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REVIEW

Recent advances in b-galactosidase and fructosyltransferase
immobilization technology

Maria Micaela Uretaa , Gonçalo Nuno Martinsb , Onofre Figueirab , Pedro Filipe Piresb ,
Paula Cristina Castilhob , and Andrea Gomez-Zavagliaa

aCenter for Research and Development in Food Cryotechnology (CIDCA, CCT-CONICET La Plata), La Plata, Argentina; bCQM – Centro de
Qu�ımica da Madeira, Universidade da Madeira, Funchal, Portugal

ABSTRACT
The highly demanding conditions of industrial processes may lower the stability and affect the
activity of enzymes used as biocatalysts. Enzyme immobilization emerged as an approach to pro-
mote stabilization and easy removal of enzymes for their reusability. The aim of this review is to
go through the principal immobilization strategies addressed to achieve optimal industrial proc-
esses with special care on those reported for two types of enzymes: b-galactosidases and fructo-
syltransferases. The main methods used to immobilize these two enzymes are adsorption,
entrapment, covalent coupling and cross-linking or aggregation (no support is used), all of them
having pros and cons. Regarding the support, it should be cost-effective, assure the reusability
and an easy recovery of the enzyme, increasing its stability and durability. The discussion provided
showed that the type of enzyme, its origin, its purity, together with the type of immobilization
method and the support will affect the performance during the enzymatic synthesis. Enzymes’
immobilization involves interdisciplinary knowledge including enzymology, nanotechnology,
molecular dynamics, cellular physiology and process design. The increasing availability of facilities
has opened a variety of possibilities to define strategies to optimize the activity and re-usability of
b-galactosidases and fructosyltransferases, but there is still great place for innovative
developments.
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Introduction

Enzymes are biocatalysts responsible for specific chemical
reactions, where a set of reactants (substrates) are converted
into specific products during complex metabolic processes
essential to sustain life (Illanes, Wilson, and Vera 2014).
They are proteins that act as catalysts in living organisms,
participating in biological processes, and regulating the rate
at which chemical reactions proceed, without altering their
equilibrium (Aehle 2007; Purich 2001). Furthermore,
enzymes are integral parts of industrial processes since some
of the reactions in which they participate would not be feas-
ible without their aid. When enzymes are used in such
applications, the overall cost of the process is lowered
because enzymes are eco-friendly (reusable and biodegrad-
able), obtained from renewable resources (microorganisms),
and they increase the process’s efficiency, requiring mild
operating conditions (temperature, pH, energy), similar to
physiological ones, and producing less waste and overall
cleaner products (Sch€afer et al. 2007; de Albuquerque
et al. 2018).

Industrial chemical reactions can occur under extreme
conditions, in terms of temperature, pH and presence of
salts, surfactants, and organic solvents. These conditions
may greatly lower the usefulness of enzymes due to their

destabilization, so it is important from a technological and
economical point of view to ensure enzyme stability (Silva
et al. 2018). This can be achieved by implementing different
methods, such as using innovative natural enzymes (screen-
ing the microbiota and metagenomics), the development of
new enzymes (mutagenesis, directed evolution and enzyme
engineering design), catalyst engineering (chemical modifica-
tion, immobilization on solid matrices or auto-aggregation),
medium engineering (use of non-conventional reaction
media or the addition of cryoprotectants and surfactants, to
aid during dehydration and storage), catalyst reactivation
(reactivation of the enzyme after achieving activity exhaus-
tion) and process engineering (design of scale-up processes
that maintain or improve enzymes’ stability, activity and
specificity) (Behrens et al. 2011; Davids et al. 2013; Illanes,
Wilson, and Vera 2014; Moehlenbrock and Minteer 2017).

During the last decades, enzyme immobilization had
emerged as a suitable methodology having shown successful
results (Illanes, Wilson, and Vera 2014; Moehlenbrock and
Minteer 2017; de Albuquerque et al. 2018; Gonçalves et al.
2019; Sass and J€ordening 2020). This strategy promotes
enzyme stabilization and guarantees reusability of the cata-
lyst, simplifying its removal from the reaction medium. This
review will focus on immobilization strategies addressed to
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achieve optimal industrial processes. To this aim, special care
was put on the physical and chemical fundamentals explain-
ing the enzyme-support interaction, not forgetting the proper-
ties of the carrier materials, a key factor to optimize
immobilization. All these aspects were specifically reported
for two types of enzymes: b-galactosidases and fructosyltrans-
ferases, which are used to obtain GOS and FOS, respectively.
These oligosaccharides are among the most widely employed
prebiotic compounds with several applications in the food
and pharmaceutical industries, indeed their demand has
exponentially increased worldwide over time (Martins et al.
2019). Particularly, enzymes’ cost is one of the most critical
issues in the industrial production of prebiotics. For this rea-
son, design processes need to consider both economic and
technological aspects, and enzymes’ immobilization emerges
as a promising strategy to improve their stability and reus-
ability. Scheme 1 provides a graphical representation of how
the manuscript information was organized to guide the reader
through the main discussed items.

Enzymatic production of GOS and FOS:
immobilization as a process design strategy

Immobilization proved to be a good alternative among the
previously mentioned methods used to achieve enzyme sta-
bilization mainly for being cheaper, simpler and providing a
better chance of reusing and recovering the enzyme. In par-
ticular, when dealing with enzymes that are expensive, rare
or difficult to purify, the reusability, stability over storage
and transport, and ease of recovery are critical issues
(Dwevedi 2016).

Immobilization involves the attachment or incorporation
of enzymes into a support material. An insoluble, reusable,
and more resistant form the enzyme is obtained, which can
participate in chemical reactions with different process con-
ditions, ideally without significant loss of stability or activity
(Silva et al. 2018; Sirisha, Jain, and Jain 2016). Immobilized
enzymes (IE) are used in several fields, such as in the food
and pharmaceutical industries, in medicine, for the produc-
tion of biofuels, detergents and cleaning products, and in
bioremediation and waste waters’ treatment. There are sev-
eral reviews on this topic that delve into the use of several
enzymes, the immobilization procedures and their applica-
tions (Basso and Serban 2019; DiCosimo et al. 2013;
Dwevedi 2016; Franssen et al. 2013; Nguyen, Lee, et al.
2019; Sirisha, Jain, and Jain 2016).

Each active site of an enzyme is composed of a few
amino acid residues and this part of the molecule is respon-
sible for its catalytic activity. The rest of the enzyme is
important for structural stability during catalysis (Illanes,
Wilson, and Vera 2014) and environmental alterations (tem-
perature, pH) can cause conformational changes and, conse-
quently, loss of activity (Silva et al. 2018). This happens
because the amino acid residues of the active site are very
close in the folded protein, held in position by intermolecu-
lar forces, but can be very distant in the primary structure,
and denaturation can lead to their separation, thus losing
the catalytic activity (Illanes 2008). This effect, however, can
be beneficially used, for example, when designing an immo-
bilization procedure for controlling (stopping) the reaction.
Immobilization should not block or hinder access to the
active site of the enzyme, although it can be used for the
steric exclusion of inhibitors. This can lead to an increase in

Scheme 1. Organization of the relevant issues discussed in this review.

2 M. M. URETA ET AL.



activity, often mistaken for the obtaining of a more advanta-
geous conformation of the enzyme after immobilization,
when, in fact, there is loss of inhibition (Rodrigues et al.
2013; Nguyen, Styevk�o, et al. 2019).

Reactions using free enzymes (FEs) are homogenous sys-
tems, i.e., the enzyme is in solution among the substrates,
co-factors, products and other species relevant to the pro-
cess. Working with IE implies heterogeneous systems since
the enzyme exists in a different phase than the solutes (the
enzyme is now insoluble). The kinetics of the two systems
are not the same. Limitations in mass-transfer together with
the reduction of enzymes’ conformational mobility due to
enzyme-carrier interactions often compromise enzyme activ-
ity and, consequently, the reactions’ kinetics (Illanes,
Wilson, and Vera 2014; Gonçalves et al. 2019). When
designing new systems, the gain in stability per se may not
compensate for slower reaction rates. There are no standar-
dized concepts about the most appropriate immobilization
technique for the different biocatalysts in the industry. In
fact, this selection must be done with an optimization via
trial and error comparing the activity, stability, and reusabil-
ity of the FE with those of the IE.

What is more, industrial reactors can be designed to
work in batch or in continuous mode. In the former, limited
amounts of reactants are placed in a confined environment
during the time needed for the reaction to be completed.
Afterwards, the enzyme must be separated, often leading to
its inhibition or inactivation. Eventually, substrate and
enzyme are restocked, and the process is repeated. In this
mode, soluble enzyme is commonly used, although IE can
be used (i.e., in the recirculation batch reactor, IE is recov-
ered and reused). In continuous processes, there is constant
and simultaneous renewal of reactants and removal of prod-
ucts. The IE can be used until a significant loss of activity is
observed so optimization is needed to determine the number
of cycles the enzyme can perform. Continuous mode is
more advantageous since it requires fewer steps, namely the
preparation of the reaction medium, transformation, recov-
ery of the medium post-reaction, purification/removal of
enzyme and obtaining of the pure product can be done sim-
ultaneously and, consequently, at lower costs (Illanes,
Wilson, and Vera 2014; Guerrero et al. 2019).

FOS and GOS enzymatic synthesis

Galacto- and fructo-oligosaccharides (GOS and FOS) are
non-digestible oligosaccharides with prebiotic properties that
can be incorporated into a wide number of products. From a
nutritional point of view, they are low caloric sweeteners that
give a feeling of satiety, contribute to body weight control,
relieve constipation, have a low glycemic index and are not
cariogenic (Moser and Wouters 2014). According to the latest
definition, prebiotics are “substrates that are selectively used
by host microorganisms conferring a health benefit” (Gibson
et al. 2017). These compounds are used in the formulation of
many food products, beverages, and especially in infant for-
mula, to stimulate the development of newborn microbiota
(Kumar, Sripada, and Poornachandra 2018; Martins et al.

2019). Both GOS and FOS can be obtained by hydrolysis or
by enzymatic synthesis. The former consists in the hydrolysis
of compounds naturally occurring in some plants or seeds
(i.e.,, soybean, lupin, lentil, chickpea, pea and cowpea for
GOS and roots of chicory, artichoke, yacon, dahlia or agave
for FOS). This strategy promotes the obtaining of large
molecular weight compounds (degree of polymerization, DP,
higher than 8) and a mixture of different other compounds
besides prebiotics. For this reason, this kind of processes need
specific purification steps, depending on the natural source
used to obtain GOS and FOS. Industrial enzymatic synthesis
using a disaccharide as substrate (i.e., lactose and sucrose for
GOS and FOS, respectively) is a strategy that allows the
obtaining of short chain GOS and FOS (DP ranging from 3
to 7). Besides that, this is a versatile and easy way to control
once the reaction mechanistic is well established, which
depends on a large extent on understanding the enzyme
activity characteristics (Martins et al. 2019).

Particularly, the enzymes used to obtain FOS and GOS,
fructosyltransferases and b-galactosidases, have both trans-
ferase and hydrolase activities. These enzymes are capable of
catalyzing the transfer of functional groups (glycosylic) and,
at the same time, the hydrolysis of organic molecules
(sucrose and lactose, respectively). From the one side, this
double function considerably decreases the enzymes’ costs.
From the other side, the non-specificity represents a techno-
logical challenge because the products’ yield is lower than
that obtained using more specific enzymes. For this reason,
the industry must implement production processes consider-
ing both economic and technological aspects. In line with
this, industrial scale production of GOS and FOS by enzym-
atic synthesis can be performed through batch or continuous
processes, either with soluble FE or with IE. The pros and
cons of the different processing modes applied for obtaining
GOS and FOS for enzyme immobilization studies are pre-
sented in this review and schematized in Figure 1.

b-Galactosidase
b-galactosidase, also called lactase, beta-gal or b-gal (EC
3.2.1.23), is the enzyme most commonly used to obtain glu-
cose and galactose from lactose. This enzymatic reaction
turns a wide variety of products adequate for lactose intoler-
ant consumers (Nath et al. 2014). The reaction is sometimes
also employed as a technological strategy to overcome the
possibility of lactose deposition and to obtain a sweeter fla-
vor (glucose and galactose are more soluble and sweeter
than lactose) (Panesar et al. 2006).

As an advantage, b-galactosidase is widely distributed in
nature and can be found in plants (especially in almonds,
peaches, apricots, and apples) but often has low lactase activ-
ity (Mahoney 1998). On the contrary, b-galactosidase from
microorganisms (yeast, bacteria, and fungi) (Richmond, Gray,
and Stine 1981) and from mammalian’s intestinal tract
presents a high lactase activity. b-galactosidases used for the
synthesis of GOS are usually from yeast (Kluyveromyces lactis,
Kluyveromyces fragilis, Rhodotorula minuta), bacteria
(Escherichia coli, Bacillus circulans, Bacillus sp., Lactobacillus
reuteri) and fungi (Aspergillus oryzae) (Martins et al. 2019).
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The most studied b-galactosidase is that produced by E. coli,
but because of its origin (coliforms), it is not a suitable option
for food applications if it is not appropriately purified (Nath
et al. 2014). Therefore, b-galactosidase is produced from rec-
ognized safe microorganism sources [yeasts (Kluyveromyces)
and fungus (Aspergillus)] at industrial scale. Although enzyme

molecular size varies depending on the enzyme source, there
is an estimation of its molecular size since early 70s. Melchers
and Messer (1973) defined that E. coli b-galactosidase is tetra-
meric, being composed of four identical subunits of 135,000
daltons. Also, Yang, Marchio, and Yen (1994) reported that it
has an average protein diameter of 12 nm, but when exposed

Figure 1. Process and reactor design used to perform GOS and FOS production with IE. (a) Continuous mode and (b) batch process.
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to low concentrations of salts aggregation was observed,
reaching particle sizes of around 1000 nm and 2000nm.

In general terms, the dynamics of this enzyme was
described by Mahoney (1998) as a simple three steps mech-
anistic: first, thanks to the enzyme active site, the lactose-
enzyme complex is formed; then, galactosyl transfer occurs,
resulting in the formation of a galactosyl-enzyme complex,
while glucose is released; finally, the enzyme will transfer
galactose to a nucleophilic acceptor containing a hydroxyl
group. When the acceptor is water, galactose is formed, and
when the acceptor is another sugar, the product is an
oligosaccharide.

Fructosyltransferases
Fructosyltransferases (b-fructofuranosidase, invertase, EC
3.2.1.26 or b-D-fructosyltransferase, EC 2.4.1.9) are the bio-
catalysts for the transfructosylation reactions leading to the
obtaining of FOS. They can be extracted from plants, yeasts
and molds and from bacteria (GH32 and GH68 families
from CAZy classification, respectively) (Cantarel et al. 2009).
Depending on the enzyme source, some characteristics like
molecular weight will differ from each other. In this sense,
Sangeetha, Ramesh, and Prapulla (2005) provides a detailed
study including several fructosyltransferase sources.

The activity of this enzyme consist on the cleavage of the
b-2,1-glycosidic bond and the transfer of fructosyl moieties
from carbohydrates acting as donors onto any acceptor
other than water (Vega and Zuniga-Hansen 2014). Synthesis
and hydrolysis occur simultaneously both in parallel and in
series (Martins et al. 2019): FOS (DPn) synthesized in the
first steps act as fructosyl donors and acceptors leading sim-
ultaneously to the production of FOS with DP immediately
higher (DPn þ 1) and lower (DPn-1); mixtures of short
chain FOS (DP ranging from 3 to 6, i.e., DP3, DP4, DP5
and DP6), together with glucose (secondary product), are
obtained (Jung et al. 1989; Martins et al. 2019).

b-Galactosidase and fructosyltransferases: their
mechanisms of enzymatic action

Understanding the mechanism of the kinetics involved in
the catalytic enzyme performance is crucial for process
design. In particular, for immobilization, considering all
these mechanisms is of great importance to choose both an
appropriate immobilization method and an appropriate sup-
port. b-galactosidase and fructosyltransferase belong to the
glucosyl hydrolases family (GH-A superfamily). This family
of enzymes has been widely studied with the objective of
unraveling their catalytic mechanism (Davies and Henrissat
1995; St John, Gonz�alez, and Pozharski 2010). The enzym-
atic hydrolysis of glycosidic bonds is carried out with reten-
tion or inversion of the anomeric configuration, thus
hydrolases are classified as either retaining or inverting
(Withers 2001). Particularly, b-galactosidase is a retaining
hydrolase and fructosyltransferase is an inverting.

b-Galactosidase

Using x-ray diffraction data together with directed site
mutations, kinetic experiments and in silico studies, the E.
coli b-galactosidase structure, binding sites and catalytic
mechanism are well understood (Br�as et al. 2008; Hrmova
and Fincher 2007; Juers et al. 2001; Zhang et al. 2018). The
enzyme has two binding modes: a shallow mode, with weak
interactions and poor specificity that allows weak binding
from several different substrates; and a deep mode, at the
catalytic site, with strong interactions and high specificity.
As it is shown in Figure 2, in Following Davies’ nomencla-
ture (Davies, Wilson, and Henrissat 1997), the deep mode
corresponds to subsites �1 and þ1, and the shallow mode,
to subsites þ2 and higher.

For the catalytic process, the lactose substrate is captured
in the deep mode at the catalytic pocket with its binding
pose controlled mainly by the b-D-galactosyl moiety, which
is pinned down at the �1 subsite by a hydrophobic stacking
with a tryptophan residue and a complex network of hydro-
gen bonds between its hydroxyl groups and six polar resi-
dues (among them, GLU461, GLU537, Figure 2). The
glucosyl moiety is stabilized at subsite þ1, by a hydrophobic
interaction with a tryptophan residue. The weak interactions
at subsite þ1 result on higher mobility and less specificity
than subsite �1. Both kinetic and quantum mechanics/
molecular mechanics in silico studies indicate that an Mg2þ

ion located at the catalytic pocket, complexed with three
water molecules and three residues, including GLU461,
increases the specificity toward the b-D-galactosyl moiety
(Br�as, Fernandes, and Ramos 2010).

The proposed catalytic mechanism for cleavage of the lac-
tose glycosidic bond involves several steps. The first step is
the formation of two hydrogen bonds, first between the
carboxylate of the GLU537 residue below the galactosyl ring
and the hydroxyl at C2, and second, between the carboxylic
acid of GLU461 residue, above the ring, and the glycosidic
oxygen (Figure 2). On the second step, the second hydrogen
bond results in proton donation after the nucleophilic attack
by the GLU537 carboxylate on the anomeric carbon, forcing
the glycosidic bond cleavage. The Mg2þ ion modulates the
acidity of GLU461, facilitating the bond cleavage. After the
glycosidic bond has been cleaved, the weak interactions at
subsite þ1 allow the glucose molecule to leave. Calculations
also suggest that a change on the galactosyl ring to a half-
chair conformation is also important for the glycosidic bond
cleavage (Br�as, Fernandes, and Ramos 2010). This ring con-
formation is consistent on all GH-A enzymes, although dif-
ferences between families have been found (Kumar,
Henrissat, and Coutinho 2019).

After the glycosidic bond cleavage, two fates await the
covalent enzyme-galactosyl complex. The complex can suffer
hydrolysis, following a nucleophilic attack by a water mol-
ecule, or a new glycosidic bond can be formed with the
freed glucose or another substrate resulting on the transgly-
cosylation. On the second case, a lactose or longer GOS can
be captured by the shallow binding mode placing the galac-
tosyl end at the subsite þ1. For the E. coli b-galactosidase,
the quantum mechanics/molecular mechanics study allowed
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the elucidation of the reaction path showing that transglyco-
sylation leads b (1-6) oligosaccharides as the thermodynam-
ically favored products, galactosyl-b (1-6)-glucose
(allolactose) being the preferred one (Br�as, Fernandes, and
Ramos 2010). The catalytic mechanisms for both hydrolysis
and transglycosylation are also represented by the diagrams
on Figure 2.

The true nature of the catalytic mechanism is relevant for
the establishment of a proper kinetic model. Experimental
data led to the conclusion that glucose acts as a competitive
inhibitor. In silico studies with human b-galactosidase (also
a retaining hydrolase) suggest that a similar catalytic mech-
anism is the origin for the inhibiting effect (Guce et al.
2010), since glucose can enter the catalytic site but the
absence of an hydroxyl in the adequate position prevents
the formation of the covalent bond to the enzyme (Br�as
et al. 2008).

b-galactosidase from Aspergylus oryzae belongs to GH-35
family, together with human galactosidase, while the enzyme
from E. coli belongs to the GH-2 family (Maksimainen et al.
2013). A comparison of several enzymes has shown that all

members of the GH-A superfamily have the same two glu-
tamic acid residues at the catalytic site, one to act as a
nucleophile and the other, as a Br€onsted proton donor.
Therefore, the mechanism should be the same as that for
other enzymes from the superfamily (Davies and Henrissat
1995; Henrissat et al. 1995; Irague et al. 2013; Kumar et al.
2011; Thongpoo et al. 2013; Vuki�c et al. 2015).
Crystallographic and kinetic studies confirm this finding
(Zechel and Withers 2000). All enzymes from the GH-A
super family are structurally and mechanistically related
(Kumar, Henrissat, and Coutinho 2019).

Fructosyltransferase

Fructosyl hydrolases and transferases belong to the GH-32
family, including retaining and inverting enzymes. The gen-
eral mechanism has been elucidated with data from X-ray
diffraction, directed site mutations, kinetic experiments and
in silico studies. It follows a similar path than that of galac-
tosidases, but with three instead of two key residues: one
aspartic acid acts as a nucleophile and an aspartic acid, as

Figure 2. Diagram representing subsites �1 to þ3 and 6 different situations from b-galactosidase catalytic mechanism: (a) binding of lactose on subsites �1 and
þ1; (b) glycosidic bond cleavage; (c) enzyme-galactosyl plus water at subsite �1; (d) galactose ready to leave subsite �1; (e) enzyme-galactosyl plus lactose at sub-
sites þ1 and þ2; and (f) GOS ready to leave.
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acid/base donor; a second aspartic acid modulates the
nucleophile with a stabilizing effect on the covalent enzyme-
fructosyl intermediate. The presence of a Ca2þ ion has been
noted and its role might be the same as the Mg2þ ion dis-
cussed before (Alvaro-Benito et al. 2010; Alberto et al. 2004;
Chuankhayan et al. 2010; Lafraya et al. 2011; Mart�ınez-
Fleites et al. 2005; Meng and F€utterer 2003; Ozimek et al.
2006). As with b-galactosidase, quantum mechanics/molecu-
lar mechanics calculations for transfructosylase from
Aspergillus japonicus allowed the calculation of the reaction
path, through a retaining mechanism, and the prediction of
the most stable products to come from transfructosylation
instead of sucrose hydrolysis (Jitonnom, Ketudat-Cairns, and
Hannongbua 2018). The results confirmed those previously
obtained, suggesting that transfructosylation and sucrose
inversion are performed by different enzymes (L’Hocine
et al. 2000).

The modeling of glucosidases’ and fructosyltransferases’
kinetics has been widely studied. Invertase, also a hydrolase,
was used by Michaelis and Menten on their studies leading
to the general enzyme kinetics model (Cornish-Bowden
2015). Due to their industrial importance, hydrolases’ kinet-
ics have been studied in the free form, immobilized and
with several types of reactors (Alvarado-Huallanco and
Maugeri Filho 2011; Detofol et al. 2015; D�ıez-Municio et al.
2014; Duan, Chen, and Sheu 1994; Guio et al. 2012; Jung
et al. 1989; Khandekar et al. 2014; L’Hocine et al. 2000;
Lorenzoni et al. 2014; Sen, Bhattacharjee, and Bhattacharya
2016; Surin et al. 2012; Vega and Zuniga-Hansen 2014;
Wong et al. 2015). Several authors have proposed empirical
based kinetic models with support from mechanistic conclu-
sions, adapted to every experimental setup fitting the mod-
els’ parameters (Michaelis constants or kinetic constants) to
existing experimental data. Figure 3 represents the

hydrolysis (Figure 3a) and the transglycosylation of a disac-
charide (Figure 3b).

Contribution of immobilization technology for
b-galactosidase and fructosyltransferase

Different classifications for the various types of immobiliza-
tion can be found in the literature. The most common one
is the distinction between physical or chemical methods
(Guo 2019). The first group includes the methods involving
physical interaction between the enzyme and the support or
those in which the enzyme is physically restrained by the
carrier, hindering its release to the medium. The chemical
methods depend mostly on the establishment of covalent
bonds (Dwevedi 2016; Mohamad et al. 2015). Other classifi-
cations distinguish the presence or absence of carriers/sup-
ports (Illanes 2008) or those that differentiate the reversible
or irreversible nature of the interactions (Homaei et al.
2013). There are also authors that do not classify them, and
simply discuss the different methods (Aehle 2007;
Moehlenbrock and Minteer 2017; Nguyen, Lee, et al. 2019;
Sheldon 2007; Sirisha, Jain, and Jain 2016). This latter per-
spective is that assembling most with the focus of this
review. In this line, although there are many immobilization
methods and types of enzymes in the food industry, we will
discuss those particularly used for fructosyltransferase and
b-galactosidase. In this sense, adsorption, entrapment, cova-
lent coupling, cross-linking and aggregation are the main
methods used to immobilize these type of enzymes, all of
them having pros and cons. Figure 4 gives a general outline
of the mechanisms of each method.

Adsorption is often considered a simple method consist-
ing on physical interactions such as van der Waals forces,
ionic interactions and hydrogen bonding, between the

Figure 3. Proposed mechanism for: (a) hydrolysis and (b) transglycosylation of a disaccharide. A is a galactoside or fructoside, B is a glucoside, and E is the enzyme.
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carrier and the enzyme without modifying the natural struc-
ture of this last one (Gonçalves et al. 2019; Nisha, Karthick,
and Gobi 2012; Panesar et al. 2006). For this type of immo-
bilization, hydrophobicity/hydrophilicity character and
charge (isoelectric point) of the enzyme are very important
for the selection of the support (Moehlenbrock and Minteer
2017). The carrier needs to provide specific functional
groups (SAG in Figure 4) on the surface for the conform-
ation of the enzyme-carrier binding. If this interaction does
not occur spontaneously, intermediates (carrier modifiers)
can be applied (CM in Figure 4). Silica, silica gel, alumina,
alumina gel, activated charcoal, ion exchange resins,
hydroxyapatite (inorganic), chitosan, calcium alginate, agar-
ose gel, cellulose, synthetic polymers, fiber membranes, cot-
ton cloth (organic) are common supports to immobilize
enzymes by adsorption (Jesionowski, Zdarta, and Krajewska
2014; Nisha, Karthick, and Gobi 2012).

Entrapment involves the occlusion of an enzyme in a
synthetic or natural polymeric network (gel, fiber or micro-
capsule) that act as a permeable membrane to substrates and
products, while the enzyme is retained inside (Guo 2019;
Nisha, Karthick, and Gobi 2012; Sheldon 2007). This is a
fast, cost-effective and feasible strategy of immobilization
but it has some drawbacks, the main one being the mass
transfer limitation due to diffusional problems between the

substrates, products and the carrier (Aehle 2007; Nisha,
Karthick, and Gobi 2012). Additionally, physical retain is
generally weak and does not prevent enzyme leakage.
Therefore, very often additional treatments with specific
reactants are required to effectively retain the catalyst, usu-
ally by covalent attachment. Consequently, the difference
between entrapment and covalent binding is not clear. In
this sense, Sheldon (2007) proposes that the term entrap-
ment involves the synthesis of the polymeric network during
the immobilization process. As a drawback, this last strategy
makes the supports not renewable.

Enzyme immobilization via covalent binding is one of the
first methods implemented, therefore, one of the most
widely investigated. In brief, it consists in a chemical inter-
action between the aminoacids from the active site of the
enzyme with the active functional groups from the carrier
surface (AAA and AFG in Figure 4) (Cao 2005). Carriers
need often to be activated, and this process involves two
stages: the addition of a reactive compound and the modifi-
cation of the polymer backbone to activate the matrix
(Nisha, Karthick, and Gobi 2012; Nguyen, Styevk�o, et al.
2019). Covalent bonding generates strong and stable linkages
and it usually prevents leakage of the enzyme from the car-
rier’s matrix (Cao 2005; Nisha, Karthick, and Gobi 2012).
However, the main drawback is the fact that both the

Figure 4. Simple representation of the principal immobilization methods (adsorption, entrapment, covalent binding and cross-linking) used to immobilize b-galac-
tosidases and fructosyltransferases.
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enzyme and the support remain unavailable if the enzyme is
irreversibly deactivated during either the immobilization or
the synthesis processes (Sheldon 2007).

Cross-linking consists in intermolecular linking of mole-
cules by the use of bifunctional reagents (substances that
contain two identical or two different functional groups or
groups of different reactivities) (Sheldon, Schoevaart, and
van Langen 2006). The principal bifunctional cross-linking
reagent used for enzyme immobilization is glutaraldehyde
(GA), which has the ability to react with different enzyme
moieties (primary amino groups, thiols, phenols, imidazoles)
and also, the capacity to polymerize (Barbosa et al. 2014). In
this sense, there are two main approaches: to use GA as an
intermolecular enzyme crosslinker in support-free methods,
and to use GA to activate the support and prepare the IE.
The first one can overcome the diffusional limitations of
mass transfer by using different supports, it does not require
purified enzyme, and it is highly specific. Nevertheless, its
main disadvantage is that it can modify the enzyme’s config-
uration, leading to a loss of activity. This may condition the
selectivity of the enzyme for a certain substrate or the for-
mation of side-products (Boudrant, Woodley, and
Fernandez-Lafuente 2020).

In the next paragraphs the reader will find a chronological
description of the evolution to immobilize b-galactosidases
and fructosyltransferases, with special emphasis on those
works which gave a useful insight in the field during the last
decades. Although this section is divided considering each
method of immobilization, it must be mentioned that in
many works authors compared different immobilization
methods or used a combination of them. Hence, the sequence
selected for presentation is just for a matter of organization
rather than a strict classification. The examples mentioned in
this section are listed in both Table 1 and Table 2 and are
discussed with greater detail below. It is worth mentioning
that in the case of b-galactosidase immobilization, most of
the works are focused on the hydrolysis reaction rather than
on its transferase activity. For this reason, the table includes a
column indicating the application procured by each author to
design the immobilization process.

Adsorption

Adsorption of b-galactosidase with polyethyleneimine on cot-
ton cloth has been applied by Albayrak and Yang (2002). The
immobilization process consisted in a combination of adsorp-
tion (polyethyleneimine solution to cotton cloth and exposing
it to the enzyme solution) and cross-linking (polyethylenei-
mine-enzyme aggregates with GA). The procedure performed
in monolayer presented an enhancement of the immobiliza-
tion yield when increasing the enzyme concentration up to a
maximum loading value. In contrast, the maximum enzyme
immobilization yield, in multilayer mode, was achieved when
the polyethyleneimine to enzyme ratio was near 1/20–1/25.
When testing GOS formation from lactose with the multi-
layered polyethyleneimine-IE technique in a packed-bed
reactor, high productivity was achieved and GOS formation
kinetic was not affected compared with soluble enzyme.

However, Matella, Dolan, and Lee et al. (2006), who applied
the same approach to immobilize b-galactosidase from
Aspergillus oryzae, claimed that adsorption was not effective
and inactivation occurred, but their enzyme contained signifi-
cant amounts of dextrin (neutral charge), which could avoid
the electrostatic interaction between the enzyme and the poly-
ethyleneimine-cloth. Therefore, when applying this type of
configuration, special care must be paid in the presence of
substances that can alter the electrochemical nature of the
interaction between enzyme and the carrier.

Gaur et al. (2006), immobilized the enzyme through phys-
ical adsorption on celite, and compared with other immobil-
ization methods, finding that adsorption was the method
with less enzyme recovery (only 2% of activity yield).

G€uleç (2013) immobilized b-galactosidase from
Kluyveromyces lactis, comparing simple adsorption and
covalent attachment onto cellulose acetate membrane sur-
face. For adsorption, authors used plain and oxygen-plasma
modified membrane, applying radio frequency and low-
pressure, finding that plasma activated surface membrane
was able to immobilize higher amounts of the initial enzyme
concentration since surface hydrophilicity increased with
oxygen activation. The IE via adsorption caused higher lac-
tose conversion than the soluble enzyme system but the ini-
tial GOS yields (30%–34%) of the IE was lower than that of
the soluble enzyme (39%), so for GOS synthesis IE
demanded higher reaction time to reach the same yield than
operating with soluble enzyme.

These references confirm that charge (isoelectric point) of
the enzyme and hydrophobicity/hydrophilicity characters are
crucial for the efficiency of adsorption as immobilization
method. Additionally, according to our exhaustive search,
more updated bibliography promoted this method in com-
bination with entrapment (Souza, Garcia-Rojas, and Favaro-
Trindade 2018) or covalent binding and cross-linking
(Urrutia et al. 2018), both discussed in the next paragraphs.
Also, Carevi�c et al. 2018 applied this immobilization tech-
nology, but given that this work was focused on the study of
different resins as supports, it will be discussed later, in
Support materials and approaches for enzymatic production
of GOS and FOS.

Immobilization of fructosyltransferase via ion exchange
was early investigated using different supports. Hayashi et al.
(1994) evaluated the immobilization of b-fructofuranosidase
with diethylaminoethyl (DEAE) cellulose in a continuous
reaction. They found that IE was less susceptible to inhibition
by metal ions and the temperature stability was comparable
with that of FE. The long-term stability of IE enabled the
continuous production of FOS. Yun, Kang, and Song (1995)
and Yun and Song (1996, 1999) used a porous styrene-
derived ion exchange resin and packed it into a glass column
to reproduce an industrial system. The combination of a high
porous support and the column system allowed a high volu-
metric activity, more stability against pH changes, and long
term continuous operation, while product composition was
very similar with FE and IE. Additionally, authors compared
the same system design with IE and immobilized whole cells,
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claiming that IE reactor operated more efficiently regarding
stability and FOS production.

Nishizawa, Nakajima, and Nabetani (2000) tested immo-
bilization of b-fructofuranosidase on ceramic membranes
operating in a forced-flow membrane reactor in order to
compare physical adsorption and covalent bonding effi-
ciency. They used GA to activate membranes of different
pore size, promoting the formation of covalent bonds with
aldehyde groups at the surface of porous membrane. In a
few seconds, the forced-flow membrane reactor achieved
FOS yields similar to those obtained after few hours using
batch systems, thanks to the high quantity of IE within
the membrane.

Mussatto, Aguilar, et al. (2009) got a deeper insight on
the mechanisms of FOS synthesis with IE in vegetal fiber,
finding that immobilization allowed for the reduction of the
time necessary for repeated batch fermentation from 42 to
14 days (including the microorganism growth and the fer-
mentation process for seven batches). Nevertheless, the main
disadvantage of this method was that the hydrolyzing activ-
ity of this enzyme increased along cycles, while the trans-
fructosylating activity decreased. Later, this research group
(Mussatto et al. 2012) found that among several carriers,
synthetic fiber and the polyurethane foam were the best
options to operate batch fermentation to obtain FOS.

Although adsorption is a simple method, enabling high
enzyme loading, high immobilization yields are usually asso-
ciated to low enzymatic activities. In general terms, the
engineering of this method needs to contemplate a com-
promise between the enzyme concentrations, the amount of
support, and the amount of actually active IE. From litera-
ture data, it can be concluded that the immobilization strat-
egy for these two kinds of enzymes involves ionic
interaction. In this sense, any additive or change in the
nature of the enzyme (i.e., isoelectric point, hydrophilicity)
can affect the effectiveness of the immobilization and the
enzyme activity yield. According to recent findings about
this method, it seems that the innovation focus is more on
the type of support than on the immobilization strat-
egy itself.

Entrapment

Ateş and Mehmeto�glu (1997) developed a method for
immobilizing b-galactosidase in cobalt alginate beads via
entrapment, and analyzed the utilization of IE in a plug flow
reactor, where there was retention of 83% of the relative
activity and increased stability at high temperatures. These
results were much better than the b-galactosidase immobil-
ization through entrapment as enzyme fibers composed of
alginate and gelatin and hardened with GA (Tanriseven and
Do�gan 2002), which preserved 56% of activity of FE but also
conferred more stability at higher pH and temperature. In
both cases, the systems were specially designed for lac-
tose hydrolysis.

Jovanovic-Malinovska et al. (2012), studied the synthesis
of GOS with immobilized b-galactosidase in polyvinyl alco-
hol (PVA) lenses and in sol-gel carriers and compared it toTa
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the synthesis with the FE. Authors found that polyvinyl
alcohol immobilization was the most appropriate method. It
retained 95% of its initial activity after seven repeated uses
and retained more of the initial activity after 3months of
storage than sol–gel-immobilized b-galactosidase. Also, poly-
vinyl alcohol-IE achieved higher lactose conversion rates
than sol–gel enzyme. IE was adapted to operate in a PBR to
produce GOS from both lactose and whey.

Recently, Yu and O’Sullivan (2018) developed a method to
produce GOS with immobilized whole cells of Lactococcus lac-
tis containing high levels of a hyper-thermostable b-galactosi-
dase from Sulfolobus solfataricus. The approach involved as
first step the degradation of the recombinant DNA with UV
treatment and then immobilization, comparing two supports:
chitosan and alginate beads. Although both supports were able
to entrap whole cells, alginate beads swelled during prolonged
exposure to high temperatures, so chitosan was the appropriate
carrier to perform GOS synthesis.

Another interesting approach is the combination of
entrapment and adsorption via ionic interaction. Souza,
Garcia-Rojas, and Favaro-Trindade (2018), complexed
b-galactosidase with different polysaccharides (sodium algin-
ate or k-carrageenan), mixing them with the enzyme solu-
tions, and varying the pH (from neutral to acid). Authors
evaluated lactose hydrolysis at different pH values, until
achieving a change in the three-dimensional conformation as
result of the interaction of the amino groups of the enzyme
with the sulfate and carboxyl groups of the polysaccharides.
Although the complex was affected by pH variation, this
alteration was observed in a lesser extent when alginate was
used as the polymer (when compared to k-carrageenan). Low
pH also reduced the enzyme denaturation rate. More recently,
Souza et al. (2019) got an insight on the immobilization
through complexation using alginate, stating that when the
enzyme-complex was exposed to high temperatures for a long
time, thermal stability was improved, compared to FE.

The latest innovations in b-galactosidase immobilization
through entrapment indicate that using alginate as a carrier
seems to be proper when lactose hydrolysis is the final
objective but when immobilization is designed for GOS syn-
thesis, carriers less common, like fibers or chitosan, are
more adequate to implement the entrapment.

In early studies, the mycelium from Aspergillus japonicus
was immobilized using calcium alginate gel Cheng et al.
(1996), to improve enzyme (b-fructofuranosidase) stability
in terms of pH and thermal changes. When performing FOS
synthesis, the obtained yields were very similar to those
obtained with FE, and only 17% of enzyme activity was lost
over one month of continuous operation. Authors claimed
that mass transfer was effective thanks to a high ratio of
transfructosylating to hydrolyzing activity. A similar
approach was applied by Ganaie, Pathak, and Gupta (2011),
by immobilizing whole cells of Aureobasidium pullulans
with sodium alginate through extruded drops. Authors eval-
uated separately extracellular and intracellular enzyme per-
formance for FOS production. The last one showed a higher
conversion yield (54% wt/wt FOS) than extracellular mass
(46% wt/wt FOS).

Also using the entrapment method but with a commer-
cial enzyme preparation, Fernandez-Arrojo et al. (2013)
immobilized the enzyme in calcium alginate gel beads and
then, dried the gel with the entrapped enzyme. This strategy
was successful, and IE resulted stable because it did not
swell in the concentrated sucrose solution, thus avoiding
enzyme leakage. The IE was tested for FOS synthesis using
both batch and continuous fixed bed reactors at lab scale.
The continuous operation promoted higher volumetric activ-
ity and enhanced the space-time-yield of fixed-bed bioreac-
tors. FOS yield was stable for long term operation and the
enzyme system could be stored at room temperature without
microbial attack.

More recently, Zambelli et al. (2016) implemented this
immobilization method for whole cells, as most of the cited
works do, of Cladosporium cladosporioides and performed
FOS’ synthesis in a continuous flow reactor. The strategy
promoted a significant improvement of reactor productivity
(1.7 times, compared to batch processes), being stable dur-
ing 7 days of continuous FOS production without varying
significantly the product composition.

In general terms, immobilization via entrapment is a
good strategy to improve pH and temperature stability for
both b-galactosidase and fructosyltransferase. In the particu-
lar case of fructosyltransferase, this immobilization method
is most employed for immobilizing whole cells rather than
isolated enzymes. The main disadvantage of this method is
that in general, supports cannot be reusable when the
enzyme activity runs out.

Covalent binding

In addition to adsorption methods, Gaur et al. (2006) also
immobilized b-galactosidase by covalent coupling to chito-
san previously activated with GA. This method led to a high
activity yield and the enzyme presented higher temperature
stability while GOS yield was comparable with that obtained
with FE. A similar immobilization method using an analo-
gous support was implemented by Klein et al. (2012, 2013),
claiming that optimal pH was enhanced from 6.5 to a wider
range between 6.5 and 8.0. Although the optimal tempera-
ture was the same for both FE and IE, this latter immobil-
ization method led to a higher enzyme activity in a wider
range of temperatures. Authors also assayed the enzyme
thermal stability under different lactose concentrations (50 g/
L and 400 g/L) indicating that a higher lactose concentration
promotes retaining enzyme activity. These results encourage
the production of GOS in a continuous PBR using immobi-
lized b-galactosidase in chitosan macroparticles.

Chen et al. (2009) immobilized a thermostable
b-galactosidase from Bacillus stearothermophilus using
Tris(hydroxymethyl)phosphine (THP) and GA and chitosan as
support, but the focus in this work was to enhance lactose
hydrolysis in a PBR. In line with this, Lima et al. (2013) investi-
gated the same immobilization method but focusing on the
selection of the best strain of Kluyveromyces promoting the
highest hydrolytic activity. The strategy increased thermal
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stability (compared to that of FE) and the enzyme could be
reused for 10 cycles, retaining more than 70% of its ini-
tial activity.

Again, with GA as a driver for the covalent attachment,
Neri et al. (2011) immobilized b-galactosidase using polyani-
line coated with magnetite as support. Although highlighted
that similar product composition was obtained and similar
kinetic behavior was observed, compared to the FE, with the
advantage of an easy way to remove the IE from the reac-
tion mixture by a magnetic field, being reusable.

Using the same immobilization technique Gonz�alez-
Cata~no et al. (2017) employed polysiloxane-polyvinyl alcohol
polymer activated with GA, which led to an immobilization
yield of 99%, with 78.5% of enzyme activity recovery.
Authors studied experimentally the reaction mechanism to
produce GOS and proposed a mathematical model estimat-
ing rate constants, considering a pseudo steady-state hypoth-
esis for two concomitant reactions. The first one involved
lactose hydrolysis forming glucose and galactose, the latter
reacting with lactose to form trisaccharides, and with each
other (glucose and galactose) to form transgalactosylated
disaccharides. In the second one, the galactosyl–enzyme
complex reacts with the obtained transgalactosylated disac-
charides, and although trisaccharides are still being formed,
they are simultaneously hydrolyzed, leading to glucose
release. Song et al. (2010) implemented this immobilization
method, but using silica gel as the support, inducing a reac-
tion between the protein amine and carboxyl groups and
electrophilic moieties previously introduced onto the solid
surface treating it with 3-APTES and GA. As a strategy to
protect the enzyme active sites, before immobilization
b-galactosidase was previously treated with lactose solution.
This produced a higher activity yield than non-pretreated
enzyme, and a higher thermal stability, as many IE men-
tioned above. An interesting finding of this work is the fact
that not only pH but also buffer molarity affected both FE’s
and IE’s activity, showing that the IE works properly in a
more basic medium and tolerates a wider range of buffer
molarity. In a more recent work, Song et al. (2013) analyzed
the continuous synthesis of lactulose from whey lactose find-
ing that the inhibitory effect of galactose and glucose
decreased with the immobilization in a PBR.

Bernal et al. (2013) immobilized b-galactosidase in a
glyoxyl Sepharose support comparing both one-point and
multi-point attachments. Immobilization was performed at
pH 10 to promote the inactivation of the enzyme by displac-
ing cation, which allowed immobilizing in 20min and
retaining 82% of the enzyme activity. Multi-point attach-
ment enhanced thermal and pH stability, increased the
rigidity of the three-dimensional structure, and made the
enzyme complex less susceptible to inactivation in the pres-
ence of solvents (dioxane 30%). Authors also optimized the
degree of multi-point attachment, given that they observed
that excessive multi-point linkage (longer incubation time
during immobilization) caused a decrease in the enzyme sta-
bility which was explained by a modification or distortion of
the structure.

G€uleç (2013) applied covalent binding to immobilize
b-galactosidase onto cellulose acetate membranes, modifying
membrane’s surface with plasma polymerization of ethylene-
diamine (EDA) and plasma polymerization of 2-mercaptoe-
thanol in order to introduce –NH2 and –SH groups on the
membranes. Additionally, plasma polymerization of EDA-
modified membrane was coated with layers of IE using poly-
ethyleneimine. Although high enzyme loading (65–83%) was
achieved, both methods decreased enzyme activity (11–12%)
and GOS yield, probably due to negative effects on active
amino groups. The most efficient strategy was to immobilize
b-galactosidase onto thiolated membrane surfaces, created
by plasma polymerization of 2-mercaptoethanol with high
immobilization yield (70%) and especially high enzyme
activity (46%).

Warmerdam et al. (2014) used well-known commercial
porous acrylic beads (Eupergit C) with oxirane functionality
to immobilize covalently b-galactosidase through reaction of
its thiol and amino groups with the epoxide groups of the
carrier. Although after immobilization the enzyme experi-
enced activity loss, it was stable for 90 days and its product-
ivity during one run in the PBR was more than six-fold
higher than the productivity of the FE during one run in a
batch reactor.

Using chitosan as support, de Albuquerque et al. (2018)
and Nguyen, Styevk�o, et al. (2019) have recently immobi-
lized covalently b-galactosidase. The former used GA to acti-
vate and to improve catalysts stability for lactulose synthesis
using cheese whey and fructose as substrate. The method-
ology allowed the obtaining of 17.3 g/L of lactulose, and 86%
of lactose conversion, suggesting that the immobilization
improve not only enzyme stability but also, its conformation
and its kinetic properties. On the other hand, Nguyen,
Styevk�o, et al. (2019) used chitosan-coated magnetic Fe3O4

nanoparticles and assayed the immobilized catalyst to pro-
duce GOS from lactulose. Also in this case enzyme stability
was improved in terms of half-life and thermal and pH tol-
erance. A maximum GOS yield of 17% mol/mol was
obtained after 36 h of reaction using 2.34M of initial lactu-
lose concentration.

Regarding fructosyltransferase, Hayashi et al. (1991)
applied this method with an inorganic support (Shirasu por-
ous glass), previously activated with an aqueous silanization
process coupling a monolayer of silane onto the support
surface (Weetall 1976) activated with GA. Enzyme activity
was tested in a PBR using a fast flow rate of concentrated
sucrose solution as substrate, leading to the production of
short chain FOS.

Also with an inorganic support, Chiang et al. (1997) used
oxirane containing methacrylamide-based polymeric beads
to covalently immobilize b-fructofuranosidase from A. niger
and A. japonicas. Although both IE and FE presented their
maximum activity at 60 �C, at lower temperatures IE
retained a higher percentage of its maximum value than FE.
Obtaining FOS with both IEs in a batch reaction presented
a similar pattern to that of the FE’s reaction.

A similar approach took Ghazi et al. (2005) immobilizing
two commercial enzymes using two kinds of polymethacrylate-
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based polymers (Sepabeads EC). Authors assayed the influence
of pH and ionic strength, finding that pH 5.5 favored the
binding of the carboxylic heads of the aspartic and glutamic
side chains whereas pH 9, the binding of amino and thiol
groups. Additionally, low ionic strength produced more protein
bound to the support, which also increased with the porosity
of the support. The pattern and the yield of FOS production
under batch mode with IE, was similar to the production with
FE and other immobilization methods, respectively. After 36 h
of reaction they were able to obtain 61.5% of FOS relative solid
composition. In line with this, Tanriseven and Aslan (2005)
immobilized the same commercial enzyme using also a com-
mercial support (Eupergit C). The covalent attachment was
possible through the amino, mercapto, or hydroxyl groups.
The maximum efficiency (ratio of activity of IE to the activity
of FE) was 96%. In addition, immobilization enhanced the
thermal stability of the enzyme comparing with FE. The pro-
duction of FOS using FE and IE was very similar regarding
product composition, and the latter retained its activity for
20 days performing batch reactions of 1h at 60 �C.

Onderkov�a, Bryjak, and Polakovi�c (2007) covalently
immobilized fructosyltransferase from Aureobasidium pullu-
lans using a commercial support composed of butyl acrylate
copolymerized with ethylene glycol dimethacrylate. As a first
step, the amount of enzyme to be immobilized was opti-
mized. At optimal conditions, the carrier preserved 98% of
its activity for one month. While immobilization poorly
affected thermal stability (comparing with FE), pH stability
was favored, shifting the optimum to the alkaline region.
FOS production with FE and IE presented similar apparent
initial rate, which increased while sucrose concentration
increased. Authors pondered the mechanical resistance of
the carrier which was able to perform 11 cycles of FOS syn-
thesis in a stirred vessel with only 8% of activity loss.

Lorenzoni et al. (2014), covalently immobilized partially
purified b-fructofuranosidase, from a commercial enzyme
preparation (Viscozyme L), on GA-activated chitosan par-
ticles. The best biocatalyst activity was obtained with
120mg/g of enzyme per dry support, achieving an immobil-
ization yield (ratio between immobilization and initial activ-
ity) of 90% and immobilization efficiency (ratio between
observed and immobilized activity) of 33%. Immobilization
enhanced considerably the thermal stability of the biocatalyst
comparing to FE at 60 �C, and retained its activity after 50
cycles of batch FOS synthesis. Lorenzoni et al. (2015) eval-
uated inverted sugar and FOS production using this biocata-
lyst under two PBR and two fluidized bed reactors (FBR),
producing 98 and 94% (grams of invert sugar per grams of
initial sucrose), respectively, and 59 and 54% (grams of FOS
per grams of initial sucrose), in the PBR and FBR, respect-
ively. In both modes of production, varying the flow rate
was possible to modulate the product composition in terms
of DP3 and DP4 concentrations.

Burghardt et al. 2019 presented a detailed study of
neoFOS production (b-(2,6) glycosidic bonds FOS) using
immobilized fructosyltransferase. Authors compared cova-
lently immobilized enzyme using polymethacrylate porous
beads with epoxy functions and epoxy resin with ionic

immobilization (adsorption) using anion exchange mem-
branes. The former option was preferable because it maxi-
mized enzyme activity, stability and enhanced the yield of
FOS. Ionic immobilization using membranes seemed to suffer
enzyme desorption during the washing step after immobiliza-
tion.de Oliveira et al. (2020) immobilized fructosyltransferase
with a similar approach than applied by Nguyen, Styevk�o,
et al. (2019) with b-galactosidase. Immobilization carried out
using Fe3O4-chitosan-magnetic nanoparticles as support and
GA as enabler agent. The immobilized biocatalyst, showed
both hydrolytic and transfructosylating activities and retained
70 and 86% of them after 6 cycles of reuse. In addition, high
thermostability was achieved obtaining a maximum FOS con-
centration of 101.56 g/L, with predominant presence of 1-
kestose in the reaction mixture.

Covalently immobilization of fructosyltransferase and
b-galactosidase is one of the most studied techniques for
immobilization. During the last years, scientific results show
that there are many commercial supports that can be
applied for this purpose; nevertheless, most of the protocols
of enzymatic covalent immobilization required the treatment
with a reactive compound that acts as activator of the sup-
port surface, GA being the most widespread.

Cross-linking

Sungur and Akbulut (1994) used a gelatin carrier system
and two cross-linking agents (GA and chromium (III) acet-
ate) to immobilize a b-galactosidase. Authors managed to
use minimum amounts of crosslinkers, obtaining a stable
and hardened gelatin and avoiding enzyme leakage. Activity
yield was 25% and 22% for GA and chromium (III) acetate,
respectively, and decreased only 9% after 42 days of use.
Furthermore, enzyme activity was less susceptible to pH var-
iations during immobilization, accentuated with the cross-
linker chromium (III) acetate. From literature search, it
seems evident that the enhancement of enzyme activity yield
has been prioritized given that GA has been the principal
cross-linking agent applied in most studies. In this line,
Zhou and Dong (2001) immobilized b-galactosidase using
graphite slab and GA as cross-linking agent and found that
the average specific activity (ratio of the activity of IE to
that of the FE) was between 17% and 25%. Immobilization
increased Km and decreased Vm Michaelis–Menten’s con-
stants. The IEs were stable and active in operational condi-
tions for lactose hydrolysis.

The works of Albayrak and Yang (2002), and Matella,
Dolan, and Lee et al. (2006) show the use of cross-linking as
a final step for coating polyethyleneimine-enzyme aggregates
to cotton cloth, with GA as cross-linking agent. Authors
stated that this strategy promoted a strong permanently fix
bond of enzyme aggregates, avoiding leaching out when
exposed to acetate buffer. In addition, low temperatures
favored higher enzyme activity. Multilayered polyethylenei-
mine IE was used in a plug-flow reactor achieving stable
and continuous operation with an enhancement in GOS
productivity comparing with others previously reported for
this type of process configuration.
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Gaur et al. (2006) studied a cross-linking method, with-
out any support, to immobilize b-galactosidase along with
adsorption and covalent bonding processes. The strategy was
to form enzyme aggregates by adding ammonium sulfate
and GA under controlled conditions. The activity yield with
this method was 13.5% (lower than covalent bonding but
higher than adsorption). Also, b-galactosidase immobilized
through cross-linking aggregates (as well as covalent immo-
bilization) was thermally more stable and its half-life was
enhanced comparing to FE. The disadvantage of this method
was that it promoted lactose hydrolysis over GOS synthesis.

These cited works were able to enhance GOS production
with this type of immobilization, testing the synthesis under
continuous production or repeated-batch operation. For this
reason, it is not clear if the disadvantage of the strategy
applied by Gaur et al. (2006) rises in the immobilization
procedure or if it is a matter of reactor configuration.

In order to design an enzymatic membrane reactor to
produce and purify GOS, Palai and Bhattacharya (2013);
Palai, Singh, and Bhattacharya (2014) immobilized
b-galactosidase in a polyvinylidene fluoride (PVDF) mem-
brane using GA as cross-linking agent. The units of enzyme
immobilized per mass of membrane increased with enzyme
concentration up to a maximum loading capacity. The for-
mation of GOS increased with the initial lactose concentra-
tion. Authors developed a six-step-eleven-parameter model
based on Michaelis–Menten kinetics, which was able to
reproduce the experimental results. Furthermore, they
improved the process’ design by incorporating a recircula-
tion loop that allowed producing GOS selectively and, again,
mathematically modeled this process. The storage stability of
the IE was studied, the enzyme retained 50% of its initial
activity after 30 days of storage at 20 �C.

Guerrero et al. (2015; 2018) analyzed diverse strategies to
immobilize b-galactosidase by aggregation and cross-linking
comparing performances in a repeated-batch operation with
a single batch operation with FE, using lactulose as sub-
strate. Immobilization was produced by precipitating
b-galactosidase from A. oryzae with different concentrations
of ammonium sulfate and testing the addition of different
concentrations and times of exposure of GA. Authors found
that increasing the ratio between GA and protein promoted
an increase in specific activity and the immobilization yield
up to a certain point, from which consumption of more
cross-linking agent did not have any benefit. Thermal stabil-
ity was not improved under these conditions of immobiliza-
tion. Regarding lactulose synthesis, immobilization favored
the generation of disaccharides over higher oligosaccharides.
When comparing with single batch FE operation, immobil-
ization allowed enzyme reuse, increasing lactulose produc-
tion per unit of mass of biocatalyst. Furthermore, Guerrero
et al. 2019 tested this catalyst in continuous packed-bed
reactor to produce lactulose from fructose and lactose ana-
lyzing the effect of flow rate, substrates ratio and biocatalyst
ratio. Under optimal conditions, maximum lactulose yield
was 0.6 g/g of total sugars, and lactose conversion was 28%.
Authors claimed that operation with recycle had no signifi-
cant effect on yield.

Guerrero et al. (2017; 2018); Urrutia et al. (2013) also
analyzed the use of monofunctional and heterofunctional
glyoxyl-agarose supports, as previously reported by Mateo
et al. (2010), which consisted on epoxide-agarose with dif-
ferent additional functional groups. This approach involved
first the adsorption of the enzyme to the support and then
multi-point covalent attachment by means of the amino
groups in the enzyme lysine residues and the aldehyde
groups of the support. Authors determined the reaction kin-
etics and the product composition, obtaining a higher
immobilization yield (39.4%) with amino-glyoxyl-agarose
support. When analyzing enzyme performance during lactu-
lose synthesis, higher yields were obtained with monofunc-
tional glyoxyl-agarose. Moreover, they determined that
glyoxyl-agarose and amino-glyoxyl-agarose derivatives
retained the selectivity of the FE for lactulose synthesis while
carboxy-glyoxyl-agarose and chelate-glyoxyl-agarose favored
the synthesis of transgalactosylated oligosaccharides. The
restrictions that immobilization produced on the enzyme
activity had low effect on transgalactosylation because of the
use of high substrate concentrations, concluding that immo-
bilization had a more critical impact on the hydrolysis of
lactose. Additionally, Urrutia et al. 2018, using the same
experimental design, tested chitosan partially functionalized
with aldehyde groups as support. In this case, authors
studied two cross-linking agents: GA and epichlorohydrin.
The cumulative GOS yield after 10 batches using immobi-
lized enzyme was 4.7 and 4.0 times higher, compared to that
obtained with soluble enzyme.

Also, using GA as cross-linking reagent, Eskandarloo and
Abbaspourrad (2018) immobilized b-galactosidase on the sur-
face of glass beads, activated with 3-APTES. Different enzyme
concentrations were analyzed, founding what many other
works reported previously: the amount of IE per mass of sup-
port increased when the concentration increased, up to the
maximum capacity of the support. However, they showed
that increasing enzyme concentration resulted in a consider-
able decrease in immobilization efficiency (unit of IE per unit
of enzyme taken in the solution). Immobilization increased
the optimal operational temperature and the highest enzym-
atic activity was achieved at higher temperatures than FE.
Similar behavior was observed with higher pH, related to dif-
fusional constraints, or to secondary interactions between the
enzyme molecules and the supports. When studying GOS
production in a PBR, it was observed that the GOS yield
increased with repeated cycles of operation and demonstrated
the high efficiency and reusability of its process configuration
with this type of IE.

Recently, Sass and J€ordening 2020 promoted an innova-
tive strategy to immobilize b-galactosidase on electrospun
gelatin nanofiber mats. The findings involved the determin-
ation of optimal conditions for solvent system during elec-
trospinning process and the subsequent cross-linking of
gelatin nanofiber mats using hexamethylenediamine
(HMDA) in order to increase their stability in water. GOS
yield using this catalyst was 31% higher than that obtained
with FE (27.7%).
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Cross-linking of fructosyltransferase has also been eval-
uated, although not as extensively as b-galactosidase.
Platkov�a et al. (2006) studied six commercial anion-
exchange resins and polymethacrylate carriers, both by dir-
ect attachment, or by the attachment accompanied by GA
cross-linking. Increasing operational pH caused a decrease
in enzyme activity, probably due to the presence of hydroxyl
groups. For all biocatalysts, the addition of the cross-linking
agent produced a drop of the activity. The carriers that pro-
moted higher enzyme activity were styrene with quaternary
amine groups and polymethacrylate with epoxide groups.
The lower enzyme activity in other supports was attributed
to enzyme inactivation during the process and diffusional
problems. Ademakinwa et al. (2018) prepared and evaluated
cross-linked enzyme aggregates (CLEAs) of fructosyltransfer-
ase to produce FOS using GA as cross-linking agent.
Authors indicated that the best precipitant for CLEAs pro-
duction was ammonium sulfate being able to maintain 100%
of residual activity over four rounds of catalysis. The sec-
ondary structure of CLEAs was determined from FTIR spec-
tra, showing that cross-linking with GA promoted protein
aggregation causing the transformation of helical and beta
sheets structures into beta turns. When analyzing FOS syn-
thesized with CLEAs, authors stated that they had prebiotic
properties comparable to those obtained from commercial
FOS. Although authors promoted this method for industrial
FOS biocatalysts, no comparison between CLEAs and FE
activities (i.e., product yield, enzyme stability) at different
process conditions (i.e., pH, stirring, temperature) has been
made. Charoenwongpaiboon et al. (2019) also made use of
CLEAs. In order to immobilize inulosucrase, they used a
fructosyltransferase with higher transglycosylation activity
than b-fructofuranosidase, and capable to synthesize both
inulin and inulin-type fructo-oligosaccharides from sucrose.
In this study the optimum conditions for CLEAs prepar-
ation were determined in terms of recovered activity and
again ammonium sulfate was promoted as the best precipi-
tant, together with 0.5mM GA and pH in a range of 5–7.
Under these optimum conditions, CLEAs retained 42% of
original inulosucrase activity. Comparing with FE, the opti-
mum pH of inulosucrase changed from 5 to 4 after immo-
bilization, while the optimum temperature was the same.
Nevertheless, immobilization produced higher pH and ther-
mal stability. There was found that the CLEAs promoted the
synthesis of inulin-type FOS with the DP ranging from 3 to
8, while the soluble inulosucrase catalyzed the synthesis of
inulin-type FOS with the DP up to 13. Authors concluded
that CLEAs were useful to produce insulin-type FOS with
higher prebiotic effect than FE and also presented oper-
ational stability in the batch synthesis conditions.

In an overall view, cross-linking is a methodology derived
from covalent binding, which is among the latest advances
in enzyme immobilization. Although it seems to be one of
the most delicate methods, given that it can modify the
enzyme’s configuration leading to inactivation, it presents
the advantage of being highly specific. As it consists on the
intermolecular linking of different enzyme moieties (primary
amino groups, thiols, phenols, imidazoles) with the carrier,

immobilization can be modulated to enhance the active sites
of the enzyme and to increase the specificity for the sub-
strates avoiding the inhibitors. Although this strategy is still
under development, recent advances in nanotechnology will
allow going further in the understanding of the intermolecu-
lar configurations and interactions, thus optimization of IE
selectivity and effective activity yield could be improved.

Support materials and approaches for enzymatic
production of GOS and FOS

The selection of an enzyme carrier also depends not only of the
material’s properties (e.g., surface area, particle size, pore structure,
presence or absence of functional groups on its surface) but also
on practical issues (e.g., cost, availability, stability, and the type of
reactor). For instance, depending on the application, a specific
material can successfully immobilize the catalyst but may not sur-
vive the industrial processing conditions. On the other hand, if a
given material can resist the reactor’s conditions but its affinity
with the enzyme is insufficient, this can be overcome with the use
of surface modifiers, changing the properties of the support
(Jesionowski, Zdarta, and Krajewska 2014). Besides its simplicity,
the main advantage of this method, is its ability to preserve the
native structure and the activity of the enzyme. However, the
weak interactions between the protein and the carrier result in
leaching of enzyme from the support over time.

In terms of the properties, enzyme supports should grant
the process some advantages over the use of the soluble
enzyme. The most critical issue is the reduction in the overall
cost of the industrial process and this can be achieved using a
cost-effective support (not always an easy task), by increasing
the reusability of the enzyme (enabling the implementation of
continuous processes), by facilitating the recovery of the cata-
lyst and the purification of the final product, and by increas-
ing enzyme stability and durability, while performing the
transformation(s) and during storage and transport
(Boudrant, Woodley, and Fernandez-Lafuente 2020).

The support should also have thermal, mechanical and
physical endurance to withstand the (sometimes) harsh con-
ditions of the industrial process. It ought to grant the
enzyme with increased specificity toward the substrate,
reduce catalyst inhibition and be inert. It should also present
easy regenerability, avoid contamination, namely by bacteria,
and be eco-friendly (biocompatible and biodegradable).
However, the selection of the support and its properties are
closely related with the type of immobilization procedure
chosen for the enzyme. Hence, physical and chemical prop-
erties (e.g., hydrophilicity/hydrophobicity, pore size, pres-
ence of surface functional groups, or resistance to certain
pH or temperature) must be also considered taking into
account the application foreseen (Aehle 2007; Dwevedi 2016;
Mohamad et al. 2015; Sirisha, Jain, and Jain 2016).

Selection of the support material: a key factor for
enzyme immobilization

Taking into consideration the different methods for enzyme
immobilization to produce GOS and FOS, a suitable support
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material should be chosen. The selection of the material
depends not only on the immobilization method and the
type of the enzyme, but also on the conditions of the cata-
lytic process and the enzyme-support interactions that may
occur (Guzik, Hupert-Kocurek, and Wojcieszy�nska 2014;
Boudrant, Woodley, and Fernandez-Lafuente 2020). These
interactions may interfere with the properties of the whole
biocatalytic system, so special care must be taken in order to
enhance the enzyme specificity (Datta, Christena, and
Rajaram 2013; Mohamad et al. 2015). Besides, supports
should preferentially be low cost and eco-friendly as well as
inert, in order to not interfere and not increase the costs of
the overall enzymatic operation. Supports that have high sta-
bility, thermal and mechanical resistance, a high rate of
regeneration and reusability are preferred (Sirisha, Jain, and
Jain 2016; Zdarta et al. 2018). Additionally, the reusability of
biomacromolecules such as carbohydrates and proteins-based
biopolymers is a promising strategy to obtain biopolymeric
nanoparticles that are antibacterial, biocompatible, immuno-
genicity, and biodegradable (Verma, Dhanya, et al. 2020). It
is important to remark that the support should act as a bar-
rier that preserves the enzyme structure against extreme pro-
cess conditions (pH, temperature, mechanical damage)
avoiding denaturation and inactivation. Furthermore, the
chosen material should provide an efficient establishment of
the enzyme-support complex and there should be a good
affinity between the functional groups of the enzyme and the
support, so an effective binding can occur. Given that an
ideal and universal support would not be feasible to obtain,
the choice of the most appropriate material will involve ana-
lyzing the pros and cons of its properties and usability
(Mohamad et al. 2015; Sirisha, Jain, and Jain 2016).

There is a variety of materials that can and have been
used as support to enzyme immobilization. Based on their
chemical composition, these supporting matrices can be div-
ided in two main categories: inorganic and organic. The lat-
ter can then be subdivided into natural and synthetic
organic supports (Hettiarachchy et al. 2018). Silica and other
oxides, such as aluminum, titanium or zirconium oxides, are
the most commonly inorganic suports, as well as hydroxy-
apatite, activated carbon, glass and ceramic, as described in
Table 3. Usually, inorganic matrices are preferred for their
lower reactivity, thermal and mechanical resistance, high sta-
bility, rigidity and porosity. Some of them can ensure a fixed
volume and shape attributable to the invariance of their
pore diameters (Sirisha, Jain, and Jain 2016; Zucca and
Sanjust 2014). Since most of these materials are not chem-
ically reactive and the functional groups are mainly hydroxyl
groups, a previous treatment to modify and activate the
matrix is required. The matrix modification generally occurs
prior to the activation and it consists on the addition of
amino groups, through a treatment with aminoalkyl trie-
thoxysilanes. For the matrix activation, different methods
make use of dialdehydes, such as cross-linking agents, being
GA the most common one (Hettiarachchy et al. 2018;
Sirisha, Jain, and Jain 2016).

Several reported works merit the use of organic material,
since these can be chemically modified and also surpass the

limitations of inorganic materials such as reduced biocom-
patibility, low affinity to biomolecules and the inorganic
supports inadaptability to be reshaped and to be used with
different methods of immobilization (Jesionowski, Zdarta,
and Krajewska 2014; Zdarta et al. 2018). The main disadvan-
tage of organic matrices is the low chemical and mechanical
resistance, which impair their usage in systems with aggres-
sive thermal and pH conditions leading to the impossibility
of regeneration of the matrix. Among the most used organic
materials there are reports of the usage of a broad variety of
polymers, natural and synthetic (Jesionowski, Zdarta, and
Krajewska 2014). Natural polymers, such as carbohydrate
species can form inert and strong aqueous gels (hydrogels)
such as alginate, chitosan, starch, cellulose and carrageenan.
These mentioned carbohydrates can be easily obtained, with
low associated costs, since most of them are by-products of
different industries (Homaei et al. 2013; Zdarta et al. 2018).
As for the most common synthetic polymers described,
there are reports of the application of polyvinyl alcohol,
polyvinyl chloride, polyurethane, polyaniline, diethylami-
noethyl cellulose (DEAE-cellulose), Eupergit and activated
nylon (Datta, Christena, and Rajaram 2013; Hettiarachchy
et al. 2018; Sirisha, Jain, and Jain 2016). These synthetic pol-
ymers are relatively easy to produce and can be used in dif-
ferent methods of immobilization, where they can be
modified to satisfy the desired specific requirements of the
enzymes and the reactional conditions of a specific enzym-
atic process, without interfering with other properties such
as thermal and chemical resistance (Datta, Christena, and
Rajaram 2013; Jesionowski, Zdarta, and Krajewska 2014).

In order to obtain some products through cascade reac-
tions, some inovative methods, like co-immobilization proc-
esses, with multienzyme systems, have gained special
attention as well as the materials chosen for such reactions
(Ansari and Husain 2012; Mohamad et al. 2015).

In summary, there is wide range of possibilities regarding
the type of support, as shown in Table 3. Nevertheless, par-
ticularly for b-galctosidase and fructosyltransferase, the most
assayed supports include chitosan, alginate-based and sol-gel
carriers, resins with different functional groups, acrylic or
glass porous beads and membranes (cellulose, polyvinylidene
fluoride and ceramic).

Nanotechnology and electrospinning as new approaches
to produce support materials for enzyme immobilization

Due to an increased popularity over the years for industrial
applications and many other areas such as medicine and
pharmaceuticals, agriculture and even biodiesel production,
the search for new materials and immobilization in micro
and nano-scales allowed the continuous development of dif-
ferent enzyme supports and immobilization methods.

Advances in the nanotechnology field allowed for immo-
bilizing enzymes using different nanostructured forms, such
as nanofibers, nanotubes, nanoparticles, nanoporous, nano-
sheets and nanocomposites. These materials provide large
surface area to volume ratio which improves enzyme load-
ing, leading to a more efficient immobilization and

20 M. M. URETA ET AL.



Ta
bl
e
3.

Pr
in
ci
pa
lm

at
er
ia
ls
an
d
ap
pl
ic
at
io
ns

im
pl
em

en
te
d
as

su
pp

or
ts

fo
r
en
zy
m
e
im
m
ob

ili
za
tio

n.

Ty
pe

of
m
at
er
ia
l

Im
m
ob

ili
zi
ng

m
at
rix

En
zy
m
es

Im
m
ob

ili
za
tio

n
m
et
ho

d
Re
fe
re
nc
e

In
or
ga
ni
c

Si
lic
a

Pe
ni
ci
lli
n
ac
yl
as
e

Li
pa
se

Tr
yp
si
n

Co
va
le
nt

cr
os
s-
lin
ki
ng

w
ith

G
A

Cr
os
s-
lin
ki
ng

w
ith

G
A

Ad
so
rp
tio

n

Kh
ei
ro
lo
m
oo
m
,K

ho
ra
sh
eh
,a
nd

Fa
ze
lin
ia
20
02

Le
e
et

al
.2

00
6

G
� om

ez
et

al
.2

00
9

G
la
ss

Pr
on

as
e
(P
ro
te
as
e
m
ix
tu
re
)

b
-f
ru
ct
of
ur
an
os
id
as
e

Li
pa
se

Co
va
le
nt

bi
nd

in
g

Co
va
le
nt

bi
nd

in
g

Ad
so
rp
tio

n

Ro
ye
r
an
d
G
re
en

19
71

H
ay
as
hi

et
al
.1

99
1

Le
e
an
d
Sw

ai
sg
oo
d
19
97

Ce
lit
e

a-
ch
ym

ot
ry
ps
in

b
-g
al
ac
to
si
da
se

Li
pa
se

—
Co

va
le
nt

bi
nd

in
g

Ad
so
rp
tio

n

Ad
le
rc
re
ut
z
19
91

Fa
ie

t
al
.2

01
7

Ka
ja

et
al
.2

01
8

Ac
tiv
at
ed

Ch
ar
co
al

Am
yl
og

lu
co
si
da
se

Pa
pa
in

Pr
ot
ea
se

Ad
so
rp
tio

n
Ad

so
rp
tio

n
Ad

so
rp
tio

n

Ra
ni
,D

as
,a
nd

Sa
ty
an
ar
ay
an
a
20
00

D
ut
ta

et
al
.2

00
9

Kh
an

an
d
Bo

kh
ar
i2

01
3

Al
um

in
a

In
ve
rt
as
e

Tr
yp
si
n

Pe
ni
ci
lli
n
G
ac
yl
as
e

Ad
so
rp
tio

n
Ad

so
rp
tio

n
Ad

so
rp
tio

n

H
u,

H
ae
rin

g,
an
d
G
ea
nk
op

lis
19
85

Pu
gn

i� e
re

et
al
.1

98
8

Ba
hu

le
ka
r
et

al
.1

99
1

H
yd
ro
xy
ap
at
ite

U
re
as
e

Le
va
ns
uc
ra
se

Pr
ot
ea
se

Ad
so
rp
tio

n
Io
ni
c
bi
nd

in
g

Ad
so
rp
tio

n

M
ar
za
do

ri
et

al
.1

99
8

Ja
ng

et
al
.2

00
0

Zd
ar
ta

et
al
.2

01
5

Bi
op

ol
ym

er
s

Al
gi
na
te
s

G
lu
co
se

ox
id
as
e

b
-g
al
ac
to
si
da
se

b
-g
lu
co
si
da
se

En
ca
ps
ul
at
io
n

Co
va
le
nt

bi
nd

in
g

En
tr
ap
m
en
t

Bl
an
di
no

,M
ac
ı�a
s,
an
d
Ca
nt
er
o
20
01

El
di
n,

H
as
sa
n,

an
d
El
-A
as
sa
r
20
05

Ke
er
ti
et

al
.2

01
4

Ch
ito

sa
n

La
cc
as
e

In
ul
in
as
e

Li
pa
se

Ad
so
rp
tio

n
cr
os
s-
lin
ke
d
G
A

Co
va
le
nt

bi
nd

in
g

Ad
so
rp
tio

n

D
’A
nn

ib
al
e
et

al
.1

99
9

Ye
w
al
e,
Si
ng

ha
l,
an
d
Va
id
ya

20
13

Ka
ja

et
al
.2

01
8

Ce
llu
lo
se

Pe
ro
xi
da
se

Li
pa
se

G
lu
co
se

ox
id
as
e

Co
va
le
nt

bi
nd

in
g

Co
va
le
nt

bi
nd

in
g

En
tr
ap
m
en
t

Is
ob

e
et

al
.2

01
1

G
ire
lli
,S
al
va
gn

i,
an
d
Ta
ro
la

20
12

Ya
bu

ki
et

al
.2

01
2

Ag
ar
os
e

a-
ch
ym

ot
ry
ps
in

a-
am

yl
as
e

b
-g
al
ac
to
si
da
se

Co
va
le
nt

bi
nd

in
g

En
tr
ap
m
en
t

—

G
ui
s� a
n
et

al
.1

99
1

Pr
ak
as
h
an
d
Ja
is
w
al

20
11

Sa
ta
r
an
d
An

sa
ri
20
17

G
el
at
in

U
re
as
e

Ty
ro
si
na
se

a-
am

yl
as
e

Cr
os
s-
lin
ki
ng

w
ith

G
A

En
tr
ap
m
en
t

Cr
os
s-
lin
ki
ng

w
ith

G
A

Sr
iv
as
ta
va
,K

ay
as
th
a,
an
d
Sr
in
iv
as
an

20
01

M
un

ja
la
nd

Sa
w
hn

ey
20
02

Ja
is
w
al

et
al
.2

01
2

Sy
nt
he
tic

Po
ly
m
er
s

Po
ly
ac
ry
la
m
id
e

In
ve
rt
as
e

Al
ka
lin
e
ph

os
ph

at
as
e
Ty
ro
si
na
se

En
tr
ap
m
en
t

En
tr
ap
m
en
t

En
tr
ap
m
en
t

Ab
de
lla
h
et

al
.1

99
2

G
on

z� a
le
z-
S� a
iz
an
d
Pi
za
rr
o
20
01

M
un

ja
la
nd

Sa
w
hn

ey
20
02

PV
A

La
cc
as
e

a-
am

yl
as
e

Al
co
ho

ld
eh
yd
ro
ge
na
se

Cr
os
s-
lin
ki
ng

w
ith

G
A

en
tr
ap
m
en
t

Ad
so
rp
tio

n/
co
va
le
nt

bi
nd

in
g

Ba
ie

t
al
.2

01
4

N
ak
ag
aw

a
an
d
G
ot
o
20
15

Sh
in
de

et
al
.2

01
8

Po
ly
ur
et
ha
ne

Li
pa
se In
ul
in
as
e

Pa
pa
in

Co
va
le
nt

bi
nd

in
g

— Co
va
le
nt

bi
nd

in
g

Aw
an
g,

G
ha
zu
li,
an
d
Ba
sr
i2

00
7

Si
lv
a
et

al
.2

01
3

M
an
oh

ar
an
d
D
ob

le
20
16

PE
G

Ce
llu
la
se

a-
ch
ym

ot
ry
ps
in

Co
va
le
nt

bi
nd

in
g

Cr
os
s-
lin
ki
ng

w
ith

cy
st
am

in
e

As
li
et

al
.2

01
6

Fr
aa
s
an
d
Fr
an
zr
eb

20
17

PV
D
F

b
-g
al
ac
to
si
da
se

Li
pa
se

Ty
ro
si
na
se

Co
va
le
nt

bi
nd

in
g

— Co
va
le
nt

bi
nd

in
g

Pa
la
i,
Si
ng

h,
an
d
Bh

at
ta
ch
ar
ya

20
14

Ka
yh
an
,E
yu
po

gl
u,

an
d
Ad

em
20
16

Al
gi
er
i,
D
on

at
o,

an
d
G
io
rn
o
20
17

Re
si
ns

D
EA

E-
ce
llu
lo
se

In
ve
rt
as
e

Ep
ox
id
e
hy
dr
ol
as
e

N
uc
le
as
e
p1

Ad
so
rp
tio

n
Ad

so
rp
tio

n
—

Ab
de
lla
h
et

al
.1

99
2

Ka
rb
ou

ne
et

al
.2

00
1

Sh
ie

t
al
.2

01
0

D
uo

lit
e
A-
56
8

b
-g
al
ac
to
si
da
se

Ce
llo
bi
os
e
2-
ep
im
er
as
e

In
ve
rt
as
e

Ad
so
rp
tio

n
Ad

so
rp
tio

n
Ad

so
rp
tio

n

Bo
te
lh
o-
Cu

nh
a
et

al
.2

01
0

W
an
g
et

al
.2

01
6

Ca
br
al
et

al
.2

01
7

(c
on
tin
ue
d)

CRITICAL REVIEWS IN FOOD SCIENCE AND NUTRITION 21



stabilization of the enzymes facilitating reaction kinetics
(Verma, Puri, and Barrow 2016). They also have the ability
to control particle and pore size, tailoring the thickness of
nanofibers and nanotubes. Additionally, the need for the use
of surfactants and toxic reagents, such as cross-linking
agents, is reduced and in some cases specific particles with
conductive or magnetic properties can be used in order to
control the immobilized system (Homaei et al. 2013;
Mohamad et al. 2015; Wang et al. 2009; Zdarta et al. 2018).
Nanoscale particles, in general, can be designed and rede-
signed according to the required necessities of the enzyme
system (Cipolatti et al. 2016). This way, enzymes have been
successfully immobilized into many nanoparticles and nano-
materials, like those described in Table 3, with positive
results verified toward the improvement of enzymatic per-
formance. Different nanomaterials have been used as sup-
ports, such as polymers, silica, graphene, gold and magnetic
particles (Chen et al. 2017; Cipolatti et al. 2016).

Immobilization in nanomaterials can be adapted accord-
ingly to desired conditions, however it still depends on fac-
tors, such as the type of enzyme, the support itself and the
immobilization conditions, which will condition aspects
such as immobilization yield and specific activity.

Electrospinning is one of the simplest techniques used to
produce nanofibers characterized by their exceptional length,
possibility to have a diversified composition and the uni-
formity of the fiber’s diameters. Electrospun nanofibers have
been appointed as immobilization supports with a great
potential to overcome the problems presented by the other
materials. The obtained fibers generally have high porosity
and interconnectivity that allow the system to benefit from
low diffusion resistance leading to an efficient mass transfer
process, high reaction rate and conversion.

The surfaces of the fibers can be modified in order to
benefit the specific enzyme activity, loading onto the fiber a
huge quantity of enzyme (Fang et al. 2011; Wang et al.
2009). Spun membranes can also be produced and used as
filters, allowing the enzyme-membrane system to act simul-
taneously as a biocatalyst and a separation material having
huge interests for the enzymatic membrane-bioreactors field
(Wang et al. 2009).

The chosen polymer to spin should not only be able to
form fibers or membranes by electrospinning, but shoul also
be able to interact with the enzyme. The selection of materi-
als for electrospinning comes with a specific range of sol-
vents associated that should not interfere with the activity or
conformation of the enzyme (Tran and Balkus 2012).

Polyvinylidene fluoride is a common electrospinning
material, inert due to the absence of reactive groups, but dif-
ferent procedures have been developed toward modifications
of the surface to make it more reactive for biomolecules
immobilization (e.g., enzymes) (Algieri, Donato, and
Giorno 2017).

A good immobilization material, depends not only on the
enzyme but also the method of immobilization and the
processing conditions. The same material does not behave
equally with different enzymes, due to differences in theTa

bl
e
3.

Co
nt
in
ue
d.

Ty
pe

of
m
at
er
ia
l

Im
m
ob

ili
zi
ng

m
at
rix

En
zy
m
es

Im
m
ob

ili
za
tio

n
m
et
ho

d
Re
fe
re
nc
e

D
ow

ex
In
ve
rt
as
e

Ph
os
ph

ol
ip
as
e
D

Ad
so
rp
tio

n
Ad

so
rp
tio

n
Ju
nk
o
To
m
ot
an
ia
nd

Vi
to
lo

20
06

Yo
n
et

al
.2

00
8

Se
ph

ad
ex

G
-2
5

G
lu
ta
m
in
as
e

Li
pa
se

Ad
so
rp
tio

n
Ad

so
rp
tio

n
Ah

m
ad

M
ah
m
od

20
16

Ka
ja

et
al
.2

01
8

N
an
om

at
er
ia
ls

Ch
ito

sa
n-
co
at
ed

m
ag
ne
tic

na
no

pa
rt
ic
le
s

b-
ga
la
ct
os
id
as
e

b-
fr
uc
to
fu
ra
no

si
da
se

Co
va
le
nt

bi
nd

in
g

—
Pa
n
et

al
.2

00
9

Ch
en
,S
he
u,

an
d
D
ua
n
20
14

Si
lic
a
na
no

pa
rt
ic
le
s

G
lu
ta
m
at
e
de
hy
dr
og

en
as
e/
la
ct
at
e

de
hy
dr
og

en
as
e

H
or
se
ra
di
sh

pe
ro
xi
da
se

En
do

-in
ul
in
as
e

Co
va
le
nt

bi
nd

in
g

En
tr
ap
m
en
t

Ad
so
rp
tio

n/
co
va
le
nt

bi
nd

in
g/
cr
os
s-

lin
ki
ng

w
ith

G
A

Q
ho

bo
sh
ea
ne

et
al
.2

00
1

Vo
ss

et
al
.2

00
7

Ka
rim

ie
t
al
.2

01
4

H
yd
ro
xy
ap
at
ite

na
no

pa
rt
ic
le
s

b-
gl
uc
os
id
as
e

Ad
so
rp
tio

n
Co

ut
in
ho

et
al
.2

01
8

Po
ly
ur
et
ha
ne
-g
ol
d
an
d

po
ly
ur
et
ha
ne
-s
ilv
er

na
no

pa
rt
ic
le
s

M
al
to
ge
na
se

Ad
so
rp
tio

n
Ko
ch
an
e
et

al
.2

01
7

El
ec
tr
os
pu

n
ce
llu
lo
se

na
no

fib
er

m
em

br
an
e

Li
pa
se

Co
va
le
nt

bi
nd

in
g

H
ua
ng

et
al
.2

01
1

El
ec
tr
os
pu

n
PV

A
fib

er
s

Li
pa
se

En
tr
ap
m
en
t

S� o
ti
et

al
.2

01
6

El
ec
tr
os
pu

n
po

ly
et
he
rs
ul
fo
ne

na
no

fib
er
s

a-
am

yl
as
e

Co
va
le
nt

bi
nd

in
g
(t
hr
ou

gh
ED

C)
G
ho

lla
si
20
18

22 M. M. URETA ET AL.



binding, leakage, matrix effect, and diffusional barriers,
among others (Calabr�o 2013).

Main supports for b-galactosidase and
fructosyltransferase immobilization

b-galactosidase can be immobilized in different types of
materials. Bearing in mind that b-galactosidases have both
hydrolytic and transgalactosylase activities, the conditions
for these two types of reactions are different and thus, dif-
ferent materials should be considered depend on the exact
goal activity: transgalactosylation reactions require higher
substrate concentrations, higher temperatures and lower
water activity than hydrolysis. Hence, such specific charac-
teristics must be considered when selecting the most appro-
priate immobilization support (Panesar, Kumari, and
Panesar 2010).

b-galactosidase immobilization has been thoroughly
studied with different reports since the early 1970’s.
Woychik and Wondolowski (1972, 1973) have studied the
immobilization of this enzyme in porous glass beads with
and without GA as cross-linker. The 1972 report followed a
method previously described by Weetall (1969) (used for
trypsin and papain), which consisted in the covalent attach-
ment of the enzyme into a porous glass through a diazotiza-
tion process (diazo-linkage). About 75% of the enzymatic
activity was retained using such method and it did not affect
any of the enzyme’s properties, such as optimum pH and
temperature. The method used by Woychik and
Wondolowski (1973) also enabled the retaining of 75% of
the enzyme’s initial activity and had a better activity at lower
pH (80% of the optimum activity at pH 4.5). Moreover, the
immobilized system allowed for a greater efficiency of lac-
tose hydrolysis in column when compared with the stirred
batch reactors (Woychik and Wondolowski 1972, 1973).
Some of the inorganic materials used as supports include sil-
ica, glass, activated charcoal, celite and alumina (aluminium
oxide) (Husain 2010; Panesar, Kumari, and Panesar 2010).

Finocchiaro, Richardson, and Olson (1980) described a
method of b-galactosidase adsorbed into alumina previously
activated with tolylene-2,4-diisocyanate. This method led to
a minimal enzyme leakage, an increment of 16-fold the cata-
lytic activity when compared to untreated alumina, a
broader pH profile, and a slightly decrease of the optimum
temperature.

Following this chronological main contributions for
b-galactosidase immobilization supports, Verma et al. (2012)
promoted the use of silicon dioxide nanoparticles activated
with GA. This methodology involved multipoint covalent
attachment, which improved the enzyme thermal stability.
Additionally, when performing lactose hydrolysis, the
enzyme complex retained more than 50% of the enzyme
activity up to the eleventh cycle.

In 2017, Fai and his team (Fai et al. 2017) obtained GOS
through a fixed-bed reactor with enzyme covalently bound
to celite. When compared to the FE, the optimum pH
slightly decreased and the optimum temperature was 10 �C
higher when celite was used as a carrier. Moreover, the

immobilized system had higher storage stability, maintaining
its functionality for 270 days when kept at 4 �C, and when
used repeatedly for 10 times.

Eskandarloo and Abbaspourrad (2018) developed a cova-
lent immobilization into modified glass by cross-linking
with 3-aminopropyl triethoxysilane (3-APTES). The
obtained enzymatic system revealed increased pH and tem-
perature stabilities, an increased reusability of the enzyme
for packed-bed reactions and allowed for its usage in cycle
reactions with the lactose conversion for GOS formation
increasing with multiple cycles.

Natural and synthetic polymers such as chitosan, alginate,
gelatin, agarose (some of them in the form of Sepharose),
polyvinyl alcohol, polyethyleneimine, polyester, polyacryl-
amide, and some resins, such as DEAE-cellulose and Duolite
have also been studied as supporting material for the immo-
bilization of b-galactosidase (Cao 2005; Verma, Kumar,
et al. 2020).

Li et al. (2008) reported the production of GOS with
b-galactosidase immobilized in calcium alginate. The resulting
beads had a wide pH range (from 3.6 to 8.2) with yields
around 23% and optimum temperature at 55 �C. The enzyme
immobilized in these beads could be reused up to seven times
without any prominent reduction of GOS production.

A GA-activated chitosan support system increased the
enzyme operational stability alongside its pH range and
thermal stability (Klein et al. 2013). The immobilization sys-
tem obtained was used in a PBR operating for both lactose
hydrolysis and GOS production in a stable operation
for 15 days.

Botelho-Cunha et al. (2010) assayed adsorption into a
commercial porous anion exchange resin (Duolite A-568)
and reported no increase in enzyme activity due to diffu-
sional problems.

Carevi�c et al. (2018) adsorbed b-galactosidase from L.
acidophilus via ionic interaction, comparing different resins
with different functional groups, focused on lactose hydroly-
sis application. Carriers with epoxy groups showed the high-
est yields, but not the highest activities. Hence, there is a
compromise between the amount of enzyme immobilized
and the amount of IE actually active, mainly because of the
probability of unfavorable conformation of the active site
during the immobilization process. Carriers with amino
groups leverage the activity yield; carriers with larger pore
sites also promote higher enzyme activity since the free
space facilitates enzyme mobility and substrate diffusion
through the active sites.

Jovanovic-Malinovska et al. (2012) worked with a syn-
thetic polymer, polyvinyl alcohol, and observed that, with
the enzyme entrapped into to this polymer, 95% of the ini-
tial activity was retained decreasing to 49% after 3months.
Polyvinyl alcohol had an immobilization efficiency of 88.5%
and a reusability rate close to 100% even after 7 cycles of
reuse. Furthermore, the authors verified a higher lactose
conversion for GOS production with polyvinyl alcohol in
batch system (31% maximum GOS production) when com-
pared with polyvinyl alcohol in packed bed col-
umn (23–30%).
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Palai, Singh, and Bhattacharya (2014) immobilized
b-galactosidase onto compacted microporous polyvinylidene
fluoride membranes via cross-linking with GA. Increasing
the initial substrate concentration led to an increased select-
ivity for GOS formation, despite a GOS yield reduction.
Polyvinylidene fluoride membranes were used in a batch
mode feed recirculation system, resulting in a maximum
yield of 30% for GOS formation with initial lactose concen-
tration of 50 g/L. This immobilization system allowed for a
larger storage time without a significant loss of the enzym-
atic activity (approximated 50% after 30 days), when com-
pared with the loss of the corresponding native enzyme
(100% activity loss after 21 days).

Regarding the group of fructosyltransferases used for the
synthesis of FOS (b-fructofuranosidase or invertase), the first
report of immobilization strategy was described in 1916, and
was attempted by adsorption of invertase onto charcoal and
aluminum hydroxide (Nelson and Griffin 1916).

b-fructofuranosidase was immobilized in Shirasu porous
glass via adsorption and used for continuous production of
FOS in a packed column (Hayashi et al. 1991). The Shirasu
porous glass was modified by silanization and activation
with GA. When used in a batch system, the IE catalyzed the
production of a wider range of FOS, in contrast with the
continuous system, in which the fast flow rates of sucrose as
substrate just led to the production of 1-kestose.

Nishizawa, Nakajima, and Nabetani (2000) studied the
immobilization activity in ceramic membranes with different
pore sizes and two immobilization methods: adsorption and
covalent binding. For physical adsorption, the membranes
did not suffer any alterations. For covalent binding, the
membranes suffered a pretreatment and activation with GA,
and the immobilization occurred chemically in the inner-
most surface of the membranes. The authors reported the
possibility of long-term operations in a sustainable and
viable manner, with the system having a half-life of IE of
35 days, due to enzyme denaturation, since no leakage was
verified during the process. Immobilization ratios were
higher in covalently IEs, with a maximum of 64%, while for
adsorption only 6% immobilization ratio was obtained.
Covalent bonded membranes represent a better option to
apply a forced flow of substrate for FOS production.

Mussatto, Rodrigues, et al. (2009) studied different por-
ous carriers (polyurethane foam, stainless steel sponge, vege-
tal fiber, pumice stones, zeolite molecular sieves and foam
glass) to immobilize cells of Aspergillus japonicus and found
that vegetal fibers were the best materials for this purpose.
FOS production with these immobilized systems was similar
to the one obtained with free cells. On the contrary, porous
glass was not suitable for FOS production, mainly because
of its instability during agitation, and pumice stones and
zeolites did not immobilize large amounts of cells.

Despite that inorganic materials are used for this class of
enzymes, most works dealing with their immobilization fall
upon organic supports, such as alginates, chitosan, resins
and polymers.

Alginates have been those most largely reported. Cheng
et al. (1996) immobilized b-fructofuranosidase in calcium

alginate beads, via entrapment, and verified an increment in
mechanical strength and enzymatic stability, with a wider
resistance to lower pH and greater resistance to higher
temperatures.

Tanriseven and Do�gan (2001) encapsulated the invertase
in calcium alginate capsules treated with GA. Despite that
no alterations regarding the optimum pH and temperatures
were noted, a higher stability at higher pH and tempera-
tures, together with a long-term were reported.

Fernandez-Arrojo et al. (2013) and Zambelli et al. (2016)
confirmed this stability in batch operation with the enzyme
entrapped in dried alginate beads. Even though different
research groups make different approaches in their alginate
preparations, either with sodium or calcium, in capsules or
beads, alginates confer an increase in mechanical strength
and stability to the enzymatic system.

In a comparative study between immobilization with
alginate and chitosan, both activated with GA, the optimum
pH and temperature were slightly lower for alginate
(Mouelhi, Abidi, and Marzouki 2016) but not significant,
with both immobilized systems showing pH stability in a
wider range (4–7) than FE and relative activities between
80% and 100%. After 50 cycles of use, both immobilized sys-
tems maintained more than 80% its activity. Similar results
were obtained by Lorenzoni et al. (2014, 2015), with chito-
san particles activated with GA, that lead to not only higher
thermal stability but also a retention of high enzymatic
activity after 50 cycles of use in a batch production of FOS.
For immobilization in chitosan, Nam et al. (2017) proposed
that the occurrence of optimum pH and temperature shifts,
when compared with the FE may occur due to alterations of
the physical and chemical properties of the enzyme during
the immobilization process.

Other materials with gelation capacity are agar/agarose,
gelatin and some anion-exchange resin, such DEAE-
cellulose, referring an improvement in pH stability, a reduc-
tion of susceptibility to metal ions for the enzyme alongside
to a use of the said system in a long-term continuous oper-
ation with a high rate of FOS production (Hayashi
et al. 1994).

Chen, Sheu, and Duan (2014) studied the immobilization
of b-fructofuranosidase on chitosan-coated magnetic Fe3O4

nanoparticles to produce FOS with sucrose as substrate. The
enzyme was immobilized on the surface of the nanoparticles
without the addition of cross-linking agents. Both immobi-
lized and FE showed maximum activity at the same pH
(5.5) and optimum temperature (60 �C), as well as similar
FOS yields, both around 50%. However, the immobilized
system showed higher activities at wider range of tempera-
tures and pH than the FE, and retained 55% of the initial
activity after FOS production in 10 batches. The nanopar-
ticles can be easily recovered from the obtained FOS solu-
tion through application of a magnetic field.

Ganaie, Pathak, and Gupta (2011), and Mussatto et al.
(2012) immobilized whole cells of Penicillium expansum to
evaluate the production of FOS and b-fructofuranosidase at
lab scale. Cells were immobilized by natural adsorption
through their direct contact with the different carriers
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studied (synthetic fiber, polyurethane foam, stainless steel
sponge -inorganic materials, loofah sponge and cork- ligno-
cellulosic materials) at the beginning of fermentation. The
best carriers were the synthetic fiber and the polyurethane
foam, based on their immobilization yield and the enzyme
activity. When analyzing repeated batch operations, FOS
yields of 87, 72, and 44%, in the 3 initial cycles (60 h) were
obtained and the enzyme activity remained constant during
6 cycles (96 h). A similar approach was taken by Castro
et al. (2017), who tested 16 different carriers including syn-
thetic, agro-industrial and mineral materials for immobiliza-
tion of Aureobasidium pullulans cells. They suggested that
the best carriers to enhance the production of FOS were
those with high porosity and water absorption capacity, and
low critical humidity point. Reticulated polyurethane foam
was one with the highest immobilization yield (over 75% w/
w of the total cells were immobilized) and achieved a high
FOS yield compared to free cells.

Finally, applying electrospining methodology, Gabrielczyk
et al. (2018) encapsulated fructosyltransferase by emulsion,
suspension, and coaxial electrospinning. Additionally, they
compared the electrospun fiber enzyme load performance
with a commercial epoxyactivated resin support (covalent
immobilization). Analyzing the hydrophilic properties, they
found that bioactivity of electrospun support in aqueous
medium increased in order of the matrix hydrophilicity.
Moreover, enzyme loading and specific enzyme activity was
higher in fibers than in the resins. From the three electro-
spinning methods, coaxial fibers showed the higher specific
activity. Operational stability of fiber supports was examined
in a plug-flow reactor being the core-shell immobilizates
more efficient than one-dimensional fibers both in batch
and continuous reaction.

Conclusions

Industrial chemical reactions involving enzymes as biocata-
lysts often occur under extreme conditions, in terms of tem-
perature, pH and presence of salts, surfactants, and organic
solvents, thus affecting enzyme stability. Enzyme immobil-
ization had emerged as a suitable methodology that not only
improves enzyme stability, but also guarantees reusability of
the catalyst, simplifying its removal from the reaction
medium. As evidenced from the discussion provided by this
review, enzyme immobilization involves interdisciplinary
knowledge including not only enzymology but also nano-
technology, molecular dynamics, cellular physiology and
process design. Particularly, for industrial syntheses of GOS
and FOS enzyme cost is one of the most critical issues. For
this reason, enzyme immobilization deserves special consid-
eration in their design process. This review was focused on
different immobilization strategies and support materials to
enhance the activity and re-usability of fructosyltransferases
and b-galactosidases.

The examples provided, as well as the discussion of their
main findings and methods’ effectiveness lead to accurate
benchmarks. In this line, the type of enzyme, its origin, its
purity, together with the type of immobilization method

selected and the support will affect the performance during
the enzymatic synthesis. There is another factor that comes
into play: process design. The same enzyme, immobilized
under the same method with the same support, may not
have the same yield when operating at batch or continuous
process, under (or not) stirring or forced flow. For this rea-
son, the best method will be the one that better adapts to
the process design specifications of each case of study.

Despite this general marks, from the consulted bibliog-
raphy it was shown that the latest advances in b-galactosidase
and fructosyltransferase immobilization involve developing
efficient material supports taking into account enzyme-sup-
port interactions, in this sense, resources from nanotechnol-
ogy and electrospinning field are the most promising ones to
achieve this goal. Nanostructured supports offer the main
advantage of increasing surface area, thus the enzyme loading,
while electrospinig offers the versatility of a simple method to
obtain submicron-sized fibers, thus improving mass transfer
limitations. Additionally, the implementation of combined
immobilization methods, most of them including cross-link-
ing seems to be the most appropriate to obtain an immobi-
lized catalyst that can be adapted to the a variety of process
conditions. The increasing availability of technology facilities
has opened a large variety of possibilities to define smart
strategies to optimize the activity and re-usability of these
enzymes. This indicates that there is still a large gap with
great place for innovative developments.
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Abbrevations

3-APTES (3-aminopropyl)triethoxysilane
CLEA cross-linked enzyme aggregate
DP degree of polymerization
EDC 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide

hydrochloride
FBR fluidized bed reactor
FE free enzyme
FOS fructo-oligosaccharides
GA glutaraldehyde
GH-A superfamily
glucosyl hydrolases family (CAZy classification)
GOS galacto-oligosaccharides
IE immobilized enzyme
PBR packed-bed reactor
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