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Abstract

Parseval frames have particularly useful properties, and in some cases, they can be
used to reconstruct signals which were analyzed by a non-Parseval frame. In this paper,
we completely describe the degree to which such reconstruction is feasible. Indeed,
notice that for fixed frames F and X with synthesis operators F and X , the operator
norm of FX∗ − I measures the (normalized) worst-case error in the reconstruction of
vectors when analyzed with X and synthesized with F . Hence, for any given frame
F , we compute explicitly the infimum of the operator norms of FX∗ − I, where X is
any Parseval frame. The X ’s that minimize this quantity are called Parseval quasi-
dual frames of F . Our treatment considers both finite and infinite Parseval quasi-dual
frames.

keywords: Procrustes problems , Parseval frames , Dual frames.
AMS subclass: 42C15 ; 15A60 ; 65F35.

1 Introduction

Let H be a separable complex Hilbert space. A sequence F = {fi}i∈N is a frame for H if
there exist constants A,B > 0 such that

A‖f‖2 ≤
∑

i∈N

| 〈f, fi〉 |
2 ≤ B‖f‖2, ∀f ∈ H. (1)

The biggest A and the least B with the properties above are called the optimal frame
bounds of the frame F and denoted AF and BF respectively. If AF = BF = 1 then F
is called Parseval frame. Roughly speaking, a frame F is a generator set for H when we
allow linear combinations of elements of F with coefficients in ℓ2(N).

More precisely, given a frame F define the synthesis operator of F by F : ℓ2
N
→ H,

F ((αi)i∈N) =
∑

i∈N αifi, and the analysis operator of F by F ∗ : H → ℓ2
N
, i.e. F ∗f =

(〈f, fi〉)i∈N. Notice that the inequality to the right in Eq. (1) implies that F (and hence F ∗)
is a well defined, bounded linear transformation. Moreover, if we let SF = FF ∗ ∈ B(H)+

then
SFf = FF ∗f =

∑

i∈N

〈f, fi〉 fi, ∀f ∈ H

and the defining inequalities (1) are equivalent to the operator inequalities A · I ≤ SF ≤
B · I. Therefore SF = FF ∗, the so-called frame operator of F , is a positive invertible
operator. On the other hand, the identities

f = SFS
−1
F f =

∑

i∈N

〈

S−1
F f, fi

〉

fi =
∑

i∈N

〈

f, S−1
F fi

〉

fi , ∀f ∈ H (2)
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show that F allows for linear representations of vectors in H, where the sequence of coef-
ficients (〈f, S−1

F fi〉)i∈N = F ∗(S−1
F f) ∈ ℓ2(N). Also notice that, if we let F# = {S−1

F fi}i∈N
then F# is a frame for H with frame operator S−1

F . This shows that coefficients given by
the map H ∋ f 7→ (〈f, S−1

F fi〉)i∈N ∈ ℓ2(N) depend continuously on f ∈ H i.e. F allows for
linear and stable reconstruction formulas.

An important feature of frames F for H is their redundancy. Indeed, it is well known
(see [5, 12]) that the lack of uniqueness in the linear representation induced by a frame
is an advantage in this context, as it provides tools to deal with problems that arise in
applications of frame theory. A typical measure of redundancy of a frame F is given by
the excess of F , which is the dimension of the nullspace of its synthesis operator F . In
case F has nonzero excess then there exist infinitely many dual frames for F i.e. frames
G = {gi}i∈N such that

f =
∑

i∈N

〈f, gi〉 fi , ∀f ∈ H .

Notice that the frame F# defined above is a dual frame for F , called the canonical dual
frame.

It is easy to see that the set of dual frames for F is in bijection with the set of bounded
linear operators G : ℓ2

N
→ H such that FG∗ = IH, via the map G 7→ G = {Gei}. This last

fact incidentally shows that if G is a dual frame for F then F is also a dual frame for G
i.e.

f =
∑

i∈N

〈f, gi〉 fi =
∑

i∈N

〈f, fi〉 gi , ∀f ∈ H .

In this case we say that (F ,G) is a dual pair of frames for H. It is worth pointing out that
the canonical dual frame F# corresponds to the adjoint of the Moore-Penrose pseudo-
inverse of F under the previous bijection; this fact indicates that F# plays a key role
among the set of all dual frames for F .

Nevertheless, given a redundant frame F then the canonical dual frame F# is not
always the best choice for a dual of F . For example, numerical stability comes into play
when dealing with reconstruction formulas derived from a dual pair (F ,G); in this case a
measure of stability of the reconstruction algorithm for fixed F is given by the condition
number of the frame operator SG of G. It is known [22] that the dual frames G that
minimize this condition number are different (in general) from the canonical dual (see
[4, 20, 26] for other examples of this phenomena). In this vein, D. Han [13] characterized
those frames F for which there exists a dual frame for F , denoted by X = {xi}i∈N, which
is a Parseval frame i.e. for which the frame bounds coincide with 1. Thus, in this case
SX = I and therefore the condition number of SX is minimum. The conditions found in
[13] for the existence of a Parseval dual of a frame F = {fi}i∈N turn out to be equivalent
to the conditions for the existence of a larger Hilbert space K ⊃ H, an orthonormal basis
{ki}i∈N of K and an oblique projection Q : K → H such that Qki = fi, for i ∈ N, found
by J. Antezana, G. Corach, M. Ruiz and D. Stojanoff in [1].

In case a frame F does not admit a Parseval dual frame, then we can consider one of
the following alternatives: we can search for dual frames that are optimal for numerical
stability (or such that they are less complex to compute) i.e. obtaining (theoretical) perfect
reconstruction formulas for less stable dual frames - or we can search for Parseval frames
X , which are optimally stable, that minimize the reconstruction error when considering
the reconstruction formulas derived from the pair (F ,X ). In this paper we shall consider
the second approach and search for Parseval frames X that minimize the (normalized)
worst case reconstruction error for a (blind) reconstruction algorithm derived from the
pair (F ,X ), (formally) following the recent analytic scheme from the theory of optimal
dual frames for erasures of a fixed frame [18, 19, 20, 21]. Explicitly, we search for Parseval
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frames X = {xi}i∈N - i.e. such that XX∗ = IH - such that they minimize the worst case
reconstruction error

sup
f∈H , ‖f‖=1

‖
∑

i∈N

〈f, xi〉 fi − f‖ = ‖FX∗ − IH‖

where ‖FX∗ − IH‖ stands for the operator norm on B(H). To this end we introduce the
optimal bound

α(F ) = inf{‖FX∗ − I‖ , XX∗ = IH} .

As we shall see, α(F ) depends on the spectrum of the frame operator SF as well as on
the excess of F . In case the optimal bound α(F ) is attained (e.g. finite frames for finite
dimensional Hilbert spaces), we introduce the set of Parseval quasi-dual frames defined as

X(F ) = {X = {xi}i∈N : XX∗ = I, α(F ) = ‖FX∗ − I‖}.

In these cases, α(F ) is the worst case reconstruction error of an encoding-decoding algo-
rithm based on an optimal pair (F ,X ), where X is Parseval quasi-dual frames for F .

If H is finite dimensional, the previous problem fits into the setting of the so called
Procrustes problems, which are relevant in statistics, shape theory, numerical analysis
and optimization, among other disciplines. The reader is referred to the book by Gower
and Dijksterhuis [11] and to the survey [16] of Higham, for many references (and to learn
about the myth of the bandit Procrustes). We should also mention the papers by Eldén
and Parks [8], the results of Watson [27, 28] and Mathias [23], who showed that α effectively
depends on the norm. Kintzel [17] dealt with Procrustes problems in finite dimensional
Krein spaces, and Peng, Hu, and Zhang [24] with weighted Procrustes problems. All these
references study the problems in finite dimensional spaces. The present paper seems to
be the first to relate problems in frame theory in arbitrary Hilbert spaces with Procrustes
techniques.

The paper is organized as follows. In Section 2 we revise some of the main results from
[1] and [13] that characterize the existence of Parseval dual frames of a frame F for H. In
Section 3 we consider the finite frames for a finite dimensional Hilbert space C

n; hence,
we study the problem of computing the optimal bound α|||·|||(F) for an arbitrary unitarily
invariant norm (u.i.n.) ||| · ||| for Mn(C). In particular, we show that there exists X that
is a Parseval ||| · |||-quasi dual, for every u.i.n. In Section 4 we consider the computation of
α(F) for frames F in a separable infinite dimensional (complex) Hilbert space H. In case
the excess of F is infinite, we compute α(F) explicitly and show that F always admits
Parseval quasi-duals X which also satisfy that FX∗ is a multiple of the identity. This
last fact allows us to derive simple reconstruction formulas from the pair (F ,X ). If F has
finite excess, then we obtain an explicit formula for α(F) that depends on the spectrum
of the Gramian operator F ∗F and the excess of F . For the convenience of the reader, we
present several technical results related with the computation of α(F) in this case in a
separate Appendix (Section 5): our strategy relies on Rogers’ work [25] on approximation
of bounded operators by unitary operators.

2 Preliminaries

Notations and terminology. In what follows, H denotes a separable complex Hilbert
space. If K is another Hilbert space then B(K,H) denotes the Banach space of bounded
linear transformations fromK toH. IfK = H then we denote B(H) = B(H,H) the algebra
of bounded linear operators acting on H, endowed with the operator norm. We denote
by Mn,m(C) the space of n×m complex matrices and identify Mn,m(C) = B(Cm,Cn). If
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m = n then we write Mn(C) = Mn,n(C). If F ∈ B(K,H) then we denote by N(F ) and
R(F ) the nullspace and range of F respectively. We denote by U(H) the group of unitary
operators acting on H.

Frames in Hilbert spaces. As mentioned in the Introduction, a sequence {fi}i∈N in a
Hilbert space H is a frame for H if there exist A,B > 0 such that Eq. (1) holds. The
optimal constants AF , BF are called the optimal frame bounds. If the frame bounds of F
are equal to 1 we say that F is Parseval. More generally, we say that F is tight if the
frame bounds coincide.

Given a frame F = {fi}i∈N for H, let F ∈ B(ℓ2,H), F ∗ ∈ B(H, ℓ2) and SF = FF ∗ ∈
B(H)+ denote the synthesis, analysis and frame operators of F respectively. Notice that
A,B > 0 satisfy Eq. (1) if and only if AI ≤ SF ≤ B I. Hence, the optimal frame bounds
0 < AF ≤ BF are given by

A
1/2
F = γ(F ) := inf{‖Fx‖ : x ∈ N(F )⊥, ‖x‖ = 1} = ‖F †‖−1 and B

1/2
F = ‖F‖, (3)

where F † denotes the Moore-Penrose pseudoinverse of F and γ(F ) its reduced minimum

modulus.
These facts show that a frame X = {xi}i∈N is Parseval if and only if SX = IH or

equivalently, if the synthesis operator X ∈ B(ℓ2,H) is a coisometry. It is well known that
Parseval frames have several nice properties; for instance, the spread of the eigenvalues
of the frame operator SX is minimum, a fact that implies numerical stability of linear
encoding-decoding schemes derived from X . On the other hand, the canonical dual of a
Parseval frame X coincides with X so that the identities in Eq. (2) become

f =
∑

i∈N

〈f, xi〉 xi , f ∈ H ,

which is formally analogous to the linear representation derived from an orthonormal
basis for H. Indeed, there is a close connection between Parseval frames and orthonormal
bases, since the elements of a Parseval frame can be seen as the image of a orthonormal
basis of a larger Hilbert space under a orthogonal projection ([15]). This kind of dilation
property of Parseval frames was extended in [1] where it is shown that AF ≥ 1 and
dimR(SF − I) ≤ dimN(F ) are necessary and sufficient conditions for the frame F in
order to be the image of a orthonormal basis under a oblique projection (see also [14,
10.4.] which is largely based in [1] and contains an elementary approach to these results).
Years later, D. Han proved that those conditions also ensure the existence of a Parseval
dual frame X for F ([13]). We summarize all these results in the following:

Theorem 1. Let F = {fi}i∈N be a frame for H, with optimal frame bounds 0 < AF ≤ BF

and synthesis operator F : ℓ2 → H. Then the following statements are equivalent:

1. There exists a Parseval frame X = {xi}i∈N such that x =
∑

i∈N 〈x, xi〉 fi, ∀x ∈ H.

2. AF ≥ 1 and dimR(SF − I) ≤ dimN(F ).

3. There exists a Hilbert space K ⊃ H with an orthonormal basis {ki} and a oblique
projection Q ∈ B(K) onto H such that fi = Qki, for every i ∈ N.

�

3 Parseval quasi-dual frames: finite frames

Let F = {fi}
m
i=1 be a finite frame for H = C

n. As we have seen in the previous section, in
some cases F admits a dual Parseval frame X = {xi}

m
i=1. Indeed, in the finite dimensional

context the equivalence of items 1. and 2. in Theorem 1 imply the following:
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Proposition 2. Let F = {fi}
m
i=1 be a frame for H = C

n with synthesis operator F :
C
m → C

n. Let λ = (λi)
n
i=1 ∈ R

n be the eigenvalues of the frame operator SF , arranged in
non-increasing order and counting multiplicities. Then F has a Parseval dual if and only
if

1. λn ≥ 1;

2. 2n−m ≤ dimN(SF − I).

In particular, if m ≥ 2n, the existence of a Parseval dual is guaranteed by λn ≥ 1.

Proof. Notice that AF = λn and that dimN(F ) = m− n since F is surjective. Then the
proof follows by dimension arguments.

In case m < 2n, the condition 2 in Proposition 2 shows that the existence of a Parseval
dual for F is related to the multiplicity of 1 as an eigenvalue of SF .

In case F has no Parseval dual frames, it is natural to consider those Parseval frames X
which minimize the reconstruction error based on an encoding-decoding scheme in terms
of X and F . Following ideas from [16], the measure of the reconstruction error that we
shall consider in this section is |||FX∗− I|||, where ||| · ||| is a unitarily invariant norm (u.i.n.)
in Mn(C) (see [3] for a detailed account on these norms) and F and X denote the synthesis
operators of F and X respectively. That is, we are interested in computing the optimal
bound

α|||·|||(F) := min{|||FX∗ − I||| : XX∗ = I } (4)

and determining the optimal Parseval quasi-dual frames which are the Parseval frames
that attain this lower bound i.e.,

X|||·|||(F) := {X = {xi}
m
i=1 : XX∗ = I , α|||·|||(F) = |||FX∗ − I|||} . (5)

In what follows, we give a detailed description of the optimal bound α|||·|||(F) and the set
of optimal Parseval quasi-dual frames X|||·|||(F) for a frame F and an arbitrary u.i.n.

Let us begin by recalling the following Procrustes-type result due to Fan and Hoffman
[9].

Theorem 3 ([9]). Let A, U ∈ Mn(C) with U unitary and such that A = U |A|, where
|A| = (A∗A)1/2. Then, for any unitary matrix W ∈ Mn(C) and any u.i.n. ||| · ||| in Mn(C)
we have that

|||A− U ||| ≤ |||A−W ||| ≤ |||A+ U ||| .

Lemma 4. Let F = {fi}
m
i=1 be a frame for C

n with synthesis operator F . Let S be an
n-dimensional subspace of Cm and let CS = {Y ∈ Mn,m(C) : Y ∗Y = PS}. Let ||| · ||| be a
u.i.n. on Mn(C) and let X ∈ CS be such that

|||FX∗ − I ||| = min
Y ∈CS

|||FY ∗ − I ||| .

In this case we have that

|||FX∗ − I ||| = ||| |FX∗| − I ||| .

Proof. It is well known that in finite dimensions we can factorize FX∗ = U |FX∗|, where
U ∈ Mn(C) is a unitary matrix. Then

|||FX∗ − U ||| = |||(FX∗U∗ − I)U ||| = |||FX∗U∗ − I||| ≥ |||FX∗ − I||| ≥ |||FX∗ − U |||
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where the first inequality follows from the fact that Y = UX ∈ CS is such that Y ∗ = X∗U∗

(and the minimality of X) and the second inequality follows from Theorem 3 (and the
fact that I is a unitary matrix). Hence

|||FX∗ − I||| = |||FX∗U∗ − I||| = |||U (|FX∗| − I)U∗||| = ||| |FX∗| − I ||| .

Remark 5. Let F = {fi}
m
i=1 and X = {xi}

m
i=1 be frames for C

n with synthesis operators
F and X, and assume that X is an optimal Parseval quasi-dual frame for some u.i.n. ||| · |||
i.e. such that α|||·|||(F) = |||FX∗ − I|||. If we let S = R(X∗) ⊆ C

m, dimS = n, then Lemma
4 implies that

|||FX∗ − I ||| = ||| |FX∗| − I ||| .

Notice that the singular values of the Hermitian matrix |FX∗| − I ∈ Mn(C) are deter-
mined by the eigenvalues of |FX∗|. Moreover, |FX∗|2 = X(F ∗F )X∗ and therefore, the
eigenvalues of |FX∗|2 coincide with the first n entries of the vector λ(PS(F

∗F )PS) of
eigenvalues of the compression of the Gramian matrix F ∗F to the subspace S. This last
fact shows a connection between our problem and the following theorem of Fan-Pall related
with eigenvalues of compressions.

Theorem 6 ([10]). Let m ≥ n and µ1 ≥ . . . ≥ µn, λ1 ≥ . . . ≥ λm be n+m real numbers.
There exists an Hermitian matrix H ∈ Mm(C) with eigenvalues (λi)

m
i=1 and a coisometry

U ∈ Mn,m(C) such that UHU∗ has eigenvalues (µi)
n
i=1 if and only if

λi ≥ µi, λm−n+i ≤ µi, 1 ≤ i ≤ n. (6)

In particular, given a positive semidefinite matrix A ∈ Mm(C) with eigenvalues λ1 ≥
. . . ≥ λm ≥ 0, there exists a rank-n orthogonal projection P ∈ Mm(C) such that the first
n eigenvalues of PAP are µ1 ≥ . . . ≥ µn if and only if the inequalities in (6) - the so-called
Fan-Pall inequalities - hold.

Theorem 7. Let F = {fi}
m
i=1 be a frame for C

n with synthesis operator F . Denote by
λ = (λi)

m
i=1 the eigenvalues of the Gramian F ∗F ∈ Mm(C) counting multiplicities and

arranged in a non-increasing order. Consider the positive numbers (dj)
n
j=1 defined for

1 ≤ j ≤ n

dj =







λm−n+j if λm−n+j ≥ 1 ;
1 if λm−n+j < 1 ≤ λj ;
λj if λj < 1 .

(7)

In this case we have that:

1. There exists a Parseval frame X = {xi}
m
i=1 for C

n with synthesis operator X such

that FX∗ is positive semidefinite with eigenvalues (d
1/2
j )nj=1.

2. For every u.i.n. ||| · ||| and every Parseval frame Y = {yi}
m
i=1 with synthesis operator

Y we have that
|||FX∗ − I ||| ≤ |||FY ∗ − I ||| . (8)

3. If we let Φ : Rn → R≥0 denote the symmetric gauge function associated with ||| · |||
then

α|||·|||(F) = Φ((1− d
1/2
j )nj=1) . (9)
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Proof. By Theorem 6 it is clear that there exists an n-dimensional subspace S ⊆ C
m such

that the first n eigenvalues of the compression PS(F
∗F )PS ∈ Mm(C) are given by the

sequence of positive numbers (dj)
n
j=1 arranged in non-increasing order. Notice that in

this case FPSF
∗ = |PSF

∗|2 ∈ Mn(C) is an invertible operator with eigenvalues (dj)
n
j=1

(arranged in non-increasing order).
Consider the polar decomposition PSF

∗ = V |PS F ∗|. Then, it is well known that
V ∗PSF

∗ = |PSF
∗| and hence FX∗ = |PSF

∗|, where X = V ∗PS ∈ Mn,m(C) is such that
XX∗ = I. Hence, if we let {ei}

m
i=1 denote the canonical basis for C

m and set X = {Xei}
m
i=1,

then X has the desired properties.
Let Y = {yi}

m
i=1 be a Parseval frame with synthesis operator Y . Notice that Lemma

by 4 (see also Remark 5) we can assume that

|||FY ∗ − I ||| = ||| |FY ∗| − I ||| , (10)

otherwise, we replace Y with a Parseval frame Ỹ with R(Ỹ ∗) = R(Y ∗) and such that

|||FY ∗ − I||| ≥ |||F (Ỹ )∗ − I||| = ||| |F (Ỹ )∗| − I ||| .

Since Y is a Parseval frame then the eigenvalues (cj)
n
j=1 of |FY ∗| ∈ Mn(C) correspond to

the square roots of the first n eigenvalues of the compression PR(Y ∗)(F
∗F )PR(Y ∗) ∈ Mm(C),

for which the Fan-Pall inequalities in Theorem 6 apply. In this case it is straightforward
to check that

|1− d
1/2
j | ≤ |1− c

1/2
j | , 1 ≤ j ≤ n .

The singular values s(FX∗ − I) ∈ R
n (respectively s(|FY ∗| − I) ∈ R

n) are (|1− d
1/2
j |)nj=1

arranged in non-increasing order (respectively, (|1 − c
1/2
j |)nj=1 arranged in non-increasing

order). Therefore, since Φ is monotone - because it is gauge invariant (see [3])- we obtain
equations (8) and (9).

Corollary 8. With the notations of Theorem 7

X|||·|||(F) := {X = {xi}
m
i=1 : Φ((sj(FX∗−I))nj=1) = Φ((sj(FX∗)−1)nj=1) = Φ((1−d

1/2
j )nj=1)} .

Notice further that the singular values (sj(FX∗))nj=1 correspond to the square roots of the
first n entries of the vector λ(PS(F

∗F )PS) ∈ R
m, where S = R(X∗).

Example 9. Let 1 ≤ p ≤ ∞ and consider the norm ‖ · ‖p on Mn(C) i.e., if T ∈ Mn(C)
then

‖T‖p =

(

n
∑

i=1

si(T )
p

)1/p

1 ≤ p < ∞ and ‖T‖∞ = ‖T‖ .

Then ‖ · ‖p is a unitarily invariant norm on Mn(C). Let F = {fi}
m
i=1 be a frame for C

n

and let (dj)
n
j=1 be the sequence defined in Theorem 7. If we denote by αp(F) = α‖·‖p(F)

then by Corollary 8 we get that

αp(F) =















(

∑n
i=1 |1− d

1/2
j |p

)1/p
if 1 ≤ p < ∞ ;

max
{

1− λ
1/2
n , λ

1/2
m−n+1 − 1, 0

}

if p = ∞ .

Remark 10. Define 1 ≤ r ≤ n as the biggest integer such that λr ≥ 1, if λ1 < 1 we set
r = 0. A closer look at the definition of the optimal set of singular values (dj)

n
j=1 given in

(7) shows that the nonzero values of (|1− d
1/2
j |)nj=1 are the nonzero values of

{

(1− λ
1/2
j )j≥r+1 if r ≤ m− n+ 1 and r < n;

(|λ
1/2
j − 1|)j≥m−n+1 if r > m− n+ 1,

(11)
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If r = n and m− n+ 1 > n, we have that dj = 1 for 1 ≤ j ≤ n.

4 Parseval quasi-dual frames: infinite frames

In this section we shall focus on infinite frames F := {fi}i∈N for a separable and infinite
dimensional Hilbert space H. In this case F will denote the synthesis operator of F . In
what follows we denote

α(F) := inf{‖FX∗ − I‖ : XX∗ = IH} ,

where ‖ ·‖ is the operator norm on B(H). As explained before, α(F) is the optimal bound
for the worst case reconstruction error in terms of a blind reconstruction algorithm based
on Parseval frames. Moreover, in case that α(F) is attained, we are interested in the set
of Parseval quasi-dual frames:

X(F) := {X : XX∗ = I , α(F) = ‖FX∗ − I‖} .

4.1 Frames with infinite excess

It is clear from Theorem 1 that α(F) = 0 if and only if AF ≥ 1 andR(SF − I) ≤ dimN(F ).
In particular, for frames with infinite excess, α(F) = 0 if and only if AF ≥ 1. The following
result provides upper and lower bounds for α(F) if F does not have a Parseval dual, i.e.
α(F) > 0.

Theorem 11. Let F = {fi}i∈N be a frame in H with optimal lower frame bound AF and
synthesis operator F . Assume that at least one of the following conditions holds:

1. AF < 1 ;

2. AF > 1 and dimN(F ) < dimH .

Then
|1−A

1/2
F | ≤ α(F) ≤ ‖S

1/2
F − I‖ = max{1−A

1/2
F , B

1/2
F − 1}.

Proof. Let F = S
1/2
F W be the (right) polar decomposition of F ; then WW ∗ = I and

W ∗W = PN(F )⊥ . Hence,

α(F) ≤ ‖FW ∗ − I‖ = ‖S
1/2
F − I‖.

Suppose that AF < 1 and that there exists a coisometry Y such that

‖FY ∗ − I‖ ≤ r < 1−A
1/2
F .

Then, since r < 1, FY ∗ is invertible in B(H) and its inverse G = (FY ∗)−1 satisfies ‖G‖ ≤
1

1−r < A
−1/2
F . Since (GF )Y ∗ = I, the optimal lower frame bound Â of {Gfi}i∈N is Â ≥ 1,

by Theorem 1. Now, by Eq. (3) we have that Â ≤ ‖G‖2AF so then 1 ≤ Â ≤ ‖G‖2AF < 1,
which is a contradiction.

Now consider the case AF > 1 and dimN(F ) < dimH. As in the previous case,

suppose that there exists a coisometry X such that ‖FX∗ − I‖ < A
1/2
F − 1.

‖FX∗‖ − 1 ≤ ‖FX∗ − I‖ < A
1/2
F − 1 ⇒ ‖FX∗‖ < A

1/2
F .

We claim that there exists a sequence {zn}n∈N of unit norm vectors in R(X∗) such that
‖PN(F )zn‖ < 1

n . Indeed, let P = PN(F ) and assume that there exists δ > 0 such that
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‖Px‖ ≥ δ ‖x‖ for every x ∈ R(X∗). Then, P |R(X∗) : R(X∗) → N(F ) is an injective and
closed range operator; hence dimN(F ) ≥ dimR(X∗) = dim(H) which is a contradiction,
so the claim is proved.

Consider now xn = Xzn, so that ‖xn‖ = 1 and X∗xn = zn for n ∈ N, where {zn}n∈N
is as above. Then, by Equation (3) we get that

A
1/2
F

(

1−
1

n

)

≤ A
1/2
F ‖(I−P )zn‖ ≤ ‖F (I−P )zn‖ = ‖Fzn‖ = ‖FX∗xn‖ ≤ ‖FX∗‖ < A

1/2
F

for n ∈ N, which implies that A
1/2
F ≤ ‖FX∗‖ < A

1/2
F . Hence α(F) ≥ A

1/2
F − 1 in this

case.

Proposition 12. Let F = {fi}i∈N be a frame in H with synthesis operator F and optimal
frame bounds 0 < AF ≤ BF such that AF < 1. Assume that some of the following
conditions holds:

1. dimR(SF −AF I) ≤ dimN(F ) ;

2. A
1/2
F +B

1/2
F ≤ 2 .

Then α(F) = 1−A
1/2
F and in each case the infimum is attained.

Proof. Notice that by assumption AF < 1 and hence, by Theorem 11, we get that α(F) ≥

1−A
1/2
F .

Suppose that dimR(SF −AF I) ≤ dimN(F ). Let T be the synthesis operator of

{A
−1/2
F fi}i∈N, i.e. , T = A

−1/2
F F . Notice that TT ∗ = A−1

F SF ≥ I. Moreover,

dimR(TT ∗ − I) = dimR(SF −AF I) ≤ dimN(F ) = dimN(T ).

Then, by Theorem 1 there exist a coisometry Y such that TY ∗ = A
−1/2
F FY ∗ = I so

then
‖FY ∗ − I‖ = ‖A

1/2
F I − I‖ = 1−A

1/2
F ⇒ α(F) = 1−A

1/2
F .

Now, suppose that A
1/2
F +B

1/2
F ≤ 2, then ‖S

1/2
F −I‖ = max{1−A

1/2
F , B

1/2
F −1} = 1−A

1/2
F

and the result follows by Theorem 11.

The previous results show that the following conclusions hold in case the frame F
satisfies that dimN(F ) = ∞.

Theorem 13. Let F be a frame for H with optimal lower frame bound AF > 0 and
synthesis operator F . If dimN(F ) = ∞, then:

1. α(F ) = 1−min{A
1/2
F , 1}.

2. The optimal lower bound α(F ) is attained.

3. If X ∈ X(F) then FX∗ is an invertible operator in B(H).

4. Moreover, we can choose X ∈ X(F) such that FX∗ = min{A
1/2
F , 1} I.

Proof. If AF ≥ 1, all items are consequences of the existence of a Parseval dual for F ,
since the conditions in item 2 of Theorem 1 are clearly satisfied in this case.

If AF < 1, then, by Proposition 12 α(F) = 1 − A
1/2
F and X(F) 6= ∅. Moreover,

since ‖FX∗ − I‖ = α(F) < 1 for every X ∈ X(F), we deduce that FX∗ is invertible in
B(H). Finally, in the proof of Proposition 12 we see that there exists X ∈ X(F) such that

FX∗ = A
1/2
F I.

9



Remark 14. Let F be a frame for H with optimal lower frame bound AF and synthesis
operator F . Assume further that dimN(F ) = ∞. Then, according to Theorem 13 there
exists a Parseval frame X = {xj}j∈N for H such that ‖FX∗ − I‖ = α(F) and FX∗ =
(1−α(F)) I. As a consequence of the previous facts we can obtain a perfect reconstruction
algorithm derived from the pair (F ,X ), namely

f = β(F)
∑

j∈N

〈f, fj〉 xj = β(F)
∑

j∈N

〈f, fj〉 xj , f ∈ H ,

where β(F) = (1 − α(F))−1 = max{A
−1/2
F , 1}. That is, in this case the tight frame

β(F) · X = {β(F)xj}j∈N is a dual frame for F with frame bound β(F). The properties of
α(F) ensure that β(F) ≥ 1 is the smallest constant for which there exists a tight frame Y
for H with frame bound β and which is a dual frame for F .

4.2 Frames with finite excess.

We are left to compute the value of α(F) in case that F is a frame forH with dim(N(F )) <
∞. In order to do that, we shall relate this problem with the computation of the distance of
a bounded operator to the group of unitary operators acting on a suitable closed subspace
of ℓ2 = ℓ2(N).

Indeed, let M be an infinite dimensional closed subspace of ℓ2 and consider a coisom-
etry Y ∈ B(ℓ2,H) such that Y ∗Y = PM. Then

‖FY ∗ − I‖ = ‖(FPM − Y )Y ∗‖ = ‖FPM − Y ‖ . (12)

Consider a fixed Y as above and let X be any other coisometry such that X∗X = PM.
Then

‖FX∗ − I‖ = ‖FPM −X‖ = ‖Y ∗(FPM −X)‖ = ‖Y ∗FPM − Y ∗X‖.

Notice that M is an invariant subspace for both Y ∗F and Y ∗X; moreover, if we consider
the restrictions of these operators to M we get

‖Y ∗FPM − Y ∗X‖ = ‖(Y ∗FPM − Y ∗X)|M‖ = ‖(Y ∗F )|M − (Y ∗X)|M‖

where (Y ∗F )|M ∈ B(M) is fixed and (Y ∗X)|M ∈ U(M) is a unitary operator acting on
M. From the previous remarks we see that

inf{‖FX∗ − I‖ : X∗X = PM, XX∗ = IH} = dU(M)((Y
∗F )|M). (13)

where dU(M)((Y
∗F )|M) stands for the distance between the unitary group U(M) of B(M)

and the operator (Y ∗F )|M.
These remarks show that there is a connection with our problem and the problem

of computing the distance between an operator and the group of unitary operators in a
Hilbert space. Since this is a rather technical matter, the proofs of the results related with
this topic - which are based on [25] - will be presented in an Appendix.

In what follows we introduce some notions in terms of which we can give a complete
description of the solution of our problem. These notions will play an important role in
the proofs of the results developed in the Appendix.

Given an arbitrary operator T ∈ B(H), we denote by m(T ) = inf{‖Tx‖, ‖x‖ =
1} = minσ(|T |). In addition, if σe(T ) denotes the essential spectrum of T , let me(T ) =
minσe(|T |) and ‖T‖e = maxσe(|T |). Moreover, for n ∈ N let

un(T ) = sup{minσ(|T |M) : dim(M) = n}

In this way we obtain the non-increasing sequence of non-negative real numbers (un(T ))n∈N.

10



Theorem 15. Let F = {fi}i∈N be a frame for H with synthesis operator F and optimal
lower frame bound AF . Suppose that dim(N(F )) = n and let CF = un+1(F ). Then,

α(F) = min{max{CF − 1, 1−A
1/2
F }, 1 +me(F )}

Proof. See the Appendix.

Recall that the Fredholm index of T is defined as ind(T ) = dimN(T )− dimN(T ∗) if
at least one of these numbers is finite (for a detailed account on the theory of Fredholm
index see [7]).

Remark 16. With the notations of Theorem 15 above, it turns out that (see the proof of
Theorem 15 in the Appendix) there always exists a infinite dimensional closed subspace
M such that, given a coisometry Y with R(Y ∗) = M, then

α(F) = dU(M)((Y
∗F )M).

Consequently, the existence of Parseval quasi-dual frames is subject to the existence of
unitary approximants of (Y ∗F )M. Indeed, if U ∈ U(M) is an approximant of (Y ∗F )M,
then, let Û ∈ U(H) be such that Û = U ⊕U ′ where U ′ ∈ U(M⊥). In such case it is readily
seen that X = Y Û ∈ X(F).

By [25, Theorem 1.4], if ind(Y ∗FP ) = 0 (e.g., if α(F) < 1), there are unitary approx-
imants for (Y ∗F )M. In particular, X(F) is not empty.

Denote by E(·) the spectral measure of |F |. If ind(Y ∗FP ) 6= 0 (which implies α(F) =
me(F )+1) and E([0,me(F ))) is an orthogonal projection of infinite rank or if me(F ) is a
cluster point of eigenvalues of |F |, then the existence of unitary approximants and hence
Parseval quasi-dual frames is ensured by [25, Theorem 1.4, (iii)].

Remark 17. Let F be a frame for H that admits Parseval quasi-dual frames, i.e. such
that X(F) 6= ∅. In this case, it seems interesting to search for optimal Parseval quasi-dual
frames X ∈ X(F), i.e. such that

‖F −X‖ = inf{‖F − Y ‖ : Y ∈ X(F)} .

In case α(F) = 0 then, for every X ∈ X(F) we have that

(F −X)(F −X∗) = SF − FX∗ −XF ∗ +XX∗ = SF − I .

Thus, ‖F −X‖ = ‖SF − I‖1/2 and every Parseval quasi-dual frame X ∈ X(F) is optimal.
If α(F) > 0 then it is no longer true that ‖F − Y ‖ is constant for Y ∈ X(F). Indeed,

suppose that F is such that dimR(SF −AF I) ≤ dimN(F ) and A
1/2
F + B

1/2
F ≤ 2. Then,

by the proof of Proposition 12, there is a coisometry Y such that FY ∗ = A
1/2
F I and

‖FY ∗ − I‖ = 1−A
1/2
F = α(F). Then,

(F − Y )(F − Y )∗ = SF + (1− 2A
1/2
F )I,

which implies that ‖F − Y ‖ = (BF + 1 − 2A
1/2
F )1/2. On the other hand, the proof of

Proposition 12 also shows that the coisometry W of the polar decomposition of F also

satisfies ‖FW ∗− I‖ = α(F). But it is easy to see that ‖F −W‖ = 1−A
1/2
F which is equal

to BF + 1− 2A
1/2
F only if BF = AF .
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5 Appendix

In this section we revise some facts related with unitary approximations of bounded oper-
ators in Hilbert spaces and we present the proof of Theorem 15. Throughout this section
F denotes a frame with finite excess for an infinite dimensional Hilbert space H. So that,
if F ∈ B(ℓ2,H) denotes the frame operator of F , dim(N(F )) < ∞.

Recall that given T ∈ B(H), then m(T ) = inf{‖Tx‖, ‖x‖ = 1} = minσ(|T |), σe(T )
denotes the essential spectrum of T , me(T ) = minσe(|T |) and ‖T‖e = maxσe(|T |).

We begin by recalling one of the main results from [25].

Theorem 18 (Theorem 1.3 in [25]). Let T ∈ B(H), then,

dU(H)(T ) := inf
U∈U(H)

‖T − U‖ =

{

max{‖T‖ − 1, 1−m(T )} if ind(T ) = 0

max{‖T‖ − 1, 1 +me(T )} if ind(T ) < 0.

(the case ind(T > 0) follows using T ∗).

Let M be an infinite dimensional closed subspace of ℓ2 and consider a coisometry
Y ∈ B(ℓ2,H) such that Y ∗Y = PM. Recall that our interest in the unitary approximation
problem is motivated by Eq. (13). Hence, in order to apply Theorem 18 to the operator
(Y ∗F )|M ∈ B(M), we need to relate the Fredholm index of this operator to that of
F (which is finite, since we are assuming that F is surjective and that N(F ) has finite
dimension). In order to describe such a relation we introduce the following notation:
given T ∈ B(H) and M ⊆ H a closed subspace then TM = PMT |M ∈ B(M) denotes the
compression of T to M.

Lemma 19. Let T ∈ B(H).

1. Let M ⊆ H be a closed subspace with dimM⊥ < ∞. If ind(T ) ∈ Z then ind(TM) =
ind(T ).

2. If T is a closed range operator with ind(T ) = −∞, then ind(TR(T )) = −∞.

Proof. 1. Let P be the orthogonal projection onto M and let m = dimN(P ) = dimM⊥ <

∞. Notice that dimN(TM) = dimN(PTP ) −m and dimN(T ∗
M) = dimN(PT ∗P ) −m

so that ind(PTP ) = ind(TM). Moreover, T = PTP +PT (I−P )+ (I−P )T = PTP +K,
where K is a finite rank operator. Then, ind(T ) = ind(PTP ) = ind(TM).

2. Suppose now that T is a semi-Fredholm operator with ind(T ) = −∞. Let M =
R(T ), N = N(T ) and notice that by hypothesis dimM⊥ = dimN(T ∗) = ∞, dimN < ∞.
This last fact shows that dimM = ∞.

In this case we have that N(TM) = N∩M, and dimN(TM
∗) = dimN⊥∩M⊥; indeed,

the first identity easily follows from the definition of TM. For the second identity, notice
that TM

∗ = PM T ∗|M and N(T ∗
M) ⊆ M = N(T ∗)⊥; hence T ∗|N(TM

∗) : N(TM
∗) →

R(T ∗) ∩ M⊥ = N⊥ ∩ M⊥ is a linear isomorphism i.e. a linear transformation with
bounded inverse.

Let X, Y ∈ B(H) be coisometries with initial space M and N⊥ respectively. Hence,
ind(X) = dimM⊥ = ∞ and ind(Y ) = dimN . Then, by the additivity property of the
index for (left) semi-Fredholm operators, ind(Y X∗) = ind(Y ) + ind(X∗) = −∞. On
the other hand, arguing as before it is easy to see that dimN(XY ∗) = dimM ∩N and
dimN(Y X∗) = dimM⊥∩N⊥. Hence, ind(TM) = dimM∩N−dimM⊥∩N⊥ = −∞.

Given T ∈ B(H), a useful way to compute me(T ) and ‖T‖e is by using the maps

Uk(T ) = sup
E∈P(H), trE≤k

tr(|T |E) and Lk(T ) = inf
E∈P(H), trE≤k

tr(|T |E) ,
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where P(H) denotes the set of orthogonal projections in B(H) and tr(·) denotes the usual
(semifinite) trace in B(H). Indeed, by [2, Prop. 3.5] we have that

me(T ) = lim
k→∞

Lk(T )

k
and ‖T‖e = lim

k→∞

Uk(T )

k
. (14)

On the other hand, for n ∈ N we let

un(T ) = sup{minσ(|T |M) : dim(M) = n} and ln(T ) = inf{max σ(|T |M) : dim(M) = n}.

In this way we obtain the non-increasing sequence (un(T ))n∈N and the non-decreasing
sequence (ln(T ))n∈N. Denote by E(·) the spectral measure of |T |. Then, it is easy to see
that un = ‖T‖e if the range of the projection E((‖T‖e, ‖T‖]) is a subspace of dimension k <

n. Otherwise un = λn if λ = (λi)
m
i=1 are the eigenvalues (counting multiplicity) arranged

in a decreasing order of the finite rank operator E(I)|T |E(I), where I ⊂ (‖T‖e, ‖T‖] is
any interval such that n < rk(E(I)) = m < ∞. There is an obvious analogue for ln using
the eigenvalues of |T | strictly smaller than me(T ).

Proposition 20. Let T be a positive operator with dim(N(T )) = n and let M ⊆ H be a
closed subspace with dimM = ∞. Let un+1 = un+1(T ) and ln+1 = ln+1(T ). Then,

1. me(T ) ≤ me(TM).

2. If we assume further that dimM⊥ = n then m(TM) ≤ ln+1 ≤ un+1 ≤ ‖TM‖.

Moreover, for every ε > 0 there exist infinite dimensional closed subspaces Nε and M
such that dim(M⊥) = n and

3. m(TM) = ln+1 and ‖TM‖ = un+1.

4. me(TNε
) = me(T ) and ‖TNε

‖ ≤ me(T ) + ε.

Proof. Let P be the orthogonal projection onto M. Then, by Eq. (14) we get that

me(TM) = lim
k→∞

1

k
inf{tr(TME) : E ∈ P(M), tr(E) ≤ k}

= lim
k→∞

1

k
inf{tr(TE) : E ∈ P(H), tr(E) ≤ k, R(E) ⊂ M}

≥ lim
k→∞

1

k
inf{tr(TE) : E ∈ P(H) tr(E) ≤ k} = me(T ) .

Assume further that dimM⊥ = n. Given ε > 0, let Sε be a n + 1-dimensional
subspace of H such that minσ(TSε

) > un+1 − ε. We claim that Sε ∩M 6= {0}: indeed, if
Sε ∩ M = {0} then PM⊥ |Sε

: Sε → M⊥ is an injection, which contradicts the fact that
dimSε > dimM⊥. Therefore, if x ∈ Sε ∩M with ‖x‖ = 1 then

〈TMx , x〉 = 〈Tx , x〉 = 〈TSε
x , x〉 ≥ un+1 − ε .

Since ε was arbitrary, we see that ‖TM‖ ≥ un+1. The proof for the lower bound is similar.
In order to finish the proof, we exhibit the subspaces Mε and Nε as above. If ‖T‖ =

‖T‖e we just take Mε = N(T )⊥ and we are done. In case that ‖T‖ > ‖T‖e, define
r = dimR(E ((‖T‖e, ‖T‖]) and let k = min{n, r}. Notice that in this case, u1 ≥ · · · ≥ uk
are eigenvalues of T . Denote by S = N(T ) ⊕ E , where E is the k-dimensional subspace
generated by eigenvectors associated to u1, . . . , uk. Notice that ‖TS⊥‖ = uk+1 and that
the n+ k eigenvalues of TS (counting multiplicities and arranged in non-increasing order)
are u1, . . . , uk, 0, . . . , 0. Therefore, by Theorem 6 there exists a k-dimensional subspace of
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S, denoted by T such that PT TPT = uk+1PT . Thus, if we define M = S⊥ ⊕T we obtain
a subspace with dimM⊥ = n and such that ‖TM‖ = uk+1. Therefore, if n < r (and hence
k = n) we see that ‖TM‖ = uk+1 = un+1; otherwise n ≥ r (so that k = r) and hence
‖TM‖ = ur+1 = ‖T‖e = un+1.

Finally, if Q = E((me(T ) − ε,me(T ) + ε)) then Q is a orthogonal projection with
infinite dimensional range Nε = R(Q) and me(TNε

) = me(T ), ‖TNε
‖ ≤ me(T ) + ε.

Next we present the proof of the main result of Section 4.2. Recall that the Fredholm
index of T is defined as ind(T ) = dimN(T )− dimN(T ∗) if at least one of these numbers
is finite.

of Theorem 15. Let Y ∈ B(ℓ2,H) be a fixed coisometry with initial space M ⊂ ℓ2 i.e.
Y Y ∗ = IH and Y ∗Y = PM, where PM denotes the orthogonal projection onto M. Then,
as explained at the beginning of Section 4.2 (see Eq. (13))

inf{‖FX∗ − I‖ : X∗X = PM, XX∗ = IH} = dU(M)((Y
∗F )M).

Therefore, we have that

α(F) = inf{dU(M)((Y
∗F )M) : Y Y ∗ = IH , Y ∗Y = PM} . (15)

Notice that N((Y ∗F )M) = N(F )∩M and that dimN((Y ∗F )∗M) = dimR(F ∗)∩M⊥. In
particular, dimN((Y ∗F )M) ≤ n and therefore ind((Y ∗F )M) ≤ n and it is well defined.

Now, we claim that ind((Y ∗F )M) = 0 if and only if dim(M⊥) = n. Indeed, if we
assume that dim(M⊥) = ∞, then R(Y ∗F ) = M and ind(Y ∗F ) = −∞; hence, by Lemma
19 we see that ind((Y ∗F )M) = −∞ in this case. On the other hand, if dimM⊥ = m then,
by Lemma 19 and the additivity of the Fredholm index for (left) semi-Fredholm operators,
ind((Y ∗F )M) = ind(Y ∗F ) = ind(Y ∗) + ind(F ) = n−m.

Hence, if we take M ⊆ ℓ2 such that dim(M⊥) = n then the previous facts together
with Theorem 18 imply that

dU(M)((Y
∗F )M) = max{‖ |F |M‖ − 1 , 1−m( |F |M)}

since |(Y ∗F )M|2 = (|F |2)M so that ‖ |(Y ∗F )M| ‖ = ‖|F |M‖ andm(|(Y ∗F )M|) = m(|F |M).
Moreover, using the fact that ln+1(|F |) = AF and CF = un+1(|F |), then items 1. and 3.
in Proposition 20 show that

inf{dU(M)((Y
∗F )M) : Y Y ∗ = IH , Y ∗Y = PM , ind((Y ∗F )M) = 0} = max{1−A

1/2
F , CF−1}.

(16)
On the other hand, if dim(M⊥) 6= n, then ind((Y ∗F )M) 6= 0. Thus, by Theorem 18 and
Proposition 20 we conclude that

inf{dU(M)((Y
∗F )M) : Y Y ∗ = IH , Y ∗Y = M , ind((Y ∗F )M) < 0} = 1 +me(F ) . (17)

Finally, if we assume that ind((Y ∗F )M) > 0 then, as shown above, dimM⊥ = m < n <

∞. Thus |(Y ∗F )∗M|2 = Y ∗(F PMF ∗)Y |M and hence, since Y is a coisometry with initial
space M, we see that me((Y

∗F )∗M) = me(F PM F ∗)1/2. Now, notice that dimN(F ) < ∞
implies that me(FF ∗) = me(F

∗F ) (e.g. [2, Proposition 4.5] shows that (FF ∗ ⊕ 0n) and
F ∗F are unitarily equivalent, where 0n is the zero operator acting on an n-dimensional
Hilbert space). Then,

me((Y
∗F )∗M) = me(F PM F ∗)1/2 = me(FF ∗)1/2 = me(F

∗F )1/2 = me(F ) ,

14



since FF ∗ = F PM F ∗ + F PM⊥ F ∗ and F PM⊥ F ∗ is a finite rank operator. Thus, by
Theorem 18 we get that

inf{dU(M)((Y
∗F )M) : Y Y ∗ = IH , Y ∗Y = M , ind((Y ∗F )M) > 0} ≥ 1 +me(F ) . (18)

The result follows by combining Eqs. (15), (16), (17) and (18).
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