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1 Introduction

The �rst ideas of a varying Newton's coupling G come from 1937, when P. A.
M. Dirac introduced his famous Large Numbers Hypothesis [1, 2]. In the 60s,
in an attempt to reconciliate Mach Principle with General Relativity (GR),
Brans and Dicke developed their well known scalar-tensor theory of gravity
[3]. Following Jordan's ideas, Brans and Dicke generalized GR including a
varying G, whose dynamics was governed by a scalar �eld. See [4] for a
detailed review on varying fundamental constants.

In addition to the e�ects of introducing a dynamical coupling constant,
we know that gravitational interaction is also sensitive to the existence of
extra dimensions, which could manifest themselves at short distances. In this
paper, we will be concerned with models that incorporate both a varying G
and a higher dimensional set up.

Although the idea of extra dimensions is not new either [5, 6], the advent
of modern (string) theories has brought to the fore the higher dimensional
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scenarios more recently. One of the string inspired models that have attracted
much attention in the last decade is the Randall-Sundrum model (RS), which
consists of an e�ective brane-world embedded in an orbifold of AdS5 space
[7]. The property of the RS-like models that is interesting for our purpose is
the relation between the tension of the brane, and the Newton constant of
the 4-dimensional e�ective theory. Models with non-constant brane tension
thus lead to a time-varying G, as we will discuss below.

The idea of this paper is to confront particular brane-world models with
constraints coming form observational cosmological data. The particular
model we will consider here is that of [8], which is motivated by supergravity
in singular spaces. We will consider this model as a working example to show
how observational data could be used to constrain parameters of this type of
scenarios.

The observational data we will use to constrain the model are of rather
di�erent types. For instance, we have data coming from planetary/geological
scale: Observations due to space missions to Mercury, Mars, Venus and the
Moon in the 70s, determined that if G varies in time, its variation is less than
10−11 per year. On the other hand, in the late 70s, many works appeared
relating the relative variation of G with planetary radius [9, 10]. McElhinny
et al. studied the evolution of the Earth's radius and extended their study to
the Moon, Mars and Mercury, and constrained ∆G/G in speci�c moments
close to Solar System formation.

At cosmological scale, a variation of G leads to modi�cations in the Fried-
mann equation. The direct consequences of these variations are changes in
the cooling rate of the universe and in the computed primordial abundances
of He and Li. In [11], Accetta et al. used this relation between varying G
and light elements abundances to give a bound to the relative variation of
G. This variation (its absolute value, in fact) turns to be less than 40% since
Big-Bang nucleosynthesis (BBN). CMB anisotropies are also sensitive to a
varying G. Chan et al. concluded in [12] that the relative variation of G
since recombination is less than 10%.

In this work, we explore a �ve-dimensional gravitational model, alla RS,
with a scalar �eld in the bulk that modi�cates the brane tension, which
induces a variation in G. The variations of G predicted by the model, de-
pending on two parameters, will be then compared with the observational
data mentioned above. That is, the aim is to constrain the possible values
of these parameters, using experimental bounds.

This work is organized as follows: In Section 2 we discuss the Randall-
Sundrum-like model coupled to a scalar �eld, which induces variation of
e�ective Newton constant in four dimensions. In Section 3 we survey bounds
on the variations of G and the observations. In Section 4, we combine obser-
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vational data of Section 3 with the predictions of the model, and use this to
constrain the parameters. In particular, we give bounds on the 5D-Planck
mass, supersymmetry breaking scale, and the cosmological constant in the
bulk. In Section 5, we draw some conclusions.

2 A brane-world scenario

2.1 Field equations

The RS-like scenarios propose that our universe is a 3-brane embedded in
a curved asymptotically hyperbolic 5-dimensional bulk, or an orbifold of it.
One can also include matter in the brane as well as in the bulk [8]; here
we consider a scalar �eld φ. The brane is located at the origin of the �fth
dimension, which we denote x5. This dimension has Z2 symmetry in our
case.

Fields of the Standard Model live on the brane, while gravitational inter-
action (and the scalar �eld) is free to propagate in the bulk. Bulk action is
given by

Sbulk =
1

2κ2
5

∫
d5x
√
−g(5)

(
R− 3

4

(
(∂φ)2 + U(φ)

))
, (1)

where R is the curvature scalar associated to the 5-dimensional metric g
(5)
AB;

U(φ) is the bulk potential, which depends on the scalar �eld φ, and
κ2

5 = 1/M3
5 , being M5 the Planck mass in 5D.

The action of the brane depends on its tension UB(φ) (brane potential).
In our case, it is a function of the scalar φ and of the con�ned matter; namely

Sbrane =

∫
d4x
√
−g(4)

(
− 3

2κ2
5

UB(φ(x5 = 0)) + Lmatter

)
, (2)

with gµν(4) = δµMδ
ν
Ng

MN
(5) |x5=0. In this paper, Latin indices in capital letters go

from 0 to 5 (excluding 4), Greek indices go from 0 to 3, and Latin indices in
regular letters, from 1 to 3.

The matter content of the 5D space is characterized by the energy-
momentum tensor, which can be derived from the total action and has the
bulk and brane contributions; namely

TAB = T bulk
AB + T brane

AB , (3)

with

T bulk A
B =

3

4

(
∂Aφ∂Bφ−

1

2
g

(5) A
B(∂φ)2

)
− 3

8
g

(5) A
BU(φ), (4)
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T brane A
B =

(
−3

2
g

(5) A
BUB(φ) + τmatter A

B

)
δ(x5), (5)

and
τmatter A

B = diag(−ρm, pm, pm, pm, 0). (6)

Tensor τmatter is related to the ordinary matter on the brane.
The energy density ρm and the pressure pm are independent of the position

in the brane, so one recovers an homogeneous cosmology in four dimensions.
The equation of state that relates these quantities is taken to be pm = ωmρm.

Einstein equations reads

GAB ≡ RAB −
1

2
R g

(5)
AB = κ2

5

(
T bulk
AB + T brane

AB

)
= κ2

5TAB. (7)

Let us propose the following ansatz for the metric:

ds2 = −A2(t, x5)dt2 +B2(t, x5)dxidx
i + C2(t, x5)dx2

5. (8)

We are interested in cosmological scale solutions, so we assume an isotropic
and homogeneous metric in the three spatial coordinates. That is

ds2 = a2(t, x5)b2(x5)(−dt2 + dx2
5) + a2(t, x5)Ωijdx

idxj, (9)

where Ωij is the metric of a 3-dimensional space with constant curvature:

Ωij = δij

(
1 +

K

4
xlxmδlm

)−2

, (10)

where the values K = 0, 1,−1 correspond to a (spatially) �at, closed or open
universe, respectively. Since observational evidences are consistent with a
spatially �at Universe [14], then we assume K = 0.

It is important to note that in (9) we chose a conformal gauge for the
(0−5) part of the metric. In this gauge, the brane is placed in a �xed position,
x5 = 0, i.e. the �xed point of the Z2 symmetry in the �fth dimension.
Function b only depends on the spatial coordinate x5.

To derive the brane dynamics, one must verify that, although the equa-
tions of motion must be restricted to it, these equations have to be satis�ed
in the bulk as well. The brane "proper time" is

dτ = ab|x5=0dt, (11)

and the di�erential of the normal vector to its surface is given by

dy = ab|x5=0dx5. (12)
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From now on, we write ḟ = df
dτ
, f ′ = df

dy
.

The Israel-Darmôise junction conditions describe how a brane with a
given energy-momentum tensor can be embedded in a higher dimensional
space-time. These equations yield

a′

a
|y=0 = −1

6
κ2

5ρ, (13)

b′

b
|y=0 =

1

2
κ2

5(ρ+ p), (14)

where equations ρ is the energy density, and p is the pressure on the brane.
On the other hand, the boundary condition for the scalar φ is [15]

φ′|y=0 =
∂UB

∂φ
|y=0. (15)

The total energy density and pressure on the brane can be written as a
sum of two contributions: a term related to con�ned matter, and a second
one, related to the tension, which in this case depends on the scalar �eld.
Thus, we have

ρ = ρm +
3

2κ2
5

UB, p = pm −
3

2κ2
5

UB. (16)

In what follows, all quantities will be evaluated on the brane, i.e. at
y = 0. Restricting the (0 − 5) component of the Einstein equations to the
brane, and using boundary conditions (13) and (14) we obtain the energy
conservation equation

ρ̇ = −3H(ρ+ p)− 2T 0
5, (17)

where H ≡ ȧ
a
|y=0 is the Hubble parameter on the brane.

Using the explicit form for ρ and p from (16), total energy density con-
servation law transforms into a conservation law for the energy of the brane;
that is,

˙ρm = −3H(ρm + pm). (18)

Time variation of the scalar �eld energy density 3UB/2 cancels the term
involving T 0

5, since the latter can be written as T 0
5 = −3

4
φ′φ̇ = −3

4
U̇B.

The solution for the brane energy conservation is

ρm = ρ0a
−3(1+ωm), (19)

as in standard cosmology.
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On the other hand the Friedmann equation on the brane is a consequence
of the (5−5) component of Einstein equations. For a brane containing matter
coupled to a scalar �eld φ, Friedmann equation reads

H2 =
κ4

5

36
ρ2
m +

κ2
5

12
UBρm−

1

16a4

∫
dτ
da4

dτ
(φ̇2−2V )− κ2

5

12a4

∫
dτa4ρm

dUB

dτ
+
A

a4
,

(20)
with

V =
1

2

(
U2
B −

(∂UB

∂φ

)2
+ U

)
. (21)

The set of equations is completed by the Klein-Gordon equation for the
scalar �eld [16, 17]; namely

φ̈+ 4Hφ̇+
1

2

(1

3
− ωm

)
ρm
∂UB

∂φ
κ2

5 = −∂V
∂φ

+ ∆Φ, (22)

where

∆Φ =
∂2φ

∂y2
|y=0 −

∂UB

∂φ
|y=0

∂2UB

∂φ2
|y=0. (23)

Following [16] and [17], we consider

∆Φ = 0. (24)

Einstein equations have been used to write (22) in this form (see [16]).

2.2 Physical considerations

Friedmann equation (20) is not conventional. In contrast to the standard
one, (20) presents terms that depend on the �eld φ, a quadratic term in the
energy density on the brane (present also in absence of the scalar), and an
additional term that goes like a−4.

By the time of primordial nucleosynthesis, corrections coming from brane
models, including the term proportional to the square of the energy density
in Friedmann equation, must be negligible. Otherwise, the rate of expansion
would be modi�ed and the computation of light elements abundances would
be inconsistent with observations. In this non-conventional scenario, the
freezing temperature of proton to neutron ratio TC would be of the order
of (2 − 3) MeV, while in standard cosmology it is TC ∼ (0.7 − 0.8) MeV,
consistent with He abundance. The di�erence between both temperatures
is a direct consequence of the fact that Hubble parameter is linear with T 4,
and not with T 2, generating a slower cooling of the Universe [18]. However,
corrections might be important during the in�ationary period.
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Let us be reminded of the fact that in standard cosmology Friedmann
equation is

H2
stand =

8πG

3
ρm +

Λ4

3
, (25)

where Λ4 is the cosmological constant in four dimensions. Then, the quadratic
term in ρm in (20) can be identi�ed with the �rst term in (25); that is

UB(φ)

12
κ2

5 =
8πG

3
. (26)

It is clear that in our model, Newton constant in 4D varies as it depends
on φ; i.e. it is possible to �nd time variation of G.

2.2.1 Bulk and brane potentials

We consider a functional form for the potential U(φ) coming from the su-
pergravity models in singular spaces studied in [15]. Following these results,
one �nds

U =

(
∂W

∂φ

)2

−W 2, (27)

where W (φ) is the so called superpotential.
We study the case in which the superpotential in an exponential function

of the �eld
W (φ) = 4keαφ, (28)

where [k−1] = L and α is a real number.
The brane potential is de�ned through the superpotential by

UB = TW, (29)

where T is a real number related to the scale of supersymmetry breaking
[19].

Having the functional relation between UB and the scalar �eld, given by
(28) and (29), one can �nd G(φ) using (26); thus,

G(φ) =
k

8π
κ2

5Te
αφ. (30)

The expectation value of φ today is assumed to be zero by convention as
a boundary condition. Then, Newton "constant" would be given by

Gtoday(φ) =
k

8π
κ2

5T. (31)
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2.2.2 Working hypothesis

The form of the Friedmann equation with all the new contributions is quite
abstruse. Then, in order to solve the model, some approximations and as-
sumptions have to be taken into account. We discuss these below.

First, the term proportional to a−4, can be considered as a correction to
the radiation density. This term is usually referred as dark radiation. Here,
we assume A = 0 in (20). We also consider a low energy regime, i.e. we
neglect the term proportional to ρ2

m in (20). It is possible to do this under
the condition ρm � ρcrit, with

ρcrit =
3UB

κ2
5

=
12

κ2
5

kT ∼ 4.6× 1033 g

cm3
, (32)

where (28), (29), and bounds on k, κ2
5 and T consistently found a posteriori

in Sections 3 and 4, have been used. In the studied period (between BBN
and today) the density remains below this critical density. We also assume
that the time evolution of the scalar �eld φ in the brane proper time τ is
much slower than the one of the scale factor a. It is possible to extract φ̇2

from the �rst integral in (20) in this adiabatic regime.
A non-dissipative approximation of the potential will be also considered.

The brane potential UB is basically Newton constant on the brane, up to
multiplicative constants. Following the adiabatic approximation, it is rea-
sonable to suppose that the contribution correspondent to this term might
be negligible. The term dUB/dτ , as well as the other terms of order φ̇ and ȧ,
contribute to higher order estimation of G(φ) than the one we study here.

Finally, and consequently with the assumptions above, the square of the
time derivative of φ, i.e. the kinetic energy of the �eld, is lower than other
terms in Friedmann equation. It is possible to make a simply calculation to
constrain the current value of the time derivative of the scalar �eld: Following
the approximations, Friedmann equation today, divided by H2

0 is

1 = ΩM + ΩR + ΩΛ + Ω∂φ, (33)

where Ω∂φ = φ̇2(τ0)/16.
Recent data [14] implies that the sum of the �rst three contributions is

close to 0.996, which �xes a limit to the absolute current value of the time
derivative of φ; namely

| φ̇
H0

(τ0)| < 0.22. (34)

This heuristic argument supports our approximation hypothesis.
In addition, the exponential dependences appearing in Friedmann and

Klein-Gordon equations will be approximated to 1 since φ is small.
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With all the approximations described above, Friedmann equation takes
the form

H2 = T
k

3
κ2

5ρm +
Λe�

3
, (35)

with
Λe�

3
:= k2(T 2 − 1)(1− α2). (36)

On the other hand, eq.(19) says that, for radiation,

ρR = ρ0RH
4
0a
−4, (37)

and for non-relativistic matter,

ρM = ρ0MH
4
0a
−3, (38)

with ρ0M,R dimensionless constants.
Thus, Friedmann equation can be rewritten as follows:

H2 = T
k

3
κ2

5

(ρ0M

a3
+
ρ0R

a4

)
H4

0 +
Λe�

3
. (39)

After making the identi�cations

T
k

3
κ2

5ρ0M,RH
2
0 = ΩM,R, (40)

Λe�

3H2
0

= ΩΛ, (41)

we obtain the familiar form for the equation

H2

H2
0

=
ΩM

a3
+

ΩR

a4
+ ΩΛ. (42)

Then, the equation for φ is

φ̈+ 4Hφ̇+ 2
(1

3
− ωm

)
ρmκ

2
5αkT = −16α

Λe�

3
. (43)

The system of equations above can now be solved in two di�erent epochs:
one dominated by radiation and matter, and the other governed by matter
and cosmological constant.
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2.3 Solution to the Field equations

2.3.1 Radiation and matter dominated epoch

In this epoch the term proportional to Λe� can be neglected. Then, the
Fridmann equation takes the form1

H2
1

H2
0

=
ΩM

a3
1

+
ΩR

a4
1

, (44)

whose solution is

a1(η) =
ΩM

4
(η − η0)2 − ΩR

ΩM

, (45)

where the integration has been performed in the conformal time η, being
dτ = a1(η)

H0
dη.

The equation of state for radiation is prad = ρrad/3, while pmat = 0 is the
equation for non-relativistic dust. Then, KG equation reads:

φ̈1 + 4H1φ̇1 + 2αH2
0

ΩM

a3
1

= −16αH2
0 ΩΛ, (46)

where we used eqs. (40) y (41). The solution for the di�erential equation is
(see Appendix)

φ1(a1) = B − A

2
√

ΩRa2
1

− 2ΩMα

3ΩR

a1, (47)

where it has been taken into account that scale factor remains small during
this regime.

2.3.2 Matter and cosmological constant dominated epoch

During this regime, the term proportional to the inverse of the fourth power
of the scale factor a is negligible when compared to the other two terms.
Then, the Friedmann equation reads2

H2
2

H2
0

=
ΩM

a3
2

+ ΩΛ. (48)

Integrating, one obtains the scale factor during this epoch, namely

a2(τ) = a0 sinh
2
3

(√
ΩΛ

2
H0(τ − C0)

)
. (49)

1Subindex 1 refers to the radiation-matter regime.
2Subindex 2 refers to the matter-Λ regime.
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In this regime, the Klein-Gordon equation is

φ̈+ 4H2φ̇+ 2αH2
0

ΩM

a3
2

= −16αH2
0 ΩΛ. (50)

In order to solve this equation it is convenient to consider two cases:
a2 � 1, that occurs for times close to union time (τ ∼ τu); and a2 ∼ 1, it is,
times near today (τ ∼ τ0):

• a2 � 1:

φ2(a2) = D − 2C

5
√

ΩMa
5
2
2

− 4

5
α ln(a2). (51)

• a2 ∼ 1:

φ3(a2) = G− F

3
√

ΩΛ + ΩMa3
2

− α

5(ΩΛ + ΩM)
(8ΩΛ + ΩM)a2

2, (52)

where G and F are integration constants. Details of this calculation can be
found in the Appendix.

2.3.3 Boundary conditions for the scale factor

To �nd the integration constants in (45) and (49), one must de�ne the bound-
ary conditions. We take the convention

a2(τ0) = 1, (53)

where τ0 is the current value of τ . We also have the matching conditions

H2(τ0) = H0, (54)

and
H1(τu) = H2(τu), (55)

where τu is the junction time between both regimes. In addition, we have

a1(τu) = a2(τu) = au. (56)

Constants a0 and C0 can be obtained from (53) and (54). Consequently,
we have

a2(τ) =

(
1

ΩΛ

− 1

) 1
3

sinh
2
3

(
3
√

ΩΛ

2
H0

(
τ − τ0 +

2

3H0

√
ΩΛ

sinh−1

(√
ΩΛ

1− ΩΛ

)))
.

(57)
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The constant of integration must be chosen to satisfy the condition
a1(τ = 0) = 0. Then

τ(a1) =
2

3H0Ω2
M

(ΩMa1 − 2ΩR)
√

ΩMa1 + ΩR +
4Ω

3
2
R

3H0Ω2
M

. (58)

Figure 1: Graphics for τ vs a1 and τ vs a2

2.3.4 Boundary conditions for the scalar �eld

Since the scalar �eld must be smooth, φ1 (and its derivative) must be equal
to φ2 (resp. to its derivative) in the junction time τu, when
a = au = ΩR/ΩΛ. That is,

φ1(au) = φ2(au), (59)

dφ1

da1

(au) =
dφ2

da2

(au). (60)

The �eld φ2 must be equal to φ3 (as well as their derivatives) in an
intermediate time τI between τu and τ0. We take τI as the time equidistant
to τu and τ0. Thus,

φ2(aI) = φ3(aI), (61)

dφ2

da2

(aI) =
dφ3

da2

(aI). (62)

The last boundary conditions we need are the values of the �eld and its
derivative today, i.e. at τ0 (a(τ0) = a0 = 1):

φ3(a0) = 0, (63)
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dφ3

da2

(a0) =
φ̇0

H0

:= p0. (64)

Using (59)-(64) and the values forH0, ΩM, ΩR and ΩΛ listed in Subsection
3 of the Appendix, one obtains the constants of integration A,B,C,D, F and
G. Table 1 shows the values of the constants as linear combinations of α and
p0.

Constant α p0

A 0.09469 0.0309
B 682.718 57.114
C 1.745 0.719
D 2.212 0.752
F 2.408 0.998
G 2.0104 0.333

Table 1: Values of the integration constants of the �elds which are linear
combinations of the parameters α and p0.

The �nal expression for the �elds can be found in the Appendix. In
Figure 2, the behavior of the �eld for di�erent allowed values3 of α and p0

are observed. Figure 2(A) corresponds to α = 1/
√

20078 and p0 = −0.02164,
which is the value for p0 when α has the pointed value. Figure 2(B) shows
the graphic for the �eld, for a null value of α, and p0 = 0.22, which is the
upper limit for p0 coming from Friedmann equation. Finally, Figure 2(C)
shows the unique case in which the �eld does not diverge at the origin, due
to the fact that the value of α is such that the linear term in a−2 in φ1 (see
eq.(102) in the Appendix) is zero for all p0.

Figure 2: Di�erent behavior of φ vs a. (A) α = 1/
√

20078 and p0 = −0.02164;
(B) α = 0 y p0 = 0.22; (C) α = −0.326062p0 and p0 = 0.22. In this case the
�eld has no divergence at the origin, and its value there is -36.4087.

3Allowed values for α y p0 are detailed in Section 4.
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3 Experimental and observational data on G(φ)

3.1 Corrections to Newtonian potential

Theoretical speculations predict new e�ects at distances of order less than
1mm. In particular, models with spatial non-compact extra dimensions are
of interest because these "internal" dimensions could alter the form of the
Newtonian potential.

If the extra dimension is non-compact, as in the case of RS model, there
is a continuous of Kaluza-Klein (KK) modes for the gravitational �eld. The
continuous spectra of KKmodes leads to a correction to the force between two
static masses in the brane. The potential for two point-like masses con�ned
to the brane reads [7]

VRS(r) = G
m1m2

r

(
1 +

1

r2k2

)
, (65)

where k−1 should be of order of the distance of available gravitational tests
(∼1mm ) or smaller.

Thus, in order to bound the deviation from the Newtonian potential, one
must constrain parameter k. Adelberger et al. [20] performed experiments
with torsion balances to model the correction to Newtonian potential using
a power law of the form

∆V j
12 = −Gm1m2

r
βj

(1mm

r

)j−1

, (66)

where the values of j and |βj| are shown in Table 2.

k |βj|(<)
2 4.5× 10−4

3 1.3× 10−4

4 4.9× 10−5

5 1.5× 10−5

Table 2: Bounds on |βj| for j = 2, 3, 4, 5 obtained by Adelberger et al. [20].

For j = 3 the extra term is

∆V 3
12 = G

m1m2

r
|β3|
(1mm

r

)2

, (67)

while the deviation predicted by RS model is

∆V RS
12 = G

m1m2

r

( 1

r2k2

)
. (68)
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Thus, the value of k is constrained comparing ∆V 3
12 with ∆V RS

12 . Then,
the characteristic scale at which the e�ects due to the presence of an extra
dimension become important is

1

k
< 0.01mm. (69)

3.2 Observational bounds on G variation

Bounds on the variation of the Newton constant are obtained from local
and cosmological observations. Local observations are related to the solar
system, as well as nearby stars. Geological and paleontological data, as well
as planetary orbits, stellar densities, and luminosities, are of great importance
when studying G, because they are a�ected by its variation.

3.2.1 Bounds on ∆G/G

Planetary radius variation: In 1961, Egyed proposed that paleomagnetic
data could be used for the calculation of Earth paleoradius (past to current
planetary radius ratio) in di�erent geological eras. Starting from the hypoth-
esis that the continental material area remained constant during planetary
expansion, Egyed found that the ratio between current and past angular sep-
aration (paleolatitud) of two given sites is proportional to the paleoradius [9].
A few years later, in 1978, McElhinny el al. related Earth radius variation
to time evolution of gravitational constant, and extended the analysis to the
Moon, Mars and Mercury [10]. According to their work,

∆R

R
= −γ∆G

G
, (70)

where ∆R is the variation of the radius R and γ is a constant that depends
on the planet structure.

On the other hand, there is another way to write this relation using the
paleoradius Ra:

∆G

G
=
Ra − 1

γ
. (71)

Table 3 summarizes the results for the Earth, the Moon, Mars4 and Mer-
cury. These results assumes that the surface of each studied planet acquired
its current shape by the time indicated in the fourth column.

4There are two di�erent analysis for Mars: (A) assumes a 19km expansion during the
last 3600 million years; (B) supposes a 1km variation on martian radius in the past 1000
million years. See [10] for details.
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Planet Ra γ Time [109 years] |∆G/G|(<)
Earth 1.020± 0.028 0.085± 0.02 0.4 0.62
Moon 1.0000± 0.0006 0.0004± 0.001 3.9 1.5

Mars (A) 0.9944 0.03± 0.01 3.6 0.12
Mars (B) 1.0000± 0.0003 0.03± 0.01 1.0 0.01
Mercury 1.0000± 0.0004 0.02± 0.005 3.5 0.02

Table 3: Paleoradius (Ra) of the Earth, the Moon, Mars (A and B) and
Mercury, and bounds on relative variation of G.

Big-Bang Nucleosynthesis: Bounds of a di�erent sort come from cosmol-
ogy. In 1990, Accetta et al. studied bounds on gravitational constant value
during primordial nucleosynthesis, considering neutron mean life measure-
ments [11]. They determined D, 3He and 7Li abundances while varying G,
and how this variation a�ects barion to photon ratio. On the other hand,
Copi et al. recalculated relative variation of G since BBN, but using only
primordial D abundance in quasars [21]. In both works the constraint on
relative variation of G is

|∆G
G
|BBN < 0.4, (72)

which means that the relative variation of gravitational constant since BBN
is less than 40%, at the 95% con�dence level5.

Cosmic background anisotropies: Power spectra of cosmic microwave
background anisotropies (CMBA) can be useful while constraining G vari-
ations in cosmological scales. In [12], gravitational constant stabilization
(convergence to its current value) and its relation to CMBA are studied in
detail. Two possible parametrizations of G are considered: one, correspond-
ing to an instantaneous stabilization, and the other to a stabilization linear
with the scale factor a.

If the stabilization is linear, the relative variation ofG since recombination
(z ∼ 1000) is

|∆G
G
|CMB < 0.1. (73)

at the 95% con�dence level6. Thus, the relative variation of G (its absolute

5It is important to note that the constraint is for the absolute value of ∆G
G |BBN.

In [21] the constraints are: 0.85 < GBBN
G0

< 1.21, at the 68.3% con�dence level, and

0.71 < GBBN
G0

< 1.43, at the 95% con�dence level. G0 is the present value of the Newton
constant.
In this work we made use of the last constraint.

6Again, we aware the reader that the constraint is for the absolute value of ∆G
G |CMB.
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value) since recombination is less than 10%.

3.2.2 Bounds on Ġ/G

Lunar Laser Ranging (LLR) has been measuring the position of the Moon
with respect to the Earth during more than thirty years, with a precision
of 1cm. The misions Appolo 11, 14 y 15, and russian-french Lunakhod 1 y
4 carried retro-re�ectors to the Moon, which re�ect laser pulses sent from
the Earth. LLR data are used to constrain Weak Equivalence Principle,
post-newtonian parameters and Ġ/G.

According to 2004 data in [22], the maximum variation allowed to gravi-
tational constant today is

Ġ

G
(τ0) = (4± 9)× 10−13yr−1. (74)

3.2.3 Bound on G̈/G

Now, let us discuss the constraints coming from observational bounds on
G̈/G. For that purpose, we consider a model slightly di�erent to brane
cosmology.

Other model which considers scalar �elds is the scalar-tensorial theory of
Brans and Dicke of 1961. This theory contains a scalar �eld governing G
dynamics. In usual notation we have [3],

G(ϕ) =
1

ϕ
. (75)

G time dependence is described by

G(τ) ∼ τ−n, (76)

where n = 2/(4 + 3ω), and ω is a model parameter7, which measures the
deviation from General Relativity (GR). GR results are reobtained when ω
goes to in�nity. Considering (76), it can be shown that

G̈

G
(τ) = n(n + 1)τ−2. (77)

In [12] the constraints are: 0.95 < GCMB
G0

< 1.05, for a G variation modeled by a step

function, and 0.89 < GCMB
G0

< 1.13, for a variation modeled by a linear function of the
scale factor. Both constraints are at the 95% con�dence level.
In this work we made use of the last constraint.

7In Brans-Dicke work ω = const., but there are more complex models where ω = ω(φ).
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Benvenuto, Althaus and Torres in [23] gave a bound to the absolute value
of ω, coming from white dwarfs evolution and its relation with a varying G.
According to their results, the calculated luminosities di�er from the observed
ones for |ω| < 5000. Then, the allowed values range is |ω| > 5000.

Equation (77) evaluated today (τ0=13730 million years) together with the
constrain on ω, give a bound on the variation of the second time derivative
of G:

− 3.55648× 10−40s−2 <
G̈

G
(τ0) < 7.11082× 10−40s−2. (78)

At this point, one could ask about the relation between Brans-Dicke
model and the one studied in this work. The explanation is the following:
Brans-Dicke theory in the limit ω →∞ gives back GR; while GR and brane
cosmology should be equivalent in the studied limit. Then, at �rst order, BD
and brane cosmology are equivalent and constraints on ω can be translated
into constrains on brane model parameters. However, it is not clear that the
di�erences between BD and brane cosmology lead to a great discrepancy on
the limit (78). Then, we study the inclusion and exclusion of this bound in
following analysis.

4 Constraining model parameters

4.1 Parameters α and φ̇(τ0)

G variations, i.e. ∆G/G, Ġ/G and G̈/G, can be written in terms of φ as
follows:

∆G

G
(a) = −αφ(a), (79)

Ġ

G
(a) = αφ̇(a), (80)

G̈

G
(a) = α2φ̇2(a) + αφ̈(a). (81)

Then, observational bounds discussed above restrict the possible values of
α and p0. The strongest restrictions on α and p0 come from BBN and recom-
bination. The largest value for the modulus of α is �xed by the combination
of BBN and CMB restrictions; that is

|α| < 1√
20078

= 0.007, (82)

while |p0| < 0.22.
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The allowed values are shown in Figure 3. Allowed values are inside the
surface which perimeter is given by the green hyperboles.

Figure 3: Allowed values for α and p0. The �gure on the right is a zoom-
in of the left one. Allowed values are located inside the dark gray contour,
and satisfy |α| < 0.007 y |p0| < 0.22. Blue lines in the left �gure establish
the bound for the largest value for |p0|, a condition coming from Friedmann
equation today.

In [24], Brax and Davis �nd two theoretical values for α, emerging from
supergravity in singular spaces. This values are α = 1/

√
3 and α = −1/

√
12.

From the analysis we have just done, based on observational constraints, the
absolute value of α is bounded by (82) and then, it excludes these theoretical
values.

4.1.1 Statistical analysis

Now, we would like to investigate how robust our constraints are. That is,
we will study how the constraints change if one excludes ones or others data.

Excluding G relative variation since Big-Bang nucleosynthesis data, and
using the other data, i.e. ∆G/G|CMB, ∆G/G|paleoradii, Ġ/G|today, G̈/G|today
and |p0| < 0.22, it can be deduced that the strongest constraint on α absolute
value is given by the combination of ∆G/G|CMB and G̈/G|today.

In this case, we have

|α| < 1√
1787

= 0.024. (83)

If we exclude CMB data, in addition to BBN data, and make a similar
analysis, we have that the constraint on |α| is �xed by the combination of
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G̈/G|today and Ġ/G|today:

|α| < 1√
237

= 0.065. (84)

Omitting observational data of the second derivative of G, we obtain the
same results that those at the beginning of this subsection. This is because
the severest constraint on |α| is given by the combination of BBN and CMB
data.

If we exclude BBN data, in addition to G̈/G|today, α is constrained by the
combination of ∆G/G|CMB and Ġ/G|today cotes, being

|α| < 1√
243

= 0.064. (85)

Finally, if we only take into account the bounds coming from today�s
value of G derivative, and those related to planetary paleoradius (i.e. BBN,
CMB and G̈/G|today limits, excluded), |α| has no bound.

Table 4 condenses the results obtained in data analysis.

|α| Obtained with:

1/
√

3 = 0.577 SUGRA

1/
√

12 = 0.289 SUGRA

1/
√

237 = 0.065 G̈/G|today; Ġ/G|today
1/
√

243 = 0.064 CMB; Ġ/G|today
1/
√

1787 = 0.024 CMB; G̈/G|today
1/
√

20078 = 0.007 BBN; CMB

no limit G̈/G|today; Mercury paleoradius

Table 4: Constraints on α obtained combining G variations observational
data. The �rst two values are equalities found with supergravity (SUGRA)
in singular spaces. The other values are cotes and should be read �|α| < ...�.
The severest constraint is given by Big-Bang nucleosynthesis (BBN) and
CMB. All the constrains, except the last one, exclude the �rst two values.

In the studied cases, the upper bound on |p0| is �xed by Friedmann equa-
tion evaluated today, i.e. |p0| < 0.22. In addition, it should be said that |α|
is always below 0.065, except in the last case, where its value has no bound.

Analog analysis can be done, but assuming a di�erent bound on BD
parameter: |ω| < 500 (instead of |ω| < 5000). Table 5 shows the results.

The di�erence with respect to the results obtained with |ω| < 5000 lies
in the constraint of |α| found combining CMB data and G̈/G|today bound. In
this case, the constraint on |α| is less restrictive since it is three times bigger.
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|α| Obtained with

1/
√

231 = 0.066 G̈/G|today; Ġ/G|today
1/
√

243 = 0.064 CMB; Ġ/G|today
1/
√

178 = 0.075 CMB; G̈/G|today
1/
√

20078 = 0.007 BBN; CMB

no limit G̈/G|today; Mercury paleoradius

Table 5: Constrains on α when combining observational data of G variation,
in the case |ω| < 500.

4.2 5D parameters, T and Λeff

The 5-dimensional parameters of the model can also be constrained, as well
as the 4-D cosmological constant Λe�. Using H0 and ΩΛ from Subsection 3 of
the Appendix, the constraint on k from (69), and |α| < 1/

√
20078, we have

the results of Table 6.

Parameter Bound
κ2

5 < 2.8× 10−99s3

M5 = 1/κ
2
3
5 > 4.7× 108GeV

Λ5 < −4.2× 1027s−2

|T | < 1 + 3.05× 10−63

Λe� = 4.8× 10−18s−2

Table 6: Constrains on 5D parameters, T and Λe�.

The same results are obtained when the other constraints on α from
Tables 4 and 5 are used. Constraints on κ2

5 and M5 are in accord with the
ones predicted in [25, 26, 27].

5 Conclusions

In this work, we studied a brane-world cosmological model in which varia-
tion of the Newton coupling G emerges naturally. This model is inspired in
supergravity in singular spaces [24]. By resorting to available observational
data, we manage to constrain the parameters of the theory. Light elements
abundances, coming from Big Bang nucleosynthesis (He, Li y D)(eq. (72)),
CMB (eq. (73)) and, near in time, planetary radii variations, allowed to con-
strain the relative variation of G, i.e. ∆G/G (see Table 3). Measurements
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of Lunar position with respect to the Earth with LLR o�ered us a bound
on today's value of the G time derivative to G ratio (eq. (74)). Combining
the severest constraints on G variations, i.e. those coming from Big Bang
nucleosynthesis and CMB, a bound for the absolute value of the parameter α
was obtained. In fact, this parameter must be less than 0.007, and the value
of |p0| is bounded while evaluating Friedmann equation today.

Statistical analysis was performed on the results to analyze how robust
the bounds are against the exclusion of particular set of data. That is, we
studied how the upper bound of |α| gets a�ected if one excludes di�erent
sets of data. Results are shown in Tables 4 and 5. It is worth mentioning
that the upper bound for |α| is always less than 1/

√
178 ∼ 0.07 (except in

the case where Big Bang nucleosynthesis and CMB data are excluded, which
turn out to be the most important ones).

Our analysis presents a method to investigate the phenomenological vi-
ability of models that, among other features, predict time variation of the
fundamental couplings. It could be interesting to extend our analysis to other
brane-world type scenarios.
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A Field equations for the scalar �eld

A.1 Matter and radiation regime

During matter and radiation epoch. Klein-Gordon equation reads

φ̈1 + 4H1φ̇1 + 2αH2
0

ΩM

a3
1

= −16αH2
0 ΩΛ, (86)

where we used (40) and (41).
Di�erentiating with respect to a1, we have

dψ1

da1

+
4

a1

ψ1 =
−2αH0√

ΩMa1 + ΩR

(ΩM

a2
1

+ 8ΩΛa1

)
, (87)

where we used (44) and ψ1 = φ̇1.
Being reminded of the fact that during this regime a1 is small, the func-

tion on the right hand side can be approximated by its �rst term in power
expansion for a1 ∼ 0, thus
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dψ1

da1

+
4

a1

ψ1 = −2αH0
ΩM√
ΩRa2

1

. (88)

Integrating, we �nd

ψ1(a1) =
−2H0ΩMα

3
√

ΩRa1

+
AH0

a4
1

, (89)

where A is an integration constant.
To �nd φ1(a1), it is necessary to integrate once again, taking into account

that

dφ1

da1

=
1

a1H1

dφ1

dτ
=

1

a1H1

ψ1(a1). (90)

Then, we have

φ1(a1) = B+

∫
da1ψ(a1)

a1

H0

√
ΩMa1 + ΩR

' B+

∫
da1ψ(a1)

a1

H0

√
ΩR

, (91)

Where B is a constant, and where we only considered the �rst term in the
power expansion of a1√

ΩMa1+ΩR
.

The solution for the di�erential equation is

φ1(a1) = B − A

2
√

ΩRa2
1

− 2ΩMα

3ΩR

a1. (92)

A.2 Matter and cosmological constant regime

During this regime the Klein-Gordon equation is

φ̈+ 4H2φ̇+ 2αH2
0

ΩM

a3
2

= −16αH2
0 ,ΩΛ (93)

which, written as a function of a2 derivatives, is

dψ

da2

+
4

a2

ψ =
−2αH0

a
5
2
2

√
ΩM + ΩΛa3

2

(ΩM + 8ΩΛa
2
2). (94)

• First, consider a2 � 1:

1

a
5
2
2

√
ΩM + ΩΛa3

2

(ΩM + 8ΩΛa
2
2) '

√
ΩM

a
5
2
2

. (95)

Replacing this equation in (94), we have
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ψ2(a2) = −4H0

√
ΩMα

5a
3
2
2

+
CH0

a4
2

, (96)

where C is an integration constant.

The solution for the �eld comes form the integral

φ2(a2) = D +

∫
da2ψ2(a2)

1

a2H2

' D +

∫
da2ψ2(a2)

1

H0

√
a2

ΩM

, (97)

where D is a constant, and (48) and (96) were used. Also, 1/a2H2 was
approximated by its �rst order in the power expansion, for a2 � 1.
After integrating, we have

φ2(a2) = D − 2C

5
√

ΩMa
5
2
2

− 4

5
α ln(a2). (98)

• Now, consider a2 ∼ 1:

1

a
5
2
2

√
ΩM + ΩΛa3

2

(ΩM + 8ΩΛa
2
2) ' 8ΩΛ + ΩM√

ΩΛ + ΩM

. (99)

As above, and making the approximation

1

a2H2

' 1

H0

√
ΩΛ + ΩM

, (100)

we obtain the approximate value for the �eld

φ3(a2) = G− F

3
√

ΩΛ + ΩMa3
2

− α

5(ΩΛ + ΩM)
(8ΩΛ + ΩM)a2

2, (101)

where G and F are constants.

A.3 Final form for the �eld

The values we take for the cosmological parameters appearing in the ex-
pression of the �elds are H0 = 22.69 × 10−19s−1; ΩM = 0.28; ΩΛ = 0.716;
ΩR = 4.6× 10−5 (see [14] for further details).

The values for the integration constants can be found with the parameters
above and with the boundary conditions discussed in Section 2. The value
for the scale factor in the intermediate time aI is 0.542. Then,
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φ1(a1) = 682.718α + 57.1142p0 −
6.9539α + 2.2674p0

a2
1

− 4029.68αa1, (102)

φ2(a2) = −(543.028α + 224.698p0) + (15241.3α + 6283.55p0)(a2 − au)−

− (297480α + 122591p0)(a2 − au)2, (103)

φ3(a2) = p0(a2 − a0)− (6.0313α + 2p0)(a2 − a0)2, (104)

with au = 0.0897 and a0 = 1.
Notice that φ2 series is around au = 0.0897, while φ3 series is around

a0 = 1.
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