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An unpredicted fourfold screw N—H� � �O hydrogen bond C(4) motif in a

primary dicarboxamide (trans-cyclohexane-1,4-dicarboxamide, C8H14N2O2) was

investigated by single-crystal X-ray diffraction and IR and Raman spectro-

scopies. Electron-density topology and intermolecular energy analyses deter-

mined from ab initio calculations were employed to examine the influence of

weak C—H� � �O hydrogen-bond interactions on the peculiar arrangement of

molecules in the tetragonal P43212 space group. In addition, the way in which the

co-operative effects of those weak bonds might modify their relative influence

on molecular packing was estimated from cluster calculations. Based on the

results, a structural model is proposed which helps to rationalize the unusual

fourfold screw molecular arrangement.

1. Introduction

Understanding the role and nature of weak intermolecular

interactions (noncovalent interactions) in the packing and

supramolecular organization of organic molecules has been

the subject of numerous and recurrent investigations and

controversies since the original work of van der Waals (Van

der Waals, 1873). Studies in this area helped in the establish-

ment of the crystal engineering and supramolecular chemistry

fields, which have been boosted in the last decade by interest

in gaining a better understanding of biological systems and

improving the performance of medicines. The historical

development of these fields has been guided by the identifi-

cation of extended and recurrent patterns of interactions in

organic crystal structures and between organic fragments in

organometallic compounds. The outcome of those efforts has

been the detection of different fragments whose presence in

molecules favours the formation of patterns; these fragments

have been called molecular synthons (Desiraju, 1995). In spite

of the awareness of the influence of noncovalent interactions

in molecular recognition and aggregation, and the use of

molecular synthons in diverse supramolecular synthesis, it is

still a challenge to predict crystal structures from a knowledge

of molecular structure (Desiraju, 1995). Strong hydrogen

bonds (like O—H� � �O and N—H� � �O) are important driving

forces in many synthons which have been successfully em-

ployed in crystal engineering. However, their use in supra-
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molecular synthesis depends on their robustness and trans-

ferability to different environments. Therefore, the study of

these synthons when fragments favouring weak interactions,

like C—H� � �O, are also present is a field of continuing inter-

est. Many efforts have been dedicated to carboxamide groups

not only as building blocks from which diverse structures

could be assembled, but also due to their intrinsic interest as

part of pharmaceutical drugs. In particular, carboxamide is a

group having both strong donor and acceptor H atoms

(Berkovitch-Yellin & Leiserowitz, 1980) (see Scheme 1) and

depending of the residue characteristics (atom constituents,

size, shape and accessible surface) will aggregate forming

different homosynthons.

The packing modes of primary carboxamides have been

extensively analyzed by Leiserowitz and several co-authors

(Leiserowitz & Schmidt, 1969; Leiserowitz & Hagler, 1983) in

terms of the ideal amide contacts and symmetry-packing

requirements (see Fig. 1).

Combination of arrays I and II or III develops characteristic

structural motifs. The mentioned authors have performed a

comprehensive analysis and classification of the possible

packing types of those motifs in mono- and diamide systems.

They also found that in the case of symmetric diamide mol-

ecules, infinite chains of R2
2(8) motifs along the main molecular

axis might be built. This kind of chain (Fig. 2) will be hereafter

called an infinite molecular chain (IMC).

According to Leiserowitz & Hagler (1983), IMCs related by

a translation or a twofold screw axis build two-dimensional

(2D) layers, while those connected by a glide plane develop a

steep, or shallow, structural motif. Since the IMCs forming

these structural motifs are connected by N—Ha� � �O hydrogen

bonds (where Ha is an antiplanar carboxamide H atom), they

should pack at a distance of 5.1 Å when linked by a translation

axis or at a distance of about 4.9 Å if they are linked by a

twofold screw axis or a glide plane.

Kuduva et al. (2001) have added to the findings of Leiser-

owitz & Hagler (1983) with a detailed examination of the

modifications that weak noncovalent bonds, residue substi-

tuents and size may promote. They found that unexpected

kinds of molecular packing can be induced by those factors in

primary carboxamides. Within this scenario our interest in the

present work is to go deeper in the rationalization of how not

only residue composition or size, but also residue morphology

and weak contacts involving C—H� � �O hydrogen bond may

affect the geometry of carboxamide synthons favouring

unforeseen arrangements, like the observed 43 axis in com-

pound 1 (Fig. 3 and Scheme 2).

With this aim and within a study of the factors that govern

the molecular conformation and aggregation of trans-1,4-

substituted cyclohexanes (Echeverrı́a et al., 1995a,b, 2000,

2003), the crystal structure of trans-cyclohexane-1,4-dicar-

boxamide, 1, was determined by single-crystal X-ray diffrac-

tion methods and its IR and Raman spectra were recorded and

analyzed. In order to ascertain the role of weak C—H� � �O

hydrogen bonds, their nature and possible co-operative effects
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Figure 1
The array types: I is an R2

2(8) cyclic dimer, II is a translation axis and III is
a glide plane or twofold screw axis.

Figure 2
The infinite molecular chain (IMC).



in the generation of the high-symmetry structure observed in

1, ab initio calculations of the molecular electron charge

density and its Laplacian topology, in-crystal, in-clusters and

in-gas phase geometries were performed. Orbital population

changes and their contribution to intermolecular interaction

energies were determined from natural bond orbital (NBO)

analysis. In addition, they were calculated at different levels of

theory and with different basis functions. To reinforce the

conclusions, some of the results were compared with those

obtained from the crystal structure analysis and calculations

performed on cubane-1,4-dicarboxamide, 2, studied by

Kuduva et al. (2001). The results are presented and discussed

below.

2. Experimental

2.1. Synthesis and crystallization

The title compound, 1, was synthesized according to Barón

et al. (1975). The product was crystallized by slow evaporation

from acetone.

2.2. X-ray diffraction

H atoms were localized from difference Fourier maps and

refined riding on their bound atoms. Crystal data, data

collection and structure refinement details are summarized in

Table 1.

2.3. IR and Raman spectroscopy

The FT–IR spectra were recorded on a Nexus Nicolet

instrument equipped with either an MCTB or a DTGS

detector (for the ranges 4000–400 and 600–50 cm�1, respec-

tively) at room temperature and with resolutions of 1 and

4 cm�1. The solid compound was measured in KBr (range

4000–400 cm�1) and polyethylene (range 600–50 cm�1) pel-

lets. The Raman spectra were recorded using an Horiba–

Jobin–Yvon T64000 Raman spectrometer, with a confocal

microscope and CCD detection, employing an excitation
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Table 1
Experimental details.

Crystal data
Chemical formula C8H14N2O2

Mr 170.21
Crystal system, space group Tetragonal, P43212
Temperature (K) 293
a, c (Å) 6.9584 (2), 18.8979 (6)
V (Å3) 915.02 (6)
Z 4
Radiation type Cu K�
� (mm�1) 0.74
Crystal size (mm) 0.25 � 0.12 � 0.12

Data collection
Diffractometer Agilent Xcalibur Eos Gemini
Absorption correction Multi-scan (CrysAlis PRO;

Agilent, 2014)
Tmin, Tmax 0.893, 1
No. of measured, independent and

observed [I > 2�(I)] reflections
1745, 890, 837

Rint 0.014
(sin �/�)max (Å�1) 0.617

Refinement
R[F 2 > 2�(F 2)], wR(F 2), S 0.044, 0.130, 1.07
No. of reflections 890
No. of parameters 68
H-atom treatment Only H-atom displacement para-

meters refined
��max, ��min (e Å�3) 0.23, �0.13
Absolute structure Flack x determined using 278

quotients [(I+) � (I�)]/
[(I+) + (I�)] (Parsons et al., 2013)

Absolute structure parameter �0.1 (3)

Computer programs: CrysAlis PRO (Agilent, 2014), SHELXT (Sheldrick, 2015a),
SHELXL2014 (Sheldrick, 2015b), ORTEP-3 for Windows (Farrugia, 1997), Mercury
(Macrae et al., 2008), and PLATON (Spek, 2009) and PARST (Nardelli, 1995) within
WinGX (Farrugia, 2012).

Figure 3
View of trans-cyclohexane-1,4-dicarboxamide, showing (a) the labelling of the non-H atoms and their displacement ellipsoids at the 30% probability
level and (b) the ab layer, (001) plane, of the crystal. Hydrogen bonds are indicated by dashed lines. [Symmetry codes: (i) y, x, �z + 1; (ii) �y + 3

2, x + 1
2,

z� 1
4; (iii) y� 1, x + 1,�z + 1; (iv) y, x + 1,�z + 1; (v) y� 1, x,�z + 1; (vi) y� 1

2,�x + 3
2, z + 1

4]. LR is the residue length and dIMC is the interchain distance.



wavelength of 514.5 nm from an Ar multiline laser. The

wavenumbers were calibrated with the 459 cm�1 band of CCl4.

2.4. Ab initio calculations

Molecular orbital calculations in molecules and supra-

molecular arrangements, as well as the corresponding NBO

analysis, were performed using GAUSSIAN03 (Frisch et al.,

2004). Electron-density topology analysis and the topology of

the negative Laplacian of a charge-density examination, based

on the quantum theory of atoms in molecules (QTAIM;

Bader, 1990), were performed using the AIM2000 code

(Biegler-König & Schönbohm, 2002). All geometry optimiza-

tions were undertaken at the PBE/6-31G** level of theory,

except for the IR and Raman spectral calculations, where the

MP2/6-311++G(d,p) theory level was employed. In all the

optimizations, the experimental geometry was utilized as the

starting point.

Calculations of NBO, electron charge density topologies

and intermolecular interaction energies for each inter-

molecular interaction were performed at the MP2 and PBE/

aug-cc-pVDZ theory levels. For the intermolecular interaction

energies, the supermolecule and counterpoise methods, which

account for the basis set superposition error (BSSE), were

employed (Boys & Bernardi, 1970; Simon et al., 1996).

Periodic calculations were performed with CRYSTAL14

(Dovesi et al., 2014) on the X-ray-determined geometry, with

H-atom positions corrected after normalizing the X—H bond

lengths to neutron diffraction standard values. The B3LYP

hybrid method, in combination with the standard 6-31G**

basis set, was used, keeping shrinking factors and convergence

thresholds at their default values. An AIM topological analysis

of the resulting electron density was performed using

TOPOND14 (Gatti & Casassa, 2014).

3. X-ray results

Compound 1 crystallizes in the noncentrosymmetric tetra-

gonal P43212 space group. The molecules are located on a

twofold symmetry axis with half a molecule in the asymmetric

unit. As observed in other symmetrical trans-1,4-di- and

tetrasubstituted cyclohexanes, the molecules adopt a rigid

chair conformation. The –CONH2 groups are equatorially

bonded to the six-membered ring C atoms, with the –CONH2

group rotated by 86.1 (1)� out of the mean molecular plane. In

accordance with expectations, the carboxamide groups

account for the main intermolecular interactions. As shown in

Fig. 3, the molecules are involved in strong N—H� � �O

hydrogen bonds linking the carboxamide groups and in weak
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Figure 4
View of (a) the unit cell along b and (b) the ab layer along the [001] direction of compound 2. Intermolecular interactions between carboxamide groups
(i.e. N—H� � �O contacts) and between these groups and residues (i.e. C—H� � �O contacts) are shown as dashed lines.

Table 2
Geometries of selected intermolecular interactions calculated from fully optimized dimers at the PBE/6-31G** theory level.

X-ray difraction data are given in square bracketsa.

Contact Compound H� � �O (Å) X—H� � �O (�) H� � �O C (�) X� � �O (Å) N—C—O� � �H (�)

N—Hs� � �O 1 1.8091 [1.878] 176.47 [174.2] 120.05 [122.8] 2.8377 [2.890 (3)] �1.29 [5.9]
2 1.7999 [1.907 (1)] 176.06 [164.0] 119.62 [118.8] 2.8290 [2.897 (2)] 0.00 [18.4]

N—Ha� � �O 1 1.9230 [1.956] 175.98 [167.5] 137.49 [135.0] 2.9378 [2.955 (3)] �164.96 [�137.8]
2 1.9501 [1.935] 167.70 [154.8] 131.32 [126.5] 2.9551 [2.886 (2)] 160.58 [�138.3 (1)]

C—Hin� � �O 1 2.8655 [2.504] 140.67 [150.1] 121.90 [138.2] 3.7803 [3.492 (3)] 130.32 [140.2]
2 2.5068 [2.654] 146.42 [144.8] 115.00 [129.5] 3.4678 [3.599 (3)] 123.58 [�146.8]

C—Hout� � �O 1 2.4895 [2.795/2.982] 148.80 [155.3/150.1] 109.22 [87.1/81.4] 3.4730 [3.811 (4)/3.957 (4)] 85.15 [�81.8/78.3]
2 2.2870 [2.612] 177.59 [154.5] 125.24 [93.4] 3.3769 [3.625 (2)] 87.27 [86.1]

Note: (a) H-atom positions are corrected after normalizing X—H bond lengths to neutron diffraction standard values. Hout and Hin denote H atoms bonded to residue C atoms lying
perpendicular and parallel to the carboxamide plane, respectively.



C—H� � �O hydrogen bonds connecting ring C atoms and

carbonyl O atoms. Relevant geometric information is listed in

Table 2.

Carboxamide groups, related by a twofold axis, build char-

acteristic R2
2(8) homosynthons, i.e. I (Fig. 1), forming twofold

symmetry IMCs (Fig. 2). The IMCs run along the [110] and

[110] crystallographic directions (Fig. 3). Along the [001]

direction (Fig. 3a), IMCs are related by N—Ha� � �O hydrogen

bonds. Consecutive IMCs are arranged perpendicular to each

other, forming a C(4) motif with an unusual fourfold screw

symmetry. The structure is further stabilized in this direction

by a weaker C—Hax� � �O hydrogen bond linking the H atom

axially (ax) bonded to the substituted ring C atom to the

carbonyl O atom. Additionally, within the ab layer (Fig. 3b),

the IMCs are also connected by C—Heq� � �O contacts between

H atoms equatorially (eq) bonded to unsubstituted ring C

atoms and carbonyl O atoms. Similar weak C—H� � �O

hydrogen-bond interactions have been observed previously in

monosubstituted cyclohexanecarboxamide by Zipp et al.

(2009) and in cubane-1,4-dicarboxamide, 2, by Kuduva et al.

(2001). It should be noted that in all the mentioned C—H� � �O

contacts, the H atom bonded to an unsubstituted C atom

approaches to the carbonyl O atoms nearly perpendicular to

the R2
2(8) cyclic dimer plane (for details, see Table 2), pointing

to the �(C O) bond, instead of the expected approach to the

sp2 O-atom lone pairs. This finding might be explained on the

same grounds as those employed by Gatti et al. (1994) to

account for the four hydrogen bonds involving the carbonyl O

atoms in urea.

To investigate the possible causes of the unpredicted four-

fold screw axes in the molecular packing of a primary

carboxamide, the packing of 1 was compared with those of

cubane-1,4-dicarboxamide (2) [Cambridge Structural Data-

base (Groom et al., 2016) refcode HIDTET (Kuduva et al.,

2001)] and terephthalamide (3) (Cobbledick & Small, 1972;

Takamizawa & Miyamoto, 2014; refcode TRPHAM) (see

Scheme 2). Compound 2 crystallizes in the P21/c space group

with the carboxamide groups assembled in the shallow motif,

while 3 crystallizes in the P1 space group with the carbox-

amide groups arranged in characteristic 2D hydrogen-bond

ribbon motifs, both described by Leiserowitz (1976) (Figs. 4

and 5). Following Leiserowitz & Hagler (1983), we will define

residue length (LR) as the intramolecular distance between

carboxamide C atoms along the molecular axis (i.e. the line

connecting the carboxamide C atoms) (Figs. 3, 4 and 5). The

longest cross sectional dimension of the residue (DR) of these

systems are similar in the three compounds, i.e. 5.4 < DR <

5.8 Å, while the smallest cross sectional dimensions (dR) are

different; the value increases when going from terephthala-

mide 3 (3.4 Å) through cyclohexanecarboxamide 1 (4.9 Å) to

cubanedicarboxamide 2 (5.4 Å). Thus, a comparative study of

the molecular packing of the three compounds might help to

shed light on the influence of geometric residue differences,

which affect the spatial arrangement of the C—H groups, on

the resulting three-dimensional (3D) array.

In spite of the significant symmetry differences between

compounds 1 and 2, the cross sections of the residues (i.e. DR

and dR) in both compounds are close to or even larger than the

carboxamide translation of 5.1 Å. According to previous

discussion and literature findings (Leiserowitz & Hagler, 1983;

Kuduva et al., 2001), those values favour the IMC to be

assembled with their axes making an angle between them, as

parallel IMC patterns will result in unfavourable H� � �H

residue contacts.

In contrast, in compound 3, although DR is also larger than

5.1 Å, the IMCs are packed forming the characteristic parallel

ribbon pattern. This could be rationalized taking into account

that its dR is 3.4 << 5.1 Å and a ring plane rotation (�) out of

the IMC layer (or carboxamide plane) larger than 20�

(cos� < 5.1 Å axis/DR) must reduce the effective residue size

along the carboxamide plane promoting the ribbon motif.

Actually, the measured angle is 24.4 (1)� (Cobbledick & Small,

1972; Leiserowitz, 1976) (Fig. 5).

In 2, according to Leiserowitz & Hagler (1983), the IMCs

forming the shallow-glide motif are packed along the c axis

through N—Ha� � �O hydrogen bonds, with the carboxamide C

atom close to the glide plane (bc layer) to fulfill the geometric

requirement on the N—Ha� � �O hydrogen bond. The centro-

symmetric IMCs lie parallel, on a plane perpendicular to the

packing direction (i.e. the ab layer, see Fig. 4b), hereinafter

called CL layers. From the Leiserowitz condition, the esti-

mated distance between IMCs (dIMC, see Fig. 4b) within these
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Table 3
Values of the most relevant topological parameters of intermolecular
(3,�1) charge density CPs, evaluated at the PBE/6-31G** theory level for
clusters I and IIa.

The subscripts x = a or s indicate antiplanar or synplanar carboxamide H
atoms and y = in or out represent C—H groups oriented in or out of the
carboxamide plane.

Contacts Compound �(r) (e A�3) r
2�(r) (e A�5) �3 (e A�5)

N—Hs� � �O 1 0.2247 2.2884 4.5124
2 0.2314 2.4308 4.7490

N—Ha� � �O 1 0.1566 1.7486 3.1217
2 0.1718 1.8356 3.3832

C—Hin� � �O 1 0.0469 0.5597 0.8408
2 0.0803 0.8597 1.4336

C—Hout� � �O 1 0.0453 0.5792 0.8289
2 0.0455 0.5647 0.8433

Note: (a) �(r) electron density, its Laplacian, r2�(r), and positive principal curvature, �3,
evaluated at the corresponding (3,�1) critical points.

Figure 5
A view of the (011) layer of compound 3. Intermolecular interactions
between carboxamide groups (i.e. N—H� � �O contacts) are shown as
dashed lines. Residue C—H� � �O contacts within this layer are absent.



layers is 4.8322 Å (Leiserowitz & Hagler, 1983), which is close

to the measured dIMC distance of 4.880 (2) Å (Kuduva et al.,

2001). These values are larger than 4.4 Å, half the sum of the

van der Waals radii of the carboxamide group (3.4 Å), and the

largest molecular cross section DR (5.4 Å), suggesting that the

distance between parallel IMCs is mainly determined by the

packing of CLs through N—Ha� � �O and not C—H� � �O hy-

drogen bonds acting within these layers (i.e. C� � �O and H� � �O

distances obtained from X-ray data are larger than those from

ab initio calculations; see Table 2 and the text below for

further details).

In 1, in order that the IMCs can pack through a 43-fold

screw axis by N—Ha� � �O hydrogen bonds, the carboxamide C

atoms should be located near the fourfold screw axis. As a

result, the estimated c cell parameter should be around 19.6 Å,

close to the experimental value of 18.8979 (6) Å. Translation

of this motif along the a and b cell parameters generates a 3D

structure that can be described by the tetragonal P43 space

group. As in the glide motif, in the 43 motif, the IMCs are

perpendicular to the 43 axis, forming layers of parallel IMCs.

These CL layers are stabilized by C—Heq� � �O hydrogen

bonds. Furthermore, as the molecules are located on a twofold

axis, the IMCs should exhibit the same symmetry. The twofold

axes are perpendicular to the 43 axis and form a 3D structure

of P43212 symmetry. In this space group, all the 43 axes are

symmetrically equivalent and the distance between them

should be 4.9 Å (cell parameter a is 6.9 Å), a value determined

by the average size between the R2
2(8) cyclic dimer (�4 Å) and

the residue (LR � 5.8 Å). These values are in excellent

agreement with the measured dIMC distances in the CL layer of

4.9203 (2) Å or the experimental a cell parameter of

6.9584 (2) Å. As in 2, in 1, the dIMC distance is larger than

4.6 Å, half the sum of the van der Waals radii of the carbox-

amide group (3.4 Å) and the largest molecular cross section

DR (5.8 Å), and close to the 4.9 Å distances calculated as

(LR + 4)/2. Therefore, it could be concluded that, as in 2, the

dIMC values are determined mainly by the CL packing through

the N—Ha� � �O hydrogen bond and not by the weak C—

Heq� � �O hydrogen bonds operating within these layers.

As discussed above, parallel IMCs should interact mainly

through weak intermolecular C—H� � �O interactions. How-

ever, in 1 and 2, morphological differences between the resi-

dues causes the C—H groups to be arranged in a peculiar way.

Despite the dIMC distance being determined by N—Ha� � �O

hydrogen bonds, weak contacts might affect the approach of

the IMCs in both compounds. Thereby, influencing some

critical structural parameters which are relevant in the packing

of CLs (in our case, as will be seen in the discussion section, it

is the tilt angle of the carboxamide plane out of the corre-

sponding CL). But, before going into this point, it is worth

evaluating the attractive and co-operative nature of selected

intermolecular hydrogen bonds.

4. Theoretical calculations

4.1. Energy and charge density analysis

Energy and charge density analysis were performed for the

dimers depicted in Fig. 6, using their fully optimized geome-

tries (see x2.4).

Calculated hydrogen-bond geometries for 1 and 2 are

reported in Table 2. The values of the most relevant topolo-

gical parameters of the electron charge densities calculated at

each intermolecular critical point [�(rc), r2�(rc) and �3] for

compounds 1 and 2 are listed in Table 3. Other topological

charge density parameters are included in the supporting

information.

Hereafter C—H groups bonded to residue C atoms will be

labelled as C—Hin and C—Hout according to their orientation

relative to the carboxamide plane.

The theoretical and experimental geometries of the N—

Hs� � �O and N—Ha� � �O hydrogen bonds in 1 and 2 are very

similar. In contrast, a noticeable deviation of the calculated

geometries from the experimental ones is observed in the

weak C—Hout� � �O hydrogen bonds, where the calculated

C� � �O distances are smaller than the experimental ones,

supporting the attractive character of these contacts.
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Table 4
Intermolecular energies calculated at the MP2 and HF/aug-cc-pVDZ
theory levels using the supermolecule and NBODel methods for dimers I,
II and III optimized at the PBE/6-31G** theory levela.

�E (kcal mol�1)

Cluster Contacts Nb Compound EMP2 EHF ENBO
c

I N—Hs� � �O 2 1 �7.3 �5.9 �21.3
2 2 �7.5 �6.2 �22.2

II N—Ha� � �O/
C—Hin� � �O

2/2 1 �10.1 �4.9 �14.6

2/2 2 �10.9 �4.7 �16.1
III C—Hout� � �O 4 1 �1.8 0.0 �3.0

2 2 �2.2 �0.8 �5.7

Notes: (a) intermolecular hydrogen bonds are labelled as N—Hx� � �O and C—Hy� � �O,
where subscript x = a or s for antiplanar or synplanar carboxamide H atoms and y = in or
out for C—H groups oriented in or out of the carboxamide plane. (b) The number of
hydrogen bonds per molecule. (c) Calculated as the dimer energy variation when the
interacting orbitals are deleted, see text for further details.

Figure 6
The three types of selected dimers and their contact labels. R is the
residue in compounds 1 or 2. Hout and Hin are the H atoms outside and
within the carboxamide plane. In II, R-substituted C atoms are not drawn
as Hin may be bound to a substituted 1 or an unsubstituted 2 C atom. In
III, not depicted terminal atoms in covalent bonds may be either H or
unsubstituted C atoms. Besides, only one C—H� � �O hydrogen bond is
observed in 2.



Conversely, the calculated C—O distances in the C—Hin� � �O

contact is larger than the experimental value. This behaviour

can be rationalized considering that the equilibrium state of

dimer II is reached from the competition of two hydrogen

bonds, i.e. strong N—Ha� � �O and weak C—Hin� � �O. Hence,

the strong bond prevails over the weak one.

The QTAIM electron charge density analysis of all selected

hydrogen bonds shows (3,�1) critical points, compatible with

the existence of a bond path between the H atoms of the

N—H and C—H groups and the carbonyl O atom, endorsing

the attractive nature of these intermolecular interactions. As is

shown in Table 3, the positive r2�(rc) and �3 values in all the

hydrogen bonds are characteristic of the closed-shell nature of

the intermolecular interactions. As expected, the charge

density evaluated at critical points, �(rc), in C—Hin� � �O and

C—Hout� � �O hydrogen bonds are much smaller than those in

the N—Ha� � �O and N—Hs� � �O hydrogen bonds, indicating

that weak interactions contribute with very little energy to the

crystal packing.

To better understand the characteristics of the inter-

molecular interactions, mainly those of the carbonyl-group

intermolecular interactions, the negative Laplacian (�r2�)

charge density topology around the carbonyl O atom (in the

VSCC or valence shell charge concentration) was calculated

for the free molecule and the bulk using the experimental

geometries of 1 and 2. The results show for the carbonyl plane,

as found by Gatti et al. (1994) in urea, two equivalent (3,�3)

CPs with average values of 147.1 and 138.6 e Å�5 in 1, and

147.4 and 138.2 e Å�5 in 2 for the free molecule and the crystal

state, respectively. These nonbonded maxima (NBM) can be

associated with the Osp2 electron lone pairs. Furthermore, in

the VSCC O atoms there are two additional (3,�1) CPs with

average values of 95.2 and 87.5 e Å�5 at mean C O� � �CP

angles of 179.6 and 132.6� in 1, and of 94.1 and 88.5 e Å�5 at

C O� � �CP angles of 179.4 and 129.2� in 2 for the free mol-

ecule and the crystal state, respectively. These CPs are saddle

points (SP) interconnecting the NBMs and along the line

connecting these (3,�1) CPs with the O atom they behave like

maxima of electron charge density. Contrary to the

observation of the free molecules in the crystal phase, they are

located out of the carbonyl plane. All these electron rich

regions around the carbonyl O atoms are aligned with charge

depletion near the H atoms along the N—H and C—H bonds.

Therefore, it could be concluded that, during the molecular

packing process, the electron charge density around the O

atom is altered in a manner that increases its ability to act as a

proton acceptor, being involved not only with proton-donor

groups pointing towards the sp2 lone-pair lobes, but also with

those pointing to the �(C O) bond.

The energies of the N—H� � �O and C—H� � �O hydrogen

bonds are listed in Table 4, where subscript x = a or s for

antiplanar or synplanar carboxamide H atoms and y = in or

out for C—H groups oriented in or out of the carboxamide

plane. They were obtained from the intermolecular energies

calculated at the MP2/aug-cc-pVDZ theory level, using the

supermolecule method in dimers I, II and III (see Fig. 6), and

the counterpoise procedure (Boys & Bernardi, 1970), which

considers the BSSE. The N—Hx� � �O hydrogen-bond energies

are four or five times greater than those of the C—Hy� � �O

hydrogen bonds, in agreement with our results from X-ray

structure and charge density analysis. Despite the N� � �O in-

crystal or dimer-optimized distance of the N—Ha� � �O

hydrogen bond being larger than that of the N—Hs� � �O

hydrogen bond (see Table 2), its energy is bigger by about

3 kcal mol�1 (1 kcal mol�1 = 4.184 kJ mol�1). This suggests

that weak hydrogen bonds of the C—H� � �O type, such as C—

Hin� � �O, may contribute to the stabilization energy of dimer II.

A mixture of both hydrogen bonds is included in Table 4,

together with the hydrogen-bond energies calculated at the

HF/aug-cc-pVDZ theory level. A comparison of the EMP2 and

EHF energies for the studied hydrogen bonds shows that the

largest variation is observed in weak C—Hout/Hin� � �O

hydrogen bonds, thus indicating a significantly dispersive

character for these interactions.
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Figure 7
The relevant portion of the molecules in (a) a trimer and (b) a tetramer
built from dimer III. trans-Cyclohexane-1,4-dicarboxamide molecules are
labelled with Ri (i = 1, . . . , 4).

Table 5
Electron acceptor and donor orbital population change.

Overlapping orbitals �ndonor (e)a �nacceptor (e)a

Dimer I
n(O)!�*(Hs—N) �0.03 0.03

Dimer II
n(O)!�*(Ha—N)/�*(Hin—C) �0.017 0.016/0.000b

Dimer III
�(C O)!�*(Hout—C)c

�0.002 0.002

Notes: (a) population variations when interacting orbitals are deleted. (b) As explained
in the text, in the optimized geometry of dimer II, the H� � �O distance is too long to alter
significantly the population of the �*(Hin–C) antibonding orbital, but in the crystal
geometry it changes by about 0.002 e. (c) Optimized in the Ci point group.

Table 6
Co-operative contribution to the interaction energy as a function of the
cluster size, calculated at the MP2/6-31G(d,p) theory level.

The calculated values at the PBE/6-31G(d,p) theory level are given in
parentheses.

Cluster series Hydrogen bonds
Cluster size

Trimer Tetramer

I N—Hs� � �O �0.05 (�0.04) �0.10 (�0.11)
II N—Ha� � �O + C—Hin� � �O �1.02 (�0.92) �2.40 (�2.42)
III C—Hout� � �O 0.2 (0.3) 0.6 (1.1)



4.2. NBO analysis

The NBO method was also employed to delve deeper into

the nature of the intermolecular interactions of compound 1.

The results will allow us not only to characterize the orbitals

involved in the interactions but also their contribution to the

stabilization energy. As stated by Reed & Weinhold (1986), a

small amount of charge transfer between these orbitals could

contribute significantly to the intermolecular energy. In the

optimized dimers I, II and III (see Fig. 6), the interaction

energy, ENBO, and population change, �n, of the interacting

natural orbitals were evaluated from the NBO deletion

method as implemented in GAUSSIAN03 (Frisch et al., 2004)

(all elements in the Fock matrix between interacting atoms of

both fragments were deleted, and the resulting matrix was

rediagonalized). All NBO calculations were performed at the

PBE/aug-cc-pVDZ theory level. A summary of the electron-

donor and -acceptor orbitals involved in the hydrogen bonds is

given in Table 5, while their associated contributions to the

stabilization energies are listed in Table 4. These results

indicate the charge-transfer contribution to the N—Hx� � �O

hydrogen bonds from the overlapping carbonyl O-atom elec-

tron lone pairs n(O) (from the mixing of the s and p oxygen

natural atomic orbitals) to the unoccupied �*(N—Hx) anti-

bonding orbitals of the amide group, resulting in an inter-

action of the n(O)!�*(Hx—N) type.

In contrast, the charge transfer in weak C—Hout� � �O (C—

Heq� � �O) hydrogen bonds between unsubstituted cyclohexane

C and carbonyl O atoms results from the overlapping of the

carbonyl �(C O) bond orbital with the �*(C—Hout) anti-

bonding orbital of the unsubstituted cyclohexane C atoms.

Hence, this interaction can be described as the �(C O)!

�*(Hout—C) type. The change in the electron population of

the interacting orbitals is a measure of the charge transfer

between them and is proportional to the stabilization energy

of the intervening species (Reed & Weinhold, 1986). The NBO

occupation number of the electron lone pairs of carbonyl

group, i.e. n(O), decreased by 0.030 e in dimer I and 0.017 e in

dimer II. In contrast, the antibonding orbital �*(N—Hs) in I

and �*(N—Ha) in II increase by a similar amount, i.e. 0.031

and 0.016 e, respectively, with respect to the population orbi-

tals evaluated when the associated NBO Fock matrix elements

are deleted. On the other hand, using the same procedure, the

population of the NBO �(C O) bond orbital in dimer III

decreases by a value of 0.002 e, while the occupation number

of the interacting �*(Hout—C) antibonding orbital increases

by about 0.002 e. The last values are about an order of

magnitude smaller than those of n(O) and the �*(Hs—N) and

�*(Ha—N) orbitals. This suggests that the contribution of the

interaction energy due to the charge transfer between occu-

pied and unoccupied orbitals in strong N—Hx� � �O hydrogen

bonds should be significantly greater than those in weak C—

Hy� � �O hydrogen bonds (Table 3). Furthermore, a comparison

of the EMP2 and ENBO values for each contact, listed in Table 4,

shows that in strong N—Hx� � �O hydrogen bonds, the absolute

value of EMP2 is smaller than ENBO, showing that the charge

transfer contribution to the stabilization energy could be

significant in these contacts. On the other hand, in weak C—

Hy� � �O hydrogen bonds, the behaviour is less pronounced,

indicating a more electrostatic character.

4.3. Analysis of the co-operative effect

Charge transfer might influence the co-operative effect in

hydrogen bonds (Hongwei et al., 2005), mainly when inter-

active fragments have groups with delocalized electrons. As a

consequence, it could be inferred that the N—Ha� � �O, N—

Hs� � �O, C—Hout� � �O and C—Hin� � �O hydrogen-bond inter-

actions observed in 1 and 2 could contribute differently to the

co-operative effect depending on whether they connect frag-

ments involving delocalized or localized electrons. Thus, in

order to study in compound 1 the different co-operative

contributions of each interaction to the intermolecular energy,

three series of clusters were built. The first and second series

are built from dimers I [i.e. from the R2
2(8) cyclic dimer] and II

for chains of increasing length up to tetramers. These series of

clusters allow us to study the contributions of the N—Ha� � �O,

N—Hs� � �O and C—Hin� � �O hydrogen bonds to the co-

operative effect. On the other hand, the contribution of the

C—Hout� � �O hydrogen bonds to the co-operative effect are

studied by comparing the trimer and tetramer built from

dimer III in Fig. 6 by adding a third and fourth molecule as is

shown in Fig. 7.

The intermolecular interaction energy of a given cluster was

evaluated as the cluster energy minus the energy of each

monomer (for i, an integer, running over all molecules in the

cluster, N) evaluated in the cluster basis set for the BSSE.

Eint ¼ Ecluster �
XN

i¼1

Ei:

The co-operative effect could be understood as the devia-

tion of the total interaction energy of the cluster from the sum

of the interaction energies between each molecule pairs (Eij),
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Figure 8
FT–IR (top, ranges 3700–400 and 600–80 cm�1) and Raman (bottom,
ranges 3600–2700 and 2000–50 cm�1) spectra of solid trans-cyclohexane-
1,4-dicarboxamide, 1.



such a deviation being just the total many-body contribution

to the total interaction energy. That is

Ecoop ¼ Eint �
XN

ij¼1

Eij

where the Eij terms are calculated in the cluster basis set.

In Table 6 are listed the contributions of the co-operative

effect to the intermolecular interaction energy as a function of

the cluster size. The co-operative contribution of the N—

Ha� � �O hydrogen bond is larger than in N—Hs� � �O. Although

the N—Ha� � �O hydrogen bond could be assisted by charge

delocalization within the R2
2(8) cyclic dimer ring known as

RAHB (resonance-assisted hydrogen bond) according to Gilli

et al. (1989), its co-operative contribution does not signifi-

cantly increase with the cluster size. In contrast, the N—

Ha� � �O hydrogen bonds have a significantly increase with

cluster enlargement due to the contribution of the co-opera-

tive effect. These results could be rationalized as being due to

the confinement of RAHB and charge-transfer effects to the

R2
2(8) cyclic dimers in clusters I, while the charge delocaliza-

tion is extended over the entire infinite C(4) chain in cluster II.

Furthermore, although the co-operative effect of the weak

C—Hout � � �O hydrogen bond only adds a small amount of

energy, its contribution might be destabilizing (Table 6).

5. IR and Raman results

The IR and Raman spectra of 1 are shown in Fig. 8. The

vibrational analysis was performed comparing experimental

IR and Raman spectra with those reported in the literature, as

well as with those obtained by calculations at the MP2 level

with the 6-311++G(d,p) basis set from optimized molecular

geometry, at the same level, for the isolated molecule. To

avoid the anharmonic effects and limitations of calculations

(Jensen, 2007) which induce calculated frequency values

larger than the experimental ones, the calculated frequencies

were corrected by the factor 0.9483 proposed by Scott &

Radom (1996). The inclusion of this factor allows us to have

more realistic calculated frequencies and a better agreement

between the calculated and experimental values.

Although the molecule strictly has no symmetry centre, the

deviation from a centrosymmetric structure is only very small.

This is reflected in the relative intensities of the bands in the

IR and Raman spectra. The molecule presents 72 normal

vibrational modes, most of them active either in the IR or in

the Raman spectra. A complete list of the experimental IR

and Raman wavenumbers, together with the calculated

frequencies and tentative assignments, is presented as

supporting information (Table S2).

The molecule presents four vibrational modes associated

with the two NH2 groups. Two of them, assigned to

	as(NH2)(in-phase) and 	s(NH2)(out-of-phase) modes, are IR

active and were observed at 3345 and 3170 cm�1, respectively,

as broad absorptions in the solid FT–IR spectrum. A

comparison of these two absorptions with the calculated

frequencies for the isolated molecule, predicted at 3560 and

3424 cm�1, reveals that these wavenumbers are red-shifted in

the IR spectrum of the solid, showing that they are involved in

strong N—H� � �O C hydrogen-bond interactions. The

Raman spectrum presents two low-intensity bands in this

spectral region assigned to the other two vibrational modes,

i.e. 	as(NH2)(out-of-phase) and 	s(NH2)(in-phase), at ap-

proximately 3336 and 3147 cm�1, respectively. Eight 	(CH2)

modes are observed between 2958 and 2901 cm�1, four of

them in the IR spectrum and the other four in the Raman

spectrum, in coincidence with the results of the calculations,

which predict these vibrations in the 2966–2902 cm�1 range.

The 	(CH) in-phase (Raman active) and out-of-phase (IR

active) modes of the substituted C atoms of the ring appeared

around 2860 cm�1, while the calculated frequencies are 2894

and 2893 cm�1, respectively. These values are about 30 cm�1

higher than those found experimentally and could be consid-

ered as evidence that the associated bands are red-shifted.

The band at 1689 cm�1 and its shoulder at 1644 cm�1 in the

FT–IR spectrum can be assigned to the out-of-phase C O
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Figure 9
(a) A projection perpendicular to the ab layer of two linked carboxamide R2

2(8) cyclic dimers through the N—Ha� � �O contact. The R2
2(8) cyclic dimer in a

molecular plane is shown in grey behind that in black. (b) A projection down the b axis showing the parallel � shift between CL layers.



stretching and NH2 scissoring modes, respectively. The in-

phase modes are observed in the Raman spectrum at 1678 and

1647 cm�1. As presented in Table S2 of the supporting infor-

mation, the NH2 scissoring modes are clearly blue-shifted

(approximately 100 cm�1) with respect to the expected values

for the isolated molecules. The calculated frequency values are

1679 cm�1 for both C O stretching modes and 1546/

1545 cm�1 for the in-phase/out-of-phase NH2 scissoring

modes. When amide groups are involved in strong inter-

actions, the wavenumbers of the NH2 scissoring bands usually

increase with the strength of the N—H� � �O C hydrogen

bond (Lin-Vien et al., 1991), thus decreasing the difference

between their values with respect to the C O stretching

bands. Thus, the IR and Raman spectra of the solid present

clear evidence of strong hydrogen-bond interactions. The rest

of the bands in the FT–IR and Raman spectra are fully

consistent with the theoretically simulated spectra, as can be

observed in Table S2 of the supporting information.

6. Discussion

As described above, in 1, each Hout atom (equatorial Heq

atom) establishes four similar intermolecular C—Hout� � �O

contacts to carboxamide O atoms of two adjacent IMCs (see

Table 2). The sum of the calculated intermolecular energies

provided by those contacts to the stabilization energy is

�7.2 kcal mol�1 (Table 4). Therefore, it is comparable to that

supplied by the N—Ha� � �O and C—Hin� � �O (or C—Hax� � �O)

hydrogen bonds, i.e. �10.1 kcal mol�1, to the stabilization

energy. It appears that weak C—Hout � � �O interactions acting

in concert may well stabilize the carboxamide plane perpen-

dicular to the CL layer (see Fig. 3b).

On the other hand, in 2, assuming the molecular confor-

mation does not deviate from that of the gas phase during

crystallization, there are two possible orientations of the

molecular chains that leave the carboxamide groups

approximately perpendicular to the CL layer (ab layer). In

one of them, the cubyl C—Hout groups are pointing, perpen-

dicular to the double N—Hs� � �O hydrogen-bonded ring plane

(cyclic dimer I), to the amide N atoms of neighbouring parallel

IMCs, building four C—Hout� � �N contacts. In the other

arrangement of chains (rotated 180� from the previous one

around the chain axis), the cubyl C—Hout groups are pointing,

perpendicular to the double N—Hs� � �O hydrogen-bonded

ring plane, to O atoms of adjacent parallel IMCs. In this way,

they build four C—Hout � � �O contacts, as in 1, instead of four

C—Hout� � �N contacts. An estimation of how much contribu-

tion to the inter-chain energy would furnish C—Hout� � �N and

C—Hout� � �O hydrogen bonds in both ideal IMCs arrange-

ments were obtained at the PBE/aug-cc-pDVZ theory level by

building suitable geometry optimized cluster models. The C—

Hout � � �N hydrogen bond contributes to the interaction of the

IMCs by 0.2 kcal mol�1 less than the C—Hout� � �O hydrogen

bond. This indicates that the second IMC arrangement, with

four C—Hout� � �O hydrogen bonds, should be energetically

favoured over the first one. This result is also consistent with

that obtained by Gatti et al. (1994) applying QTAIM (Bader,

1990) to urea. However, in the more stable arrangement of the

IMCs, i.e. when they are stabilized by four C—Hout� � �O

contacts, the CL layer packing through N—Ha� � �O is disad-

vantageous because nearest the N—Ha or C O carboxamide

groups of adjacent parallel IMCs are all pointing to one side of

the CL layer. In contrast, in the less energetic arrangement of

the IMCs, when four C—Hout� � �N contacts are built within the

CL layer (ab layer), the nearest N—Ha or C O carboxamide

groups of adjacent parallel IMCs are oriented in an alternating

fashion at each side of the CL layer favouring their packing.

The last IMC arrangement allows the diamide molecules to

pack along the c axis via strong N—Ha� � �O hydrogen bonds,

overcoming the small energy difference between the weak

hydrogen bonds and promoting IMCs (within CL layer) being

assembled in the less energetic arrangement. In this arrange-

ment of the IMCs, cubyl C—Hout groups should be pointing to

carboxamide N atoms instead of O atoms. However, because

C—H� � �O contacts are energetically more stable than C—

H� � �N contacts, it might be inferred that the competition

between these two weak contacts provokes a ‘rotation’ of the

molecular chains of about 15�, around their chain axis. In this

arrangement, two cubyl C—Hout groups (oriented opposite

along one of the cube diagonals) are pointing to the carbox-

amide O atoms of adjacent parallel IMCs, hence forming two

C—Hout� � �O contacts instead of four C—Hout� � �N contacts.

As a consequence of this, the carboxamide group plane is

tilted out of the CL layer by an angle of �R� 75� (see Fig. 4b).

As the CL layers are mainly connected by carboxamide

interactions, through N—Ha� � �O hydrogen bonds, it affects

the way these layers are assembled, causing them to be packed

in a nonperpendicular direction. Assuming a carboxamide-

group size of 5 Å, which is close to the carboxamide bond

distance linked by N—Ha� � �O contacts, it is possible to

express the parallel shift between CL layers (�) in terms of

�IMC (the tilt angle between the axis of the IMCs and the

c-glide plane) and �R angles as � = 5cos�Rsin�IMC (see part a

in Fig. 9). The angle between the CL packing direction (which

is coincident with the c axis) and the CL layer is the 
 angle of

the unit cell and can be calculated as cos
 = ��/5, see

Fig. 9(b), therefore cos 
 = �cos�Rsin�IMC. From the crystal-

lographic data, �IMC = 43.85 (1)�, and the obtained value is 
 =

100.5�, which are very close to the observed value of 101.54�

(Kuduva et al., 2001). This provides evidence that weak

intermolecular contacts acting within CL layers, in spite being

much weaker than those established by carboxamide groups,

might influence carboxamide orientation and therefore affect

the molecular packing.

7. Conclusion

The effect of strong intermolecular N—Hx� � �O contacts

established by carboxamide groups on the 3D ordering of

molecules of trans-cyclohexane-1,4-dicarboxamide (1) and

cubane-1,4-dicarboxamide (2) were analyzed in the context of

their co-existence with weak intermolecular C—Hy� � �O con-

tacts. As expected, experimental and theoretical results

support the fact that strong intermolecular N—Hx� � �O inter-
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actions determine the main characteristics of the molecular

packing. Namely, they build infinite molecular chains through

N—Hs� � �O contacts and these chains are packed by means of

N—Ha� � �O contacts. In the crystalline state, the distribution of

the electron charge density around the carbonyl O atom

allows it to act as an electron donor not only in two strong N—

Hx� � �O hydrogen bonds, of n(O)!�*(Hx—N) type, but also

in three weak C—Hy� � �O hydrogen bonds. One of the latter

hydrogen bonds can be described as an n(O)!�*(Hin—C)

interaction, while the others can be described as �(C O)!

�*(Hout—C) interactions. In addition, depending on whether

these interactions involve molecular fragments with electronic

charge delocalization, they contribute unevenly to co-opera-

tive effects, being capable of producing destabilizing effects, as

in the case of the weak C—Hout� � �O contacts in 1. However, in

spite of this, as observed in 1 and 2, weak intermolecular C—

Hy� � �O hydrogen bonds are able to alter the approach of

IMCs to form parallel layers and therefore affecting the

carboxamide plane tilt with respect to the CL layer. As a

result, due to the fact that the CL layers are mainly connected

by N—Ha� � �O hydrogen bonds, differences in the carbox-

amide tilt cause 1 and 2 to be packed in different manners.

Thus, it could be concluded that in 1 the 43-fold screw axis is a

consequence not only of the residue size but also of the

residue morphology, which ultimately determines the

arrangement of the C—H bonds with respect to the carbox-

amide-group plane.
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Role of weak C—H···O and strong N—H···O intermolecular interactions on the 

high-symmetry molecular packing of trans-cyclohexane-1,4-dicarboxamide

Fernando García-Reyes, Adolfo C. Fantoni, Máximo Barón, Rosana M. Romano, Graciela M. 

Punte and Gustavo A. Echeverría

Computing details 

Data collection: CrysAlis PRO (Agilent, 2014); cell refinement: CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis 

PRO (Agilent, 2014); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine 

structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury 

(Macrae et al., 2008); software used to prepare material for publication: PLATON (Spek, 2009) and PARST (Nardelli, 

1995) within WinGX (Farrugia, 2012).

trans-Cyclohexane-1,4-dicarboxamide 

Crystal data 

C8H14N2O2

Mr = 170.21
Tetragonal, P43212
Hall symbol: P 4nw 2abw
a = 6.9584 (2) Å
c = 18.8979 (6) Å
V = 915.02 (6) Å3

Z = 4
F(000) = 368

Dx = 1.236 Mg m−3

Cu Kα radiation, λ = 1.54184 Å
Cell parameters from 854 reflections
θ = 4.7–69.5°
µ = 0.74 mm−1

T = 293 K
Frag, colourless
0.25 × 0.12 × 0.12 mm

Data collection 

Agilent Xcalibur Eos Gemini 
diffractometer

Radiation source: Enhance (Cu) X-ray Source
Graphite monochromator
Detector resolution: 16.0604 pixels mm-1

ω scans
Absorption correction: multi-scan 

(CrysAlis PRO; Agilent, 2014)
Tmin = 0.893, Tmax = 1

1745 measured reflections
890 independent reflections
837 reflections with I > 2σ(I)
Rint = 0.014
θmax = 72.0°, θmin = 6.8°
h = −8→8
k = −6→7
l = −11→23

Refinement 

Refinement on F2

Least-squares matrix: full
R[F2 > 2σ(F2)] = 0.044
wR(F2) = 0.130
S = 1.07
890 reflections

68 parameters
0 restraints
Hydrogen site location: difference Fourier map
Only H-atom displacement parameters refined
w = 1/[σ2(Fo

2) + (0.075P)2 + 0.1598P] 
where P = (Fo

2 + 2Fc
2)/3
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(Δ/σ)max < 0.001
Δρmax = 0.23 e Å−3

Δρmin = −0.13 e Å−3

Absolute structure: Flack x determined using 
278 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et 
al., 2013)

Absolute structure parameter: −0.1 (3)

Special details 

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full 
covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and 
torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. 
An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. The measurements were performed on a Rigaku Oxford Diffraction EOS CCD diffractometer with graphite-
monochromated Cu Kα (λ = 1.54184 Å) radiation. X-ray diffraction intensities were collected (ω scans with θ and κ 
offsets), integrated and scaled with CrysAlis PRO (Agilent, 2014) suite of programs. The unit-cell parameters were 
obtained by least-squares refinement (based on the angular settings for all collected reflections with intensities larger than 
seven times the standard deviation of measurement errors) using CrysAlis PRO. Data were corrected empirically for 
absorption employing the multi-scan method implemented in CrysAlis PRO. The molecular structure was solved by 
direct methods with SHELXS and the molecular model refined by full-matrix least-squares procedure with SHELXL, both 
codes belong to the SHELX suite of programs (2008). After non-hydrogen atoms were anisotropically refined, hydrogen 
atoms were localized from Fourier difference maps and refined riding on bound atoms. ORTEP-3 for Windows (Farrugia, 
1997) and Mercury (Macrae et al., 2006) programs were used for structure analysis and to prepare material for 
publication. Details of data collection and structure refinement are summarized in Table 1. PLATON (Spek, 2009) and 
PARST (Nardelli, 1995) programs were used within WinGX (Farrugia, 2012) to prepare tables for publication.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) 

x y z Uiso*/Ueq

O5 0.3771 (3) 1.0600 (3) 0.54566 (9) 0.0602 (6)
N6 0.3328 (4) 1.0717 (4) 0.42891 (11) 0.0549 (7)
H62 0.367 (5) 1.033 (6) 0.3894 (17) 0.067 (10)*
H61 0.245 (6) 1.159 (6) 0.4352 (17) 0.070 (10)*
C4 0.4181 (3) 1.0038 (3) 0.48545 (11) 0.0425 (6)
C1 0.5696 (4) 0.8512 (4) 0.47394 (12) 0.0458 (6)
H11 0.5774 0.8366 0.4274 0.051 (8)*
C3 0.7604 (4) 0.9142 (4) 0.5055 (2) 0.0696 (9)
H31 0.7398 0.9341 0.5572 0.072 (10)*
H32 0.7948 1.0401 0.4778 0.135 (18)*
C2 0.5077 (4) 0.6614 (4) 0.5047 (2) 0.0694 (10)
H21 0.4976 0.6845 0.5572 0.073 (10)*
H22 0.3798 0.6212 0.481 0.084 (12)*

Atomic displacement parameters (Å2) 

U11 U22 U33 U12 U13 U23

O5 0.0700 (13) 0.0727 (13) 0.0379 (8) 0.0316 (10) −0.0028 (8) −0.0087 (8)
N6 0.0645 (14) 0.0621 (14) 0.0381 (10) 0.0287 (12) −0.0010 (9) −0.0008 (9)
C4 0.0455 (12) 0.0434 (12) 0.0387 (11) 0.0097 (9) −0.0002 (9) −0.0026 (9)
C1 0.0520 (14) 0.0484 (13) 0.0371 (10) 0.0170 (11) 0.0020 (10) −0.0034 (9)
C3 0.0443 (14) 0.0422 (14) 0.122 (3) 0.0028 (12) 0.0018 (17) −0.0071 (16)
C2 0.0384 (13) 0.0478 (16) 0.122 (3) 0.0028 (12) 0.0023 (17) −0.0006 (17)
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Geometric parameters (Å, º) 

O5—C4 1.237 (3) C1—H11 0.8876
N6—C4 1.311 (3) C3—C3i 1.528 (6)
N6—H62 0.83 (3) C3—H31 0.9969
N6—H61 0.87 (4) C3—H32 1.0476
C4—C1 1.511 (3) C2—C2i 1.523 (5)
C1—C2 1.506 (4) C2—H21 1.0078
C1—C3 1.520 (4) C2—H22 1.0349

C4—N6—H62 119 (2) C1—C3—C3i 110.9 (2)
C4—N6—H61 117 (2) C1—C3—H31 107.4
H62—N6—H61 123 (3) C3i—C3—H31 109.3
O5—C4—N6 122.1 (2) C1—C3—H32 104.2
O5—C4—C1 121.1 (2) C3i—C3—H32 111
N6—C4—C1 116.9 (2) H31—C3—H32 113.9
C2—C1—C4 111.2 (2) C1—C2—C2i 111.7 (2)
C2—C1—C3 110.6 (2) C1—C2—H21 105.1
C4—C1—C3 110.5 (2) C2i—C2—H21 106
C2—C1—H11 107.5 C1—C2—H22 108.4
C4—C1—H11 105.4 C2i—C2—H22 111.3
C3—C1—H11 111.6 H21—C2—H22 114.2

O5—C4—C1—C2 65.6 (4) C2—C1—C3—C3i 56.2 (4)
N6—C4—C1—C2 −114.0 (3) C4—C1—C3—C3i 179.6 (3)
O5—C4—C1—C3 −57.5 (4) C4—C1—C2—C2i −178.4 (3)
N6—C4—C1—C3 122.8 (3) C3—C1—C2—C2i −55.3 (4)

Symmetry code: (i) y, x, −z+1.

Hydrogen-bond geometry (Å, º) 

D—H···A D—H H···A D···A D—H···A

N6—H62···O5ii 0.83 (3) 2.14 (4) 2.955 (3) 169 (4)
N6—H61···O5iii 0.87 (4) 2.02 (4) 2.889 (3) 175 (4)
N6—H62···O5ii 0.83 (3) 2.14 (4) 2.955 (3) 169 (4)
N6—H61···O5iii 0.87 (4) 2.02 (4) 2.889 (3) 175 (4)
C1—H11···O5ii 0.89 2.68 3.492 (3) 152.5
C2—H22···O5iv 1.03 2.84 3.811 (4) 155.6
C3—H32···O5v 1.05 3.02 3.956 (4) 149.7

Symmetry codes: (ii) −y+3/2, x+1/2, z−1/4; (iii) y−1, x+1, −z+1; (iv) y−1, x, −z+1; (v) y, x+1, −z+1.

Topological analysis of selected contacts calculated at PBE/6-31G** theory level for clusters I and IIa 

Contact Comp ρ \nabla2 (e A-3) λ3 (e A-3) G (kcal mol-1) V (kcal mol-1) H (kcal mol-1)
N—Hs···O 1 0.2247 2.2884 4.5124 15.5 -16.1 -0.6

2 0.2314 2.4308 4.7490 16.3 -16.7 -0.4
N—Ha···O 1 0.1566 1.7486 3.1217 11.6 -11.9 -0.3

2 0.1718 1.8356 3.3832 12.4 -12.9 -0.5
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C—Hin···O 1 0.0469 0.5597 0.8408 3.2 -2.8 0.4
2 0.0803 0.8597 1.4336 5.6 -5.5 0.1

C—Hout···O 1 0.0453 0.5792 0.8289 3.3 -2.7 0.6
2 0.0455 0.5647 0.8433 3.2 -2.7 0.5

(a) ρ(r) electron density, its Laplacian, \nable2ρ(r), positive principal curvature, λ3, G(r) kinetic, V(r) potential and H(r) total energy densities evaluated at 
the corresponding (3,-1) critical points.


