichi Higashi, Masakatsu Watanabe, Yoshitaka Nishiyama, and Norio Murata. 2005. "Two-Step Mechanism of Photodamage to Photosystem II: Step 1 Occurs at the Oxygen-Evolving Complex and Step 2 Occurs at the Photochemical Reaction Center." *Biochemistry* 44 (23): 8494–99. https://doi.org/10.1021/bi047518q.
- Ortiz, Diego, Jieyun Hu, and Maria G. Salas Fernandez. 2017. "Genetic Architecture of Photosynthesis in Sorghum Bicolor under Non-Stress and Cold Stress Conditions." *Journal of Experimental Botany* 68 (16): 4545–57. https://doi.org/10.1093/jxb/erx276.
- Oukarroum, A, and R J Strasser. 2004. "Phenotyping of Dark and Light Adapted Barley Plants by the Fast Chlorophyll a Fluorescence Rise OJIP." *South African Journal of Botany* 70 (2): 277–83. https://doi.org/10.1016/S0254-6299(15)30246-5.
- Oksanen, J., Kindt, R., Legendre, P., OHara, B., Simpson, G.L., Solymos, P., Henry, M., Stevens, H., Wagner, H., 2009. The Vegan Package: Community Ecology Package, p. 190.
- Pagter, Majken, Fulai Liu, Christian R. Jensen, and Karen K. Petersen. 2008. "Effects of Chilling Temperatures and Short Photoperiod on PSII Function, Sugar Concentrations and Xylem Sap ABA Concentrations in Two Hydrangea Species." *Plant Science* 175 (4): 547–55. https://doi.org/10.1016/j.plantsci.2008.06.006.

- Palatnik, Javier F., Vanesa B. Tognetti, Hugo O. Poli, Ramiro E. Rodríguez, Nicolás Blanco, Martha Gattuso, Mohammad Reza Hajirezaei, Uwe Sonnewald, Estela M. Valle, and Néstor Carrillo. 2003. "Transgenic Tobacco Plants Expressing Antisense Ferredoxin-NADP(H) Reductase Transcripts Display Increased Susceptibility to Photo-Oxidative Damage." *Plant Journal* 35 (3): 332–41. https://doi.org/10.1046/j.1365-313X.2003.01809.x.
- Panda, Debabrata, and Ramani Kumar Sarkar. 2013. "Natural Leaf Senescence: Probed by Chlorophyll Fluorescence, CO2 Photosynthetic Rate and Antioxidant Enzyme Activities during Grain Filling in Different Rice Cultivars." *Physiology and Molecular Biology of Plants* 19 (1): 43–51. https://doi.org/10.1007/s12298-012-0142-6.
- Pérez-Bueno, M. L., M. Barón, and I. García-Luque. 2011. "PsbO, PsbP, and PsbQ of Photosystem II Are Encoded by Gene Families in Nicotiana Benthamiana. Structure and Functionality of Their Isoforms." *Photosynthetica* 49 (4): 573–80. https://doi.org/10.1007/s11099-011-0070-7.
- Pérez-Rodríguez, Paulino, Diego Mauricio Riaño-Pachón, Luiz Gustavo Guedes Corrêa,
 Stefan A. Rensing, Birgit Kersten, and Bernd Mueller-Roeber. 2009. "PInTFDB:
 Updated Content and New Features of the Plant Transcription Factor Database." *Nucleic Acids Research* 38 (SUPPL.1): 822–27.
 https://doi.org/10.1093/nar/gkp805.
- Perez-Ruiz, J. M. 2006. "Rice NTRC Is a High-Efficiency Redox System for Chloroplast Protection against Oxidative Damage." *The Plant Cell Online* 18 (9): 2356–68. https://doi.org/10.1105/tpc.106.041541.
- Prochazkova, Dagmar, R. K. Sairam, G. C. Srivastava, and D. V. Singh. 2001. "Oxidative Stress and Antioxidant Activity as the Basis of Senescence in Maize Leaves." *Plant Science* 161 (4): 765–71. https://doi.org/10.1016/S0168-9452(01)00462-9.
- Purcell, Shaun, Benjamin Neale, Kathe Todd-Brown, Lori Thomas, Manuel A.R. Ferreira, David Bender, Julian Maller, et al. 2007. "PLINK: A Tool Set for Whole-Genome Association and Population-Based Linkage Analyses." *American Journal of Human Genetics* 81 (3): 559–75. https://doi.org/10.1086/519795.

- Qu, Mingnan, Guangyong Zheng, Saber Hamdani, Jemaa Essemine, Qingfeng Song, Hongru Wang, Chengcai Chu, Xavier Sirault, and Xin-Guang Zhu. 2017. "Leaf Photosynthetic Parameters Related to Biomass Accumulation in a Global Rice Diversity Survey." *Plant Physiology* 175 (1): 248–58. https://doi.org/10.1104/pp.17.00332.
- Quintero, CE. 2009. "Factores Limitantes Para El Crecimiento y Productividad Del Arroz
 En Entre Ríos, Argentina," 167. https://doi.org/10.1111/j.1365-3156.2006.01698.x.
- Racedo, Josefina, Lucía Gutiérrez, María Francisca Perera, Santiago Ostengo, Esteban
 Mariano Pardo, María Inés Cuenya, Bjorn Welin, and Atilio Pedro Castagnaro.
 2016. "Genome-Wide Association Mapping of Quantitative Traits in a Breeding
 Population of Sugarcane." *BMC Plant Biology* 16 (1).
 https://doi.org/10.1186/s12870-016-0829-x.
- Rachoski, Monica, Ayelen Gazquez, Pablo Calzadilla, Rodolfo Bezus, Andrés Rodriguez, Oscar Ruiz, Ana Menendez, and Santiago Maiale. 2015. "Chlorophyll Fluorescence and Lipid Peroxidation Changes in Rice Somaclonal Lines Subjected to Salt Stress." *Acta Physiologiae Plantarum* 37 (6). https://doi.org/10.1007/s11738-015-1865-0.
- Reshef, David N, Yakir a Reshef, Hilary K Finucane, Sharon R Grossman, Gilean Mcvean,
 Peter J Turnbaugh, Eric S Lander, Michael Mitzenmacher, and Pardis C Sabeti.
 2011. "In Large Data Sets." *Science* 1518 (December): 1518–24.
 https://doi.org/10.1126/science.1205438.
- Reshef, David, Yakir Reshef, Michael Mitzenmacher, and Pardis Sabeti. 2013. "Equitability Analysis of the Maximal Information Coefficient, with Comparisons," 1–22. http://arxiv.org/abs/1301.6314.
- Remington, D., & Thornsberry, J. (2001). Structure of linkage disequilibrium and phenotypic associations in the maize genome. *National Acad Sciences*. Retrieved from https://www.pnas.org/content/98/20/11479.short.

- Rodriguez, Ramiro E, Anabella Lodeyro, Hugo O Poli, Matias Zurbriggen, Martin Peisker, Javier F Palatnik, Vanesa B Tognetti, et al. 2007. "Transgenic Tobacco Plants Overexpressing Chloroplastic Ferredoxin-NADP(H) Reductase Display Normal Rates of Photosynthesis and Increased Tolerance to Oxidative Stress." *Plant Physiology* 143 (2): 639–49. https://doi.org/10.1104/pp.106.090449.
- Rodziewicz, Paweł, Barbara Swarcewicz, Klaudia Chmielewska, Anna Wojakowska, and Maciej Stobiecki. 2014. "Influence of Abiotic Stresses on Plant Proteome and Metabolome Changes." Acta Physiologiae Plantarum 36 (1): 1–19. https://doi.org/10.1007/s11738-013-1402-y.
- Ronde, J. A. De, W. A. Cress, G. H.J. Krüger, R. J. Strasser, and J. Van Staden. 2004. "Photosynthetic Response of Transgenic Soybean Plants, Containing an Arabidopsis P5CR Gene, during Heat and Drought Stress." *Journal of Plant Physiology* 161 (11): 1211–24. https://doi.org/10.1016/j.jplph.2004.01.014.
- Rooijen, Roxanne Van, Willem Kruijer, René Boesten, Fred A. Van Eeuwijk, Jeremy Harbinson, and Mark G.M. Aarts. 2017. "Natural Variation of YELLOW SEEDLING1
 Affects Photosynthetic Acclimation of Arabidopsis Thaliana." Nature Communications 8 (1). https://doi.org/10.1038/s41467-017-01576-3.
- Sambrook, J., Fritsch, E. F., & Maniatis, T. (1989). *Molecular cloning: a laboratory manual* (No. Ed. 2). Cold spring harbor laboratory press New York.
- Sasaki, Takuji, and Motoyuki Ashikari. 1998. Genetics And. Novartis Foundation Symposium.
- Savitch, Leonid V, Tracy Harney, and Norman P A Huner. 2000. "Sucrose Metabolism in Spring and Winter Wheat in Response to High Irradiance, Cold Stress and Cold Acclimation." *Physiologia Plantarum* 108 (3): 270–78. https://doi.org/doi:10.1034/j.1399-3054.2000.108003270.x.
- Savitch, Lv, and Ag Ivanov. 2009. "Effects of Low Temperature Stress on Excitation Energy Partitioning and Photoprotection in Zea Mays." *Functional Plant ...*, no. Baker 1994: 37–49. http://www.publish.csiro.au/?paper=FP08093.

- Segura, Vincent, Bjarni J. Vilhjálmsson, Alexander Platt, Arthur Korte, Ümit Seren, Quan Long, and Magnus Nordborg. 2012. "An Efficient Multi-Locus Mixed-Model Approach for Genome-Wide Association Studies in Structured Populations." *Nature Genetics* 44 (7): 825–30. https://doi.org/10.1038/ng.2314.
- Shakiba, Ehsan, Jeremy D. Edwards, Farman Jodari, Sara E. Duke, Angela M. Baldo, Pavel Korniliev, Susan R. McCouch, and Georgia C. Eizenga. 2017. "Genetic Architecture of Cold Tolerance in Rice (Oryza Sativa) Determined through High Resolution Genome-Wide Analysis." *PLoS ONE* 12 (3): 1–22. https://doi.org/10.1371/journal.pone.0172133.
- Sharma, Pallavi, and R. S. Dubey. 2004. "Ascorbate Peroxidase from Rice Seedlings: Properties of Enzyme Isoforms, Effects of Stresses and Protective Roles of Osmolytes." *Plant Science* 167 (3): 541–50. https://doi.org/10.1016/j.plantsci.2004.04.028.
- Sharma P, Jha AB, Dubey RS, Pessarakli M (2012) Reactive Oxygen Species, Oxidative Damage, and Antioxidative Defense Mechanism in Plants under Stressful Conditions. Journal of Botany 2012:1–26. doi: 10.1155/2012/217037.
- Silvestre, Susana, Susana de Sousa Araújo, Maria Carlota Vaz Patto, and Jorge Marques da Silva. 2014. "Performance Index: An Expeditious Tool to Screen for Improved Drought Resistance in the Lathyrus Genus." *Journal of Integrative Plant Biology* 56 (7): 610–21. https://doi.org/10.1111/jipb.12186.
- Šimić, Domagoj, Hrvoje Lepeduš, Vlatka Jurković, Jasenka Antunović, and Vera Cesar. 2014. "Quantitative Genetic Analysis of Chlorophyll a Fluorescence Parameters in Maize in the Field Environments." *Journal of Integrative Plant Biology* 56 (7): 695– 708. https://doi.org/10.1111/jipb.12179.
- Srivastava, Alaka, Berouba Guissé, Hubert Greppin, and Reto J. Strasser. 1997. "Regulation of Antenna Structure and Electron Transport in Photosystem II of Pisum Sativum under Elevated Temperature Probed by the Fast Polyphasic Chlorophyll a Fluorescence Transient: OKJIP." *Biochimica et Biophysica Acta -Bioenergetics* 1320 (1): 95–106. https://doi.org/10.1016/S0005-2728(97)00017-0.

- Stirbet, A., D. Lazár, J. Kromdijk, and Govindjee. 2018. "Chlorophyll a Fluorescence Induction: Can Just a One-Second Measurement Be Used to Quantify Abiotic Stress Responses?" *Photosynthetica* 56 (1): 86–104. https://doi.org/10.1007/s11099-018-0770-3.
- Stirbet, Alexandrina, and Govindjee. 2011a. "On the Relation between the Kautsky Effect (Chlorophyll a Fluorescence Induction) and Photosystem II: Basics and Applications of the OJIP Fluorescence Transient." *Journal of Photochemistry and Photobiology B: Biology* 104 (1–2): 236–57. https://doi.org/10.1016/j.jphotobiol.2010.12.010. 2011b. "On the Relation between the Kautsky Effect (Chlorophyll a Fluorescence Induction) and Photosystem II: Basics and Applications of the OJIP Fluorescence Transient." *Journal of Photochemistry and Photobiology B: Biology* 104 (1–2): 236–57. https://doi.org/10.1016/j.jphotobiol.2010.12.010.
- Stitt, M., von Schaewen, A., &Willmitzer, L. (1991). "Sink" regulation of photosynthetic metabolism in transgenic tobacco plants expressing yeast invertase in their cell wall involves a decrease of the Calvin-cycle enzymes and an increase of glycolytic enzymes. *Planta*, 183(1), 40-50.
- Strasser RJ, Srivastava A, Govindjee (1995) Polyphasic chlorophyll a fluorescence transient in plants and cyanobacteria. Photochemistry and Photobiology 61: 32– 42.
- Strasser, Bruno. 1997. "Donor Side Capacity of Photosystem II Probed by Chlorophyll." *Photosynthesis Research* 52: 147–55. https://doi.org/10.1023/A:1005896029778.
- Strasser, Reto J., Merope Tsimilli-Michael, and Alaka Srivastava. 2004. "Analysis of the Chlorophyll a Fluorescence Transient." *Chlorophyll a Fluorescence*, 321–62. https://doi.org/10.1007/978-1-4020-3218-9_12.
- Strasser, R. J., Srivastava, A., &Tsimilli-Michael, M. (1999). Screening the vitality and photosynthetic activity of plants by fluorescence transient. *Crop improvement for food security*, *79*, 126.

- Strasser, Rj, a Srivastava, and M Tsimilli-Michael. 2000. "The Fluorescence Transient as

 a Tool to Characterize and Screen Photosynthetic Samples." Probing
 Photosynthesis: Mechanism, Regulation & Adaptation, 445–83.
 http://ww.hansatech-instruments.com/docs/the fluorescence transient.pdf.
- Strasserf, Reto J., Alaka Srivastava, and Govindjee. 1995. "POLYPHASIC CHLOROPHYLL a FLUORESCENCE TRANSIENT IN PLANTS AND CYANOBACTERIA." *Photochemistry and Photobiology* 61 (1): 32–42. https://doi.org/10.1111/j.1751-1097.1995.tb09240.x.
- Strasserf, Reto J, and Alaka Srivastava. 1995. "POLYPHASIC CHLOROPHYLL a FLUORESCENCE TRANSIENT IN PLANTS AND CYANOBACTERIA*." *Photochemistry and Photobiology* 61 (1): 32–42. https://doi.org/doi:10.1111/j.1751-1097.1995.tb09240.x.
- Strigens, Alexander, Niclas M. Freitag, Xavier Gilbert, Christoph Grieder, Christian Riedelsheimer, Tobias A. Schrag, Rainer Messmer, and Albrecht E. Melchinger. 2013. "Association Mapping for Chilling Tolerance in Elite Flint and Dent Maize Inbred Lines Evaluated in Growth Chamber and Field Experiments." *Plant, Cell and Environment* 36 (10): 1871–87. https://doi.org/10.1111/pce.12096.
- Su, C. F., Y. C. Wang, T. H. Hsieh, C. A. Lu, T. H. Tseng, and S. M. Yu. 2010. "A Novel MYBS3-Dependent Pathway Confers Cold Tolerance in Rice." *Plant Physiology* 153 (1): 145–58. https://doi.org/10.1104/pp.110.153015.
- Suorsa, M., S. Sirpio, Y. Allahverdiyeva, V. Paakkarinen, F. Mamedov, S. Styring, and E.M. Aro. 2006. "PsbR, a Missing Link in the Assembly of the Oxygen-Evolving Complex of Plant Photosystem II." *Journal of Biological Chemistry* 281 (1): 145–50. https://doi.org/10.1074/jbc.M510600200.
- Susplugas, Sophie, Alaka Srivastava, and Reto J Strasser. 2000. "@BULLET JOURNAL OF
 @BULLET PLANT PHYSIOLOGY Changes in the Photosynthetic Activities during
 Several Stages of Vegetative Growth of Spirode/a Po/Yrhiza: Effect of Chromate."
 Journal of Plant Physiology 157 (5): 503–12. https://doi.org/10.1016/S0176 1617(00)80105-4.

- Suzuki, Kensaku, Naohiro Aoki, Hisakazu Matsumura, Masaki Okamura, Ryu Ohsugi, and Hiroyuki Shimono. 2015. "Cooling Water before Panicle Initiation Increases Chilling-Induced Male Sterility and Disables Chilling-Induced Expression of Genes Encoding OsFKBP65 and Heat Shock Proteins in Rice Spikelets." *Plant, Cell and Environment* 38 (7): 1255–74. https://doi.org/10.1111/pce.12498.
- Sved, J. A. (1971). Linkage disequilibrium and homozygosity of chromosome segments in finite populations. *Theoretical Population Biology*, *2*(2), 125–141.
- Takahashi, Kodai, Hideto Ito, Masatoshi Hashimoto, Kazuhito Mita, Hideki Asakawa, Takashi Hayashi, and Keiichi Fujino. 2017. "Does Antithrombotic Therapy Improve Survival with Colorectal Cancer?" World Journal of Surgical Oncology 15 (1): 0. https://doi.org/10.1186/s12957-017-1235-z.
- Takanashi J, Maruyama S, Kabaki N, Tajima K. 1987. Temperature dependency of protein synthesis by cell-free system constructed with polysomes from rice radicle. Japonese Journal of Crop Science 56, 44-50.
- Takahashi, Shunichi, and Norio Murata. 2008. "How Do Environmental Stresses Accelerate Photoinhibition?" *Trends in Plant Science* 13 (4): 178–82. https://doi.org/10.1016/j.tplants.2008.01.005.
- Takanashi J, Maruyama S, Kabaki N, Tajima K. 1987. Temperature dependency of protein synthesis by cell-free system constructed with polysomes from rice radicle.Japonese Journal of Crop Science 56, 44-50.
- Tamburino, Rachele, Monica Vitale, Alessandra Ruggiero, Mauro Sassi, Lorenza Sannino, Simona Arena, Antonello Costa, et al. 2017. "Chloroplast Proteome Response to Drought Stress and Recovery in Tomato (Solanum Lycopersicum L.)."
 BMC Plant Biology 17 (1): 1–14. https://doi.org/10.1186/s12870-017-0971-0.
- Tanaka, Yu, Shigeo S. Sugano, Tomoo Shimada, and Ikuko Hara-Nishimura. 2013.
 "Enhancement of Leaf Photosynthetic Capacity through Increased Stomatal Density in Arabidopsis." New Phytologist 198 (3): 757–64. https://doi.org/10.1111/nph.12186.

- Tang, Wen Bang, Gui Lian Zhang, Ying Hui Xiao, Hua Bing Deng, Ke Fan, Guo Hua Liu, and Li Yun Chen. 2010. "Physiological and Biochemical Characteristics in Flag Leaves of the C Liangyou Series of Hybrid Rice Combinations at Late Growth Stages." *Rice Science* 17 (4): 319–25. https://doi.org/10.1016/S1672-6308(09)60033-0.
- Thomas, H, and C J Howarth. 2000. "Five Ways to Stay Green." *Journal of Experimental Botany* 51 (February): 329–37. https://doi.org/10.1093/jexbot/51.suppl_1.329.
- Vargas, Walter A., Horacio G. Pontis, and Graciela L. Salerno. 2007. "Differential Expression of Alkaline and Neutral Invertases in Response to Environmental Stresses: Characterization of an Alkaline Isoform as a Stress-Response Enzyme in Wheat Leaves." *Planta* 226 (6): 1535–45. https://doi.org/10.1007/s00425-007-0590-3.
- Verlag, Fischer, Qingtao Lu, Congming Lu, Jianhua Zhang, and Tingyun Kuang. 2002. "Photosynthesis and Chlorophyll a Fluorescence during Flag Leaf Senescence of Field-Grown Wheat Plants." *Journal of Plant Physiology* 159: 1173–78. https://doi.org/10.1078/0176-1617-00727.
- Vivekanandan M, Saralabai VC (1997) The use of transgenic plants to manipulate photosynthetic processes and crop yield. In: Pessarakli M (eds) Handbook of Photosynthesis. Marcel Dekker, New York, pp 661–669. ISBN 0–8247–9708–6
- Von Schaewen, A., Stitt, M., Schmidt, R., Sonnewald, U., &Willmitzer, L. (1990). Expression of a yeast-derived invertase in the cell wall of tobacco and Arabidopsis plants leads to accumulation of carbohydrate and inhibition of photosynthesis and strongly influences growth and phenotype of transgenic tobacco plants. *The EMBO Journal*, 9(10), 3033-3044.
- Wang, Yuwen, Jingjing Zhang, Jing Yu, Xiaohan Jiang, Lingang Sun, Min Wu, Guoxiang Chen, and Chuangen Lv. 2014. "Photosynthetic Changes of Flag Leaves during Senescence Stage in Super High-Yield Hybrid Rice LYPJ Grown in Field Condition." *Plant Physiology and Biochemistry* 82: 194–201. https://doi.org/10.1016/j.plaphy.2014.06.005.

- Wei, Jinhuan, Heebak Choi, Ping Jin, Yunfei Wu, Jinmi Yoon, Yang Seok Lee, Taiyong Quan, and Gynheung An. 2016. "GL2-Type Homeobox Gene Roc4 in Rice Promotes Flowering Time Preferentially under Long Days by Repressing Ghd7." *Plant Science* 252: 133–43. https://doi.org/10.1016/j.plantsci.2016.07.012.
- Wijk, Klaas J Van. 2012. "Photosynthesis" 34: 151–73. https://doi.org/10.1007/978-94-007-1579-0.
- Wingler, Astrid, Sarah Purdy, Jamie A. MacLean, and Nathalie Pourtau. 2006. "The Role of Sugars in Integrating Environmental Signals during the Regulation of Leaf Senescence." *Journal of Experimental Botany* 57 (2 SPEC. ISS.): 391–99. https://doi.org/10.1093/jxb/eri279.
- Xiong, L, and J Zhu. 2002. "<Molecular and Genetic Aspects of Plant Responses to.Pdf>." https://doi.org/10.1046/j.1365-3040.2002.00782.x.
- Xu, J., Y. Li, J. Sun, L. Du, Y. Zhang, Q. Yu, and X. Liu. 2013. "Comparative Physiological and Proteomic Response to Abrupt Low Temperature Stress between Two Winter Wheat Cultivars Differing in Low Temperature Tolerance." *Plant Biology* 15 (2): 292–303. https://doi.org/10.1111/j.1438-8677.2012.00639.x.
- Yamori, Wataru. 2016. "Photosynthetic Response to Fluctuating Environments and Photoprotective Strategies under Abiotic Stress." *Journal of Plant Research* 129 (3): 379–95. https://doi.org/10.1007/s10265-016-0816-1.
- Yamori, Wataru, Eri Kondo, Daisuke Sugiura, Ichiro Terashima, Yuji Suzuki, and Amane Makino. 2016. "Enhanced Leaf Photosynthesis as a Target to Increase Grain Yield: Insights from Transgenic Rice Lines with Variable Rieske FeS Protein Content in the Cytochrome B6/f Complex." *Plant, Cell and Environment* 39 (1): 80–87. https://doi.org/10.1111/pce.12594.
- Yang, Jianchang, Jianhua Zhang, Zhiqing Wang, Qingsen Zhu, and Wei Wang. 2001. "Remobilization of Carbon Reserves in Response to Water Deficit during Grain Filling of Rice." *Field Crops Research* 71 (1): 47–55. https://doi.org/10.1016/S0378-4290(01)00147-2.

- Yemata, Getahun, Masresha Fetene, Awol Assefa, and Kassahun Tesfaye. 2014. "Evaluation of the Agronomic Performance of Stay Green and Farmer Preferred Sorghum (Sorghum Bicolor (L) Moench) Varieties at Kobo North Wello Zone, Ethiopia" 3 (11): 240–48.
- Yi, Xiaoping, Stefan R. Hargett, Laurie K. Frankel, and Terry M. Bricker. 2009. "The PsbP Protein, but Not the PsbQ Protein, Is Required for Normal Thylakoid Architecture in Arabidopsis Thaliana." *FEBS Letters* 583 (12): 2142–47. https://doi.org/10.1016/j.febslet.2009.05.048.
- Yi, Xiaoping, Stefan R Hargett, Haijun Liu, Laurie K Frankel, and Terry M Bricker. 2007.
 "The PsbP Protein Is Required for Photosystem II Complex Assembly/Stability and Photoautotrophy in Arabidopsis Thaliana." *Journal of Biological Chemistry* 282 (34): 24833–41. https://doi.org/10.1074/jbc.M705011200.
- Yoshida, Shouichi, Douglas A. Forno, James H. Cock, and Kwanchai A. Gomez. 1976. "Determination of Sugar and Starch in Plant Tissue." *Laboratory Manual for Physiological Studies of Rice*, 46–49.

Yoshida, Shoulchl. 1981. "Fundamentals Science." Nutrition.

- Yusuf, Mohd Aslam, Deepak Kumar, Ravi Rajwanshi, Reto Jörg Strasser, Merope Tsimilli-Michael, Govindjee, and Neera Bhalla Sarin. 2010. "Overexpression of γ-Tocopherol Methyl Transferase Gene in Transgenic Brassica Juncea Plants Alleviates Abiotic Stress: Physiological and Chlorophyll a Fluorescence Measurements." *Biochimica et Biophysica Acta - Bioenergetics* 1797 (8): 1428–38. https://doi.org/10.1016/j.bbabio.2010.02.002.
- Zavafer, Alonso, Mun Hon Cheah, Warwick Hillier, Wah Soon Chow, and Shunichi Takahashi. n.d. "Photodamage to the Oxygen Evolving Complex of Photosystem II by Visible Light." Nature Publishing Group, 1–8. https://doi.org/10.1038/srep16363. 2015. "Photodamage to the Oxygen Evolving Complex of Photosystem II by Visible Light." Scientific Reports 5 (November): 16363. https://doi.org/10.1038/srep16363.
- Zavafer, Alonso, Wataru Koinuma, Wah Soon Chow, Mun Hon Cheah, and Hiroyuki Mino. 2017. "Mechanism of Photodamage of the Oxygen Evolving Mn Cluster of Photosystem II by Excessive Light Energy." *Scientific Reports* 7 (1): 7604. https://doi.org/10.1038/s41598-017-07671-1.
- Zhang, Mei Ping, Cheng Jun Zhang, Guang Hui Yu, Yu Zhen Jiang, Reto J. Strasser, Zhong Yuan Yuan, Xian Song Yang, and Guo Xiang Chen. 2010. "Changes in Chloroplast Ultrastructure, Fatty Acid Components of Thylakoid Membrane and Chlorophyll a Fluorescence Transient in Flag Leaves of a Super-High-Yield Hybrid Rice and Its Parents during the Reproductive Stage." *Journal of Plant Physiology* 167 (4): 277–85. https://doi.org/10.1016/j.jplph.2009.09.017.
- Zhang, Meiping, YongJie Shan, Leon Kochian, Reto J. Strasser, and GuoXiang Chen.
 2015. "Photochemical Properties in Flag Leaves of a Super-High-Yielding Hybrid Rice and a Traditional Hybrid Rice (Oryza Sativa L.) Probed by Chlorophyll a Fluorescence Transient." *Photosynthesis Research*. https://doi.org/10.1007/s11120-015-0151-8.
- Zhang, Mu, Baocai Zhang, Qian Qian, Yanchun Yu, Rui Li, Junwen Zhang, Xiangling Liu,
 Dali Zeng, Jiayang Li, and Yihua Zhou. 2010. "Brittle Culm 12, a Dual-Targeting
 Kinesin-4 Protein, Controls Cell-Cycle Progression and Wall Properties in Rice."
 Plant Journal 63 (2): 312–28. https://doi.org/10.1111/j.1365-313X.2010.04238.x.
- Zhang, Ning, Hong Yu, Hao Yu, Yueyue Cai, Linzhou Huang, Cao Xu, Guosheng Xiong, et al. 2018. "A Core Regulatory Pathway Controlling Rice Tiller Angle Mediated by the LAZY1-Dependent Asymmetric Distribution of Auxin." *Plant Cell* 30 (7): 1461– 75. https://doi.org/10.1105/tpc.18.00063.
- Zhang, Zhiwu, Elhan Ersoz, Chao-Qiang Lai, Rory J Todhunter, Hemant K Tiwari, Michael A Gore, Peter J Bradbury, et al. 2010. "Mixed Linear Model Approach Adapted for Genome-Wide Association Studies." *Nature Genetics* 42 (March): 355. https://doi.org/10.1038/ng.546.
- Zhao, Keyan, Chih-Wei Tung, Georgia C. Eizenga, Mark H. Wright, M. Liakat Ali, Adam
 H. Price, Gareth J. Norton, et al. 2011. "Genome-Wide Association Mapping
 Reveals a Rich Genetic Architecture of Complex Traits in Oryza Sativa." Nature
 Communications 2: 467. https://doi.org/10.1038/ncomms1467.

- Zhu, Xin-Guang, Stephen P. Long, and Donald R. Ort. 2010. "Improving Photosynthetic Efficiency for Greater Yield." Annual Review of Plant Biology 61 (1): 235–61. https://doi.org/10.1146/annurev-arplant-042809-112206.
- Zitzewitz, Jarislav von, Alfonso Cuesta-Marcos, Federico Condon, Ariel J. Castro, Shiaoman Chao, Ann Corey, Tanya Filichkin, et al. 2011. "The Genetics of Winterhardiness in Barley: Perspectives from Genome-Wide Association Mapping." *The Plant Genome Journal* 4 (1): 76. https://doi.org/10.3835/plantgenome2010.12.0030.
- Zubek, Szymon, and Katarzyna Turnau. 2009. "Response of Endangered Plant Species to Inoculation with Arbuscular Mycorrhizal Fungi and Soil Bacteria," 113–23. https://doi.org/10.1007/s00572-008-0209-y.
- Żurek, Grzegorz, Krystyna Rybka, Marta Pogrzeba, Jacek Krzyżak, and Kamil Prokopiuk. 2014. "Chlorophyll a Fluorescence in Evaluation of the Effect of Heavy Metal Soil Contamination on Perennial Grasses." *PloS One* 9 (3): e91475. https://doi.org/10.1371/journal.pone.0091475.

Elemento	Reactivo	Cantidades (g/litro)	
Ν	NH4 NO3	0,914	
Р	NaH ₂ PO ₄ · 2H ₂ O	0,403	
К	K ₂ SO ₄	0,714	
Са	CaCl ₂	0,886	
Mg	MgSO ₄ · 7H ₂ O	3,240	
Mn	$MnCl_2 \cdot 4H_2O$	0,150	
Мо	(NH ₄) ₆ · MO ₇ O ₂₄ · 4H ₂ O	0,074 Micronutrien	tes:
В	H ₃ BO ₃	0,934 Disolver sepa	iradamente
Zn	$ZnSO_4 \cdot 7H_2O$	0,035 solución de H	I ₂ SO ₄ 1:2
Cu	$CuSO_4 \cdot 5H_2O$	0,031	
Fe	FeCl ₃ · 6H ₂ O	0,770	
	Acido Cítrico (mono hidratado)	0,119	
	Metasilicato de Sodio	3,600	

Tabla 1: Composición de la solución nutritiva Yoshida. Las cantidades corresponden a las soluciones madres de cada nutriente. Para preparar una solución de medio 5X, se toman 1,25 ml de cada solución madre por litro de solución 5X.

Grupo	Accesión Génica	GEN	Cebador sentido	Cebador anti sentido
JAPONICA	Os08g0347500	PsbP	CGCTGCCATGTTTCTCTCTTG	CCATCCTTCTTGTCGGTGACA
INDICA	BGIOSGA027128	PsbP	TGGTCTGCTTGGAGCTGGTA	TGACTGCTCCCAGCTCAAAA
JAPONICA	Os07g0147500	PsbR	GGCAAGGCCATCTTTGATCA	GGCAAGGCCATCTTTGATCA
INDICA	BGIOSGA025148	PsbR	GGCAAGGCCATCTTTGATCA	CCCTTCCAGATGCATCAACA
JAPONICA	Os01g0501800	PsbO	GATCGGGCTGTTGATGGTTT	CCGCTTGTCGAAATGCAAAT
INDICA	BGIOSGA003595	PSbO	TTGAGCGTCACCAAGAGCAA	TTGACATCCTTGGGCACCTT
JAPONICA	Os02g0578400	PsbQ	TACGTCAGGGAGCGGTTCTT	CACGACATGGTCTCCAGCAT
INDICA	BGIOSGA025897	PsbQ	AGCTCTTCGCCACCATTGAC	ATCGCCAAGAGCAGATTTGG
JAPONICA	Os04g0690800	PsbS	TGCATGCTTTGATCGATCCA	CCAAGGTCAGACACTACCATCATC
INDICA	BGIOSGA017403	PsbS	TGGTGGCGGCGTTCA	CCGGAGGTGCCGAAGAT
JAPONICA	Os03g0835900	PetF	GTGGCGGCGGTCAAGA	GCATGCCTTGGCTGAAGAAG
INDICA	BGIOSGA013890	PetF	GTGGCGGCGGTCAAGA	GCATGCCTTGGCTGAAGAAG
JAPONICA	Os01g0860601	PetH	GCGTTTGATCGATCTTCTGCTTA	CGATCTCGCCGAACCTTTC
INDICA	BGIOSGA004842	PetH	GCTTCGTCCCTGCCACAT	CCGTGCGCTATAATTGGTGAT
JAPONICA	Os03g0718150	ACT-1	AAGAATGGAAGCTGCGGGTAT	GCAGGAGGACGGCGATAACA
INDICA	BGIOSGA 013463	ACT-1	AAGAATGGAAGCTGCGGGTAT	GCAGGAGGACGGCGATAACA

Tabla 2: Cebadores utilizados en la cuantificación relativa de los genes del FSII y FSI.

Figura 1: Expresión relativa de los genes PetH y PetF.(A) D1 de tratamiento. **(B)** D4 de tratamiento. Los valores representan la media ± EE de 4 réplicas biológicas (n=4). Barras blancas simbolizan la expresión relativa de los genes del cultivar IR50. Barras negras simbolizan la expresión relativa de los genes del cultivar La línea roja que corta el eje Y en 1 representa la expresión de referencia. Los asteriscos indican diferencias significativas entre los tratamientos para cada variedad (*p<0,05; **p<0,01<; ***p<0,001), ns indica que no hay diferencias significativas entre los tratamientos para cada variedos p

Figura 2: Disipación de energía por sección transversal. Se realizaron las mediciones a día 1 (D1) y día 4 (D4) de los tratamientos control (TO) y frío (TS). Valores medios y ± DE de DI₀/CS. Barras blancas representan TO; barras grises representan TS. Los datos mostrados provienen de al menos 17 réplicas biológicas (n=17). Los asteriscos indican diferencias significativas entre los tratamientos para cada variedad (****p<0,0001), ns indica que no hay diferencias significativas entre los tratamientos

Figura 3 Expresión relativa del gen PsbS:(A) D1 de tratamiento. **(B)** D4 de tratamiento. Los valores representan la media \pm EE de 4 réplicas biológicas (**n=4**). Barras blancas simbolizan la expresión relativa de los genes del cultivar IR50. Barras negras simbolizan la expresión relativa de los genes del cultivar Koshihikari. La línea roja que corta el eje Y en 1 representa la expresión de referencia. Los asteriscos indican diferencias significativas entre los tratamientos para cada variedad (*p<0,05; **p<0,01<; ***p<0,001), ns indica que no hay diferencias significativas entre los tratamientos para cada variedad.

9-Anexo 2: Material suplementario del Capítulo 2

2.A. Metodología de selección del material tolerante.

Se realizó un cruzamiento en febrero de 2013 entre el cultivar Gral. Rossi (Rossi) tolerante a frío y la línea estable Cr550 de buenas características agronómicas. En los dos casos se utilizó como parental materno a Gral. Rossi. Las plantas F1 obtenidas fueron cultivadas en cámara de cultivo durante el invierno de 2013.

Las semillas F2 fueron cosechadas y seleccionadas por comportamiento a frío a temperaturas de 13/21°C noche/día en una cámara Percival E-30B durante 5 días. Se analizaron 729 plántulas del cruzamiento RossixCr550 que manifestaron un comportamiento Gaussiano en el crecimiento. Posteriormente, se seleccionó el 10% superior de las plantas que más crecían.

Las sucesivas generaciones, fueron obtenidas con la misma metodología seleccionando el 10% de la población que crecían 2 cm por día. Las generaciones impares (F3 y F5), fueron cultivadas en cámara de cultivo para su reproducción. Esta metodología de selección y cultivo de generaciones impares en cámara, permitió acortar los tiempos de obtención de material estable a la mitad.

Por otra parte, las generaciones pares (F4 y F6), fueron cultivadas en condiciones de campo. Además, a las generaciones pares se las caracterizó fisiológicamente.

2.B Índice de Respuesta Fotoquímica (IRF).

El IRF se calculó sumando las áreas triangulares de gráfico de estrellas para cada dos datos adyacentes (biomarcadores fotoquímicos, o fotobiomarcadores).

Para calcular el IRF para biomarcadores fotoquímicos, se calculó la media general (m) y la desviación estándar de todos los datos con respecto a un fotobiomarcador dado, seguido de una estandarización para cada situación para obtener Y, donde Y=(X m)/s, X es el valor medio para el fotobiomarcador.

Luego, se calculó Z utilizando Z = -Y o Z = Y, dependiendo del efecto biológico, de inhibición o estimulación respectivamente. Por estas razones, se debe seguir su cinética a través del tiempo para considerar su efecto biológico.

La puntuación (S) se calculó mediante S = Z + | Min |, donde S \ge 0 y | Min | es el valor absoluto del valor mínimo para todas las Y calculadas en un fotobiomarcador dado en todas las mediciones realizadas.

Luego se utilizaron los gráficos de estrellas para mostrar los resultados de la puntuación (S) y para calcular la respuesta integrada de los fotobiomarcadores para el cálculo del IRF como:

$$IRF = \sum_{i=1}^{n} A_i$$

$$A_{i} = \frac{S_{i}}{2} \operatorname{sen} \beta \left(S_{i} \cos \beta + S_{i+1} \operatorname{sen} \beta \right)$$

~

$$\beta = \tan^{-1} \left(\frac{S_{i+1} \sec \alpha}{S_i - S_{i+1} \cos \alpha} \right)$$

Donde S_i y S_{i+1} son dos puntuaciones consecutivas en el sentido de las agujas del reloj (coordenadas del radio) de una gráfica de estrellas dada; A_i corresponde al área de dos puntuaciones conectadas; n el número de fotobiomarcadores utilizados para los cálculos; y $\alpha = 2\pi/n$.

Figura 1: Contenido de MDA en plántulas de arroz. Barras blancas representan la condición control (TO) para todas las accesiones, barras amarillas representan la condición de frío (TS) para la línea 59-8-8-5, barras rojas representan la condición de frío (TS) para el parental Rossi, barras azules representan la condición de frío (TS) para el parental Cr550, barras negras representan la condición de frío (TS) para la variedad Yerua. Los datos son la media ±DE de 5 réplicas biológicas (n=5), ns indica que no hay diferencias significativas entre los tratamientos.

Figura 2: Distribución de crecimiento de la población F2 tratadas a TS

Carácter de rendimiento	Cálculo
№ de espiguillas (NE)	№ de semillas llenas + № de semillas vacías
NEP	NE/Nº Panojas
%SV	(Nº Semillas vacías/NE)*100
Peso de mil granos (PMG)	(Peso de 100 semillas)*10
Peso de Panoja (PP)	Granos llenos/№ Panojas

Tabla 1: Cálculos de componentes de rendimiento

Accesión	000	Azúcares	Almidón	CAT	Арх	MDA
Accesion	DDP	Media ± DE	Media ± DE	Media ± DE	Media ± DE	Media ± DE
	7	28,2 ±6,7	1,1 ±0,1	0,7 ±0,3	19,2 ±12,2	39,1 ±5,2
ГО 0 0 Г	14	32,5 ±4,3	5,1 ±0,1	8,0 ±0,5	17,6 ±9,8	34,8 ±1,5
23-9-9-2	21	22,6 ±3,5	1,1 ±0,1	63,3 ±12,7	24,3 ±4,7	46,9 ±1,0
	28	23,5 ±9,1	1,7 ±0,5	202,1 ±173,9	5,2 ±3,3	34,9 ±4,0
	7	26,1 ±5,0	1,7 ±0,3	7,2 ±1,3	11,1 ±1,5	33,9 ±5,5
Possi	14	33,1 ±9,6	4,7 ±0,3	4,6 ±2,0	9,1 ±8,1	26,6 ±3,7
RUSSI	21	27,4 ±6,5	0,9 ±0,1	17,3 ±4,5	15,4 ±5,2	37,4 ±7,3
	28	23,9 ±3,8	1,7 ±0,6	119,1 ±49,5	9,6 ±4,6	26,9 ±4,8
	7	30,2 ±1,6	2,8 ±0,1	6,4 ±1,5	12,4 ±11,3	51,7 ±8,3
C+EE0	14	47,4 ±2,8	3,5 ±0,7	6,5 ±1,4	9,6 ±6,2	39,6 ±10,2
C1550	21	31,5 ±7,5	1,0 ±0,5	55,9 ±10,1	23,9 ±10,3	63,0 ±9,2
	28	32,1 ±1,7	1,0 ±0,3	24,5 ±9,6	9,8 ±3,8	43,6 ±5,8
Yerua	7	16,4 ±3,6	2,6 ±0,4	146,6 ±86,2	35,9 ±20,7	43,3 ±11,3
	14	33,4 ±2,1	2,37 ±0,4	213,5 ±188,0	23,5 ±16,7	36,3 ±7,6
	21	35,7 ±3,1	2,4 ±0,2	202,8 ±103,0	24,6 ±6,8	51,7 ±19,5
	28	32,3 ±3,3	1,9 ±0,3	498,5 ±92,6	26,3 ±7,4	28,5 ±2,4

Tabla 2: Estadística descriptiva. En la tabla se muestran las media ±DE de 5 réplicas biológicas (n=5) de las diferentes determinaciones bioquímicas (Azúcares, almidón, CAT, APx y MDA) realizadas sobre las 4 accesiones evaluadas (59-8-8-5, Yerua, Rossi y Cr550) durante el período de senescencia foliar (7, 14, 21 y 28 DDP).

Planta	DDP	Media
Cr550	catorce	47,4 a
Yerua	veintiuno	35,7 ab
Yerua	catorce	33,5 b
Rossi	catorce	33,1 b
59-8-8-5	catorce	32,5 b
Yerua	veintiocho	33,3 b
Cr550	veintiocho	32,1 b
Cr550	veintiuno	31,5 b
Cr550	siete	30,2 b
59-8-8-5	siete	28,2 bc
Rossi	veintiuno	27,4 bc
Rossi	siete	26,1 bc
Rossi	veintiocho	23,9 bc
59-8-8-5	veintiocho	23,5 bc
59-8-8-5	veintiuno	22,5 bc
Yerua	siete	16,4 c

Tabla 3: Análisis de la varianza para los valores de azúcares libres durante la senescencia de HB. Los datos son la media 5 réplicas biológicas (n=5). Los datos fueron analizados estadísticamente mediante la prueba parametrica de ANOVA bifactorial. Letras diferentes indican diferencias estadísticas significativas según el test de Tukey (p<0.05).

Planta	DDP	Media
59-8-8-5	catorce	5,1 a
Rossi	catorce	4,7 ab
Cr550	catorce	3,5 bc
Cr550	siete	2,8 cd
Yerua	siete	2,6 cd
Yerua	veintiuno	2,4 cde
Yerua	catorce	2,4 cde
Yerua	veintiocho	1,9 def
Rossi	veintiocho	1,7 def
Rossi	siete	1,7 def
59-8-8-5	veintiocho	1,7 def
59-8-8-5	siete	1,1 ef
59-8-8-5	veintiuno	1,1 f
Cr550	veintiocho	1,0 f
Cr550	veintiuno	1,0 f
Rossi	veintiuno	0,9 f

Tabla 4: Análisis de la varianza para los valores de almidón durante la senescencia de HB. Los datos son la media 5 réplicas biológicas (n=5). Los datos fueron analizados estadísticamente mediante la prueba parametrica de ANOVA bifactorial. Letras diferentes indican diferencias estadísticas significativas según el test de Tukey (p<0.05).

Planta	DDP	Media
Cr550	veintiuno	63,0 a
Cr550	siete	51,7 ab
Yerua	veintiuno	51,7 ab
59-8-8-5	veintiuno	46,9 abc
Cr550	veintiocho	43,6 abc
Yerua	siete	43,3 abc
Cr550	catorce	39,6 bc
59-8-8-5	siete	39,1 bc
Rossi	veintiuno	37,4 bc
Yerua	catorce	36,3 bc
59-8-8-5	veintiocho	34,9 bc
59-8-8-5	catorce	34,7 bc
Rossi	siete	33,9 bc
Yerua	veintiocho	28,5 c
Rossi	veintiocho	26,9 c
Rossi	catorce	26,6 c

Tabla 5: Análisis de la varianza para los valores de MDA durante la senescencia de HB. Los datos son la media 5 réplicas biológicas (n=5). Los datos fueron analizados estadísticamente mediante la prueba parametrica de ANOVA bifactorial. Letras diferentes indican diferencias estadísticas significativas según el test de Tukey (p<0.05).

Planta	DDP	Media
Yerua	veintiocho	498,49 a
Yerua	catorce	213,52 b
Yerua	veintiuno	202,76 b
59-8-8-5	veintiocho	202,07 b
Yerua	siete	146,56 bc
Rossi	veintiocho	119,15 bc
59-8-8-5	veintiuno	63,27 bc
Cr550	veintiuno	55,92 bc
Cr550	veintiocho	24,50 bc
Rossi	veintiuno	17,26 bc
59-8-8-5	catorce	7,98 bc
Rossi	siete	7,20 bc
Cr550	catorce	6,48 c
Cr550	siete	6,44 c
Rossi	catorce	4,64 c
59-8-8-5	siete	0,74 c

Tabla 6: Análisis de la varianza para los valores de actividad CAT durante la senescencia de HB. Los datos son la media 5 réplicas biológicas (n=5). Los datos fueron analizados estadísticamente mediante la prueba parametrica de ANOVA bifactorial. Letras diferentes indican diferencias estadísticas significativas según el test de Tukey (p<0.05).

	%SV	P.Total	NEP	P. Panoja	NPP	PMG	Sumatoria de caracteres
59-8-8-5	1,00	0,50	1,00	0,50	1,00	0,50	4,50
Rossi	0,25	0,50	0,50		0,50	1,00	2,75
C550		0,50	1,00	0,25	0,50		2,25
Yerua	0,50	1,00	1,00	1,00		1,00	4,50

Tabla 7: Resumen esquemático de los caracteres de cosecha. A cada rasgo de cosecha, se le asignó un valor arbitrario entre 0 y 1 en base al análisis de la prueba de ANOVA, y en base a su connotación positiva o negativa al rendimiento de la planta. Las características deseadas son un bajo %SV, bajo número de panojas (NPP) y alto NEP. Se observa que la línea 59-8-8-5 tiene las mejores aptitudes dentro de los componentes de rendimiento analizados.

10- Anexo 3. Material Suplementario del Capítulo 3.

GSOR ID ^a		Nombre de accesión País		Fuente de las
		de Origen		semillas
				(GRIN, IRRI ID) ^c
301001	1	Agostano	Italia	PI 400344
301002	2	Aichi Asahi	Japon	PI 202943
01003	3	Ai-Chiao-Hong	China	PI 584576
301004	4	NSF-TV 4	Desconocido	GSOR 301004
301005	5	NSF-TV 5	Desconicido	PI 564575
301006	6	ARC 7229	India	PI 653066
301007	7	Arias	Indonesia	PI 584570
301008	8	Asse Y Pung	Filipinas	Clor 461
301009	9	Baber	India	PI 597344
301010	10	Baghlani Nangarhar	Afganisntan	PI 584582
301382	11	Baguamon 14	Banglades	PI 459858
301011	12	Basmati	Pakistan	PI 385418
301012	13	NSF-TV 13	Desconicido	GSOR 301012
301013	14	Basmati 217	India	PI 653067
301383	15	Beonjo	Corea del Sur	PI 584579
301014	16	Bico Branco	Brasil	PI 653068
301015	17	Binulawan	Filipinas	PI 584554
301016	18	BJ 1	India	PI 653069
301017	19	Black Gora	India	PI 653070
301018	20	Blue Rose	Estados Unidos	Clor 1962
301019	21	Byakkoku Y 5006 Seln	Australia	Clor 12248
301020	22	Caawa/Fortuna 6-103-15	Taiwan	PI 400604
301021	23	Canella De Ferro	Brasil	PI 584575
301022	24	Carolina Gold	Estados Unidos	Clor 12033
301023	25	Carolina Gold	Estados Unidos	Clor 12034
301024	26	Carolina Gold Sel	Estados Unidos	Clor 12033
301025	27	NSF-TV 27	Desconicido	GSOR 301025
301026	28	Champa Tong 54	Tailandia	PI 653071
301027	29	Chau	Vietnam	PI 653072
301028	30	Chiem Chanh	Vietnam	PI 393416
301029	31	Chinese	China	PI 431222
301030	32	Chodongji	Corea del Sur	PI 584580
301031	33	Chuan 4	Taiwan	PI 653073
301032	34	NSF-TV 34	Desconicido	GSOR 301032
301033	35	CO18	India	PI 459983
301034	36	CS-M3	Estados Unidos	Clor 9675
301035	37	Cuba 65	Cuba	PI 247956
301037	39	NSF-TV 39	Desconicido	GSOR 301037
301038	40	Dam	Tailandia	PI 653075
301039	41	Darmali	Nepal	PI 584555
301040	43	Dee Geo Woo Gen	Taiwan	PI 279131
301041	44	Dhala Shaitta	Banglades	PI 180060

301042	45	Dom-sufid	Iran	PI 584607
301043	46	Dourado Agulha	Brasil	PI 198918
301045	49	DV85	Banglades	PI 403287
301046	50	DZ78	Banglades	PI 403339
301047	51	Early Wataribune	Japon	Clor 9738
301048	52	Eh la Chiu	Taiwan	PI 393056
301049	53	Firooz	Iran	PI 584569
301050	54	Fortuna	Estados Unidos	Clor 1344
301051	55	Gerdeh	Iran	PI 584561
301052	56	Geumobyeo	Corea del Sur	PI 597018
301053	57	NSF-TV 57	Desconicido	GSOR 301053
301054	58	Ghati Kamma Nangarhar	Afganisntan	PI 584583
301055	59	Gogo Lempuk	Indonesia	PI 584571
301056	60	Gotak Gatik	Indonesia	PI 584572
301057	61	Guan-Yin-Tsan	China	PI 584577
301386	62	Gyehwa 3	Corea del Sur	PI 584598
301387	63	Haginomae Mochi	Japon	PI 584543
301388	64	Heukgyeong	Corea del Sur	PI 584581
301058	65	Honduras	Honduras	Clor 1643
301059	66	Hsia Chioh Keh Tu	Taiwan	PI 403480
301060	67	Ни Lo Tao	China	PI 403500
301061	68	I-Geo-Tze	Taiwan	PI 403531
301062	69	IAC 25	Brasil	PI 433779
301063	70	Iguape Cateto	Haiti	PI 159452
301064	71	IR 36	Filipinas	PI 442971
301065	72	IR 8	Filipinas	PI 312627
301066	73	IRAT 177	Guyana	PI 653077
301067	74	IBGA 409	Franciasa Brasil	PI 653078
301068	75	lamhu	Indonesia	PI 653079
301069	76	lava	India	PI 430261
301070	77	IC149	India	PI 403583
301071	78	Ihona 349	India	PI 413895
301072	79	Jouiku 393G	lapon	PI 653098
301073	80	К 65	Suriname	PI 276884
301074	81	Kalamkati	India	PI 584574
301075	83	Kamenoo	Japon	PI 403629
301076	84	Kaniranga	Indonesia	PI 403633
301077	85	Kasalath	India	PI 65322
301078	86	Kaw Luyoeng	Tailandia	PI 653080
301079	87	Keriting Tingii	Indonesia	PI 653081
301080	88	Khao Gaew	Tailandia	PI 653082
301081	89	NSF-TV 89	Desconicido	GSOR 301081
301082	90	Kiang-Chou-Chiu	Taiwan	PI 403653
301083	91	Kibi	Japon	PI 400579
301084	92	Kinastano	Filipinas	Clor 2647

301085	93	Kitrana 508	Madagascar	PI 653083
301086	94	Koshihikari	Japon	PI 330464
301087	95	NSF-TV 95	Desconicido	GSOR 301087
301088	96	KU115	Tailandia	PI 597044
301089	97	Kun-Min-Tsieh-Hunan	China	PI 584544
301090	98	L-202	Estados Unidos	PI 483097
301091	99	LAC 23	Liberia	PI 653084
301092	100	Lacrosse	Estados Unidos	Clor 8985
301093	101	Lemont	Estados Unidos	PI 475833
301094	102	Leung Pratew	Tailandia	PI 653085
301095	103	Luk Takhar	Afganisntan	PI 584584
301096	104	Mansaku	Japon	PI 653086
301097	105	Mehr	Iran	PI 653087
301098	106	Ming Hui	China	PI 602626
301099	107	NSF-TV 107	Desconicido	GSOR 301099
301100	108	Moroberekan	Guinea	PI 434632
301101	109	MTU9	India	PI 460588
301102	110	Mudgo	India	PI 459273
301104	112	N12	India	PI 459326
301105	113	Norin 20	Japon	PI 224862
301106	114	Nova	Estados Unidos	Clor 9459
301107	115	NPE 835	Pakistan	PI 653088
301108	116	NSF-TV 116	Desconicido	GSOR 301108
301109	117	O-Luen-Cheung	Taiwan	PI 584599
301110	118	Oro	Chile	PI 439118
301111	119	Oryzica Llanos 5	Colombia	PI 584668
301112	120	OS6	Nigeria	PI 458474
301113	121	Ostiglia	Argentina	Clor 8
301114	122	Padi Kasalle	Indonesia	PI 584546
301115	123	Pagaiyahan	Taiwan	PI 584547
301390	124	Pankhari 203	India	PI 503175
301116	125	Pao-Tou-Hung	China	PI 584578
301117	126	Pappaku	Taiwan	PI 584604
301119	128	Pato De Gallinazo	Australia	PI 392542
301120	129	Peh-Kuh	Taiwan	PI 584602
301121	130	Peh-Kuh-Tsao-Tu	Taiwan	PI 584545
301122	131	Phudugey	Butan	PI 584566
301123	132	Rathuwee	Sri Lanka	PI 584605
301124	133	Rikuto Kemochi	Japon	PI 226195
301125	134	Romeo	Italia	PI 433512
301126	135	RT 1031-69	Zaire	PI 653090
301127	136	RTS12	Vietnam	PI 389229
301128	137	RTS14	Vietnam	PI 459488
301129	138	RTS4	Vietnam	PI 653091
301130	139	S4542A3-49B-2B12	Estados Unidos	Clor 9187
301131	140	Saturn	Estados Unidos	Clor 9540

301132	141	Seratoes Hari	Indonesia	PI 584603
301133	142	Shai-Kuh	China	PI 584601
301134	143	Shinriki	Japon	Clor 1642
301135	144	Shoemed	Estados Unidos	PI 392539
301136	145	Short Grain	Tailandia	PI 596810
301137	146	Shuang-Chiang	Taiwan	PI 452221
301138	147	Sinampaga Selection	Filipinas	Clor 12168
301139	148	Sintane Diofor	Burkina Faso	PI 653092
301140	149	Sinaguing	Filipinas	Clor 3337
301141	150	Sultani	Egipto	PI 18920
301142	151	Suweon	Corea	PI 597021
301143	152	Τ1	India	PI 653093
301144	153	T26	India	PI 653094
301145	154	Ta Hung Ku	China	PI 160482
301146	155	Та Мао Тѕао	China	PI 584600
301147	156	Taichung Native 1	Taiwan	PI 495830
301148	157	Tainan Iku 487	Taiwan	PI 215936
301149	158	Taipei 309	Taiwan	PI 366153
301150	159	Tam Cau 9A	Vietnam	PI 653095
301151	160	NSF-TV 160	Desconicido	GSOR 301151
301152	161	TeQing	China	PI 536047
301153	162	ТКМ6	India	PI 351103
301154	163	Taducan	Filipinas	PI 280681
301155	164	Tondok	Indonesia	Clor 2584
301156	165	Trembese	Indonesia	PI 584573
301157	166	Tsipala 421	Madagascar	PI 653096
301158	167	B6616A4-22-Bk-5-4	Estados Unidos	Clor 9881
301159	168	Vary Vato 462	Madagascar	PI 653097
301160	169	WC 6	China	Clor 5309
301161	170	Wells	Estados Unidos	PI 612439
301162	171	ZHE 733	China	PI 629016
301163	172	Zhenshan 2	China	PI 602624
301164	173	Nipponbare	Japon	GSOR 100
301165	174	Azucena	Filipinas	PI 439017
301167	176	583	Ecuador	PI 241372
301168	177	68-2	Francia	PI 330641
301169	178	ARC 6578	India	PI 373403
301170	179	Bellardone	Francia	PI 224942
301171	180	Benllok	Peru	PI 130960
301172	181	Bergreis	Austria	PI 163336
301173	182	Blue Rose Supreme	Estados Unidos	Clor 5793
301174	183	Boa Vista	El Salvador	PI 199542
301175	184	Bombon	España	PI 402794
301176	185	British Honduras Creole	Belice	PI 220214
301177	186	Bul Zo	Corea del Sur	PI 162177
301178	187	C57-5043	Estados Unidos	Clor 9425

301179	188	Coppocina	Bulgaria	PI 373899
301180	189	Criollo La Fria	Venezuela	PI 161568
301181	190	Delrex	Estados Unidos	Clor 8320
301182	191	Dom Zard	Iran	PI 584608
301183	192	Erythroceros Hokkaido	Polonia	PI 265114
301184	193	Fossa Av	Burkina Faso	PI 584610
301186	195	IRAT 13	Costa de Marfil	PI 584559
301187	196	JM70	Mali	PI 590403
301188	197	Kaukkyi Ani	Birmania	PI 584567
301189	198	Leah	Bulgaria	Clor 9979
301190	199	Mojito Colorado	Bolivia	PI 242804
301191	200	P 737	Pakistan	PI 430956
301192	201	Pate Blanc Mn 1	Costa de Marfil	PI 584612
301193	202	Pratao	Brasil	PI 460635
301194	203	Radin Ebos 33	Malasia	PI 392705
301195	204	Razza 77	Italia	PI 215482
301196	205	Rinaldo Bersani	Italia	PI 167928
301197	206	Rojofotsy 738	Madagascar	PI 596811
301198	207	Sigadis	Indonesia	PI 400322
301199	208	SLO 17	India	PI 414682
301200	209	Tchibanga	Gabon	PI 373203
301201	210	Thavalu	Sri Lanka	PI 439024
301202	211	Tokyo Shino Mochi	Japon	PI 157372
301204	213	WC 3397	Jamaica	PI 220486
301205	214	WC 4419	Honduras	PI 303646
301206	215	WC 4443	Bolivia	PI 291608
301207	216	Yabani Montakhab 7	Egipto	PI 226308
301208	217	YRL-1	Australia	PI 376718
301209	218	PI 298967-1	Australia	Clor 12498
301210	219	Nucleoryza	Austria	PI 435977
301211	220	Azerbaidjanica	Azerbaiyan	PI 439621
301212	221	Sadri Belyi	Azerbaiyan	PI 266123
301213	222	Paraiba Chines Nova	Brasil	PI 388554
301214	223	Priano Guaira	Brasil	PI 430321
301215	224	Karabaschak	Bulgaria	PI 439674
301216	225	Biser 1	Bulgaria	PI 350295
301217	226	IRAT 44	Burkina Faso	PI 597004
301218	227	Riz Local	Burkina Faso	PI 449351
301219	228	CA 902/B/2/1	Chad	PI 406034
301220	229	Niquen	Chile	PI 439117
301221	231	Hunan Early Dwarf No. 3	China	PI 494757
301222	232	Shangyu 394	China	PI 615210
301223	233	Sung Liao 2	China	PI 401452
301224	234	Aijiaonante	China	PI 614994
301225	235	Sze Guen Zim	China	Clor 7375
301226	236	WC 521	China	PI 160871

301227	237	Estrela	Colombia	PI 560276
301228	238	WAB 56-104	Costa de Marfil	PI 602635
301229	239	WAB 502-13-4-1	Costa de Marfil	PI 602661
301230	240	WAB 501-11-5-1	Costa de Marfil	PI 602662
301231	241	ECIA76-S89-1	Cuba	PI 602654
301232	242	27	Republica	PI 171971
			Dominicana	
301233	243	Tropical Rice	Ecuador	PI 596808
301234	244	Arabi	Egipto	PI 439121
301235	245	Sab Ini	Egipto	PI 226307
301236	246	Saraya	Fiji	PI 430339
301237	247	Desvauxii	Estados Pos	PI 231643
301238	248	Caucasica	Estados Pos	PI 231642
			Sovieticos	
301239	249	Pirinae 69	Ex Yugoslavia	PI 439711
301240	250	Bulgare	Francia	PI 231176
301241	251	H256-76-1-1-1	Argentina	PI 596914
301242	252	Djimoron	Guinea	PI 393180
301243	253	Guineandao	Guinea	PI 615011
301244	254	Hon Chim	Hong Kong	PI 403471
301245	255	Pai Hok Glutinous	Hong Kong	PI 389927
301246	256	Romanica	Hungria	PI 291526
301247	257	Agusita	Hungria	PI 602605
301248	258	Tia Bura	Indonesia	PI 373781
301249	259	Sadri Tor Misri	Iran	PI 431059
301250	260	NSF-TV 260	Desconicido	GSOR 301250
301251	261	Shim Balte	Irak	PI 430976
301252	262	Halwa Gose Red	Irak	PI 430977
301253	263	Maratelli	Italia	PI 215520
301254	264	Baldo	Italia	PI 415656
301255	265	Vialone	Italia	PI 215485
301256	266	Hiderisirazu	Japon	PI 134053
301257	267	Hatsunishiki	Japon	PI 224813
301258	268	Vavilovi	Kazajistán	PI 439625
301259	269	Sundensis	Kazajistán	PI 439626
301260	270	Osogovka	Macedonia	PI 583842
301261	271	M. Blatec	Macedonia	PI 584588
301262	272	923	Madagascar	PI 402638
301263	273	Varyla	Madagascar	PI 422214
301264	274	Padi Pagalong	Malasia	PI 373813
301265	275	Sri Malasia Dua	Malasia	PI 390981
301266	276	Kaukau	Mali	PI 403644
301267	277	Gambiaka Sebela	Mali	PI 391859
301268	278	C1-6-5-3	Mexico	PI 226329
301269	279	Kon Suito	Mongolia	PI 154453

301270	280	Saku	Mongolia	PI 154452
301271	281	Patna	Marruecos	PI 422208
301272	282	Triomphe Du Maroc	Marruecos	PI 330625
301273	283	Chibica	Mozambique	PI 391326
301274	284	IR-44595	Nepal	PI 596827
301275	285	Tox 782-20-1	Nigeria	PI 490796
301276	286	IITA 135	Nigeria	PI 458470
301277	287	Zerawchanica Karatalski	Polonia	PI 265116
301278	288	Italica Carolina	Polonia	PI 265110
301279	289	Lusitano	Portugal	PI 291539
301280	290	Amposta	Puerto Rico	PI 415667
301281	291	Toploea 70/76	Rumania	PI 596947
301282	292	Stegaru 65	Rumania	PI 446914
301283	293	TOg 7178	Senegal	PI 450438
301284	294	SL 22-613	Sierra Leona	PI 433797
301285	295	Bombilla	España	PI 168946
301286	296	Dosel	España	PI 340888
301287	297	Bahia	España	PI 392247
301288	298	LD 24	Sri Lanka	PI 373116
301289	299	SML 242	Suriname	PI 276154
301290	300	Sml Kapuri	Suriname	PI 400096
301291	301	Melanotrix	Tayikistán	PI 439630
301292	302	WIR 3039	Tayikistán	PI 584624
301293	303	Kihogo	Tanzania	PI 391861
301294	304	519	Uruguay	PI 400276
301295	305	Doble Carolina Rinaldo Barsani	Uruguay	PI 403241
301296	306	WIR 3764	Uzbekistan	PI 584634
301297	307	Uzbekskij 2	Uzbekistan	PI 439730
301298	308	Llanero 501	Venezuela	PI 420143
301299	309	Manzano	Zaire	PI 430394
301300	310	R 101	Zaire	PI 430441
301301	311	56-122-23	Tailandia	PI 392804
301302	312	Aswina 330	Banglades	PI 392677
301303	313	BR24	Banglades	PI 574680
301304	314	CTG 1516	Banglades	PI 406041
301305	315	Dawebyan	Birmania	PI 373800
301306	316	DD 62	Banglades	PI 403011
301307	317	DJ 123	Banglades	PI 403121
301308	318	DJ 24	Banglades	PI 403082
301309	319	DK 12	Banglades	PI 403128
301310	320	DM 43	Banglades	PI 403151
301311	321	DM 56	Banglades	PI 403161
301312	322	DM 59	Banglades	PI 443001
301313	323	DNJ 140	Banglades	PI 403224
301314	324	DV 123	Banglades	PI 403306
301315	325	EMATA A 16-34	Birmania	PI 393036

301316	326	Ghorbhai	Banglades	PI 575212
301317	327	Goria	Banglades	PI 574796
301318	328	Jamir	Banglades	PI 575182
301319	329	Kachilon	Banglades	PI 574756
301320	330	Khao Pahk Maw	Tailandia	PI 392266
301321	331	Khao Tot Long 227	Tailandia	PI 392794
301322	332	KPF-16	Banglades	PI 431144
301323	333	Leuang Hawn	Tailandia	PI 402636
301324	334	Lomello	Tailandia	PI 233663
301325	335	Okshitmayin	Birmania	PI 391272
301326	336	Paung Malaung	Birmania	PI 392612
301327	337	Sabharaj	Banglades	PI 391943
301328	338	Sitpwa	Birmania	PI 392718
301329	339	Yodanya	Birmania	PI 222453
301330	340	Berenj	Afganisntan	PI 223894
301331	341	Shirkati	Afganisntan	PI 373905
301332	342	Cenit	Argentina	PI 238490
301333	343	Victoria F.A.	Argentina	PI 164912
301334	344	Habiganj Boro 6	Banglades	PI 391255
301335	345	DZ 193	Banglades	PI 403367
301336	346	Karkati 87	Banglades	PI 392683
301337	347	Creole	Belice	PI 220214
301338	348	China 1039	China	PI 434611
301339	349	Chang Ch'Sang Hsu Tao	China	PI 161051
301340	350	Ligerito	Colombia	PI 433787
301393	352	Guatemala 1021	Guatemala	PI 163575
301341	353	ARC 10376	India	PI 430353
301342	354	BALA	India	PI 373053
301343	355	ASD 1	India	PI 392617
301344	356	JC 117	India	PI 403582
301345	357	9524	India	PI 165981
301346	358	ARC 10086	India	PI 373430
301347	359	Surjamkuhi	India	PI 406095
301348	360	РТВ 30	India	PI 392621
301350	363	Edomen Scented	Japon	PI 184503
301351	364	Rikuto Norin 21	Japon	PI 226190
301352	365	Shirogane	Japon	PI 224912
301353	366	Kiuki No. 46	Japon	PI 162099
301354	367	Sanbyang-Daeme	Corea	PI 157346
301355	368	Deokjeokjodo	Corea	PI 596809
301356	369	Sathi	Pakistan	PI 392177
301357	370	Coarse	Pakistan	PI 385584
301358	371	Santhi Sufaid	Pakistan	PI 385650
301359	372	Sufaid	Pakistan	PI 385819
301360	373	Lambayeque 1	Peru	PI 597343

301396	375	Upland	Ponape Island	PI 155989
301361	376	Breviaristata	Portugal	PI 189450
301362	377	PR 304	Puerto Rico	Clor 9042
301363	378	Kalubala Vee	Sri Lanka	PI 420976
301364	379	Wanica	Suriname	Clor 1496
301365	380	Tainan-Iku No. 512	Taiwan	PI 215954
301366	381	325	Taiwan	PI 245711
301367	384	318	Turquia	PI 167121
301368	385	Nira	Estados Unidos	PI 392623
301369	386	Palmyra	Estados Unidos	Clor 9463
301370	387	M-202	Estados Unidos	PI 494105
301371	388	Nortai	Estados Unidos	Clor 9836
301372	389	CI 11011	Estados Unidos	Clor 11011
301373	390	CI 11026	Estados Unidos	Clor 11026
301374	391	Della	Estados Unidos	Clor 9483
301375	392	Edith	Estados Unidos	Clor 2127
301376	393	La 110	Estados Unidos	Clor 9962
301377	394	Lady Wright Seln	Estados Unidos	Clor 12187
301378	395	OS 6 (WC 10296)	Zaire	PI 373197
301379	396	Cocodrie	Estados Unidos	PI 606331
301380	397	Cybonnet	Estados Unidos	PI 636726
301399	398	93-11	China	RA6193
301381	399	Spring	Estados Unidos	PI 643121
301400	400	Yang Dao 6	China	RA6425
301401	612	IR64	Filipinas	PI 497682
301416	616	RT0034	Estados Unidos	GSOR 101518
301417	617	MCR010277	Estados Unidos	GSOR 200327
301404	618	Pecos	Estados Unidos	PI 476818
301405	619	Rosemont	Estados Unidos	PI 546365
301406	620	Jasmine85	Filipinas	PI 595927
301402	621	LaGrue	Estados Unidos	PI 568891
301418	622	Bengal	Estados Unidos	PI 561735
301407	623	Shufeng 121-1655	China	PI 615015
201409	624	Kaybannat	Estados Unidos	mutant
201400	625	Kaybonnet	Estados Unidos	PI 505270
501419	025	Katy		PI 527707
301420	626	C101A51	Filipinas	PI597053
301421	627	Early	Estados Unidos	GSOR 100361
301409	628	Jetterson	Estados Unidos	PI 593892
301410	629	Panda	Italia	PI 560299
301411	630	Saber	Estados Unidos	PI 633624
301412	631	Dragon Eyeball 100	China	GSOR 301412
301413	632	Francis	Estados Unidos	PI 632447
301414	633	Jing 185-7	China	PI 615205
301415	634	Rondo (4484-1693)	China	PI 615022 mutant

312007	641	Tainung 67	Taiwan	IRGC 47743
312008	642	Zhenshan 97B	China	IRGC 60136
312009	643	Minghui 63	China	IRGC 63755
312013	647	Cypress	Estados Unidos	IRTP 19532
312015	649	FR13 A	India	IRGC 6144
312017	651	Dular	India	IRGC 32561

 Tabla 1: Colección de germoplasma RDP-1. GSOR: <u>Del ingles</u> Genetic Stocks-Oryza collection identification number. National Science Foundation-"Exploring the Genetic Basis of Transgressive Variation in Rice" project accession identification number

GRIN: <u>Del ingles</u> Germplasm Resources Information Network identification number (PI -Plant Introduction; Clor-Cereal Investigation Oryza); IRRI: International Rice Research Institute germplasm collection numbers (IRGC or IRTP for OryzaSNP accessions); RA: <u>Del inglés</u> Rice.

Carácter de rendimiento	Cálculo
Peso de mil Granos (PMG)	(Peso de 100 semillas)*10
Peso de mil de Granos vacios calculado (PMGV)	PMG*0,208 [‡]
№ de Granos llenos (NGLL)	(Peso de granos llenos (Gr)/PMG)*1000
Nº de Granos vacios (NGV)	(Peso de granos vacíos (Gr)/ PMGV)
№ de espiguillas (NE)	NGLL + NGV
NEP	NE/№ de Panojas
Porcentaje de Semilla Infértiles calculado (%In)	100-%F
%F	NGLL/NE
Peso de Panoja (PP)	Peso de granos llenos(Gr)/№ de Panojas

Tabla 2: Cálculos de componentes de rendimiento para RDP-1. El factor 0,28[‡] es peso promedio de las glumas sobre el peso del grano (Yoshida y col 1971).

NSFTV ID	Nombre de Accesión	Sub población
1	Δαοςταρο	temperate-
-	Agostano	japonica
2	Aichi Asahi	temperate-
		japonica
3	Ai-Chiao-Hong	indica
4	NSFTV4	aus
5	NSFTV5	aromatic
6	ARC 7229	aus
7	Arias	tropical-japonica
8	Asse Y Pung	tropical-japonica
9	Baber	temperate- japonica
10		temperate-
10	Bagniani Nangarhar	japonica
13	NSF-TV 13	aus
15	Beonio	temperate-
13	Deuliju	japonica
16	Bico Branco	aromatic
18	BJ 1	aus
19	Black Gora	aus
20	Blue Rose	admixed-japonica
21	Byakkoku Y 5006 Seln	indica
23	Canella De Ferro	tropical-japonica
24	Carolina Gold 12033	tropical-japonica
25	Carolina Gold 12034	tropical-japonica
26	Carolina Gold Sel	tropical-japonica
27	NSF-TV 27	tropical-japonica
28	Champa Tong 54	aus
29	Chau	indica
	<u>enad</u>	temperate-
31	Chinese	japonica
22		temperate-
52	Chodongji	japonica
33	Chuan 4	aus
34	NSF-TV 34	indica
35	CO18	indica
36	CS-M3	temperate- iaponica
37	Cuba 65	tropical-iaponica
39	NSF-TV 39	alic
40	Dam	admixed-ianonica
 //1	Darmali	admized
41	Darman	temperate
51	Early Wataribune	japonica
53	Firooz	aromatic
54	Fortuna	tropical-iaponica
		1 J

Continuación		
55	Gerdeh	admixed-japonica
56	Geumobyeo	temperate-
		japonica
57	NSF-TV 57	indica
58	Ghati Kamma Nangarhar	aus
59	Gogo Lempuk	tropical-japonica
60	Gotak Gatik	admixed-japonica
62	Gyehwa 3	temperate-
		Japonica
63	Haginomae Mochi	ianonica
		temperate-
64	Heukgyeong	iaponica
65	Honduras	tropical-iaponica
		temperate-
67	Hu Lo Tao	japonica
70	Iguape Cateto	tropical-japonica
71	IR 36	indica
72	IR 8	indica
73	IRAT 177	tropical-japonica
74	IRGA 409	indica
75	Jambu	tropical-japonica
76	lava	indica
77	IC149	indica
78	Ihona 349	aus
10		temperate-
79	Jouiku 393G	japonica
80	К 65	admixed
81	Kalamkati	aus
	K	temperate-
83	Kamenoo	japonica
84	Kaniranga	tropical-japonica
85	Kasalath	aus
87	Keriting Tingii	admixed-japonica
89	NSF-TV 89	tropical-japonica
90	Kiang-Chou-Chiu	indica
01	Kibi	temperate-
51	RIDI	japonica
92	Kinastano	tropical-japonica
93	Kitrana 508	NA
94	Koshihikari	temperate-
		japonica
96	KU115	tropical-japonica
98	L-202	tropical-japonica
99	LAC 23	tropical-japonica
100	Lacrosse	admixed-japonica
102	Leung Pratew	indica

103	Luk Takhar	temperate-
		Japonica
104	Mansaku	ianonica
105	Mehr	Japonica
106	Ming Hui	indica
107	NSE-TV 107	tronical-ianonica
107	Moroberekan	tropical-japonica
110	Mudgo	indica
110	Nito	
112	N12	aromatic
114		admixed-japonica
116	NSF-IV 116	tropical-japonica
117	O-Luen-Cheung	indica
118	Oro	temperate-
120	OS6	tropical-japonica
122	Padi Kasalle	tropical-japonica
123	Pagaiyahan	indica
125	Pao-Tou-Hung	indica
125	Pannaku	indica
120	Pato De Gallinazo	
120		indica
129		illuica
131	Pildugey	dus
132	Rathuwee	tomporato
133	Rikuto Kemochi	ianonica
140	Saturn	tronical-ianonica
140	Shai-Kub	indica
142	Sharkun	temperate-
144	Shoemed	japonica
145	Short Grain	indica
147	Sinampaga Selection	tropical-japonica
148	Sintane Diofor	indica
149	Sinaguing	tropical-japonica
150	Sultani	tropical-japonica
153	T26	aus
154	Ta Hung Ku	temperate-
		japonica
156	Taichung Native 1	indica
157	Tainan Iku 487	temperate-
		japonica temnerate-
158	Taipei 309	iaponica
161	TeQing	indica
162	TKM6	indica
163	Taducan	indica
164	Tondok	tronical-ianonica
104	TUTUUK	ti opicai-japonica

continuation		
165	Trembese	tropical-japonica
166	Tsipala 421	admixed-indica
167	B6616A4-22-Bk-5-4	tropical-japonica
171	ZHE 733	indica
172	Zhenshan 2	indica
173	Nipponbare	temperate- japonica
174	Azucena	tropical-japonica
176	583	tropical-japonica
177	68-2	temperate-
178	ARC 6578	aus
		temperate-
179	Bellardone	japonica
180	Benllok	temperate- japonica
181	Bergreis	temperate- iaponica
182	Blue Rose Supreme	admixed-japonica
183	Boa Vista	tropical-japonica
104	Dauchau	temperate-
184	Bombon	japonica
185	British Honduras Creole	tropical-japonica
186	Bul Zo	temperate-
100	Delrey	Japonica tropical-japonica
190	Dom Zard	aromatic
191	Leab	tronical-ianonica
198	Mojito Colorado	tropical-japonica
199	Bratao	
202	Padin Ebos 22	indica
205	Poiofotsy 728	
200	Sigadis	indica
207		indica
200	Tchibanga	indica
203	Tokyo Shino Mochi	admixed-ianonica
213	WC 3397	tronical-ianonica
213	WC 4419	tropical-japonica
215	WC 4443	tropical-japonica
217	YRI -1	admixed-iaponica
218	PI 298967-1	admixed-japonica
221	Sadri Belvi	aromatic
222	Paraiba Chines Nova	indica
		temperate-
224	Karabaschak	japonica
225	Biser 1	temperate-
	DISCLT	laponica

_

Continuación			
226	IRAT 44	tropical-japonica	
227	Riz Local	admixed-indica	
228	CA 902/B/2/1	aus	
231	Hunan Early Dwarf No. 3	indica	
222	Sung Lipo 2	temperate-	
233		japonica	
234	Aijiaonante	indica	
235	Sze Guen Zim	indica	
236	WC 521	admixed-japonica	
238	WAB 56-104	tropical-japonica	
239	WAB 502-13-4-1	tropical-japonica	
240	WAB 501-11-5-1	tropical-japonica	
241	ECIA76-S89-1	indica	
242	27	tropical-japonica	
244	Arabi	admixed-ianonica	
		temperate-	
247	Desvauxii	japonica	
240	Companies	temperate-	
248	Caucasica	japonica	
240	Diringo 60	temperate-	
245	Fillinge 05	japonica	
251	H256-76-1-1-1	tropical-japonica	
252	Djimoron	indica	
253	Guineandao	admixed-japonica	
255	Pai Hok Glutinous	indica	
257	Agusita	temperate-	
257	Agusita	japonica	
258	Tia Bura	tropical-japonica	
259	Sadri Tor Misri	admixed-indica	
261	Shim Balte	aus	
262	Halwa Gose Red	aus	
264	Baldo	admixed-japonica	
266	Hiderisirazu	admixed-japonica	
267	Ustoupishiki	temperate-	
207	Hatsuffisfiki	japonica	
269	Sundensis	indica	
270	Osogovka	temperate-	
270	USUGUVKa	japonica	
272	923	admixed	
273	Varyla	tropical-japonica	
274	Padi Pagalong	tropical-japonica	
275	Sri Malaysia Dua	temperate-	
213	Sri ivialaysia Dua	japonica	
276	Kaukau	aus	
277	Cambiaka Sabala	temperate-	
L	Jampiaka Jebela	japonica	
278	C1-6-5-3	admixed	

Continua	ción		
279	Kon Suito	admixed	
202	Triomphe Du Maroc	temperate-	
202		japonica	
283	Chibica	temperate-	
	0	japonica	
284	IR-44595	indica	
285	Tox 782-20-1	tropical-japonica	
286	IITA 135	tropical-japonica	
295	Bombilla	temperate-	
		japonica	
296	Dosel	temperate-	
		japonica temperate-	
297	Bahia	ianonica	
299	SMI 242	indica	
	0002212	temperate-	
302	WIR 3039	japonica	
202	Kihoso	temperate-	
303	Kinogo	japonica	
304	519	indica	
305	Doble Carolina Rinaldo Barsani	admixed-japonica	
308	Llanero 501	tropical-japonica	
309	Manzano	tropical-japonica	
310	R 101	tropical-japonica	
211	56-122-23	temperate-	
511	50 122 25	japonica	
313	BR24	indica	
314	CTG 1516	aus	
316	DD 62	aus	
317	DJ 123	aus	
318	DJ 24	aus	
319	DK 12	aus	
320	DM 43	aus	
321	DM 56	aus	
322	DM 59	aus	
323	DNJ 140	aus	
324	DV 123	aus	
325	EMATA A 16-34	indica	
327	Goria	aus	
328	Jamir	aus	
329	Kachilon	aus	
330	Khao Pahk Maw	aus	
332	KPF-16	admixed-indica	
333	Leuang Hawn	temperate-	
		japonica	
334	Lomello	temperate-	
225		japonica	
335	Ukshitmayin	admixed-japonica	

_

.

336	Paung Malaung	aus	
337	Sabharaj	indica	
339	Yodanya	indica	
340	Berenj	admixed	
341	Shirkati	aus	
342	Cenit	tropical-japonica	
345	DZ 193	aus	
346	Karkati 87	aus	
348	China 1039	indica	
349	Chang Ch'Sang Hsu Tao	indica	
350	Ligerito	tropical-japonica	
354	BALA	indica	
355	ASD 1	temperate- japonica	
356	JC 117	indica	
357	9524	aus	
358	ARC 10086	tropical-japonica	
359	Surjamkuhi	aus	
360	PTB 30	aus	
364	Rikuto Norin 21	admixed-japonica	
365	Shirogane	temperate- japonica	
368	Deokjeokjodo	temperate-	
369	Sathi	aus	
370	Coarse	aus	
371	Santhi Sufaid	aus	
372	Sufaid	aus	
373	Lambayeque 1	aromatic	
375	Upland	tropical-japonica	
376	Breviaristata	admixed-japonica	
379	Wanica	tropical-japonica	
384	318	tropical-japonica	
385	Nira	indica	
386	Palmyra	tropical-japonica	
387	M-202	admixed-japonica	
388	Nortai	NA	
389	CI 11011	tropical-japonica	
390	CI 11026	admixed	
391	Della	tropical-japonica	
392	Edith	tropical-japonica	
394	Lady Wright Seln	tropical-japonica	
395	OS 6 (WC 10296)	tropical-japonica	
396	Cocodrie	tropical-japonica	
612	IR64	indica	
622	Bengal	admixed-japonica	

624	Kaybonnet	tropical-japonica	
628	Jefferson	tropical-japonica	
629	Panda	admixed-japonica	
630	Saber	tropical-japonica	
633	Jing 185-7	indica	
634	Rondo (4484-1693)	indica	
635	Azucena	tropical-japonica	
636	Sadu Cho	indica	
638	Moroberekan	tropical-japonica	
639	Nipponbare	temperate- japonica	
770	Mojito Colorado	tropical-japonica	
772	Aswina	NA	

Tabla 3: Accesiones fenotipadas y utilizdas en los diferentes GWAS. En la tabla se detallan el número de identificador, país de origen y sub población correspondiente a cada accesión

Figura 1: Gráfica de Cuantil-Cuantil (QQplot) para el ambiente Chascomús. En la figura se muestra el comportamiento de los fenotipos con asociaciones significas.

Figura 2: Gráfica de Cuantil-Cuantil (QQplot) para el ambiente Entre Ríos. En la figura se muestra el comportamiento de los fenotipos con asociaciones significas.

Figura 3: Gráfica de Cuantil-Cuantil (QQplot) para el ambiente Entre Ríos. La figura muestra al fenotipo QbRC analizado para las matrices hIBS y hBN

Figura 4: Gráfica de LD Vs Distancia genomica. En la figura se muestra el análisis gráfico de los cromosomas 1 a 4.

Figura 5: Gráfica de LD Vs Distancia genomica. En la figura se muestra el análisis gráfico de los cromosomas 5 a 8.

Figura 6: Gráfica de LD Vs Distancia genomica. En la figura se muestra el análisis gráfico de los cromosomas 9 a 12.

Marcador	Fenotipo	Ambiente	Matriz
SNP-5.11015630.	FoFm	Ch	hIBS
SNP-5.11015630.	FvFm	Ch	hIBS
SNP-5.11015630.	DIoRC	Ch	hIBS
SNP-4.11238671.	δ(Ro)	Ch	hIBS
SNP-8.26857677.	δ(Ro)	Ch	hIBS
SNP-5.920701.	δ(Ro)	Ch	hIBS
SNP-6.16004860.	δ(Ro)	Ch	hIBS
SNP-3.33654811.	δ(Ro)	Ch	hIBS
SNP-7.22186380.	δ(Ro)	Ch	hIBS
SNP-5.11015630.	DF abs	Ch	hIBS
SNP-9.16154636.	PI abs	Ch	hBN
SNP-6.21617771.	FoFm	E_Rios	hIBS
SNP-6.21617771.	FvFm	E_Rios	hIBS
SNP-3.8657922.	Sm	E_Rios	hIBS
SNP-10.20737522.	Sm	E_Rios	hIBS
SNP-4.19830956.	Sm	E_Rios	hIBS
SNP-2.18755532.	Sm	E_Rios	hIBS
SNP-10.15426939.	Sm	E_Rios	hIBS
SNP-6.10747694.	Sm	E_Rios	hIBS
SNP-12.10384205.	Sm	E_Rios	hIBS
SNP-5.13606968.	Sm	E_Rios	hIBS
SNP-1.32181171.	Sm	E_Rios	hIBS
SNP-12.6243516.	Ν	E_Rios	hIBS
SNP-1.20577084.	Ν	E_Rios	hIBS
SNP-3.20474261.	Ν	E_Rios	hIBS
SNP-11.2826603.	Ν	E_Rios	hIBS
SNP-3.11082794.	Ν	E_Rios	hIBS
SNP-5.10671465.	Ν	E_Rios	hIBS
SNP-10.20737522.	Ν	E_Rios	hIBS
SNP-1.32181171.	Ν	E_Rios	hIBS
SNP-8.17383104.	Ν	E_Rios	hIBS
SNP-3.6370379.	Ν	E_Rios	hIBS
SNP-4.3532129.	Ν	E_Rios	hIBS
SNP-12.19687181.	Ν	E_Rios	hIBS
SNP-7.27949832.	Ν	E_Rios	hIBS
SNP-4.23257716.	Ν	E_Rios	hIBS
SNP-4.19830956.	Ν	E_Rios	hIBS
SNP-8.5080374.	Ν	E_Rios	hIBS
SNP-8.3353605.	Ν	E_Rios	hIBS
SNP-5.13606968.	Ν	E_Rios	hIBS
SNP-2.18755532.	Ν	E_Rios	hIBS
SNP-2.27037362.	Ν	E_Rios	hIBS
SNP-12.22061604.	Ν	E_Rios	hIBS
------------------	--------	--------	------
SNP-6.17586886.	Ν	E_Rios	hIBS
SNP-12.26895916.	Ν	E_Rios	hIBS
SNP-11.15157273.	Ν	E_Rios	hBN
SNP-5.26255003.	DIoRC	E_Rios	hIBS
SNP-5.25752878.	DIoRC	E_Rios	hIBS
SNP-12.1522824.	DIoRC	E_Rios	hIBS
SNP-3.11832167.	DIoRC	E_Rios	hIBS
SNP-3.11913691.	DIoRC	E_Rios	hIBS
SNP-3.7631091.	DIoRC	E_Rios	hIBS
SNP-3.11909250.	DIoRC	E_Rios	hIBS
SNP-11.9898109.	DIoRC	E_Rios	hIBS
SNP-1.2950882.	DIoRC	E_Rios	hIBS
SNP-5.25860213.	DIoRC	E_Rios	hIBS
SNP-3.11840203.	DIoRC	E_Rios	hIBS
SNP-3.33935702.	DIoRC	E_Rios	hIBS
SNP-3.11839954.	DIoRC	E_Rios	hIBS
SNP-10.14774128.	DIoRC	E_Rios	hIBS
SNP-1.672866.	DIoRC	E_Rios	hIBS
SNP-4.3532129.	DIoRC	E_Rios	hIBS
SNP-5.26037406.	DIoRC	E_Rios	hIBS
SNP-5.25755857.	DIoRC	E_Rios	hIBS
SNP-5.25870238.	DIoRC	E_Rios	hIBS
SNP-5.25906026.	DIoRC	E_Rios	hIBS
SNP-5.26067844.	DIoRC	E_Rios	hIBS
SNP-8.12644171.	DIoRC	E_Rios	hIBS
SNP-2.16443512.	DIoRC	E_Rios	hIBS
SNP-1.3777578.	DIoRC	E_Rios	hIBS
SNP-8.25557477.	EToRC	E_Rios	hIBS
SNP-11.24401876.	EToRC	E_Rios	hIBS
SNP-3.23888667.	EToRC	E_Rios	hIBS
SNP-2.18755532.	REoRC	E_Rios	hIBS
SNP-1.13332897.	REoRC	E_Rios	hIBS
SNP-7.27949832.	REoRC	E_Rios	hIBS
SNP-4.3532129.	REoRC	E_Rios	hIBS
SNP-3.20474261.	REoRC	E_Rios	hIBS
SNP-5.10671465.	REoRC	E_Rios	hIBS
SNP-8.14538333.	δ(Ro)	E_Rios	hIBS
SNP-8.25327099.	δ(Ro)	E_Rios	hIBS
SNP-10.10650949.	δ(Ro)	E_Rios	hIBS
SNP-3.7631091.	δ(Ro)	E_Rios	hIBS
SNP-6.21617771.	δ(Ro)	E_Rios	hIBS
SNP-1.8502539.	DIoCSo	E_Rios	hIBS

Continuacion

SNP-2.19754523.	DIoCSo	E Rios	hIBS
SNP-3.7631091.	DIoCSo	E_Rios	hIBS
SNP-4.27746099.	DIoCSo	E_Rios	hIBS
SNP-4.33426566.	DIoCSo	E_Rios	hIBS
SNP-11.9898109.	DIoCSo	E_Rios	hIBS
SNP-6.25589058.	DIoCSo	E_Rios	hIBS
SNP-10.10650949.	DIoCSo	E_Rios	hIBS
SNP-1.17451094.	DIoCSo	E_Rios	hIBS
SNP-8.14538333.	DIoCSo	E_Rios	hIBS
SNP-1.35479825.	PI abs	E_Rios	hIBS
SNP-2.27111247.	PI total	E_Rios	hIBS
SNP-2.17549263.	PI total	E_Rios	hIBS
SNP-9.8690732.	PI total	E_Rios	hIBS
SNP-6.10747694.	PI total	E_Rios	hIBS
SNP-3.699213.	PI total	E_Rios	hIBS
SNP-5.15670371.	PI total	E_Rios	hIBS
SNP-12.18757106.	Qb RC	E_Rios	hIBS
SNP-7.650682.	Qb RC	E_Rios	hIBS
SNP-12.1054809.	Qb RC	E_Rios	hIBS
SNP-1.13623453.	Qb RC	E_Rios	hIBS
SNP-7.2099608.	Qb RC	E_Rios	hIBS
SNP-1.20577084.	1QbRC	E_Rios	hIBS
SNP-4.1897550.	Qb RC	E_Rios	hBN
SNP-12.18066755.	Qb RC	E_Rios	hBN
SNP-3.9505313.	Qb RC	E_Rios	hBN

Tabla 4: Cantidad total de SNPs identificados mediante el análisis deGWAS. En la tabla se muestran los SNPs vinculados a sus respectivosfenotipos de fluorescencia, ambiente y matriz de estructura.

SNP	Interva	alo (-/+)	ID	Función	Ambiente	Fenotipo
4.11238671.	11246699	11249239	LOC_Os04g20164	amine oxidase precursor, putative,	Ch	δ(Ro) _ch
8.26857677.	26856280	26864504	LOC_Os08g42490	DC1 domain containing protein, expressed	Ch	δ(Ro) _ch
5.920701.	906606	934832	LOC_Os05g02590	transferase family protein, putative, expressed	Ch	δ(Ro) _ch
5.920701.	906606	934832	LOC_Os05g02630	lysine-rich arabinogalactan protein 19 precursor, putative, expressed	Ch	δ(Ro) _ch
5.920701.	906606	934832	LOC_Os05g02640	hydrolase, NUDIX family, domain containing protein, expressed	Ch	δ(Ro) _ch
5.920701.	906606	934832	LOC_Os05g02670	kinesin motor domain containing protein, putative, expressed	Ch	δ(Ro) _ch
3.33654811.	33653082	33670802	LOC_Os03g59100	pheophorbide a oxygenase, chloroplast precursor, putative, expressed	Ch	δ(Ro) _ch
3.33654811.	33653082	33670802	LOC_Os03g59110	pheophorbide a oxygenase, chloroplast precursor, putative, expressed	Ch	δ(Ro) _ch
3.33654811.	33653082	33670802	LOC_Os03g59120	pheophorbide a oxygenase, chloroplast precursor, putative, expressed	Ch	δ(Ro) _ch
7.22186380.	22186957	22187791	LOC_Os07g37030	cytochrome b6-f complex iron-sulfur subunit, chloroplast precursor, putative, expressed	Ch	δ(Ro) _ch
7.22186380.	22186957	22187791	LOC_Os07g37040	PB1 domain containing protein, expressed	Ch	δ(Ro) _ch
5.11015630.	11001589	11029815	LOC_Os05g18950	pentatricopeptide, putative, expressed	Ch	DIo/RC, DF
9.16154636.	16146374	16164902	LOC_Os09g26620	auxin-repressed protein, putative, expressed	Ch	Plabs
3.8657922.	8650125	8667845	LOC_Os03g15680	nodulation-signaling pathway 2 protein, putative, expressed	ER	Sm_ER
3.8657922.	8650125	8667845	LOC_Os03g15690	phosphate carrier protein, mitochondrial precursor, putative, expressed	ER	Sm_ER
3.8657922.	8650125	8667845	LOC_Os03g15700	splicing factor 3A subunit 2, putative, expressed	ER	Sm_ER
3.8657922.	8650125	8667845	LOC_Os03g15710	strictosidine synthase, putative, expressed	ER	Sm_ER
10.20737522.	20808920	20809168	LOC_Os10g39030	homeobox domain containing protein, expressed	ER	Sm_ER, N_ER
4.19830956.	20001651	20004191	LOC_Os04g33040	alpha-amylase precursor, putative, expressed	ER	Sm_ER, N_ER
10.15426939.	15498048	15498296	LOC_Os10g29810	MBTB58 - Bric-a-Brac, Tramtrack, Broad Complex BTB domain with Meprin and TRAF Homology MATH domain, expressed	ER	Sm_ER
5.13606968.	13650310	13678536	LOC_Os05g23760	latency associated nuclear antigen, putative. expressed	ER	Sm_ER, N_ER
5.13606968.	13650310	13678536	LOC_Os05g23780	OsMADS70 - MADS-box family gene with M-alpha type-box, expressed	ER	Sm_ER, N_ER
5.13606968.	13650310	13678536	LOC_Os05g23800	RNA recognition motif containing protein, putative, expressed	ER	Sm_ER, N_ER
1.32181171.	32167603	32196829	LOC_Os01g55870	chorismate mutase, chloroplast precursor, putative, expressed	ER	Sm_ER, N_ER
1.32181171.	32167603	32196829	LOC_Os01g55880	hemimethylated DNA binding domain containing protein, expressed	ER	Sm_ER, N_ER
1.32181171.	32167603	32196829	LOC_Os01g55890	amino acid kinase, putative, expressed	ER	Sm_ER, N_ER
1.32181171.	32167603	32196829	LOC_Os01g55900	holliday junction resolvase, putative, expressed	ER	Sm_ER, N_ER
1.20577084.	20563517	20592743	LOC_Os01g36920	DEAD-box ATP-dependent RNA helicase, putative, expressed	ER	N_ER, 1-QbRC_ER
1.20577084.	20563517	20592743	LOC_Os01g36930	ubiquitin carboxyl-terminal hydrolase 6, putative, expressed	ER	N_ER, 1-QbRC_ER
1.20577084.	20563517	20592743	LOC_Os01g36940	OsFBX13 - F-box domain containing protein, expressed	ER	N_ER, 1-QbRC_ER
3.20474261.	20466891	20484611	LOC_Os03g36910	SAM-dependent methyltransferase, putative, expressed	ER	N_ER, 1-QbRC_ER
3.11082794.	11075217	11092937	LOC_Os03g19680	enoyl-CoA hydratase/isomerase family protein, putative, expressed	ER	N_ER

3.11082794.	11075217	11092937	LOC_Os03g19700	plant protein of unknown function	ER	N_ER
3.11082794.	11075217	11092937	LOC_Os03g19720	EF hand family protein, putative, expressed	ER	N_ER
5.10671465.	10657424	10685650	LOC_Os05g18470	CRAL/TRIO domain containing protein, expressed	ER	N_ER, REO/RC_ER
3.6370379.	6362520	6380240	LOC_Os03g12140	glucan endo-1,3-beta-glucosidase	ER	N_ER
3.6370379.	6362520	6380240	LOC_Os03g12160	leucine-rich repeat family protein, putative, expressed	ER	N_ER
3.6370379.	6362520	6380240	LOC_Os03g12150	serine/threonine-protein kinase receptor precursor, putative, expressed	ER	N_ER
12.19687181.	19710039	19721385	LOC_Os12g32660	NB-ARC domain containing protein, expressed	ER	N_ER
12.19687181.	19710039	19721385	LOC_Os12g32670	CC-NBS-LRR resistance protein, putative, expressed	ER	N_ER
12.19687181.	19710039	19721385	LOC_Os12g32680	NB-ARC domain containing protein, expressed	ER	N_ER
7.27949832.	27950409	27951243	LOC_Os07g46780	tyrosine-specific transport protein, putative, expressed	ER	N_ER, REO/RC_ER
8.5080374.	5077260	5085484	LOC_Os08g08760	ubiquitin family protein, putative, expressed	ER	N_ER
8.3353605.	3350491	3358715	LOC_Os08g06100	O-methyltransferase, putative, expressed	ER	N_ER
8.3353605.	3350491	3358715	LOC_Os08g06110	MYB family transcription factor, putative, expressed	ER	N_ER
2.27037362.	27043080	27043384	LOC_Os02g44630	aquaporin protein, putative, expressed	ER	N_ER
12.22061604.	22089385	22100731	LOC_Os12g36040	expansin precursor, putative, expressed	ER	N_ER
6.17586886.	17587622	17588146	LOC_Os06g30430	disease resistance protein RPM1, putative, expressed	ER	N_ER
6.17586886.	17587622	17588146	LOC_Os06g30440	OsGH3.7 - Probable indole-3-acetic acid- amido synthetase, expressed	ER	N_ER
12.26895916.	26923845	26935191	LOC_Os12g43390	thaumatin, putative, expressed	ER	N_ER
12.26895916.	26923845	26935191	LOC_Os12g43410	thaumatin, putative, expressed	ER	N_ER
12.26895916.	26923845	26935191	LOC_Os12g43440	thaumatin, putative, expressed	ER	N_ER
5.26255003.	26303528	26331754	LOC_Os05g45340	ATP binding protein, putative, expressed	ER	DIo/RC_ER
5.26255003.	26303528	26331754	LOC_Os05g45350	dnaJ domain containing protein, expressed	ER	DIo/RC_ER
5.26255003.	26303528	26331754	LOC_Os05g45370	cell cycle control protein, putative, expressed	ER	DIo/RC_ER
5.25752878.	25801345	25829571	LOC_Os05g44330	DJ-1 family protein, putative, expressed	ER	DIo/RC_ER
5.25752878.	25801345	25829571	LOC_Os05g44340	heat shock protein 101, putative, expressed	ER	DIo/RC_ER
5.25752878.	25801345	25829571	LOC_Os05g44360	oligosaccharyl transferase, putative, expressed	ER	DIo/RC_ER
5.25752878.	25801345	25829571	LOC_Os05g44380	MPPN domain containing protein, expressed	ER	DIo/RC_ER
5.25752878.	25801345	25829571	LOC_Os05g44390	peptidyl-tRNA hydrolase, putative, expressed	ER	DIo/RC_ER
5.25752878.	25801345	25829571	LOC_Os05g44400	GATA zinc finger domain containing protein, expressed	ER	DIo/RC_ER
12.1522824.	1518152	1529498	LOC_Os12g03730	zinc finger DHHC domain-containing protein, putative, expressed	ER	DIo/RC_ER
12.1522824.	1518152	1529498	LOC_Os12g03740	OsFBX438 - F-box domain containing protein, expressed	ER	DIo/RC_ER
12.1522824.	1518152	1529498	LOC_Os12g03750	Leucine Rich Repeat family protein, expressed	ER	DIo/RC_ER
3.11832167.	11824590	11842310	LOC_Os03g20880	pyruvate kinase, putative, expressed	ER	DIo/RC_ER
3.11832167.	11824590	11842310	LOC_Os03g20900	Myb transcription factor, putative, expressed	ER	DIo/RC_ER

3.11832167.	11824590	11842310	LOC_Os03g20910	homeobox domain containing protein,	ER	DIo/RC_ER
3.11913691.	11906114	11923834	LOC_Os03g20970	phospholipid-transporting ATPase 1, nutative expressed	ER	DIo/RC_ER
3.11913691.	11906114	11923834	LOC_Os03g20980	zinc finger, C3HC4 type domain containing protein, expressed	ER	DIo/RC_ER
3.11913691.	11906114	11923834	LOC_Os03g21000	thioredoxin, putative, expressed	ER	DIo/RC_ER
3.7631091.	7623294	7641014	LOC_Os03g14050	thaumatin-like protein 1 precursor, putative, expressed	ER	DIo/RC_ER, δ(Ro) _ER,DIoCSo_ER
3.7631091.	7623294	7641014	LOC_Os03g14080	transmembrane amino acid transporter protein, putative, expressed	ER	DIo/RC_ER, δ(Ro) _ER,DIoCSo_ER
3.11909250.	11901673	11919393	LOC_Os03g20970	phospholipid-transporting ATPase 1, putative, expressed	ER	DIo/RC_ER
3.11909250.	11901673	11919393	LOC_Os03g20980	zinc finger, C3HC4 type domain containing protein, expressed	ER	DIo/RC_ER
3.11909250.	11901673	11919393	LOC_Os03g21000	thioredoxin, putative, expressed	ER	DIo/RC_ER
1.2950882.	2937270	2966496	LOC_Os01g06210	gibberellin receptor GID1L2, putative, expressed	ER	DIo/RC_ER
1.2950882.	2937270	2966496	LOC_Os01g06220	gibberellin receptor GID1L2, putative, expressed	ER	DIo/RC_ER
1.2950882.	2937270	2966496	LOC_Os01g06230	OsSAUR1 - Auxin-responsive SAUR gene family member, expressed	ER	DIo/RC_ER
1.2950882.	2937270	2966496	LOC_Os01g06240	protein kinase, putative, expressed	ER	DIo/RC_ER
1.2950882.	2937270	2966496	LOC_Os01g06250	dirigent, putative, expressed	ER	DIo/RC_ER
5.25860213.	25908680	25936906	LOC_Os05g44530	BTB3 - Bric-a-Brac, Tramtrack, Broad Complex BTB domain, expressed	ER	DIo/RC_ER
5.25860213.	25908680	25936906	LOC_Os05g44540	MrBTB3 - Bric-a-Brac, Tramtrack, Broad Complex BTB domain with Meprin and TRAF Homology MATH-related domain, expressed	ER	DIo/RC_ER
5.25860213.	25908680	25936906	LOC_Os05g44550	zinc finger family protein, putative,	ER	DIo/RC_ER
5.25860213.	25908680	25936906	LOC_Os05g44560	kinesin motor domain containing	ER	DIo/RC_ER
5.25860213.	25908680	25936906	LOC_Os05g44570	histidine-containing phosphotransfer	ER	DIo/RC_ER
3.11840203.	11832626	11850346	LOC_Os03g20900	Myb transcription factor, putative, expressed	ER	DIo/RC_ER
3.11840203.	11832626	11850346	LOC_Os03g20910	homeobox domain containing protein, expressed	ER	DIo/RC_ER
3.11840203.	11832626	11850346	LOC_Os03g20920	stress responsive protein, putative,	ER	DIo/RC_ER
3.33935702.	33933973	33951693	LOC_Os03g59600	mitochondrial Rho GTPase 1, putative, expressed	ER	DIo/RC_ER
3.33935702.	33933973	33951693	LOC_Os03g59610	oxidoreductase, short chain dehydrogenase/reductase family protein, putative, expressed	ER	DIo/RC_ER
3.33935702.	33933973	33951693	LOC_Os03g59620	phospholipase, patatin family, putative, expressed	ER	DIo/RC_ER
3.11839954.	11832377	11850097	LOC_Os03g20880	pyruvate kinase, putative, expressed	ER	DIo/RC_ER
3.11839954.	11832377	11850097	LOC_Os03g20900	Myb transcription factor, putative, expressed	ER	DIo/RC_ER
3.11839954.	11832377	11850097	LOC_Os03g20910	homeobox domain containing protein,	ER	DIo/RC_ER
3.11839954.	11832377	11850097	LOC_Os03g20920	stress responsive protein, putative, expressed	ER	DIo/RC_ER
10.14774128.	14845239	14845487	LOC_Os10g28520	CAF1 family ribonuclease containing protein, expressed	ER	DIo/RC_ER
1.672866.	659254	688480	LOC_Os01g02200	armadillo/beta-catenin repeat family	ER	DIo/RC_ER
1.672866.	659254	688480	LOC_Os01g02250	RGA-1, putative, expressed	ER	DIo/RC_ER

5.26037406.	26085874	26114100	LOC_Os05g44910	dual specificity protein phosphatase,	ER	DIo/RC_ER
5.26037406.	26085874	26114100	LOC_Os05g44916	mitochondrial-processing peptidase subunit, mitochondrial precursor,	ER	DIo/RC_ER
5.26037406.	26085874	26114100	LOC_Os05g44922	putative, expressed 6-phosphofructokinase, putative, expressed	ER	DIo/RC_ER
5.26037406.	26085874	26114100	LOC_Os05g44930	receptor-like protein kinase, putative,	ER	DIo/RC_ER
5.25755857.	25804324	25832550	LOC_Os05g44330	DJ-1 family protein, putative, expressed	ER	DIo/RC_ER
5.25755857.	25804324	25832550	LOC_Os05g44340	heat shock protein 101, putative,	ER	DIo/RC_ER
5.25755857.	25804324	25832550	LOC_Os05g44360	oligosaccharyl transferase, putative, expressed	ER	DIo/RC_ER
5.25755857.	25804324	25832550	LOC_Os05g44380	MPPN domain containing protein, expressed	ER	DIo/RC_ER
5.25755857.	25804324	25832550	LOC_Os05g44390	peptidyl-tRNA hydrolase, putative, expressed	ER	DIo/RC_ER
5.25755857.	25804324	25832550	LOC_Os05g44400	GATA zinc finger domain containing protein, expressed	ER	DIo/RC_ER
5.25870238.	25918705	25946931	LOC_Os05g44550	zinc finger family protein, putative, expressed	ER	DIo/RC_ER
5.25870238.	25918705	25946931	LOC_Os05g44560	kinesin motor domain containing protein, expressed	ER	DIo/RC_ER
5.25870238.	25918705	25946931	LOC_Os05g44570	histidine-containing phosphotransfer protein, putative, expressed	ER	DIo/RC_ER
5.25870238.	25918705	25946931	LOC_Os05g44590	ATP-dependent protease La, putative, expressed	ER	DIo/RC_ER
5.25906026.	25954494	25982720	LOC_Os05g44600	pectinesterase, putative, expressed	ER	DIo/RC_ER
5.25906026.	25954494	25982720	LOC_Os05g44630	IQ calmodulin-binding motif family protein, putative, expressed	ER	DIo/RC_ER
5.26067844.	26116312	26144538	LOC_Os05g44922	6-phosphofructokinase, putative, expressed	ER	DIo/RC_ER
5.26067844.	26116312	26144538	LOC_Os05g44930	receptor-like protein kinase, putative, expressed	ER	DIo/RC_ER
5.26067844.	26116312	26144538	LOC_Os05g44940	protein kinase domain containing protein, expressed	ER	DIo/RC_ER
5.26067844.	26116312	26144538	LOC_Os05g44950	senescence-induced receptor-like serine/threonine-protein kinase	ER	DIO/RC_ER
5.26067844.	26116312	26144538	LOC_Os05g44970	precursor, putative, expressed senescence-induced receptor-like serine/threonine-protein kinase	ER	DIo/RC_ER
8.12644171.	12642235	12650459	LOC_Os08g21180	maSp2a, putative, expressed	ER	DIo/RC_ER
2.16443512.	16449231	16449535	LOC_Os03g28980	WD40-like Beta Propeller Repeat family	ER	DIo/RC_ER
1.3777578.	3763966	3793192	LOC_Os01g07850	glyoxalase family protein, putative,	ER	DIo/RC_ER
1.3777578.	3763966	3793192	LOC_Os01g07870	ABC transporter family protein,	ER	DIo/RC_ER
8.25557477.	25556080	25564304	LOC_Os08g40380	sulfotransferase domain containing	ER	ETo/RC_ER
3.23888667.	23881634	23899354	LOC_Os03g42830	MATE efflux family protein, putative,	ER	ETo/RC_ER
3.23888667.	23881634	23899354	LOC_Os03g42840	calcineurin B, putative, expressed	ER	ETo/RC_ER
2.18755532.	18761250	18761554	LOC_Os02g31290	AML1, putative, expressed	ER	REo/RC_ER,Sm_ER,N_ER
1.13332897.	13319311	13348537	LOC_Os01g23680	rossmann fold nucleotide-binding protein involved in DNA uptake, putative. expressed	ER	REo/RC_ER
1.13332897.	13319311	13348537	LOC_Os01g23710	no apical meristem protein, putative, expressed	ER	REo/RC_ER
8.25327099.	25325702	25333926	LOC_Os08g39970	ENT domain containing protein, expressed	ER	δ(Ro) _ER

8.25327099.	25325702	25333926	LOC_Os08g39980	DNA-binding bromodomain-containing protein, putative, expressed	ER	δ(Ro) _ER
10.10650949.	10722005	10722253	LOC_Os10g21110	glycosyl hydrolase family 10 protein, putative, expressed	ER	δ(Ro) _ER, DIo/CSo_ER
1.8502539.	8488927	8518153	LOC_Os01g15120	hydrolase, alpha/beta fold family domain containing protein. expressed	ER	DIo/CSo_ER
1.8502539.	8488927	8518153	LOC_Os01g15130	hydrolase, alpha/beta fold family domain containing protein, expressed	ER	DIo/CSo_ER
2.19754523.	19760240	19760544	LOC_Os02g33240	OsFBX51 - F-box domain containing	ER	DIo/CSo_ER
1.17451094.	17437528	17466754	LOC_Os01g31870	natural resistance-associated macrophage protein, putative,	ER	DIo/CSo_ER
1.35479825.	35466256	35495482	LOC_Os01g61310	DUF640 domain containing protein,	ER	PI abs_ER
1.35479825.	35466256	35495482	LOC_Os01g61320	thioredoxin, putative, expressed	ER	PI abs_ER
1.35479825.	35466256	35495482	LOC_Os01g61330	ankyrin homolog precursor, putative,	ER	PI abs_ER
1.35479825.	35466256	35495482	LOC_Os01g61350	glutaredoxin, putative, expressed	ER	PI abs_ER
1.35479825.	35466256	35495482	LOC_Os01g61360	DEFL4 - Defensin and Defensin-like DEFL family, expressed	ER	PI abs_ER
9.8690732.	8682470	8700998	LOC_Os09g14660	legume lectins beta domain containing	ER	PI total_ER
9.8690732.	8682470	8700998	LOC_Os09g14670	phosphoenolpyruvate carboxylase,	ER	PI total_ER
3.699213.	691356	709076	LOC_Os03g02150	adapitin protein, putative, expressed	ER	PI total_ER
3.699213.	691356	709076	LOC_Os03g02160	zinc finger C-x8-C-x5-C-x3-H type family	ER	PI total_ER
5.15670371.	15713718	15741944	LOC_Os05g27010	peptide transporter PTR3-A, putative, expressed	ER	PI total_ER
12.18757106.	18779999	18791345	LOC_Os12g31200	NB-ARC domain containing protein,	ER	Qb RC_ER
12.1054809.	1050137	1061483	LOC_Os12g02870	GRAS family transcription factor domain	ER	Qb RC_ER
12.1054809.	1050137	1061483	LOC_Os12g02880	E2F-related protein, putative, expressed	ER	Qb RC_ER
8.17383104.	17381707	17389931	LOC_Os08g28470	disease resistance protein RPM,	ER	Ν
11.9898109.	9903477	9903589	LOC_Os09g02400	RNA-binding region RNP-, putative,	ER	DI/RC, DIo/CS
3.9505313.	9497518	9515238	LOC_Os03g17084	Core histone HA/HB/H/H4 domain	ER	Qb RC_ER
3.9505313.	9497518	9515238	LOC_Os03g17100	Core histone HA/HB/H/H4 domain	ER	Qb RC_ER
3.9505313.	9497518	9515238	LOC_Os03g17120	arginine biosynthesis bifunctional	ER	Qb RC_ER
3.9505313.	9497518	9515238	LOC_Os03g17130	bHelix-loop-helix transcription factor,	ER	Qb RC_ER
12.18066755.	18089647	18100993	LOC_Os12g30150	CAMK_CAMK_like.47 - CAMK includes calcium/calmodulin depedent protein kinases, expressed	ER	Qb RC_ER

Tabla5: Lista de genes candidatos totales identificados mediante el análisis de GWAS en los ambientes Ch y ER.