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ABSTRACT 

Shape-memory composites based on a commercial segmented polyurethane and magnetite 

(Fe3O4) nanoparticles (NPs) were prepared by a simple suspension casting method. The 

properties of the resulting nanocomposites, containing 1 to 10 nominal wt.% magnetic 

particles, were evaluated by thermogravimetric tests, contact angle measurements, 

differential scanning calorimetry, infrared and X-ray spectroscopy, static and thermal cyclic 

tensile tests, dynamic mechanical analysis and experiments of alternating-magnetic-field 

heating. It was found that most of the suspended NPs could be successfully incorporated 

into the polyurethane matrix, and thus composite samples with up to 7 wt.% actual 

concentration were obtained. On the other hand, the incorporation of magnetite 

nanoparticles to the shape memory polyurethane did not significantly affect most of the 

matrix properties, including its shape memory behavior, while added magnetic response to 

the nanocomposites. Thus, nanocomposites were able to increase in temperature when 

exposed to an alternating magnetic field, which allowed them to recover their original 

shape quickly by an indirect triggering method.  

 

KEYWORDS: polymeric nanocomposites; shape memory behavior; magnetic 

nanostructures; indirect triggering method. 
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1. INTRODUCTION 

Shape-memory polymers (SMP) have been an active area of intensive scientific research & 

development over the past 20 years. Their unusual properties find several novel and 

important uses, including in biomedical and aerospace fields. This particular class of 

materials has the unique ability to keep transient shapes and recover their original ones by 

the application of an external stimulus such as temperature, pH, light, moisture, electric 

field, magnetic field, specific ions and enzymes [1-8]. In comparison with others shape-

memory materials such as alloys (SMA) or ceramics, SMP offer several technological 

advantages because of their low density, good recoverability, ease of processing, low cost 

and tailoring of properties according to the desirable functionality [1, 2]. SMP are even 

more interesting because they are able to store and recover large strains in response to the 

stimulus [1, 9, 10]. Thus, in recent years, SMP have become among the main components 

of intelligent and smart devices [1-8].  

Within the SMP field, segmented polyurethanes (SPU) are one of the most usual types. 

SPU are multiblock copolymers formed by hard and soft molecular segments. Due to 

structural differences, SPU are rarely in thermo-dynamical equilibrium and can separate in 

phases, arranging domains with different thermal and mechanical properties [11-13]. The 

hard segments in these PU multiblock copolymers that associate themselves through 

dipole-dipole interactions, hydrogen bonding or crystallization, are composed of alternating 

diisocyanate and short chain extender molecules. These hard segments have the ability to 

memorize the permanent shape, determining the shape retention. On the other hand, the soft 

segments mainly constituted by long chain diols, are responsible for the thermally 

reversible phase transformation, which allow recovering the original shape [10, 14]. 

In these polymers, the phase with the highest thermal transition temperature (Tperm) acts as 

net point, while the chain segments associated with the domains with the second highest 

thermal transition temperature (Ttrans) are called switching segments. Thus, switching 

segments are flexible if the working temperature is higher than Ttrans: if a sample is 

deformed by the application of an external stress, it returns to its original shape once the 

external stress is released [15]. Ideal shape memory behavior requires a sharp transition 
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from glassy state to rubbery state, a long relaxation time and high ratio of glassy to rubbery 

modulus [15]. 

The interest behind developing SPU lies mainly in their simplicity of processing and low 

cost [1, 16]. However, one of the major drawbacks for certain applications is their low 

stiffness which results in a relatively weak recovery force after constraint [10, 12]. 

Different authors report enhancement in the mechanical properties after the addition of 

rigid fillers such as fibers or particles to SMP matrices [1-6]. Auad and col. [10, 12], for 

example, dispersed uniformly a small amount of nanocelullose (up to 1%) in segmented 

polyurethane matrices, increasing the modulus without altering the shape memory behavior 

of the resulting composite with respect to that of the neat PU matrix. In this regard, one 

attractive alternative to study is the incorporation of magnetite nanoparticles (NPs) to the 

SPU polymeric network, not only to improve the recovery force, but also to modify their 

structure, leading to the incorporation of interesting functional properties. Among the 

advantages of a polymeric matrix embedded with NPs is the possibility to respond at a 

distance in different ways both to static as well as alternating magnetic fields. The static 

fields produce a net force on the material allowing movement, while the alternating fields 

generate a rapid and homogeneous heating effect without direct contact with a thermal 

source. In this method, the application of a radiofrequency field to a magnetic system 

would induce remarkable heating effects by the energy dissipated during rapid 

magnetization reversal [17]. 

NPs have been incorporated recently with success in different polymeric matrices leading 

to novel materials with potential applications in, for example, biomedicine, biotechnology 

and materials science [1-6, 18-22]. However, only a few works relate to the addition of 

magnetite NPs to a segmented polyurethane matrix and the effect of the nanoparticles on 

the structural and functional properties of the nanocomposites [23-26].  

Thus, the aim of this work is to characterize shape-memory nanocomposites based on a 

segmented polyurethane polymeric matrix and magnetite nanoparticles. The relationship 

between thermal, mechanical and functional properties (shape-memory and magnetic 

properties) and concentration of nanoparticles is presented and discussed.  

 

2. MATERIALS AND METHODS 
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2.1. Materials 

PU-NPs composites were prepared using a high-performance polyester thermoplastic PU 

(IROGRAN PS455-203, Huntsman) as matrix. This linear segmented PU has a low glass 

transition temperature (Tg = −46.5 °C, determined by differential scanning calorimetry, 

DSC), near-ambient melting of soft-segment crystallites (Tm,s = 39 °C, determined by 

DSC), high deformation (ca. 460%, measured at a crosshead speed of 10 mm min−1) and 

strain-induced crystallization. 

The following chemical products (Aldrich) were used as received in the synthesis of the 

magnetic nanoparticles: ferric chloride hexahydrate (FeCl3·6H2O), ferrous chloride 

tetrahydrate (FeCl2.4H2O), ammonium hydroxide (28-30% NH3) and N,N-

dimethylformamide (99.8%).  

 

2.2. Preparation Methods 

2.2.1. Synthesis of magnetic nanoparticles (NPs)  

NPs were prepared following the co-precipitation method suggested by Massart and Cabuil 

[27] with some modifications to improve the yield. In brief, 0.09 mol of FeCl3·6H2O and 

0.06 mol of FeCl2.4H2O were poured into a flask containing 50 mL of distilled water and 

heated at 70ºC to dissolve the salts. Then, 40 mL of NH4OH were added and the formation 

of a black precipitate was immediately observed. With the help of a super-magnet 

positioned out of the flask, the NPs were decanted and collected into centrifugation tubes.  

The obtained NPs were washed until neutral pH with distilled water, separating the water 

used in each wash by centrifugation. Finally, the NPs were placed in a Petri dish and 

lyophilized. The obtained dark thin powder was preserved in a reagent bottle.  

 

2.2.2. Preparation of nanocomposites  

PU pellets were dissolved in dimethylformamide (DMF) up to 20 wt.% at room 

temperature by using a magnetic stirrer, and then mixed with the previously synthesized 

NPs in suitable ratios to obtain composite samples containing 0, 1, 3, 5, 7 and 10 nominal 

wt. % of NPs. The mixture was then ultrasonicated for 6 hours to obtain a stable and 

homogeneous suspension. PU composites films (approximately 0.75 mm in thickness) were 
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prepared by solvent casting of the final suspensions on an glass plate followed by drying in 

a convection oven at 80ºC for 24 hours.  

 

2.3. Characterization Techniques 

2.3.1. Thermogravimetric analysis (TGA). The thermal decomposition curves were 

obtained using a TGA-50 SHIMADZU Thermogravimetric Analyzer at a heating rate of 

10°C/min, from 40°C up to 800°C under air atmosphere. The initial degradation 

temperature (Ti) was arbitrarily taken as the temperature at which the sample lost 5% of the 

initial weight. The temperature at which the samples undergo the maximum degradation 

rate (Tm) was obtained from the derivative TGA curves. 

2.3.2. Contact angle 

The surface hydrophobicity of the films was estimated by the sessile drop method, based on 

optical contact angle measurement using a Ramé Hart goniometer. A droplet of ethylene–

glycol (Aldrich Co.) (5 µL) was deposited on the film surface with an automatic piston 

syringe. The drop image was photographed using a digital camera immediately after the 

drop deposition. Image analyzer software was used to measure the angle formed between 

the surface of the film in contact with the drop, and the tangent to the drop of liquid at the 

point of contact with the film surface. Three measurements each minute were performed on 

both sides of the films at 24ºC ± 2ºC. 

2.3.3. Differential Scanning Calorimetry (DSC)  

Differential scanning calorimetry (DSC) testing of the samples was performed using a 

calorimeter (Perkin Elmer Pyris 1) equipped with a cooling unit, and operating under 

nitrogen atmosphere (20 ml/min). Measurements were performed at 5°C/min. The average 

values of at least three replicates of each sample were reported. 

2.3.4. Infrared spectroscopy (FT-IR) 

FT-IR spectra of the magnetite particles, neat PU and nanocomposites were recorded by the 

attenuated total reflection method (ATR) using a Thermo Scientific Nicolet 6700 FT-IR 

spectrometer. The spectra were registered over the range of 500-4000 cm-1 with a resolution 

of 2 cm-1 and averaged over 32 scans. 

2.3.5. X-ray diffraction (XRD) 
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X-ray diffraction spectra of NPs, neat PU and nanocomposites were obtained with a 

PANalytical X'Pert Pro diffractometer using a Cu K radiation source (0.1546 nm) operating 

at 40 kV and 40 mA. 

2.3.6. Static tensile tests 

These tests were performed at room temperature on specimens of 5 mm x 35 mm x 0.8 mm, 

using a universal testing machine (INSTRON 8501), in accordance with ASTM D 1708-

02a. A crosshead speed of 10 mm/min was used. Young’s modulus (E), yield stress (σy) 

and elongation at break (εb) were determined from the average values of four replicates for 

each sample. 

2.3.7. Dynamical-mechanical tests (DMA) 

The dynamic mechanical response of the samples was evaluated with an Anton Paar 

Physica MCR rheometer. Torsion geometry was used with bar specimens of ~35 mm x 5 

mm x 0.8 mm. Measurements were performed as temperature sweeps in the range -70 to 

55ºC at a heating rate of 5ºC/min. The frequency was kept at 1 Hz and the applied 

deformation at 0.1% to ensure working in the linear viscoelastic range. The Tg values were 

arbitrarily taken as the temperature at which a maximum in the tan δ curve was observed. 

2.3.8. Thermal cyclic tests were performed on microtensile specimens of 5 mm x 25 mm x 

8 mm using a universal testing machine equipped with a heating chamber (Instron 8501). 

Samples were first conditioned at 30 °C for 5 min and subsequently elongated to 100% of 

the original length at a speed of 5 mm min-1. Then, the samples were cooled to -48 °C and 

unloaded. Finally, the samples underwent the recovery process by heating for 5 min at 30 

°C. The strain maintained after unloading, and the residual strain of each cycle (N) were 

used to calculate the fixity (Rf) and recovery (Rr) ratios from these tests, as indicated in the 

following equations: 

          (1)   

 

                              (2)                   

 

where εm is the maximum strain in the cycle (100%), εu is the residual strain after unloading 

at -48 °C, and εp is the residual strain after recovery. 

2.3.9. Magnetic nanoparticle heating 
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The heating response of nanocomposites under an alternating magnetic field was 

characterized using inductive heating equipment (a power source-resonator set Hüttinger 

TIG 2,5/300) with an alternant field of 48 kA/m and a frequency of 260 kHz. The 

nanocomposite temperature was measured by an optic fiber sensor (Neoptix T1) immersed 

in the center of the material and connected to an interface (Neoptix Reflex). Also, images 

taken with a thermographic camera TESTO 870-1 were recorded. 

 

3. RESULTS AND DISCUSSION 

3.1. Thermogravimetric analysis 

Thermogravimetric analysis was used to study the thermal stability of the magnetic 

composites and also to check the concentration of magnetite nanoparticles effectively 

retained into the polyurethane matrix. The mass fraction of NPs in each sample was 

calculated from the corresponding char content, obtained as the mass remainder at 800ºC. 

Thus, the iron oxide content was obtained considering that the compositeʼs residual char 

corresponds to both, residual PU matrix and ferric oxide. The residual mass corresponding 

to the matrix was subtracted from the residual char of the composite samples and the 

difference was converted to magnetite mass. The results obtained are presented in Table 1. 

Obviously, the residual char increased with the concentration of NPs, which confirmed the 

increased amount of iron oxides present in the material. However, it is also clear that the 

actual concentration calculated from the TGA results is lower than the nominal one, and the 

differences between both concentrations become more important as the content of particles 

increases. The differences can be attributed to the preparation procedure since not all of the 

NPs included in the film forming suspensions were successfully cast onto the glass plate for 

drying, i.e. some of the added nanoparticles remained into the flask bottom where the 

suspension was prepared. 

Regarding thermal degradation of the composite samples, from Figure 1 it is clear that none 

of them lose weight due to adsorbed moisture. However, the differences between the 

behavior of the neat PU and the derived composites are important: even although two main 

degradation steps are seen in all curves, the rate of thermal degradation (slope of each zone) 

is higher for the composites, and the maximum degradation rate takes place at lower 
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temperature (Tm in Table 1) as particle content increases. In this sense, the maximum 

decomposition rate for the first degradation step (which involves a weight loss higher than 

50%) occurs at 389.9ºC for the neat matrix, and decreased with the addition of NPs until 

349.2ºC for the sample with 5 wt.% NPs, then remained approximately constant for the 

most concentrated samples. These effects could be associated with the increase in thermal 

conductivity of the material due to the addition of NPs, resulting also in lower temperatures 

at which the thermal degradation initiates (Ti in Table 1) as particle concentration 

increases. This degradation step is normally associated with both the dissociation of 

urethane bonds into isocyanate and alcohol and to the formation of primary or secondary 

amines, olefin and carbon dioxide [28-30]. The second decomposition step is attributed to 

the decomposition of the soft segments (polyol backbone) into carbon monoxide, carbon 

dioxide, carbonyls (aldehyde, acid, acrolein) olefins and alkenes [29-31]. On the other 

hand, magnetite converts into ferric oxide due to heating, as was reported elsewhere [32]. 

This process takes place in the range of 130–330 °C, according to the following equation 

[32, 33]: 

4Fe3O4 + O2 → 6Fe2O3 

and thus involves a slight increase in the weight of the composite sample due to the 

absorption of extra oxygen molecules that is over compensated by the weight loss of the PU 

matrix.  

 

Figure 1 

 

3.3.2. Contact angle 

Table 2 presents the results of contact angle measured on the upper and lower film surfaces 

(surface in contact with air during the drying step and the surface in contact with the glass 

mold bottom, respectively). The contact angle is one of the basic wetting properties of 

materials that reveals the hydrophilic/hydrophobic character of the film surface. In this 

work, the measurements were performed using ethylene glycol, a polar solvent, and thus an 

increase in the contact angle indicates a density reduction of polar groups on the film 

surface [19]. It can be seen that there were not significant changes in this property for the 

PU matrix and composite samples up to 5% NPs nominal concentration, which denotes 
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homogeneity in the structure of the material. i.e. no accumulation/sedimentation of the 

nanoparticles on one side of the films, since the angles meassured on both film surfaces are 

comparable. On the other hand, more concentrated samples (7 wt.% and 10 wt.% NPs) 

exhibit clear differences on the two surfaces, the lower being less polar than the upper. Due 

to the differences in the density of the PU matrix (~1.25 g/cm3 [1]) and magnetite (5.175 

g/cm3 [35]) and the long time required for drying the films (24 h), some particles can settle 

on the bottom of the mold, leading to a high density of hydrophilic groups on the lower 

film surface. Similarly, as the NPs content increases, some particles could agglomerate, 

favoring the settling.  

 
3.3.3. Differential scanning calorimetry measurements 

Figure 2 shows the thermograms of the PU films with and without NPs from -60ºC up to 

160ºC, and Table 3 summarizes some of the associated parameters. Three transitions are 

observed in this temperature range. As expected, the low temperature glass transition (Tg) 

occurs around -47ºC in all cases and is due to the soft segment phase. Also, the melting 

temperature and heat of melting of the PU soft segments (Tm,s and ∆Hm,s, respectively) 

decrease slightly with NPs addition. The incorporation of nanoparticles could interfere with 

the alignment of the chain segments, leading to more imperfect packaging, and thus to 

crystals that melt at lower temperatures, and also resulting in lower crystallinity. The results 

depend, not only on the concentration of nanoparticles, but also on their dispersion, since 

the interface will play an important role in the process. In our case, it is clearly seen that the 

sample containing 10 nominal wt.% NPs exhibits lower heat of melting, which can be 

associated with the difficulty of obtaining good nanoparticle dispersion when relative high 

contents of particles are incorporated into the sample. Furthermore, from the DSC curves, 

the glass transition associated with the hard segments can barely be observed, as reported in 

previous works on SPUs [13,36]. It could be located between 90º and 95ºC for all NPs 

concentration, but the technique sensitivity is not enough to allow accurate calculations. 

Moreover, the melting of PU hard segments (Tm,h) appears as smooth peaks varying from 

138.2ºC up to 141.7ºC with the addition of NPs. In this case, the addition of NPs increases 

the hydrogen bond interactions between the urethane groups in hard segments and the 

oxygen atoms in magnetite, leading to slightly higher melting points. However, the 

associated heats of melting (∆Hm,h) are very low (with high calculated standard deviations), 
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indicating that the interactions developed between NPs and polar hard segments do not 

substantially change the thermal behavior of nanocomposite samples, as compared with that 

of the neat PU.  

 
Figure 2 

 

3.3.4. Infrared spectroscopy  

Figure 3 presents the infrared spectra of the magnetite NPs, neat thermoplastic 

polyurethane and polyurethane composites. Characteristic peaks (octahedral and tetrahedral 

Fe-O peaks) of magnetite are observed in the curve corresponding to the NPs at 630 cm-1 

and 540 cm-1, respectively [37]. Moreover, the bands centered at 3340 cm-1 and 1630 cm-1 

are assigned to O-H vibrations absorbed on the surface of Fe3O4 nanoparticles [18]. 

Regarding PU matrix and composite samples, it is well accepted that the N-H stretching 

around 3330 cm-1, the C=O vibration at 1725 cm-1 and, more recently, the role played by 

the amide II band at 1524 cm-1 and amide III at 1225 cm-1 are associated with the hydrogen 

bond interactions in polyurethanes [38]. The wide band centered at 3330 cm-1 corresponds 

to the hydrogen-bonded N-H stretching vibration present in urethane linkages, and the 

bands at 1524cm-1 correspond to the stretching vibration of C=N group (amide-II band) 

combined with N-H bending vibration characteristics of the PU structure.  Low intensity in 

the “free” N-H band at 3440 cm-1 is observed, which confirms that most of these groups are 

involved in H-bond interactions among the hard segments [39]. This fact is corroborated by 

the observation of the C=O stretching vibration around 1726 cm-1, attributed to H-bonded 

carbonyl groups in disordered ‘‘amorphous’’ conformations [40, 41], which appears with a 

shoulder at 1702 cm-1 that corresponds to H-bonded carbonyl groups in ordered 

‘‘crystalline’’ hard domains [40-42]. Also, the C-H symmetric and asymmetric stretching 

vibrations of methylene/methyl groups are observed between 2860 cm-1 and 2970 cm-1. On 

the other hand, the broad band of absorption in the range of 490-760 cm-1 that corresponds 

to the Fe-O bonds is only slightly noticeable in the spectrum corresponding to the most 

concentrated sample, as observed in related papers [21]. 

 

Figure 3 
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3.3.5. X-ray diffraction (XRD) 

The X-ray diffraction patterns corresponding to neat NPs, neat PU matrix and PU based 

composites are presented in Figure 4. The positions and relative intensities of all diffraction 

peaks found in the pattern of the nanoparticles agree with those of the standard crystal of 

magnetite (Fe3O4) or maghemite (Fe2O3) [43-45] and, therefore, the absence of other iron 

oxides and compounds such as oxidation products is confirmed. In addition, the crystal size 

of the magnetic particles can be determined using Scherrer’s equation [45]: 

D= κ.λ/ β. cos (θ) 

where: κ= Scherrer Constant (0.9) [38] ; λ= Radiation wavelength (Cu K α =0.1546 nm); 

β=Width at half height of the selected peak in radians=0.0157; θ=Bragg angle=0.3115. 

According to this equation, and using the diffraction signal corresponding to the (311) 

plane of the diffraction pattern of NPs powder, the crystallite size was calculated as 9.3 nm, 

a value that is closer to the values obtained in previous works [18-22]. 

Regarding polyurethane based composites, microphase separation or microphase mixing of 

soft and hard segments depends on their composition and structural order. Therefore, for all 

composite samples, the broad peaks appearing in the XRD patterns indicate that we are 

dealing with a low crystalline material [46] of semi-crystalline nature, and implies the 

formation of a non-ordered structure because of microphase mixing, as was also confirmed 

by FTIR analysis. According to Hong et al. [47], the diffraction peaks at 2θ = 21.3 and 24.4 

are due to the soft segment crystalline phase. The peak intensity is related to the level of 

crystallinity in the sample [46], therefore it is clear that crystallinity of the soft segment 

phase decreased as the magnetite concentration in the samples increased, which suggests 

that the crystallization of the PU matrix is limited somehow by the nanoparticles, as was 

previously anticipated from the DSC results and was observed in related papers [48, 49]. 

On the other hand, the peaks corresponding to magnetite nanoparticles appear with 

increased intensity in the composite patterns as the concentration of filler increases, as 

expected. 

 
Figure 4 
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3.3.6. Tensile behavior 

A summary of the mechanical properties measured from the tensile tests is presented in 

Table 4. Surprisingly, the addition of NPs to the PU matrix leads to a decrease in the 

Young's modulus up to 25% for the most concentrated sample with respect to the value of 

the neat matrix; while the yield strength decreases up to 21% for the same case. The 

deformation at break (εb) reaches a maximum value of 552% for the film containing 5 wt.% 

NPs and then decreases. Magnetic NPs are more rigid than PU matrix, thus an increase in 

the modulus with NPs concentration was the expected behavior. However, particle 

agglomeration could reduce their effective rigidity. On the other hand, PU crystals also 

should contribute to augment elastic modulus and, in this work, it was found that that their 

concentration decreases with magnetite concentration. Probably the combination of those 

factors, added to reduced compatibility between nanoparticles and polymeric matrix (i.e. 

particles acting as a defect more than as a reinforcement), would explain the observed 

behavior.  

 

3.3.7. Dynamical mechanical analysis 

Figure 5 shows the dynamic mechanical response of nanocomposites. From Figure 5A it is 

clear that the addition of nanoparticles to the polymeric matrix does not significantly affect 

either the absolute value of the storage modulus or its dependence on temperature. For 

example, nanocomposites containing 3 and 10 wt.% NPs show a slightly higher storage 

modulus than the neat matrix, while those containing 1 and 7 wt.% present the opposite 

behavior, but the changes are considered to be within experimental error. Between the 

storage moduli at -48 ºC or lower (glassy region) and 30 ºC, the variation is about 50-fold. 

Moreover, at temperatures slightly higher than 30 ºC, samples enter quickly into a kind of 

flow region and the test should be stopped, which demonstrates the importance of the 

contribution of the crystalline soft segment phase to the sample stiffness. This variation of 

modulus is a key point to utilize and control the shape memory effects of a material based 

on shape memory polyurethanes [15]. Thus, that this change in the storage modulus values 

before (glassy state) and after the glass transition (rubbery modulus) of the soft segments 

was maintained in the nanocomposite samples indicates that the “switch temperature” for 
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the shape-memory properties exhibited by the neat polyurethane was preserved in the PU 

nanocomposites.  

 

Figure 5 

 

Figure 5B shows that the glass transition temperature of the nanocomposites (arbitrarily 

taken in this case as the temperature at which the maximum peak in tan δ occurs), is about -

36.5ºC ± 0.4 ºC, independently of the NPs concentration. This result is in agreement with 

the results obtained from DSC curves and with those reported by Mohr and co-workers [23] 

who incorporate magnetite nanoparticles coated with silica into a polyurethane matrix and 

did not observe important changes in the glass transition temperature of the composites 

with respect to that of the neat matrix. 

 
3.3.8. Thermal cyclic tests 

Thermal tensile cycling (deformation at high temperature followed by cooling and further 

recovery at high temperature) was the procedure selected to study the shape memory 

behavior of unreinforced PU and resulting nanocomposites. The results of the dynamic 

mechanical tests were used to select these temperatures, and thus they were fixed at 30 ºC 

(high temperature) and -48 ºC (cooling temperature). Table 5 summarizes the results for all 

the samples submitted to 100% deformation. In all cases, the first cycle is clearly distinct 

from the others, with samples showing a relatively low recovery value of about 60%, as has 

been repeatedly pointed out in the literature [13]. Also, the recovery, calculated with 

respect to the previous cycle, increased after the second cycle in all the cases. Apparently, 

the reorientation of the polymer chains of the original cast films that takes place during the 

first cycle facilitates stretching and relaxation from the second cycle onwards [13]. 

According to Auad et al. [10], shape recovery is mainly related to hard segment stability: 

during the first elongation step some weak interactions between the hard segments are 

damaged and cannot be rebuilt before the next cycle. However, some strong interactions 

remain and, after the first cycle, the behavior becomes completely reversible, and thus 

recovery values of about 90% are achieved. On the other hand, Table 5 shows that fixity 

values are about 97% on average and do not show clear dependence on cycling nor on 
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particle concentration. As stated elsewhere [13], the controlling factor for fixity is the 

orientation and molecular stretching reached by the soft segments during elongation. That 

configuration is essentially frozen after reaching the maximum elongation by lowering the 

temperature, and the resulting fixity is dependent on the modulus of this non-equilibrium 

configuration. Evidently, the addition of magnetic nanoparticles to the PU matrix does not 

modify this behavior. Mosleh et al [49] observed a remarkable drop in shape recovery with 

nanomagnetite concentration (about 70 % at 5 wt.% nanomagnetite loading, composite 

samples based on thermoplastic polyurethane segmented block copolymer and poly(ε-

caprolactone) (PCL) with a weight ratio of 70/30). They attributed this to particle 

aggregation in the polymeric matrix as well as to particles being rigid solids that act as 

obstacles and hinder recovery of the polymer chains. However, in this work, no clear 

dependence on nanoparticle concentration or percolation thresholds for any property could 

be observed. 

 

3.3.9. Magnetic nanoparticle heating 

All the nanocomposites exhibit magnetic behavior, as was qualitatively corroborated by 

approaching a magnet to the film samples (as an example, Figure 6 shows the behavior of 

samples containing 0 and 10 nominal wt.% NPs). Figure 7 shows an image taken with a 

thermographic camera 15 seconds after turning on an alternating field of 260 kHz and 48 

kA/m, when the sample reaches temperatures above 60ºC. The time-temperature curve for 

the sample in the presence of such a magnetic field was recorded (not shown) and indicates 

that the temperature within the material surpasses the melting point of PU soft segments in 

about 10 seconds. Also, the shape memory behavior triggered by alternating-magnetic-field 

heating was evaluated. Figure 8 shows images of the heating experiment on the PU-10 

sample under application of a radiofrequency field, where a fast and almost complete 

recovery of the original shape of the nanocomposite is reached in about 30 seconds. Thus, 

the introduction of an indirect triggering method of the shape recovery via magnetic 

nanoparticle heating is successfully demonstrated. 

 

Figure 6 
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Figure 7 

 

Figure 8 

 

4. CONCLUSIONS 

Magnetic nanocomposites with shape memory properties were prepared by a simple casting 

procedure. Thermogravimetric analysis of the samples revealed that most of the suspended 

magnetite NPs could be successfully incorporated into the polyurethane matrix, and thus 

composite samples with up to 7 wt.% actual concentration were obtained. The thermal 

degradation of nanocomposite samples and their maximum degradation rate occurred at 

lower temperatures than that corresponding to the neat PU, which is attributed to the 

increased thermal conductivity of the material due to the addition of NPs. Contact angle 

measurements indicated that samples containing up to 5% nominal wt.% are homogenous 

as regards NPs distribution in the thickness of nanocomposite samples, while the most 

concentrated exhibit NPs sedimentation/agglomeration of particles at the bottom of the 

specimens. Even so, differential scanning calorimetry, infrared spectroscopy and X-ray 

results indicated that the addition of magnetic nanoparticles did not substantially change the 

microstructure, thermal transitions and crystallinity of the PU matrix. Tensile tests revealed 

that the modulus and yield strength of the nanocomposites were lower than those of the 

neat polyurethane for samples containing g 1-5 nominal wt.% NPs, being even more 

deformable than the neat matrix. The dynamic mechanical behavior of the composites was 

similar to that of the neat matrix, exhibiting a 50-fold variation between the storage 

modulus in the glassy and rubbery states. As an expected result, the shape memory 

behavior, evaluated through tensile cyclic tests, was independent of NP concentration. 

Finally, all nanocomposite samples exhibited magnetic behavior, and could be heated by 

applying an alternating magnetic field, leading to quick and almost complete recovery of 

the previously imposed deformation.  
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TABLES 

 

Table 1: Thermogravimetric behavior of nanocomposite films. 

NPs, nominal 

content, wt.% 

NPs calculated 

content, wt.% 

 

Ti, ºC 
 

Tm, ºC 

0 -- 319 ± 14 390 ± 9 

1 0.9 ± 0.1 321 ± 6 383 ± 5 

3 2.5 ± 0.2 314 ± 6 358 ± 19 

5 3.9 ± 0.8 306 ± 8 349 ± 11 

7 5.7 ± 1.4 307 ± 5 352 ± 12 

10 7.1 ± 0.4 299 ± 9 352 ± 7 
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Table 2: Contact angle of nanocomposite films. 

NPs, nominal 

wt.% 

Contact angle in 

Lower surface (°) 

Contact angle in 

Upper surface (°) 

0 49.8 ± 1.3 46.9 ± 2.8 

1 44.9 ± 3.4 69.8 ± 2.9 

3 51.3 ± 1.7 53.4 ± 2.1 

5 49.1 ± 2.5 49.2 ± 1.9 

7 52.7 ± 2.8 66.9 ± 4.1 

10 50.4 ± 4.2 62.8 ± 2.2 
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Table 3: DSC characterization as a function of NPs content  

NPs, 

nominal 

wt.% Tg (°C) Tm,s (°C) ∆H m,s (J/g*) Tm,h (°C) ∆H m,h (J/g*) 

0 -46.5 ± 1.1 38.8 ± 0.6 17.1 ± 0.6 138.2 ± 1.8 1.9 ± 0.6 

1 -47.8 ± 0.7 37.9 ± 0.8 17.1 ± 0.4 138.0 ± 0.9 2.0 ± 0.4 

3 -48.3 ± 0.6 36.8 ± 0.7 17.8 ± 3.1 139.0 ± 3.6 1.3 ± 0.1 

5 -47.4 ± 0.1 38.0 ± 0.8 16.5 ± 0.4 140.0 ± 2.5 1.8 ± 1.2 

7 -47.4 ± 0.1 37.7 ± 0.1 16.9 ± 0.1 141.6 ± 0.5 1.3 ± 0.3 

10 -47.4 ± 0.6 36.7 ± 0.2 15.6 ± 0.1 141.7 ± 2.3 0.9 ± 0.5 

* calculated per mass of neat PU 
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Table 4. Tensile properties of PU-NPs composites.  

NPs, nominal wt.% E (MPa) Yield stress, σy  (MPa) Elongation at break, εb (%) 

0 2.4 ± 0.1 5.7 ± 0.1 464 ± 31 

1 2.4  ± 0.5 5.2 ± 0.3 530 ± 6 

3 1.9 ± 0.1 4.7 ± 0.1 550 ± 30 

5 2.1 ± 0.1 4.9 ± 0.3 552 ± 26 

7 2.0 ± 0.5 4.4 ± 0.2 392 ± 41 

10 1.8 ± 0.1 4.5 ± 0.2 394 ± 44 
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Table 5: Shape memory behavior of shape memory PU composites. 

NPs, nominal 
wt.% Cycle εεεεu (%)

 
εεεεp (%) Rf (%) Rr (%) 

PU matrix 1 97.8 36.7 97.8 63.3 

0 2 96.9 45.1 96.9 86.6 

  3 96.5 47.1 96.5 96.3 

PU-1 1 97.8 36.2 97.8 63.9 

1 2 97.0 42.6 97.0 89.9 

  3 96.7 46.7 96.7 92.8 

PU-3 1 96.8 39.0 96.8 61.0 

3 2 94.7 44.8 94.7 90.7 

  3 95.3 47.6 95.3 94.9 

PU-5 1 97.6 40.7 97.6 59.3 

5 2 96.5 46.3 96.5 90.0 

  3 96.1 47.3 96.1 98.8 

PU-7 1 98.0 43.2 97.6 56.8 

7 2 97.2 49.0 97.2 89.8 

  3 96.8 51.7 96.8 94.7 

PU-10 1 97.9 36.7 97.9 63.3 

10 2 98.0 41.9 98.0 91.8 

  3 98.1 45.8 98.1 93.3 
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FIGURE CAPTIONS 

 

Figure 1: TGA curves of nanocomposite films. 

Figure 2: DSC thermograms of the nanocomposite films. Numbers next to the acronym PU 

indicate the nominal content of NPs in each sample.   

Figure 3: FTIR spectra of neat NPs, neat PU matrix and PU based nanocomposites. 

Figure 4: X-ray diffraction patterns corresponding to neat NPs, neat PU matrix and PU 
based composites 

Figure 5: Dynamic mechanical response of neat PU matrix and PU-NPs composites. A) 

Storage shear modulus vs. temperature; B) tan δ vs. temperature. 

Figure 6. Magnetic character of the nanocomposite with 10 nominal wt.% NPs (black 

sample). Neat PU sample (white one) do not show magnetic response. 

Figure 7. Temperature map for a piece of 4.9 mm x 10.9 mm length of the sample with 10 

nominal wt.% of NPs after 15 seconds of application of an alternating magnetic field of 

260kHz and 48 kA/m. 

Figure 8. Shape recovery of the sample with 10 nominal wt.% of NPs activated by the 

application of an alternant magnetic field.  
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• Magnetic nanocomposites with shape memory properties were prepared by a simple 
casting procedure. 
 

• Most of the suspended magnetite nanoparticles were successfully incorporated into 
the polyurethane matrix. 

 
• The addition of magnetic nanoparticles did not change substantially the microstructure, 

thermal transitions and crystallinity of the polyurethane matrix. 
 

• The shape memory behavior, evaluated through tensile cyclic tests, resulted 
independent of nanoparticle concentration. 
 

• The original shape was successfully recovered by applying an indirect triggering 
method via magnetic nanoparticle heating. 

 

 


