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Hoffmann-Infeld Black Hole Solutions in Lovelock Gravity
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Five-dimensional black holes are studied in Lovelock gravity coupled to Hoffmann-Infeld non-
linear electrodynamics. It is shown that some of these solutions present a double peak behavior
of the temperature as a function of the horizon radius. This feature suggests that the evaporation
process, though drastic for a period, leads to an eternal black hole remnant. In fact, the form of
the caloric curve corresponds to the existence of a plateau in the evaporation rate, which implies
that black holes of intermediate scales turn out to be unstable. The geometrical aspects, such as
the absence of conical singularity, the structure of horizons, etc. are also discussed. In particular,
solutions that are asymptotically AdS arise for special choices of the parameters, corresponding to
charged solutions of five-dimensional Chern-Simons gravity.

I. INTRODUCTION

In this note we discuss the possibility of finding a class
of black hole for which the behavior of the temperature
as a function of the horizon radius presents a double peak

form. Typically, this particular behavior leads to the
presence of a plateau in the evaporation rate, implying
a drastic evaporation for those black holes having sizes
which are bounded between the two scales where the
peaks are located. We show that these black holes ac-
tually appear as solutions of Lovelock theory of gravity
coupled to a particular non-linear electrodynamics. The
existence of such a phase behavior is due to the fact that
the two models considered here (namely Lovelock theory
and Hoffman-Infeld theory) represent short distance cor-
rections to both general relativity and Maxwell electro-
dynamics respectively and, consequently, two peaks arise
if the scale induced by both corrections do not coincide
(scale splitting).

Specifically, we study five-dimensional solutions rep-
resenting charged black holes in Hoffmann-Infeld elec-
trodynamics within the framework of Lovelock theory of
gravity. Currently, in a particular context, the study of
the combined problem of considering certain models of
non-linear (Born-Infeld like) electrodynamics and higher
order gravitational theories acquires importance due to
the role that these theories play in low energy string in-
spired models. Originally, Hoffmann-Infeld model was
proposed to avoid certain pathological features that Born-
Infeld field theory presents when spherically symmetric
static solutions are considered, as the conical singulari-
ties that BIons present at the origin. Actually, the mod-
ification of Born-Infeld theory presented in Ref. [1] has
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been shown to lead to spherically symmetric particle-like
objects whose associated metric is regular everywhere,
so avoiding the conical singularity of the Einstein-Born-
Infeld case previously studied in Ref. [2]. Nevertheless,
the black hole solutions in Einstein-Hoffmann-Infeld field
theory are still singular since the curvature diverges at
the origin.

The explicit form of Hoffmann-Infeld action is pre-
sented in Ref. [1]. This can be written as follows

SHI = −b2

4

∫

d5x
√
−g (1 − η(F ) − log η(F ))

with

η(F ) =
b−2FµνFµν

√

1 + 2b−2FµνFµν − 1
(1)

and where b represents a characteristic field, analogue
to that appearing in Born-Infeld theory. Actually,
Hoffmann-Infeld model corresponds to logarithmic modi-
fications to a non-linear Born-Infeld-like Lagrangian, and
was originally designed in such a way that certain regu-

larity conditions hold for both gravitational and electric
fields when particle-like solutions are considered. In the
case of the gravitational field, the regularity condition
comes from the choice of an integration constant that
amounts to state the identity between gravitational and
electromagnetic mass.

On the other hand, the short distance corrections car-
ried by higher order theories, as Lovelock theory of grav-
ity, automatically held the divergences associated with
the Newtonian term [3]. Hence, the finitness of the
gravitational field at the origin is guaranteed ab initio.
This means that the identification between electromag-
netic and gravitational mass in Lovelock gravity does not
come from imposing the requirement for the metric of the
spacetime to be finite but by adding the requirement that
no conical singularity should exist there [4].

In the following section, we describe the charged black
hole solutions in five-dimensional Lovelock gravity cou-
pled to Hoffmann-Infeld non-linear electrodynamics. In
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section 3, we study the thermodynamics of this solution,
with particular interest focused on the evaporation phe-
nomenon.

II. CHARGED BLACK HOLE SOLUTIONS

The most general five-dimensional gravity action that
depends on the metric and its derivatives up to the sec-
ond order and, besides, leads to conserved field equa-
tions is the Lovelock gravitational action. This is given
by supplementing Einstein-Hilbert action with Gauss-
Bonnet terms. In lower dimensional models (D < 5)
these terms represent topological invariants and, hence,
Lovelock gravity turns out to coincide with general rela-
tivity. In five dimensions the action is

S =
1

16π

∫

d5x
√
−g (R − 2Λ + α(RµνρσRµνρσ+

+R2 − 4RµνRµν)
)

+ SHI

where α is the Gauss-Bonnet coupling constant, which
defines a length scale. Actually, this theory introduces
short distance corrections to general relativity, implying
the existence of a scale lα =

√
4α where such corrections

turn out to be relevant.
The gravitational equations of motion resulting from

δS = 0 are

8πTµν = Rµν − 1

2
Rgµν + Λgµν

−α

(

1

2
gµν(RρδγλRρδγλ − 4RρδR

ρδ + R2) −

−2RRµν + 4RµρR
ρ
ν + 4RρδR

ρδ
µν − 2RµρδγR ρδγ

ν

)

where Tµν is the stress-tensor representing the matter-

field distribution coming from the variation δSHI/δgµν .
Here, we are interested in static spherically symmetric

solutions satisfying the following ansatz

ds2 = −gα(r)dt2 + g−1
α (r)dr2 + r2dθ2 +

+r2sin2θdχ2 + r2 sin2θ sin2χ dϕ2

which, once replaced in the field equations, yields

− 3

r3

d

dr

(

r2(1 − gα(r)) + 2α(1 − gα(r))2
)

+ 2Λ = 16πT 0
0

(2)
Then, it is straightforward to prove that the following
functional relation holds

gα(r) − g0(r) =
2α

r2
(1 − gα(r))2 (3)

being g0(r) a spherically symmetric solution of the field
equations with α = 0, which is simply determined by
solving Einstein equations in five dimensions. The mean-
ing of equation (3) can be intuitively understood by the

following heuristic argument: let us consider the gravi-
tational potential φα(r) defined as gα(r) = 1 − 2φα(r);
then, according to the relation above, the potential can

be written as φα(r) = φ0(r) +
mg(r)

r2 where the mass mg

is due to the gravitational potential itself and given by
mg = −(lαφα(r))2.

Besides, when the total energy of the source is finite,
g0 can be written as

g0(r) = 1 +
16π

3r2

∫ r

0

ds s3 T 0
0(s) −

Λ

6
r2 (4)

This solution amounts the choice of a null integration
constant in (2) (a possible term k/r2 has been removed
in (4)), and implies the identification of gravitational and
electromagnetic masses. The finitness of the total energy
guarantees the Newtonian behavior at the infinity.

The non-linear electrodynamics with finite total en-
ergy are characterized by a field scale b defining the typ-
ical length scale lb = (e/b)1/3, where e is the charge of
the object. We will consider the electromagnetic stress-
tensor for a particle-like source as having the generic form

T 0
0 (r) = − b2

4πr3
hb(r) (5)

In the case of Hoffmann-Infeld model, the function hb(r)
is given by

hb(r) =
1

2
r3 log(1 + l6br

−6) , (6)

which corresponds to a charged particle-like source with
electric field E(r) = e/(r3+l6br

−3). On the other hand, in
the case of the Born-Infeld model the function is hb(r) =
√

r6 + l6b − r3. Moreover, in the generic case [23] we will
demand the following finitness conditions:

lim
r→0

1

r2

∫ r

0

ds hb(s) = δ < ∞ ,

∫ ∞

0

ds hb(s) = γ < ∞
(7)

Notice that, in the case of Hoffmann-Infeld model one

finds γ =
πl4b
4
√

3
. The first condition in (7) is the require-

ment for the metric to be finite when a particle-like solu-
tion is considered as the source of Einstein gravity theory.
On the other hand, the second condition means that the
total energy of the particle turns out to be finite. The
Born-Infeld charge fulfills both requirements (Hoffmann
studied a Born-Infeld charged black hole in four dimen-
sions, in the context of Einstein gravity [2]). However
the Born-Infeld charge yields δ 6= 0, which means that
a conical singularity remains in the metric. Hoffmann
and Infeld removed the conical singularity by modifying
the Born-Infeld electrodynamics in order to obtain δ = 0
[1]. However, also Lovelock gravity remove the conical
singularity, as it can be seen in the relation (3). In fact,
it results

gα(r) = 1 +
r2

l2α
+ ǫ

r2

l2α

√

1 +
8b2l2α
3r4

∫ r

0

ds hb(s) +
l2α
l2Λ

(8)
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where ǫ = ±1 and l2Λ = 3/Λ. Thus, we find that
lim
r→0

gα(r) = 1 for any finite δ. Note that this is a charged

Deser-Boulware [3] black hole. Solution (8) presents an
external horizon located at r = r+, with

l2α + r2
+ =

8b2

3

∫ r+

0

dr hb(r) +
r4
+

l2Λ
(9)

Moreover, note that, in the large r/lα limit, the following
asymptotic behaviour is obtained

gα(r) = 1 + λǫr
2 +

4ǫe2

3l6br
2

∫ r

0

ds hb(s) + ... (10)

where λǫ = (1 + ǫ)/l2α + ǫ/2l2Λ and the dots refer to sub-
leading orders in lα/r (and subleading orders in lα/lΛ as
well). Furthermore, if the large r/lb limit of the metric
is performed, we find

gα(r) = 1 + λǫr
2 − 2mǫ

πr2
+ ... (11)

once the mass is accordingly identified as mǫ = −ǫ 2π2e2γ
3l6

b

.

Conversely, if we first take the limit b → ∞ (i.e. lb/r →
0) and then explore the asymptotic behavior, the geom-
etry becomes

gα(r) = 1 + λǫr
2 − ǫ

e2

3r4
+ ... (12)

which, for instance, in the case ǫ = +1 corresponds to a
black hole with a dominant cosmological term λ ∼ l−2

α

and a wrong sign Reissner-Nordström term ∼ −e2/r4.
This mimics a charged massless black hole with imagi-

nary electric charge; though it has to be emphasized that
the mechanism leading to such a metric is substantially
different to the one leading to black holes with an anal-
ogous tidal charge term, cf. [5]. It is relatively simple
to verify that, considering subleading effects in powers of
lα/lΛ, the mass of (8) is given by

m =
2πb2γ

3

(

1 +

∞
∑

n=2

(2n − 3)!!

2n−1(n − 1)!
(−l2α/l2Λ)n−1

)

(13)

where lα < lΛ and where the dressing of the Newtonian
term manifestly appears due to the presence of the cos-
mological constant Λ (see [4]). This dressing effect is
characterized by the expansion in powers of the dimen-
sionless parameter l2α/l2Λ. Moreover, the specific value of
the first term in such expansion is the one required for
the metric to be regular at r = 0.

On the other hand, for the specific value l2α = −l2Λ
(α > 0, Λ < 0), the solution takes a rather different
form;

namely

gα(r) = 1 +
r2

l2α
+ c(r) (14)
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FIG. 1: The position of the event horizon as a function of
the black hole mass for different values of b [ α = 0.5, e = 1,
Λ = 0 ].

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Radial coordinate (r)

Po
te

nt
ia

l f
un

ct
io

n
g α

 (r
)

HI 

BI 

FIG. 2: The (potential) function gα(r) for both Hoffmann-
Infeld (HI) and Born-Infeld (BI) solutions [ α = 0.1, e = 1,
Λ = 0].

with the function

c2(r) =
8b2

3l2α

∫ r

0

ds hb(s) (15)

This metric corresponds to an asymptotically Anti-de
Sitter space in five dimensions. This is due to the finite

value c2(∞) = 8b2γ
3l2α

at infinity. Geometries (15) present

event horizons and are closely related to the black hole
solutions of Chern-Simons gravitational theory.

In particular, for the Lovelock-Hoffmann-Infeld black
hole, the function hb(r) clearly satisfies the finitness con-
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ditions described above. In this case, the charged black
hole solution (8) shares several properties with the one
built for the Born-Infeld model, e.g. the existence of
charged black holes with a unique horizon. However,
the horizon structure of both theories is certainly dif-
ferent (cf. Fig.1 and the analogue presented in Ref. [6]),
e.g. the fact that the internal radius r− decreases when
the mass m increases (for a fixed charge e) is strongly
more evident for the case of Hoffmann-Infeld black hole.
Moreover, by comparing the solution (8) and the one
corresponding to the Lovelock-Born-Infeld black holes
[4, 5, 6, 7, 8, 9], it is feasible to verify that in both theories
gα(r) can be set to 1 at the origin r = 0. Nevertheless, in
the case of Lovelock-Hoffmann-Infeld solutions, we find

that dgα(r)
dr vanishes in the limit r → 0 whereas it goes

to −∞ for Lovelock-Born-Infeld black holes (see Fig. 2
which manifests the difference between both solutions at
the origin). This is because the short distance correc-
tions to Maxwell theory involved in Hoffmann-Infeld are,
in some sense, stronger than the ones corresponding to
Born-Infeld model.

III. THERMODYNAMICS

Now, the question arises as to what are the thermo-
dynamical properties of this charged black hole solution.
Certainly, it is known that black holes in Lovelock grav-
ity present special features which are not shared with
their analogues in Einstein gravity theory; namely, these
black holes typically have an infinite lifetime, present
a positive specific heat for small radii, their isotermal
graphs for the charged cases turn out to be rather dif-
ferent [6], violate the Bekenstein’s area formula [7, 8]
and the temperature formula in the general case presents
an additional term which identically vanishes for D = 5.
Here, we show that, besides these remarkable aspects, the
Lovelock-Hoffmann-Infeld black holes present a plateau in
the evaporation rate as a function of the horizon radius
r+. This aspect implies that the solutions charged un-
der the Hoffmann-Infeld electrodynamics evaporate dras-
tically when they have middle sizes within the range of
scales where the specific heat is negative. Eventually,
these black holes end up in a stable phase (region of pos-
itive specific heat) and their lifetimes result infinite. This
can be intuitively inferred from the fact that the caloric
curve presents a double peak form for certain tunning of
the parameters.

Let us begin by writting down the temperature for the
case of vanishing cosmological constant; namely

T =
1

4π

dgα(r)

dr

∣

∣

∣

r=r+

=
r+ − 2b2

3 hb(r+)

2π(l2α + r2
+)

(16)

whose typical form is described in Fig. 3 and 4. The
expression above corresponds to the temperature of solu-
tion (8) with ǫ = −1 and Λ = 0; this solution is asymptot-
ically flat, as it can be verified by means of the expansion
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FIG. 3: Black hole temperature as a function of the horizon
radius [ b = 2, e = 1 ]; representing the caloric curve.
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FIG. 4: Black hole temperature as a function of the horizon
radius [ α = 0.05, e = 1 ]; representing the caloric curve.

(11). Actually, the regime of general relativity is recov-
ered in the limit lα/r+ → 0, where the expression for the
temperature takes the form T ∼ 1/r+.

We also notice that the specific heat changes its sign
due to the short distance corrections imposed by both
Lovelock and Hoffmann-Infeld models. The sign of the
specific heat enables one to infer which are the regions
of thermodynamical stability (where the black hole can
be in thermal equilibrium with the enviroment). Conse-
quently, the evaporation rate of these charged solutions
is obtained from (16) by integrating over the energy flux.
This is done by making use of the Stefan-Boltzmann law
in five dimensions; namely dMs

dτ ∼ T 5, being Ms the sur-
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FIG. 5: Evaporation time τ as a function of the final radius
r+ [α = 0.05, e = 1, b = 2]. A plateau manifestly appears
in the evaporation rate. The graph has been normalized by
means of an appropriate redefinition of the Stefan-Boltzmann
constant.

face energy density (Ms ∼ m/r3
+). Then, by using that

the (three-dimensional) surface of the horizon is given by
π
2 r3

+ and the expression of the temperature is given by
(16) we can integrate over the black hole size in order to
obtain the evaporation time

τ ∼
∫ r0

r+

ds
(l2α + s2)5

s3(s − 2
3b2hb(s))4

(17)

where (9) was also taken into account. This corresponds
to the time required for a black hole to evaporate, starting
with the initial size r0 and ending with a size r+. Notice
that r+ is a monotonic function of the mass (energy) m.
The symbol ∼ stands in the formula above because of
the presence of a positive multiplicative constant which
is given in terms of the (inverse of) Stefan-Boltzmann
constant in five dimensions.

This result leads to observe the presence of the plateau

which is studied in Fig. 5, showing a rapid transition
between the two scales where the first maximum and the
local minumum of Fig. 3 are located [24]. The evapora-
tion rate is usually displayed by analyzing the quantity
dm/dτ ; let us notice that the Figure 4 (showing the time
τ required to reach a size r+) basically gives the same
information: This is because the plateau of the graph
precisely corresponds to those scales for which the tran-
sition (evaporation) is abrupt and, hence, the quantity
dm/dτ would present a peak precisely located in that re-
gion. Moreover, since we are interested in studying the
scales where such an abrupt transition occurs, we find
Figure 4 convenient because it manifestly shows those
scales within which such a drastic effect takes place.

An interesting analysis of the black hole thermody-
namics in Einstein-Gauss-Bonnet gravity and Chern-
Simons gravity was recently performed in references
[10, 11, 12, 13, 14, 15, 16]. To make contact with
the Chern-Simons gravity, let us consider again the case
l2α = −l2Λ, for which the formula of the temperature as
a function of the horizon radius r+ acquires a dominant
linear term; namely

T =
r+

2πl2α
− b2hb(r+)

3π(l2α + r2
+)

(18)

This diverges in the limit r+/lα → 0.
Summarizing, Lovelock theory of gravity in higher di-

mensions introduces short distance corrections to general
relativity due to Gauss-Bonnet terms which, in addition
to Einstein-Hilbert action, have to be taken into account
in the most general theory of gravity. These terms, cor-
responding to Lanczos quadratic gravity for D = 5, are
such that the mentioned short distance effects imply sub-
stantial differences with respect to the black hole thermo-
dynamics of general relativity; these were listed above. In
addition, we discussed here how the charged black holes
in Lovelock five dimensional gravity coupled to non-linear
Hoffmann-Infeld electrodynamics present other interest-
ing features like the existence of the double peak profile
in the caloric curve, leading to a particular evaporation
effect for which two different thermodynamically stable
regions do exist. The black holes evaporate drastically
for certain sizes that are bounded by two critical radii;
this region corresponds to the one where the specific heat
is negative. Eventually, a final phase is reached and the
black holes become eternal; the explicit computation of
the evaporation rate leads to an infinite lifetime as result.
Because of the particular profile of the caloric curve, the
evaporation phenomenon described here is qualitatively
different to the one corresponding to the five-dimensional
Lovelock-Born-Infeld solutions, cf. [4, 5, 6, 7, 8, 9].

Furthermore, the analysis of the static spherically sym-
metric solution presented in this note is general enough
as to be suitable for adaptation to the case of Lovelock
black holes charged under a quite generic model of non-
linear electrodynamics. In particular, it would be rela-
tively easy to extend it to those models of electrodynam-
ics leading to regular black holes [25] in Einstein gravity
[18, 19, 20, 21, 22]. The analysis of these geometries
within the framework of Lovelock gravity could be an
interesting subject for further study.

Before concluding, let us make brief remark on the
higher dimensional case. Certainly, the five-dimensional
case presents a special feature: the fact that expression
for the temperature (16) acquires an additional term in
D dimensions, which is proportional to (D − 5). This
is precisely why previous papers of the subject (see for
instance [6]) considered the case D = 5 as an special
one. However, it is also true that, besides of that, several
qualitative aspects of the termodynamics of the 5D Love-
lock black holes are shared with their higher dimensional
analogues: For instance, this is the case of the change
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of the sign of the specific heat at short distances and
the existence of infinite lifetime remnants. Then, similar
features to those analyzed in this paper are expected to
be valid in the D-dimensional Lovelock-Hoffmann-Infeld
black holes.
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