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Abstract

Tumor growth is often the result of the simultaneous development of two or
more cancer cell populations. Their interaction between them characterizes
the system evolution. To obtain information about these interactions we
apply the recently developed vector universality (VUN) formalism to various
instances of competition between tumor populations. The formalism allows
us: (a) to quantify the growth mechanisms of a HeLa cell colony, describing
the phenotype switching responsible for its fast expansion, (b) to reliably
reconstruct the evolution of the necrotic and viable fractions in both in vitro

and in vivo tumors using data for the time dependences of the total masses,
and (c) to show how the shedding of cells leading to subspheroid formation
is beneficial to both the spheroid and subspheroid populations, suggesting
that shedding is a strong positive influence on cancer dissemination.
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1. Introduction

The development of multiple mathematical models in tumor biology re-
sults from their potential to describe and predict neoplastic growth and the
effect of applied therapies. These models use both phenomenological and
mechanistic descriptions of growth, whose success requires an understanding
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of cellular self-organization during the progress of the disease. In particular,
empirical models are based on the observation that tumor growth results
from cellular multiplication concomitant with processes that, in most cases,
limit the size of the system.

Growth is described by extensive variables such as volume, mass, length,
or number of cells, represented as functions of time. The growth of in-
dividual organisms (Laird et al., 1965), tumors (Bajzer et al., 1996), and
other biological systems (Zwietering et al., 1990) is often well fitted by sig-
moidal functions. Widely used empirical descriptions are those of Gompertz
(Fujikawa and Matsushita, 1989) and von Bertalanffy-West (West et al., 2001);
under certain conditions, Malthusian, i.e. exponential, functions are also used
(Zwietering et al., 1996). These growth curves are very useful to interpret
and measure various physical properties of the tumor, such as necrosis diam-
eter and the volume increase rate in experimental systems (Mueller-Klieser,
2000), the pre-angiogenic network structure (Guiot et al., 2006), and the
cell-cycle fraction as a function of time (Jiang et al., 2005), among others.
Furthermore, there is a manifold of ad hoc models (Marusić et al., 1994;
Mombach et al., 2002; de Vladar, 2006; Castorina et al., 2006; González and Rondón,
2006; Delsanto et al., 2008) that try to justify and unify these empirical de-
scriptions in an attempt to reveal their common features.

Identifying correlations among phenomenological growth curves can shed
light on the underlying biological processes responsible for tumor growth. It
is therefore important to get accurate fitting functions in order to recover the
greatest possible amount of information about the system. Since obtaining
reliable data on growth is a difficult, onerous, and tedious task, the ability to
recover information from a limited amount of data is an important goal for
modelers. It is with this objective that we have developed a powerful fitting
tool (Barberis et al., 2011), which can provide accurate fitting functions for
diverse systems consisting of two or more individuals or populations growing
together. As a bonus, the method is able to evince hidden interactions among
the populations without any previous assumptions on their nature.

Except in its earliest stages, cancer is usually a multipopulation system:
mutations appear and sometimes prevail, cells die and generate necrotic vol-
umes, and even the cells in a primary tumor may compete with those in the
colonized tissue. In this paper we show how information about cancer cell
interactions can be extracted from growth curves. To do this we will con-
sider diverse experimental systems: jointly growing cancer cell phenotypes,
in vitro multicellular tumor spheroid growth (where live and dead cells may
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be thought of as competing), in vivo experimental implanted tumors, and a
system in which spheroids and subspheroids evolve simultaneously.

Although fitting functions to cancer growth curves is a time-honored pro-
cedure to glean information about tumor properties, the VUN method goes
far beyond, enabling us to extract information from the correlations between
growth curves. This is done for the first time in this paper, where we investi-
gate the correlated growth of two cancer cell subpopulations to characterize
how their mutual interactions and their interactions with the environment
affect their growth.

In Section 2 we briefly describe the Phenomenological Universalities (PUN)
formalism introduced by Castorina et al. (2006) and extended to competing
organisms and populations by Barberis et al. (2011) and Barberis and Condat
(2012). Examples of the application of the PUN analysis to the aforemen-
tioned experiments are provided in Section 3, where we apply the procedure
to several cancer growth data sets. A discussion of the results is presented
in Section 4, where we comment on the applicability and limitations of the
method.

2. Vector Universalities

The universal growth formalism for one-population systems is a system-
atic generalization, due to Delsanto’s group (Castorina et al., 2006), of the
well-known growth functions of Malthus, Gompertz, and von Bertalanffy. In
the following a brief description of the method is presented, starting with
the one-population formalism (scalar equations) and then proceeding to its
vector extension, which is suitable to describe the joint growth of two or more
populations.

2.1. One-population growth equations.

A clear and comprehensive characterization of the growth functions for
one-population systems was presented by de Vladar (2006), who described
growth using two first-order differential equations, one for the population size
y(t),

ẏ(t) = a(t)y(t), (1)

(the growth equation) and another for the growth rate a(t),

ȧ(t) = [θa(t)− ρ] a(t), (2)
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(the rate equation), where θ and ρ are two real parameters. Various com-
binations of these parameters reproduce, among others, the θ-logistic, von
Bertalanffy, Gompertz, and potential growth equations. de Vladar (2006)
indicates that the size of the dimensionless parameter θ defines the density
scale at which the reproduction rate of an individual is affected by its inter-
action with the population, while ρ−1 is a characteristic time over which the
individual downregulates its reproduction rate.

In the work of Castorina et al. (2006), the right-hand side of equation (2)
is replaced by a power series expansion in the rate a(t),

ȧ(t) =

∞
∑

m=0

αma
m(t). (3)

Of course, by truncation and a suitable choice of the parameters αm,
Eq. (3) reduces to the different possibilities generated by Eq. (2), but
Castorina et al. (2006) suggest that the concept of Phenomenological Uni-
versalities may be used in conjunction with Eqs. (1) and (3) as a tool
for the classification and interpretation of observed data in the context of
cross-disciplinary research. In fact, they have applied this concept to fields
as diverse as those of elastodynamics (Pugno et al., 2008), human growth
(Delsanto et al., 2008), and cell proliferation in cancer (Gliozzi et al., 2010).
In Barberis et al. (2010), the use of complex variables y(t) and a(t) made it
possible to investigate the simultaneous variations of two phenotypic features
of an individual. This procedure showed the existence of correlations between
changes in the fat distribution of the human body. The behavior of oscil-
latory coupled systems was also studied with this method (Delsanto et al.,
2011).

2.2. Two or more populations: Vector formalism.

We are now interested in the description of the correlations between vari-
ations in the same trait of different agents. As in the problem treated by
Castorina et al. (2006), the resulting generalization of the Phenomenologi-
cal Universalities formulation is especially useful in those cases for which no
reliable model is available.

We describe the time evolution of a given phenotypic feature observed
in n interacting agents through an n-component growth vector Y (t), and
postulate that the evolution of this vector is determined by a generalization
of the autonomous growth equation proposed by Castorina et al. (2006),
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Ẏ (t) = AY (t), (4)

where t, the time, is a real continuous parameter, Y (t) ∈ R
n, and the dynamic

operator A[Y (t)] ∈ R
n×n. According to the PUN formulation, we assume

that the rate of change of the functional A[Y (t)] can be expressed as a power
series expansion in the operator A itself, which we truncate to order N ,

Ȧ(t) =
N
∑

m=1

αmA
m. (5)

Equations (4) and (5) form a differential equation system whose initial
conditions are Y (0) = Y0 andA(0) = A0. It was shown in Barberis and Condat
(2012) or, more rigorously, in Barberis et al. (2011), that the components of
the vector Y can be written as:

yi(t) =

n
∑

j,k=1

PijQjky0kfN (λj; t), i = 1..n, (6)

where y0i = yi(0) is the initial condition, Pij and Qij are the components of
the matrices P and Q that diagonalize A0 (B0 = PA0Q, with QP = 1 and
B0 diagonal), and the lowest order universal functions fN are given by,

f0(λj; t) = exp(λjt) (7)

f1(λj; t) = exp

[

λj

α1

[exp(α1t)− 1]

]

(8)

f2(λj; t) =

{

α2λj

α1

[1− exp(α1t)] + 1

}
1

α2

. (9)

Here the truncation order N determines the Vector Universality class
VUN for a multiple-agent system, in analogy with the PUN classes developed
by Castorina et al. (2006) for a single agent. The VUN elements are linear
combinations of the functions fN (λj; t). Of course, the components yi(t)
depend on the universality class, but we omit the index N for simplicity.

2.3. Interpretation.

The solutions (7), (8), and (9), which depend on the eigenvalues λj of the
dynamical operator, correspond, respectively, to joint Malthusian (VU0),
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joint Gompertzian (VU1), and joint von Bertalanffian (VU2) growth pro-
cesses. They apply to n interacting agents and are natural generalizations
of the functions obtained in Castorina et al. (2006) for the one-population
problem.

Remarkably, the growth functions yi(t) depend only on the dynamic oper-
ator A0, i.e., on A0(t) at a fixed time (the initial condition), which results in
the uncoupling of the system for all subsequent times. This indicates that the
interaction dynamics can always be characterized by the elements of A0 at
all times. The diagonal elements of this matrix determine the maximum size
corresponding to the non-interacting populations in a given environment and
thus its trace characterizes the global potential growth of the n independent
agents. We can say that each diagonal element defines the individual growth
potential (IGP) of the corresponding agent in a given environment. Interac-
tions among populations not only generate nonzero off-diagonal elements (the
direct interactions), but may also modify the diagonal elements. This would
occur if there were indirect influences among the populations, as it would be
the case if the populations themselves modify the growth environment and,
consequently, change the corresponding A0 matrix element. We can thus de-
scribe various kinds of n-agent growth processes with n2 real numbers, which
allows us to quantify and classify various ecological-like interactions.

The information provided by the A0 matrix after fitting can be sum-
marized as follows: the direct interaction effects are represented by a com-
bination of the signs and magnitudes of the off-diagonal matrix elements
and determine how much an agent may gain (positive contribution) or lose
(negative contribution) from the direct interaction. Then, for a parasitic in-
teraction, one population grows at the expense of another (opposite signs),
while for a cooperative (synergistic) interaction both agents benefit (positive
signs) and for a mutual hindrance (antagonistic) interaction both agents are
negatively affected (negative signs). The reciprocal of α1 defines a time scale
that characterizes the joint growth rate.

Some representative hypothetical situations in the VU0 and VU1 classes
are shown in the Appendix for the case of two populations.

3. Methods and Results

In this section we show how to use the VUN formalism as a tool to fit
data from a cancer-related system with two interacting cellular populations.
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3.1. Exponential growth

Understanding the precise interplay of moving cells with other cells and
their environment is crucial for central biological processes such as embryonic
morphogenesis, wound healing, immune reactions, and tumor growth. As a
consequence, a large number of mathematical models, using multiple differ-
ent approaches, have already been proposed to describe various aspects of
cell motion (Keller and Segel, 1971; Murray et al., 1983; Dallon et al., 2001;
Byrne and Preziosi, 2003; Dolak and Schmeiser, 2005; Peruani and Morelli,
2007; Hatzikirou and Deutsch, 2008). In this section, we use experimental
data to infer some features related to cancer cell migration, without any a

priori assumptions or models.
As we pointed out in the preceding section, the single-agent N = 0 case

leads to simple exponential growth. However, already in the zeroth-order
approximation VU0, which describes the growth of two or more interacting
agents with infinite carrying capacity, new and more interesting situations
arise: even if there is enough room and food for each individual agent to
grow, VU0 describes how the interactions may lead to the stabilization and
even the annihilation of one or more populations. In Appendix A we show
some examples of how these situations can arise.

To illustrate VU0 growth in the cancer context, we use data sets ob-
tained from HeLa cells in spreading colonies. These describe the correlated
dynamic behavior of cells with different phenotypes: cells under cytokine-
sis (proliferative phenotype) or migrating cells (motile phenotype).To study
the joint time evolution of those cells with different phenotypes, we made
the follow-up of colonies from 4-10 cells up to about 1500 cells over 8-12
days. HeLa cells, passage 44-60 (a gift from Leloir Institute), were seeded
into polystyrene Petri dishes (3.6 cm in diameter) from 2 ml of RPMI growth
medium containing 1000-2000 cells/ml and incubated in an oven at 37 C in 5
% carbon dioxide and 97 % humidity. Cells were allowed to adhere and grow
for 4-5 days forming small colonies of 4-10 cells. To maintain unchanged
environmental conditions, half of the medium was changed every two days.
Colony patterns were followed by optical microscopy by taking pictures every
15 hs. All cells in colonies either under cytokinesis or moving were counted.
The former look bright and rounded and the latter have rather elongated
shape as shown in Fig. 1. Eventually cell trajectories that characterize their
motion were obtained from in situ cell colony digital images acquired by a
time-lapse system at intervals in the range of 5-45 min. during 23 days. For
this purpose, colonies were placed inside a chamber that was fixed to the
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microscope platform, and maintained at 37 C and 97 % humidity. In order
to preserve the pH, the culture medium was changed to L-glutamine supple-
mented RPMI CO2-Independent Medium (Gibco, In-vitrogen Corp.) before
placing each Petri dish into the chamber.

In Fig. 2a, the resulting counts for both populations are shown together
with a possible VU0 fitting. Since the optimization problem has several local
minima, care must be taken in the choice of the initial conditions for the
fitting parameters. For instance, if we look at a restricted time interval, we
could be tempted to accept the fitting in the figure, which really corresponds
to a “wrong” (W) set of parameters. In this case, the fit would tell us that
the initial population for the motile phenotype (y01 = 20) cells is twice the
experimental one, and that there are also some proliferative cells at t = 0
(y02 > 0). Extrapolating to long times, W would predict an unlikely rapid
decay of the motile population, as shown in Fig. 2b. Since the resulting
A0 matrix predicts a parasite-like interaction in favor of the proliferative
population, the motile population cannot survive at very long times. On the
other hand, a set of “correct” (C) parameters can be found that provides the
fitting shown in Fig. 3a, which looks very similar to that in Fig. 2a but gives
an adequate prediction for the initial populations (within a reasonable error).
As it can be observed in Fig. 3b, the set C leads to a plausibly unrestricted
growth of both populations at long times.

The set of parameters for both fittings is given in detail in Table I. Note
that the R2 statistical parameter is not a suitable criterion to discriminate
between the C and W fits. In situations where there are no physical clues
about the right parameter set, we must use more reliable criteria, such as
Akaike’s (Burnham and Anderson, 2002) or the more complex Maximal In-
formation Coefficient from Reshef et al. (2011).

The A0 matrix obtained from the C fitting has a12 < 0, meaning that the
number of cells with the motile phenotype is decreased by their interaction
with the proliferative cells. Since motile cells can only replicate by chang-
ing their phenotype to proliferative, replicating and then changing again to
motile, the motile population loses some cells in order to increase their num-
ber later. This decrease in the motile phenotype population corresponds to
the temporary loss of those cells that stop for replication. On the other hand,
a21 & 0, representing the increase in the proliferative population due to the
transformation of motile cells.

The diagonal elements have opposite signs favoring the motile phenotype.
The motile phenotype has a11 > 0, which tells us that there is a net positive

8



a11 a22 a12 a21
Correct 0.000548 -0.000049 -0.008105 0.000011
Wrong 0.000459 0.000346 -0.004848 0.000001

y01 y02 R2
1 R2

1

Correct 9.90 -0.20 0.9918 0.9810
Wrong 20.19 0.40 0.9917 0.9855

Table 1: Parameters obtained using VU0 fitting for the “correct” and
“wrong” cases. See text.

Figure 1: Cell culture showing proliferative (bright rounded) and motile
(elongated) cells at several times: (a) 5600 min. (b) 8300 min. (c) 15500
min.

feedback of its transformation into the reproductive phenotype. The net
environmental conditions favor the transformation of reproductive cells into
the energy-saving motile phenotype, making its population much bigger. The
resulting population difference between phenotypes is in

The negative sign of a12 suggests the presence of a signal originating in the
proliferative cells that tells their motile counterparts that they should stop
and reproduce. Cell behavior in this system reminds us of the “go or grow”
hypothesis sometimes used to explain the onset of metastasis in gliomas and
other cancers (Corcoran, 2003; Hatzikirou et al., 2012; Gerlee and Nelander,
2012; Garay et al., 2013). This hypothesis postulates that migration and
proliferation are spatiotemporally mutually exclusive.
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Figure 2: (a) Possible VU0 fitting of the population data for motile and
proliferative HeLa cells. (b) Changing the scales we observe that the resulting
parameters are inadequate. Care must be taken when choosing the local
minimum.
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(b) Good prediction

Figure 3: (a) VU0 fitting of the population data for motile and proliferative
HeLa cells. (b) The rescaled figure suggests that the parameter set is ade-
quate. The A0 matrix allows us to infer that the motile cells are not able to
replicate themselves.
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Figure 4: A multicellular tumor spheroid (MTS) where the live cells in the
outer rim appear as a green halo. The red mass inside belongs to the necrotic
core.†

3.2. Multicellular Tumor Spheroids growth

Multicellular Tumor Spheroids (MTS) are spherical clusters of tumor cells
that may be grown in vitro under strictly controlled conditions (Hamilton,
1998; Mueller-Klieser, 2000). MTS experiments have led to new insights
in cancer research. In particular, they have been useful to characterize the
dependence of necrosis formation on the external environment (Freyer and
Sutherland, 1988). During spheroid growth the fraction of proliferating cells
decreases and the cells in the inner region become deprived of oxygen, glucose
and other nutrients whereas metabolic waste accumulates, and the formation
of a necrotic core is observed. In an advanced growth stage spheroids exhibit
an outer viable rim (whose thickness ranges from about 100 to 250 µm)
that surrounds the necrotic core. The spheroid eventually attains a limiting
size with a final diameter of 1 - 3 mm that Folkman and Hochberg (1973),
attributed to the degradation of dead cells in the necrotic core Bertuzzi et al.
(2010). An example of MTS is shown in Fig. 4, where the live cells in the
outer rim appear as a green halo. The red mass inside belongs to the necrotic
core.

The main advantages of the MTS are their simple spherical symmetry
and the fact that they can be produced in large quantities. These char-
acteristics make them popular both in mathematical modeling and in bi-
ological research: MTS provide an experimental biological model that has
allowed researchers to determine protein expression McMahon et al. (2012);
Gupta and Johansson (2012), check mathematical models Radszuweit et al.
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(2009); Bertuzzi et al. (2010); Kazmi et al. (2012), and study drug delivery
to treat cancer disease Mehta et al. (2012); Gibot et al. (2013), to mention a
few applications. The understanding of how MTS grow is indeed crucial to
further comprehend some aspects of in vivo tumor progression.

We may start our study with the hypothesis postulated by Guiot and col-
laborators Guiot et al. (2003); Delsanto et al. (2004), who demonstrate that
the growth of homogeneous spheroids can be fitted by the von Bertalanffy-
West equation. Such a description was later generalized to spheroids with
a necrotic core by Condat and Menchón (2006) and Menchón and Condat
(2007), who added the proposal that the time evolution of the total mass M
of the spheroid, as function of its live cell mass mv, can be written as:

dM

dt
=

am̃2/3

12

[

(

4
mv

m̃
− 1

)1/2

+
√
3

]2

− bmv; (10)

where m̃ is the mass at the onset to necrosis, a and b are the metabolic rates
defined by West et al. (2001) and the exponent 2/3 describes the diffusion-
limited energy influx to the system via the transport of glucose and oxygen.
The key to obtain Eq. (10) is the invariability of the thickness ∆ of the
outer rim of live cells. This feature of the MTS was first described by Burton
(1966), and later discussed by Groebe and Mueller-Klieser (1996). With the
aim to go beyond these works, we add to equation (10) the time evolution of
the dead mass mm = 4

3
πρ[r(t)−∆(r(t))]3 as a function of the radius r of the

whole spheroid. Combining it with the onset-to-necrosis mass m̃ = 4
3
π∆3,

we obtain the equation set:

dM

dt
= aM

2

3 − b
[

M − (M
1

3 − m̃
1

3 )3
]

, (11a)

dmm

dt
= M−

2

3 (M
1

3 − m̃
1

3 )2
dM

dt
, (11b)

dmv

dt
=

dM

dt
− dmm

dt
, (11c)

which describes the time evolution of the dead and live cells populations
after the onset of necrosis.

3.2.1. In vitro MTS.

First we consider the experimental data of Freyer and Sutherland (1986),
who created large numbers of MTS using EMT6/Ro cancer cells. They
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Figure 5: Cellular populations reconstruction. (a) Fitting of the experimental
data by means of Eq. (11a). (b) Predicted populations by means of Eqs.
(11b) and (11c).

grew them at several oxygen and glucose concentrations in order to mea-
sure spheroid growth rates and the thickness ∆ of the outer rim as functions
of MTS diameter. We will use the VU1 equations to ascertain the individual
time dependences of the necrotic and live masses, which were not separately
measured in the experiment. To do this, we first obtain the parameters a
and b, using the value of m̃ reported by Freyer and Sutherland (1986) to fit
their data with the numerical solution of Eq. (11a), as shown in Fig. 5a.
We remark that not all of the data series reported in Freyer and Sutherland
(1986) can be adequately fitted because Eqs. (11) are only valid after the
onset of necrosis. In those experiments in which the necrosis starts later,
there are not enough data points to provide an acceptable fit. The example
presented here corresponds to the experiment with 16.5 mM of glucose and
0.07 mM of oxygen. Figure 5b shows the reconstruction of the time evolution
of the populations by numerical integration of Eqs. (11c) and (11b). The
fit yields the following values: a = 0.0089 g1/3/day; b = 0.00971 1/day, and
m̃ = 5.57 µg. With these values of the parameters, the solutions of Eqs.
(11) describe unrestricted growth at long times, which is not observed in the
experiments.

If we observe Fig. 5a, we note that, at first sight, the data points suggest
exponential growth. Freyer and Sutherland ascribed such rapid growth to
the initial part of a Gompertz curve. To make the saturation visible, they
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presented the data using a semilog graph. This saturation of growth is always
observed in an MTS, even if the cell cumuli are placed in a culture media
with enough room and nutrients to grow indefinitely. The authors solved
this apparent paradox by suggesting that the necrotic cells secret growth in-
hibitor substances that affect the live cells. More than a decade afterwards,
Wartenberg et al. (1999), among others, experimentally confirmed this hy-
pothesis. Because the action of such inhibitors is not taken into account in
the deduction of Eqs. (11), their long-time predictions may not be accurate.
But in the early development of the MTS described in the experiment, for
which the necrotic core size is small, its inhibitory action is weak enough to
allow for reliable data fitting with the solutions of Eqs. (11). However, this
weak inhibitory effect suffices to eventually lead to saturation, an effect that
is well described when VU1 is used to simultaneously fit both populations,
as we show next.

After using Eq. (11a) to obtain parameters a and b, synthetic data sets
for the live and dead cell populations were obtained by numerical integration
of Eqs. (11b) and (11c). We then used VU1 to simultaneously fit the time
dependences of the two cell populations. The outcome of the fit, which is
shown in Fig. 6a, is remarkably informative. First, since a12 < 0, the A0

matrix predicts an inhibitory process of the growth of live cells due to the
presence of a necrotic population. The necrotic population growth is favored
by the live cells (a21 > 0) because the death of the latter is the source of
the former. The meaning of the diagonal terms is straightforward: a11 > 0
because live cells generate more live cells and a22 > 0 because dead cells
generate more dead cells. Thus the VUN fitting provides further proof of
the presence of an agent that is generated by dead cells and acts as both a
growth inhibitor and a facilitator of cell death.

Furthermore, VU1 fitting predicts the saturation of the whole popula-
tion (equations (11) do not). The predicted asymptotic volume is V∞ ≃
1.3 × 10−3cm3. This value is three times lower than the one obtained by
Mueller-Klieser (2000) for well-nourished tumors (4 × 10−3cm3). The dis-
crepancy presumably arises because the glucose concentration used in the
experiment is half what Freyer and Sutherland consider optimal: 0.8 mM
instead of 16.5 mM. We remark that the oxygen level (0.28 mM), which is
more essential, is at its optimum value. The predicted required time to reach
the stationary regime, near 40 days, is much longer than the time explored
in the experiment (≃ 28 days). But as the time scale from the fitting is
1
α1

≃ 9.7 days, which belongs to the data range, we may accurately infer
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Figure 6: VU1 fitting for the reconstructed live and necrotic population
datasets for in vitro spheroids. (a) Experimental data range. The A0 matrix
predicts the inhibition (a12 < 0) of the live cells by the dead ones. (b) Ex-
tending the growth functions beyond the time of the data range, VU1 is able
to predict an asymptotic volume V∞ ≃ 1.3 × 10−3cm3, which is reasonable
for this system.

the asymptotic value. This inference is possible because the stabilization is
mainly caused by the parasite-like interaction between necrotic and live cells.

Finally, we tried to fit the data with VU2. These attempts were un-
successful. The impossibility of finding a find a suitable fitting suggests
that this system should be classified as VU1. As far as we know, this is
arguably the first proven truly Gompertzian system found in the PUN lit-
erature (Delsanto et al., 2008; Pugno et al., 2008; Gliozzi et al., 2010, 2011,
2012; Mazzetti et al., 2012). These authors have always found von Bertalanf-
fian systems. Furthermore, a few years ago, González and Rondón (2006)
proposed that the Gompertzian function can be obtained from a differential
system that involves two populations, one alive and another quiescent. This
is exactly the case of an MTS with necrotic core. So the VU1 fit recovers the
dynamics of a system of live and quiescent populations without any a priori

assumptions on the nature of the data.

3.2.2. In vivo MTS.

Next we apply the VUN formalism to implanted in vivo tumors. The
data about tumor progression was taken from Steel (1977). In this case,
MTS of the khjj cell line were grown in vitro and then implanted in mice.
Although data on the necrosis is not available, Menchón and Condat (2007)
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Figure 7: Fitting of the reconstructed in vivo data set corresponding to khjj
spheroids (Steel 1977). (a) VU1 fit: The A0 matrix components are of the
same order but a little lower than in the in vivo case. (b) VU2 fit, which is
more accurate than its VU1 counterpart.

used Eq. (10) to show that the addition of a necrotic core leads to a very
good fit to the experimental data, while a fit that assumes a homogeneous
population fails. Implementation of Eqs. (11) yields estimates that are not
too different from those of Menchón and Condat (2007). Note that, in this
work, the mass at the onset to necrosis is also taken as a fitting parameter.
The parameter values we obtain are m̃ = 0.03496 g, c = 0.2812 g1/3/day and
b = 0.3515 1/day.

In Fig. 7a, we present a VU1 fitting of the reconstructed data for this
in vivo tumor. The values for the determination coefficients are not as re-
markable as those for the in vitro case discussed above but they are still very
good: R2

1 = 0.99936 and R2
2 = 0.99931. Of course, implanted tumors lose

their spherical shape at long times and the equations (11) become a less ac-
curate approximation. The values for the A0 matrix give results comparable
to those in the in vitro experiment: the necrotic cells inhibit the growth of
the live cells (a12 < 0) and benefit from them (a21 > 0) because when the
latter die they increase the necrotic population.

The diagonal elements of A0 corresponding to the data of Steel (1977)
and of Freyer and Sutherland (1986) are not too different. This is notewor-
thy because they correspond to different cell lines and very different growth
conditions. Since the necrotic cells do not compete among themselves but
a22 is reduced by a factor of about 2, we may infer that this reduction is due
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to the different nature of the in vivo experiment. Not only is the hydrostatic
pressure in the in vivo system greater than that in the in vitro case, hindering
cell multiplication and thus decreasing the value of a11, but the biochemical
environment may be conducive to a faster removal of necrotic cells, leading
to a decrease in the value of a22, too.

The characteristic time 1
α1

is now significantly longer than in the in vitro

experiment (over 13 days against 9.7 days). This difference can be explained
by the hostility of the in vivo environment (expressed through the enhanced
hydrostatic pressure and the immune response of the host organism), which
leads to a slower growth of the tumor implanted in a mammal host as com-
pared to that of an in vitro system.

Here we also tried a VU2 fit, which is shown in Fig. 7b. The fit turns
out to be of higher quality than that obtained from VU1, as we can visually
recognize (note, for instance, the improved accuracy at the ends of the live
cell curve), and confirm from the higher values obtained for R2. The accuracy
of the VU2 fit (inexistent for the spheroids of 3.2.1) seems to indicate the
higher complexity of the in vivo system, which may demand a more complex
class of growth functions. All the aij matrix elements preserve their signs
and the interpretation stemming from the VU1 study, but their magnitudes
are magnified. The joint characteristic time for VU2 is α2

α1

≃ 9 days, shorter
than its VU1 counterpart. Here we fixed the value α2 = −1/3 in order to
describe diffusion-limited feeding West et al. (2001); Delsanto et al. (2004).
Table 2 exhibits the parameter values we found for this problem.

In summary, the above in vitro and in vivo examples show that, at least
in their initial stages, tumors growing in very different environments exhibit
similar macroscopic behavior, with the number of live cells initially growing
very fast and then saturating, while a necrotic core emerges, which is consid-
erably smaller in vivo. Both cases are well described by the VU1 universality
class, although VU2 may be preferred for the more complex in vivo systems.

3.3. Growth of Subspheroids

Cell shedding by a primary tumor is an important factor in the formation
of metastatic colonies. It is controlled by adhesiveness Menchón and Condat
(2009). Adhesiveness can be increased by polyphenols, which may then in-
hibit cell escape Günther et al. (2007). In an experimental study of invasion
and metastasis, Günther et al. (2007) grew mammalian MTS of the breast
cancer cell line 4T1. The aim of their work was to understand the factors
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a11 a22 a12 a21 α1

In vitro

VU1 0.3749 0.5113 -0.0927 0.0498 -0.104

In vivo

VU1 0.2255 0.3215 -0.1171 0.0193 -0.075
VU2 0.3198 0.8535 -1.9516 0.0362 -0.038

Table 2: Parameters obtained by fitting the reconstructed MTS subpopula-
tions.

that regulate the shedding of cells from primary tumors as functions of time
and the size of the subspheroids that grow from the detached cells.

The panels in Fig. 8a, taken from Günther (2007), show the spheroid
populations on days 4, 6 and 9 of culture, respectively. In the right panel
we observe the subspheroids grown from the cells detached from the primary
spheroids. In this case it is not possible to find a suitable VU2 fit, but the
VU1 fit is completely satisfactory. As shown in Fig. 8b, even without as-
suming the absence of subspheroids at t = 0, it is possible to obtain a fit able
to predict the absence of a detectable subspheroid population for over three
days. The diagonal elements of the A0 matrix are very different to account
for the rather unequal characteristic growth times. Indeed, very different
eigenvalues of A0 are needed in order to generate two growth functions with
so dissimilar growth rates.

The high value of a12 suggests that the primary spheroids derive a large
benefit from their interaction with the subspheroids. The detachment of
peripheral cells allows more central ones to get nutrients, stay alive and even
reproduce. On the other hand, the detached cells must survive competing
for nutrients and space with the primary spheroids, which, at this stage, are
hard contenders. Therefore, it is not surprising that a21 < 0, even if its
magnitude is very small. But subspheroid growth is strong because (a) they
derive from very active shed cells, and (b) their initial small size allows them
to occupy spaces with room to grow and high nutrient concentration. The
high value of a22 can then be understood as related to the enhancement of
the survival capability of the shed cells because they have passed a natural
selection test.
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Figure 8: (a) Images from representative 4T1 tumor breast spheroids on days
4, 6, and 9 of cell culture (data from Günther et al. (2007), with permission).
Subspheroids and isolated detached cells are observed in panel 3. (b) VU1
fit to the spheroid (y1) and subspheroid (y2) populations.‡
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4. Discussion

Cancer growth is often the result of the competition between two or more
cell populations. The Vector Universalities (VUN) formalism introduced
in Barberis et al. (2011) and Barberis and Condat (2012) can be used to
extract information of time series describing the correlated evolution of these
populations. We have used this tool to analyze four very different examples
of tumor growth, showing that they can be included in three universality
classes and extracting information about various aspects of cancer growth
from the observed correlations.

The VU0 class may fit concurrent unrestricted growth. To study an
instance of joint growth in this class we measured the simultaneous evolution
of two HeLa cell populations (one motile and one reproductive). In this case,
it was easy to decide a priori that VU0 was a suitable tool, because we
already knew that the colonies were growing in an unbounded and well-
nourished environment, a condition that suggests the implementation of the
exponential class. A possible difficulty is that when data is scarce multiple
good fits may be obtained. In these cases additional information about the
system must be taken into account to choose the optimal parameter set. The
VU0 tell us why the populations deviate from a purely exponential behavior;
they also suggest that a signaling mechanism initiated by the proliferating
cells may be responsible for the phenotypic switching of motile cells. Further
experimental work is necessary to directly verify this hypothesis.

The VU1 examples in subsections 3.2.1 and 3.3 are the first to be clearly
identified as such in the phenomenological universalities literature. Here it is
important to note that the von Bertalanffy class (N = 2), in both the scalar
and vector formalisms, adds new degrees of freedom to the fitting problem.
If we accept the often used criterion of calculating the R2 value to classify
the growth phenomena inside the universality class hierarchy, it is easy to
see that in most instances it is possible to find that the VU2 class provides a
“better fit”. In fact, this is the situation in most of the previous PUN work
(see Delsanto et al. (2008) for an example). Because of the VU2 additional
degrees of freedom we prefer not to use R2 as a final arbiter when there is no
substantial difference between its value for the VU1 and VU2 fits of the same
dataset. Instead, in a previous work , we use the Occam’s razor criterion as
the main argument to classify the phenomena as belonging to the VU1 class
(Barberis and Condat, 2012). Moreover, our knowledge about the biological
problem can be used to select the VU2 classification; in example 3.2.2, we
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have very good fittings in both universality classes. To assign such a system
to one or another class is not a simple task and here we do not attempt
to do it in general because there is no reliable criterion to define the best
class. Instead, our goal is to gather new information for the multipopulation
systems from the values of the A0 matrix. For instance, the A0 matrices
recovered in the example in 3.2.2 give coherent information in both classes,
so the classification problem is not really relevant here.

It is interesting that we fail to find any adequate VU2 fitting parameter
set for the examples in subsections 3.2.1 and 3.3. In the case of subsection
3.3, we suspect that the absence of an appreciable subspheroid population at
early times could play the role of quiescent cells driving the N = 1 behavior:
isolated active cells leave the “mother” spheroids in the same way as dying
cells leave the live cell population in the MTS problem of subsection 3.2. As
it was explained in section 3.2.1, the theoretical development of Gompertzian
growth is consistent with this description.

As it was pointed out by its creator P.P. Delsanto, the PUN formalism
is a novel tool for interdisciplinary and experimental research Gliozzi et al.
(2011). The VUN extension can be used to find very accurate fitting func-
tions for experimental data, as shown in sections 3.1 and 3.3. It may also be
used to test the capability of a theoretical model to reproduce experimental
data and define their applicability range, as we did in section 3.2. For cancer
researchers, the main advantage of this approach lies in its ability to describe
tumor growth using few parameters (whose interpretation is reasonably sim-
ple), without making any assumptions on the tissue physiology.

In order to test the reliability and accuracy of the method, the important,
and as yet not well understood, problem of the role of the necrotic core in
MTS growth was considered. In particular, we analyzed the classical MTS
growth data of Freyer and Sutherland (1986). The result in Fig. 6b, with
a value of R2 = 0.9906 and the prediction of a reasonable saturation mass,
verifies the validity of the approach. The similarities and differences between
in vivo and in vitro tumors are highlighted by the similarities and differences
between their respective A0 and α1 parameters, as shown in Table 2. We
remark that the VUN allowed us to obtain excellent fits to the reconstructed
data for the evolution of the volumes occupied by the individual (necrotic
and live) cell populations. These reconstructed volumes were obtained from
a single dataset describing the evolution of the total volume of the MTS.

Polyphenols such as baicalein and resveratrol have been shown to in-
crease cell adhesiveness in experimental tumor models Günther et al. (2007).
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Therefore, they can be used to decrease cell detachment and limit the avail-
ability of subspheroid seeds, while spheroid coalescence is favored. We predict
that, analyzed under the VU1 formalism, the application of these polyphe-
nols should lead to a strong decrease in both a22 (fewer seeds due to increased
adhesiveness) and a12 (the inner cells in the primaries are not exposed to ad-
ditional nutrients due to shedding of the outer shell). VUN fittings to the
growth data for the spheroid-subspheroid system could then be used to eval-
uate the ability of a given polyphenol to decrease the metastatic potential of
the cell population under consideration. This ability would be quantified by
the matrix elements a12 and a22.

Summarizing, the implementation of the VUN fitting technique for the
analyzed data sets allow us to conclude that:

1. VU0 allows us to better understand and quantify the growth mecha-
nisms of a HeLa cell colony. Phenotype switching is described by the
VU0 parameters and resembles the conditions defining the “go or grow”
hypothesis.

2. VU1 confirms that a reconstruction of the (unobserved) MTS necrotic
core mass from the total mass data sets is self-consistent and predicts
the final spheroid volume starting from a truncated data set.

3. VU1 indicates there is a strong similarity between in vitro and in vivo

cancer growth. It helps us identify quantifiable shared intrinsic features
and describe how the different environments affect growth (slowing it
down in the in vivo samples).

4. VU1 validates the consistency of the hypothesis that necrotic cells gen-
erate signals that (a) restricts growth and (b) kills live cells.

5. VUN leads to a better understanding of the interaction between spheroids
and subspheroids and could help to characterize the effect of polyphe-
nols on cancer cell shedding and dispersal.

As a final remark we would like to emphasize that the formalism used in
this contribution may also be applied to the analysis of other datasets re-
lated to ecological management and population dynamics. Examples on these
topics were provided in Barberis and Condat (2012). Further developments
to include more than two populations, seasonality, and external forcing are in
progress.
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Appendix A. Theoretical examples

The behavior of the functions belonging to the VU0 class is regulated by
a linear combination of the exponential functions f0(λj; t) = exp(λjt). As a
benchmark, we have chosen a two-agent system and a trait that would evolve
according to a diagonal A0 matrix whose elements have opposite signs. Such
a matrix corresponds to agents that only influence each other directly, i.e.,
without modifying their own environment. We show in Figures A.9 and A.10
several examples of interactions. Blue lines and blue matrices correspond to
the reference situation. Note that the first individual lives in a very hard
environment (a11 large and negative), while the second one has a moderately
friendly environment (a22 small and positive). As a consequence the “size”
of the trait in the first agent decreases, disappearing after 5 time units, while
that of the second agent exhibits continuous growth.

Exponential growth: Figure A.9 shows several examples that illustrate
how the reference situation is changed by the addition of off-diagonal ele-
ments. Figure A.9a describes cooperation when there is an extra gain repre-
sented by positive off-diagonal elements. Note how what was a disappearing
trait/population represented by the blue dashed line the reference case, picks
up growth due to the interaction and, as a consequence, the trait/population
survives. Figure A.9b shows the case mentioned in section 3.1: the annihila-
tion of one population (dashed line) or the regrowth of an initially decaying
population (continuous green) in the presence of competition. Note that in
the case described by the dashed red line annihilation occurs five times faster.
On the other hand, Fig. A.9c shows an example of parasitism (opposite signs
of the off-diagonal elements) leading to different survival times. Of course
there is a manifold of matrix element combinations that would allow us to
describe many possible situations.

Gompertzian growth: As in the previous exponential case, we show in
Fig. A.10 several examples of the possible behavior of the VU1 system.
Cooperation, competition, and parasitism can be addressed by a suitable
choice of the off-diagonal elements of A0. The diagrams are self-descriptive.
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Figure A.9: Interplay between two agents, represented by solid and dashed
lines, respectively, in the VU0 class for various choices of the A0 matrix. Blue
matrices and lines represent a reference situation without direct interactions.
Other matrix choices may be used to describe such processes as (a) cooper-
ation, (b) competition, and (c) parasitism. Each agent pair is described by
one solid and one dashed line. More details in the text.
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Figure A.10: Interplay between two agents in the VU1 class for various
choices of the A0 matrix. (a) Cooperation between both species (green) and
one species helping another (red and black). (b) Competition (green) and
parasitism (red and black). Each agent pair is described by one solid and
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