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Highlights of the manuscript "On the efficiency of sovereign bond markets" by Luciano Zunino, 
Aurelio Fernández Bariviera, M. Belén Guercio, Lisana B. Martinez and Osvaldo A. Rosso 
 

• Efficiency of sovereign bond markets is analyzed. 
• The complexity-entropy causality plane is implemented to reach this goal. 
• Correlations and hidden structures in the daily values of bond indices are unveiled. 
• Consistency with qualifications assigned by major rating companies is obtained. 
• A link between the entropy measure, economic growth and market size is also found. 
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Abstract

The existence of memory in financial time series has been extensively studied for several

stock markets around the world by means of different approaches. However, fixed income

markets, i.e. those where corporate and sovereign bonds are traded, have been much less

studied. We believe that, given the relevance of these markets, not only from the investors’,

but also from the issuers’ point of view (government and firms), it is necessary to fill this

gap in the literature. In this paper, we study the sovereign market efficiency of thirty bond

indices of both developed and emerging countries, using an innovative statistical tool in

the financial literature: the complexity-entropy causality plane. This representation space

allows us to establish an efficiency ranking of different markets and distinguish different bond

market dynamics. We conclude that the classification derived from the complexity-entropy

causality plane is consistent with the qualifications assigned by major rating companies to

the sovereign instruments. Additionally, we find a correlation between permutation entropy,

economic development and market size that could be of interest for policy makers and

investors.

Keywords: sovereign bond market efficiency, complexity-entropy causality plane,

permutation entropy, permutation statistical complexity, Bandt and Pompe method,

ordinal time series analysis

PACS: 89.65.Gh (Economics; econophysics, financial markets, business and management),

1



05.45.Tp (Time series analysis), 89.70.Cf (Entropy and other measures of information)

1. Introduction1

The study of the informational efficiency is maybe one of the most elusive issues in2

financial economics. In spite of the fact that the first model of an informational efficient3

market was based on the price changes of French government bonds [1], the literature focused4

its efforts on the study of stock markets rather than bond markets. The reason for this bias5

is probably twofold. On the one hand, stock markets trading figures are much larger than6

bond markets. On the other hand, sovereign bonds1 began to be traded in exchange markets7

much more recently in time for many countries, specially for emerging ones. More details8

about the development of fixed income markets for emerging countries can be found in9

Refs. [3, 4]. Among the studies on the fixed income markets we can cite Ref. [5] in which10

January effect in returns of corporate bonds of the Dow Jones Composite Bond Average11

is found, Ref. [6] in which patterns of daily seasonality in high yield corporate bonds are12

observed, and Ref. [7] where it is shown the existence of daily seasonalities in the Spanish13

sovereign bonds for different maturities. Also the patterns of comovements in government14

bond market yields have been recently analyzed by implementing the minimum spanning15

tree approach [8, 9]. Useful conclusions are obtained by examining the dynamic evolution16

of market linkages.17

The traditional definition of informational efficiency corresponds to a market where prices18

fully reflect all available information [10]. Therefore, the key element in assessing efficiency19

is to determine the information set against which prices should be tested. Informational20

Email addresses: lucianoz@ciop.unlp.edu.ar (Luciano Zunino), aurelio.fernandez@urv.net
(Aurelio Fernández Bariviera), mariabelen.guercio@urv.net (M. Belén Guercio),
lisanabelen.martinez@urv.net (Lisana B. Martinez), oarosso@fibertel.com.ar,
oarosso@gmail.com (Osvaldo A. Rosso)

1“A bond is an instrument in which the issuer (debtor/borrower) promises to repay to the lender/investor

the amount borrowed plus interest over some specified period of time”. Definition extracted from Ref. [2,

p. 213]. “Bonds issued by autonomous nation states are included in sovereign debt”. Definition extracted

from Ref. [2, p. 223].
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efficiency is classified into three categories, depending on this information set [11, 12]. The21

first category is the weak efficiency, where stock prices reflect all the information contained22

in the history of past prices. The second category is semi-strong efficiency, where the infor-23

mation set is all public known information. Finally, the third category is strong efficiency,24

where prices reflect all kind of information, public and private. Although it may seem at25

first sight a sign of irrationality, random changes in stock prices reflect the quest of ratio-26

nal investors to catch mispriced securities in the market. The Efficient Market Hypothesis27

(EMH) is a necessary condition for the existence of equilibrium in a competitive market, in28

which arbitrage opportunities cannot exist. Ross [13] indicates that this definition evokes29

the idea that prices are the result of decisions made by individual agents and, therefore, they30

depend on the underlying information. As a corollary, with the same information set it is not31

possible to obtain superior returns. It implies, also, that future returns depend to a great32

extent not only on historic information but also on the new information that arrives at the33

market. Therefore, an investor, whose information set is the same or inferior to the market34

information set, cannot beat the market. In addition, investors cannot control the flow of35

their informative endowment towards the market, since their own transactions (according36

to its direction and volume) act as signals to the market, tending, thus, to an equalization37

of the informative sets of the different participants in the market. This produces that, in38

average, participants cannot beat the market on a regular basis. In an attempt to relax such39

strict assumptions, Grossman and Stiglitz [14] expand the concept of efficiency, arguing that40

when information is costly, prices will reflect the information of informed individuals, but41

only partially, so that information gathering is rewarded.42

The aim of this paper is to analyze the sovereign bond market efficiency. More precisely,43

we want to: (i) classify bond indices, giving a rationale for the bond qualifications of the44

main rating agencies such as Standard & Poor’s (S&P) and Moody’s and (ii) analyze the45

link between sovereign bond market efficiency, economic development and market size. The46

relationship between economic growth and financial system development has been exten-47

sively studied in the economic literature [15–21]. Nevertheless, these studies consider the48

financial system only composed by the banking sector and the stock market. There is a49
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scarce literature that includes the bond market and their results are contradictory [22–25].50

The present paper extends the coverage of the empirical literature, considering a potential51

relationship between economic growth and the development of sovereign bond markets, as52

an important part of the financial system.53

In order to quantify the efficiency related to government bond market indices we use54

the complexity-entropy causality plane, i.e. the representation space with the permutation55

entropy of the system in the horizontal axis and an appropriate permutation statistical56

complexity measure in the vertical one. This novel information-theory-tool was recently57

shown to be a practical and robust way to discriminate the linear and nonlinear correlations58

present in stock and commodity markets [26, 27]. The location in the complexity-entropy59

causality plane allows to quantify the inefficiency of the system under analysis because the60

presence of temporal patterns derives in deviations from the ideal position associated to a61

totally random process. Consequently, the distance to this random ideal location can be62

used to define a ranking of efficiency. As will be shown in detail below, we have found63

that this permutation information-theory-tool is also useful for detecting and quantifying64

the presence of correlations and hidden structures in the temporal evolution of government65

bond markets.66

This article contributes in several ways to the research field. First, to the best of our67

knowledge, this is the most comprehensive study of efficiency in the sovereign bond markets68

covering a total of thirty bond indices of both developed and emerging countries. Second,69

we detect a coherence of agencies’ ratings with the time series efficiency endowment. Third,70

we find a statistically significant link between bond market randomness and economic de-71

velopment and market size. Fourth, we prove the practical utility of the complexity-entropy72

causality plane for quantifying efficiency in a financial context.73

The remainder of the paper is organized as follows. In the next section, in order to keep74

our description as self-contained as possible, we introduce the complexity-entropy causality75

plane. In Sec. 3 we present the data and results. Finally, in Sec. 4, the main conclusions of76

this paper are summarized.77
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2. Complexity-entropy causality plane78

Black box time series, given by the discrete set {xt, t = 1, . . . , N}, recorded from ob-

servable quantities associated to a system are very often the starting point to study the

underlying dynamical phenomenon. They should be carefully analyzed in order to extract

relevant information for simulation and forecasting purposes. Information-theory-derived

quantifiers can be good candidates for this task because they are able to characterize some

properties of the probability distribution associated with the observable or measurable quan-

tity. Shannon entropy is the most paradigmatic example. Its usefulness as a measure of the

volatility phenomenon in the financial domain has been proved [28]. Given any arbitrary

discrete probability distribution P = {pi : i = 1, . . . ,M}, Shannon’s logarithmic information

measure is given by S[P ] = −PM
i=1 pi ln pi. It is equal to zero when we are able to predict

with full certainty which of the possible outcomes i whose probabilities are given by pi will

actually take place. Our knowledge of the underlying process described by the probability

distribution is maximal in this instance. In contrast, this knowledge is minimal for a uniform

distribution. It is well known, however, that the degree of structure or patterns present in a

process is not quantified by randomness measures and, consequently, measures of statistical

or structural complexity are necessary for a better characterization [29]. This is why we

have proposed to consider also the statistical complexity for the analysis of financial time

series [26, 27]. The opposite extremes of perfect order and maximal randomness (a periodic

sequence and a fair coin toss, for example) are very simple to describe because they do not

have any structure. The former situation is fully predictable and the latter one has a very

simple statistical description. The statistical complexity should be zero in both these cases.

At a given distance from these extremes, a wide range of possible degrees of physical struc-

ture exists, that should be discriminated by the complexity measure. In this work we have

considered the effective statistical complexity measure (SCM) introduced by Lamberti et

al. [30] since it is able to detect essential details of the dynamics and discriminate different

degrees of periodicity and chaos. This statistical complexity measure is defined, following
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the seminal and intuitive notion advanced by López-Ruiz et al. [31], through the product

CJS[P ] = QJ [P, Pe] HS[P ] (1)

of the normalized Shannon entropy

HS[P ] = S[P ]/Smax (2)

with Smax = S[Pe] = ln M , (0 ≤ HS ≤ 1) and Pe = {1/M, . . . , 1/M} the uniform dis-79

tribution, and the disequilibrium QJ defined in terms of the Jensen-Shannon divergence.80

That is, QJ [P, Pe] = Q0J [P, Pe] with J [P, Pe] = {S[(P + Pe)/2] − S[P ]/2 − S[Pe]/2} the81

above-mentioned Jensen-Shannon divergence and Q0 a normalization constant, equal to the82

inverse of the maximum possible value of J [P, Pe]. This value is obtained when one of the83

components of P , say pm, is equal to one and the remaining pi are equal to zero. Note that84

the above SCM depends on two different probability distributions, the one associated to the85

system under analysis, P , and the uniform distribution, Pe. Furthermore, it was shown that86

for a given value of HS, the range of possible CJS values varies between a minimum Cmin
JS and87

a maximum Cmax
JS , restricting the possible values of the SCM in a given complexity-entropy88

plane [32]. Thus, it is clear that important additional information related to the correla-89

tional structure between the components of the physical system is provided by evaluating90

the statistical complexity measure. Of course there exist many other complexity measures.91

For a comparison among them see the paper by Wackerbauer et al. [33].92

In order to calculate the two above-mentioned information-theory-derived quantifiers, a93

probability distribution should be estimated from the time series associated to the measur-94

able quantity of the system. The Bandt and Pompe permutation methodology was employed95

in our analysis due to its simplicity and effectiveness [34]. This efficient symbolic technique,96

based on the ordinal relation between the amplitude of neighboring values, arises naturally97

from the time series and allows to avoid amplitude threshold sensitivity dependences. It is98

clear that, with this way of symbolizing time series, some details of the original amplitude in-99

formation and variability are lost. However, a meaningful reduction of the complex systems100

to their basic intrinsic structure is provided. Furthermore, the ordinal pattern distribution101
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is invariant with respect to nonlinear monotonous transformations. Thus, nonlinear drifts102

or scalings artificially introduced by a measurement device do not modify the quantifiers’103

estimations, a property highly desired for the analysis of experimental data. These are the104

main advantages with respect to more conventional methods based on range partitioning.105

The ordinal pattern probability distribution is obtained once we fix the embedding dimen-106

sion D (pattern length) and the embedding delay time τ . The former parameter, D, refers107

to the number of symbols that forms the ordinal pattern. Its choice depends on the length108

N of the time series in such a way that the condition N ≫ D! must be satisfied in order109

to obtain a reliable statistics. It is worth remarking that there are D! possible permuta-110

tions, and accessible states, for a D-dimensional vector. For practical purposes, Bandt and111

Pompe recommend 3 ≤ D ≤ 7 [34]. The embedding delay, τ , is the time separation between112

symbols, which is directly related to the sampling time of the time series. By changing the113

embedding delays of the symbolic reconstruction, different time scales are taken into ac-114

count. Hereafter, we have fixed τ = 1, focusing the analysis on the highest frequency (daily115

values) contained within the time series. Please see Refs. [26, 27] for further details about116

the Bandt and Pompe permutation methodology. A very related approach, based on com-117

puting the number of forbidden ordinal patterns present in time series, has been successfully118

used to find evidence of determinism in noisy time series [35]. By employing this methodol-119

ogy, Zanin [36] has found a clear deterministic behavior for the ten years U.S. bond interest120

rates. In the present work the normalized Shannon entropy, HS (Eq. (2)), and the SCM,121

CJS (Eq. (1)), are evaluated using the permutation probability distribution. Defined in this122

way, these quantifiers are usually known as permutation entropy and permutation statistical123

complexity [37]. They characterize the diversity and correlational structure, respectively, of124

the orderings present in the complex time series.125

The complexity-entropy causality plane (CECP) was introduced in Ref. [38] as the repre-126

sentation space obtained with the permutation entropy of the system in the horizontal axis127

and the permutation statistical complexity in the vertical one. The term causality takes into128

consideration that the temporal correlation between successive samples is included through129

the Bandt and Pompe recipe used to estimate both information-theory quantifiers. This130
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two-dimensional (2D) diagram was shown to be particularly efficient to distinguish between131

the deterministically chaotic and stochastic nature of a time series since the permutation132

quantifiers have distinctive behaviors for different type of motions. According to the find-133

ings obtained by Rosso et al. [38], chaotic maps have intermediate HS values while CJS134

reaches larger values, very close to the limit ones. For regular processes, both quantifiers135

have small values, close to 0. Finally, totally uncorrelated stochastic processes are located136

in the planar location associated with HS and CJS near 1 and 0, respectively. It has also137

been found that 1/fα correlated stochastic processes with 1 < α < 3 are characterized by138

intermediate permutation entropy and intermediate statistical complexity values. Within139

the econophysics framework, it has been recently shown that this information-theory-derived140

approach is an effective tool for distinguishing the stage of stock and commodity markets141

development [26, 27].142

3. Data and results143

In this paper we analyze the daily values of thirty bond indices, corresponding to twenty144

one developed and nine emerging markets, from 3rd January, 2000 until 7th September,145

2011, giving a total of N = 3047 data points for each bond daily record. All data were146

collected from Datastream database. The codes and names of these indices are presented147

in Table 1. We worked with two different indices elaborated by Citigroup: World Govern-148

ment Bond Index (WGBI) and Global Emerging Market Sovereign Bond Index (ESBI). The149

selection of these indices is based on their general characteristics that guarantee a uniform150

calculation across countries and the availability of a sufficiently long time series. WGBI in-151

cludes sovereign debts denominated in the domestic currency, with a minimum size of USD152

20 billion and a minimum credit quality of Baa3/BBB- by Moody´s or Standard & Poor´s153

(S&P). ESBI includes US dollar-denominated emerging market sovereign debts issued in154

the global, US and Eurodollar markets with a minimum size of USD 500 million, and max-155

imum credit rating of Baa1/BBB+ by Moody´s or S&P, excluding debts into default. An156

overview about the categories of government bonds by these agencies is shown in Table 2.157

Credit ratings is an appraisal about the credit risk of a debt instrument and/or an issuer and158
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are provided by specialized firms. These ratings are relative rather than absolute opinions159

about credit quality, i.e. about the ability of an issuer to fulfill its financial obligations on160

time. These opinions are important to increase the information flow across the market and161

are useful for the different participants in the market: investors, intermediaries and issuers.162

We select indices that contain long maturity bonds (7-10 years) because, as explained163

in Ref. [39], the returns of these bonds are not heavily influenced by short-term monetary164

policy and home bias, but reflects global investor preferences, global savings trends and165

international risk appetite. Among all the countries available we made a selection that166

allows us to work with a large number of countries and a long time coverage.167

Locations of the different sovereign bond markets in the CECP are estimated from the168

daily indices for different embedding dimensions (pattern length) (D = 4, D = 5 and D = 6).169

In Fig. 1 we can observe that developed and emerging bond markets are clearly discrimi-170

nated in this representation space. In particular, we detect that developed markets exhibit171

higher permutation entropy and lower permutation statistical complexity whereas emerging172

markets present lower permutation entropy and higher permutation statistical complexity.173

This indicates that bond indices corresponding to developed markets exhibit more random174

behavior than those associated with emerging markets, which means higher informational ef-175

ficiency in developed markets and, consequently, less predictability. Additionally, we observe176

that developed markets conform a compact cluster, different from the pattern of emerging177

markets that are more scattered on this representation space. It is worth remarking that178

these findings appear to be independent of the pattern length selected for the symbolic179

reconstruction of the original time series.180

As can be seen in Fig. 2, we have also detected that, within developed markets, Eurozone181

countries are more closed together, indicating that the price dynamics are very similar. This182

situation could be caused by the existence of a common currency that avoids the exchange183

rate risk, remaining only the credit and liquidity risks, as suggested in Ref. [40]. Note that184

only Ireland (identified by the number 9 in Fig. 2) is not included in the Eurozone cluster.185

Its permutation entropy is lower and its statistical complexity is higher due to a constant186

9



Table 1: Sovereign bond indices analyzed in this paper.

WGBI ESBI

Country Datastream code Country Datastream code

1. Australia SBAD70U 1. Argentina CGESARL

2. Austria SBAS70U 2. Brazil CGESBRL

3. Belgium SBBF70U 3. Chile CGESCLL

4. Canada SBCD70U 4. Malaysia CGESMYL

5. Denmark SBDK70U 5. Mexico CGESMXL

6. Finland SBFN71$ 6. Philippines CGESPHL

7. France SBFF70U 7. Turkey CGESTKL

8. Germany SBDM70U 8. Uruguay CGESUGL

9. Ireland SBIR71$ 9. Venezuela CGESVZL

10. Italy SBIT70U

11. Japan SBJY70U

12. Netherlands SBDG70U

13. New Zealand CGNZ71$

14. Norway CGNW71$

15. Poland SBPL7T$

16. Singapore CGSI71$

17. Spain SBSP70U

18. Sweden SBSK70U

19. Switzerland SBSZ70U

20. United Kingdom SBUK70U

21. United States SBUS70L
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Table 2: Bond rating by Moody’s and Standard & Poor’s. Source: Own elaboration based on information

retrieved from http://www.moodys.com and http://www.standardandpoors.com.

Moody’s S&P

Investment grade

Aaa AAA

Aa1 AA+

Aa2 AA

Aa3 AA-

A1 A+

A2 A

A3 A-

Baa1 BBB+

Baa2 BBB

Baa3 BBB-

Speculative grade

Ba1 BB+

Ba2 BB

Ba3 BB-

B1 B+

B2 B

B3 B-

Caa1 CCC+

Caa2 CCC

Caa3 CCC-

Ca CC

C C
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Figure 1: (Color online) Location of the developed and emerging bond markets, according to the indices

elaborated by Citigroup (daily data from 3rd January, 2000 until 7th September 2011, N = 3047 data

points), in the CECP with embedding dimensions D = 4 (upper plot), D = 5 (central plot) and D = 6

(lower plot), and time delay τ = 1. We also display the minimum and maximum possible values of the

complexity measure (dashed lines). For further details about the range of possible SCM values see Ref. [32].
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behavior during the period from 31st May, 1999 to 28th April, 20002. This highly regular187

local dynamics strongly affects the global permutation quantifiers’ estimations. Focusing on188

developed government bond markets, we perform a similar analysis for the WGBI beginning189

on 2nd April, 2002 (N = 2462 data points). In this way, the constant behavior observed190

in the Ireland bond index is avoided. Moreover, a new index (SBPE71$) associated to191

another country member of the Eurozone, Portugal (identified by the number 22 in Fig. 3),192

is included because of data availability. As can be concluded from Fig. 3, the previous finding193

is confirmed, i.e. the Eurozone countries conform a well-defined cluster in the CECP. It is194

clear that the monetary policy harmonization within the Eurozone increases the financial195

integration [8].196

Another important result is that the classification derived from the CECP is coher-197

ent with the qualification made by rating agencies. In fact, markets with better ratings198

(Baa3/BBB- or better) are more random and behave more efficiently. On the other hand,199

emerging countries (with a maximum qualification of Baa1/BBB+) have lower permutation200

entropy values, which indicate a more regular behavior. This results allows us to confirm201

that emerging and developed bond markets differ in their informational efficiency from a202

information-theory-viewpoint.203

In light of the results obtained, we investigate if the permutation entropy, that quantifies204

the random behavior of the bond indices, is related to the developmental stage of the econ-205

omy and/or to the market size. If bond markets were a pure random walk, their associated206

entropy values would be maximized. On the other hand, if the bond indices were somewhat207

correlated, then their entropy would not attain its maximal value [41]. Dependence of the208

data generating process introduces patterns in the time series. Hence, the permutation en-209

tropy decreases because the ordinal patterns are distant from sharing the same probability.210

In order to assess the relationship between permutation entropy and the country develop-211

ment we perform a non-parametric regression between the estimated values for the entropy212

quantifier and the gross domestic product (GDP) per capita, measured in constant dollars213

2There were no trades on the bonds of WGBI Ireland index during this period of time and, consequently,

the index remained constant and no returns were recorded.
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Figure 2: (Color online) Location of the different developed bond markets (daily data from 3rd January,

2000 until 7th September 2011, N = 3047 data points) in the CECP with embedding dimension D = 6 and

time delay τ = 1. A similar grouping is obtained for D = 4 and D = 5. Numbers indicate WGBI bond

indices listed in Table 1. Eurozone sovereign bond markets are identified with green stars.
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Figure 3: (Color online) Location of the different developed bond markets (daily data from 2nd April, 2002

until 7th September 2011, N = 2462 data points) in the CECP with embedding dimension D = 6 and time

delay τ = 1 for the WGBI beginning on 2nd April, 2002. Similar results are obtained for D = 4 and D = 5.

Numbers indicate WGBI bond indices listed in Table 1. Portugal bond index is identified by the number

22. Eurozone sovereign bond markets are identified with green stars.

15



Table 3: Non-parametric rank correlation between permutation entropy, economic development (GDP per

capita) and bond market size (Public bond market capitalization/GDP).

Variable Test N Coefficient P-value

GDP per capita (constant 2000 USD)
Kendall’s tau-b 30 0.513 0.000

Spearman’s rho 30 0.706 0.000

GDP per capita (PPP constant 2005 USD)
Kendall’s tau-b 30 0.375 0.004

Spearman’s rho 30 0.582 0.001

Public bond market capitalization/GDP
Kendall’s tau-b 29a 0.281 0.032

Spearman’s rho 29a 0.417 0.024

a The regresssion does not include Uruguay because the bond market capitalization corresponding to this

country is not available at Ref. [42].

and at purchasing power parity (PPP). The results (see Table 3) show a moderate to strong214

relationship between permutation entropy and the development proxies. Additionally, and215

in order to study the effect of market size on the efficiency of the bond market, we perform a216

non-parametric regression between permutation entropy and a size proxy. We select the ra-217

tio of bond market capitalization to GDP as a variable that is representative of the market’s218

depth [42]. Table 3 shows a moderate relationship between permutation entropy and market219

size, which highlights the usefulness of permutation entropy in financial time series analysis.220

In fact, these results are important in two aspects. The first one is that permutation entropy221

is positively related with the stage of economic development. The second one is that this222

quantifier is also affected by market size. These findings can be of great value for policy223

makers in order to set measures for improving the informational efficiency of bond markets.224

4. Conclusions225

We used the complexity-entropy causality plane in order to unveil the presence of cor-226

relations and hidden structures in the daily values of thirty bond indices. We detect that227
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the qualifications given by the main rating agencies are coherent with the location of the228

associated time series in this representation space. In this sense, we expanded the literature229

of EMH to a market that was not sufficiently studied in this aspect. Additionally, we find a230

link between the entropy measure, economic growth and market size. In fact, permutation231

entropy is higher for developed countries than for emerging ones, and market size is corre-232

lated with permutation entropy, being the bigger markets the ones with higher permutation233

entropy. In future works we would like to study the comovements and efficiency evolution234

of government bond markets.235
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