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ABSTRACT 13 

Freshwater lenses constitute one of the most vulnerable aquifer systems in the world, 14 

especially in coastal wetland areas. The objectives of this work are to determine the 15 

hydrogeochemical processes that regulate the quality of the freshwater lenses in a sector 16 

of the Samborombón Bay wetland, and to assess their sustainability as regards the 17 

development of mining activities. A hydrochemical evaluation of groundwater was 18 

undertaken on the basis of major ion, trace and environmental isotope data. The 19 

deterioration in time of the freshwater lenses in relation to mining was studied on the 20 

basis of the analysis of topographic charts, aerial photography and satellite imaging. The 21 

results obtained show that the CO2(g) that dissolves in the rainwater infiltrating and 22 

recharging the lenses is converted to HCO3
−, which dissolves the carbonate facies of the 23 

sediment. The exchange of Ca2+ for Na+, the incongruent dissolution of basic 24 

plagioclase and the reprecipitation of carbonate produce a change of the Ca-HCO3 facies 25 
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to Na-HCO3. In depth, the pH increases with the groundwater flow, and the volcanic 26 

glassis dissolved, releasing F−and As. Besides, the evapotranspiration processes cause 27 

the saline content to increase slightly. As the only sources of drinking water in the 28 

region are the freshwater lenses occurring in the shell ridges, mining operations have 29 

deteriorated this resource and decreased the freshwater reserves in the lenses.The study 30 

undertaken made it possible to develop some preservation, remediation and 31 

management guidelines aimed at the sustainability of the water resources in the region. 32 

 33 

Keywords: freshwater resources; hydrogeochemistry; shell ridge; mining 34 

 35 

Highlights 36 

• Freshwater lenses are the only source of supply for the Samborombón Bay 37 

wetland. 38 

• Mining causes the deterioration of the freshwater reserves. 39 

• F−and As are the main constraints for drinking water. 40 

 41 

1. Introduction 42 

 43 

In many deltaic areas and coastal plains, groundwater is saline due to the 44 

Quaternary marine transgressions that originated them or to seawater intrusion 45 

(Custodio and Bruggeman, 1987; Stuyfzand and Stuurman, 1994; Logan et al., 1999; 46 

Carol et al., 2009; Weert et al., 2009; Post and Abarca, 2010; De Louw et al., 2011). In 47 

these environments, the presence of sand dunes, littoral shell ridges or palaeochannels 48 
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may lead to the formation of freshwater lenses from rainwater infiltration (Wallis et al., 49 

1991; Collins and Easley, 1999; Mass, 2007; Carol et al., 2009; De Louw et al., 2011). 50 

Freshwater lenses constitute one of the most vulnerable aquifer systems in the 51 

world (Morgan and Werner, 2014), mainly in coastal wetland areas (Odum and Harvey, 52 

1988; Rheinhardt and Faser, 2001; Carol et al., 2014). The deterioration of such lenses 53 

is associated with (1) the low relief (natural or lowered by anthropogenic action), which 54 

leads to flat hydraulic gradients and high susceptibility to land surface inundation by 55 

saline water; (2) the fact that these areas are generally limited in extension, a 56 

characteristic which makes them sensitive to dry periods; and (3) the fact that there is a 57 

great dependence of the local communities on the limited alternative freshwater supply 58 

sources, which causes the lenses to be overexploited (White et al., 2007; White and 59 

Falkland, 2010; Carol et al., 2014). 60 

The Samborombón Bay wetland comprises an extensive coastal plain associated 61 

with an ancient tidal plain, shell ridges and marsh environments (Fig. 1), all of which 62 

were deposited during the Holocene as a consequence of the successive displacements 63 

of the shoreline caused by the sea level oscillations (Richiano et al., 2012). In the littoral 64 

sector, the coastal plain overlies a volcanic loess substrate that crops out in the more 65 

continental sectors. It is a topographically low area, with heights usually below 7 66 

m.a.s.l. and a slope close to 10−4, with a predominance of saline surface and 67 

groundwater. The only source of water fit for human consumption in the region is 68 

associated with the presence of freshwater lenses within the shell ridges (Sala et al., 69 

1978; Carol et al., 2010; Carol and Kruse, 2012). These lenses have a limited extension 70 

and are laterally limited and underlain by the saline groundwater occurring in the 71 

sediments of the coastal plain (Carol and Kruse, 2012; Caro l et al., 2013). The humid 72 
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temperate climate, the high permeability of the shell ridges and annual precipitations 73 

close to 1000 mm feed these freshwater lenses despite the fact that evaporation is close 74 

to 770 mm a year (Carol et al., 2014). The scarce number of villages and farms in the 75 

central and northern sectors of the wetland depends on these lenses for water supply.  76 

The shell ridges occur parallel to the coastline from the centre of the bay towards 77 

the north. They are positive relief landforms with heights ranging between 6 and 17 78 

m.a.s.l., composed of loose seashell debris alternating in sectors with sand and clay 79 

layers. The mineralogy of these sediments is mainly dominated by carbonates (shells 80 

and concretions), quartz, basic plagioclase and volcanic glass, the latter originating from 81 

the reworking of the underlying loess substrate during deposition. Clay and 82 

interchangeable sodium intercalations, as well as the presence of kaolinite and 83 

montmorillonite, have also been identified (Carol et al., 2013).  84 

The mining operations associated with the extraction of shells cause the decrease 85 

and deterioration of the freshwater lenses (Tejada et al., 2011). The scarcity of 86 

freshwater in the region is one of the main limitations to population development, with 87 

the locality of Cerro de la Gloria (approximately 200 permanent inhabitants) being the 88 

only urban centre that develops on the littoral of the bay (Fig. 1). 89 

These freshwater lenses are fragile, dynamic reserves exposed to the influence of 90 

natural and human factors and they must be protected. Their preservation, remediation 91 

and management require the understanding of the processes regulating the quality and 92 

quantity of freshwater, both in natural conditions and when affected by anthropogenic 93 

activity. Understanding the evolution and current state of the freshwater lenses will 94 

make it possible to coordinate government policies, plans and actions to achieve the 95 
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sustainability of the water resource and ensure the wellbeing of the inhabitants in the 96 

region. 97 

The objectives of this work are to determine the hydrogeochemical processes 98 

regulating the quality of the freshwater lenses occurring in the Samborombón Bay 99 

wetland in the vicinity of Cerro de la Gloria, as well as to assess the current state of the 100 

freshwater reserves in the context of the development of mining operations. The results 101 

obtained will help develop management guidelines for the hydrological sustainability of 102 

the lenses. 103 

 104 

2. Methodology 105 

 106 

A hydrogeomorphological characterisation of the shell ridges and the adjacent 107 

coastal plain was undertaken on the basis of data from lithological profiles obtained 108 

from water wells and field surveys. Besides, a characterization of the water type 109 

occurring in the shell ridges was carried out on the basis of major ion data obtained 110 

from shallow exploration wells. The groundwater chemistry (i.e., major anions, TDS, 111 

pH, hardness, fluorides and arsenic) of the freshwater lenses located in the locality of 112 

Cerro de la Gloria was evaluated on the basis of samples collected from water supply 113 

wells (Fig. 1 and Table 1). The collection, preservation and chemical analysis of the 114 

water samples were carried out according to the methods established by the American 115 

Public Health Association (APHA, 1998). Sodium (Na+) and potassium (K+) were 116 

determined by flame photometry. Hardness as calcium carbonate (CaCO3), calcium 117 

(Ca2+), carbonate (CO3
2−), bicarbonate (HCO3

−) and chloride (Cl−) were determined by 118 

volumetric methods. Magnesium (Mg2+) was calculated on the basis of the data on total 119 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

6 
 

hardness and calcium. Sulphate (SO4
2−) was measured by nephelometry, nitrates (NO3

−) 120 

by spectrophotometry, fluorides (F−) by ion-selective electrode, arsenic (As) by silver 121 

diethyldithiocarbamate and the amount of total dissolved solids (TDS) or salinity was 122 

determined by gravimetry. Electrical conductivity and pH were measured in the field 123 

immediately after the collection of the samples, using portable equipment. In certain 124 

sampling points, a subsequent sampling was undertaken in which determinations of 125 

environmental isotopes and TDS were carried out. Isotopic ratios, δ18O and δ2H were 126 

measured by laser spectroscopy with equipment manufactured by Los Gatos Research 127 

(Lis et al., 2008). Results are reported in the usual δ notation in (‰) relative to V-128 

SMOW (Gonfiantini, 1978). Analytical uncertainties were ±0.3‰ for 18O and ±1‰ for 129 

2H. 130 

By means of topographic charts, aerial photography and satellite imaging, the 131 

mining exploitation areas in the shell ridges were analysed. The 1:50.000-scale 132 

topographic charts drawn in 1965 were used to obtain the morphology and height of the 133 

shell ridges before they were exploited. The evolution in time of the extension and 134 

deepening of the exploitation area was carried out on the basis of the interpretation of 135 

aerial photographs from 1984 (scale 1:20,000), satellite images from 2013 acquired by 136 

the QuickBird satellite downloaded from Google Earth and field surveys. The 137 

photographs and images were georeferenced and digitised to estimate the mining 138 

exploitation surface and the volume of shell and sand extracted. An estimation of the 139 

decrease in water reserves was also undertaken, considering a mean effective porosity 140 

of 0.3 (Sala et al., 1978) and an average unsaturated zone (UZ) thickness of 1 m (Carol 141 

et al., 2014). 142 

 143 
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3. Results  144 

 145 

3.1. Hydrogeochemistry of freshwater lenses 146 

 147 

Water in these lenses is predominantly of the sodium bicarbonate type, with only 148 

one sample of magnesium bicarbonate type (Fig. 2). These samples show Na+ excesses 149 

(positive values of Na+−Cl−) and Ca2+ and Mg2+deficiencies (positive values of (CO3H− 150 

+ SO4
2−) − (Ca2+ + Mg2+)) with a ratio close to 1:1 (Fig. 2). 151 

In the supply wells, the salinity expressed as TDS is low (below 1500 mg/L), 152 

except for a sample that shows values of 2400 mg/L (Table 1).The samples as a whole 153 

display a tendency towards an increase in salinity, mainly associated with an increase in 154 

the concentration of chlorides and sulphides (Fig. 3a and b). Alkalinity values range 155 

between 265 and 840 mg/L, with most of the samples showing values below 450 mg/L. 156 

Hardness reaches values of up to 728 mg/L that decrease as pH increases from 7.4 to 8.6 157 

(Fig. 3c). Nitrate concentrations are low in all cases, with values varying between 1 and 158 

6 mg/L. 159 

The content of arsenic shows a strong positive correlation with fluoride (r2=0.91; 160 

Fig. 4a). Regarding these ions, and taking into consideration that the guideline value for 161 

arsenic is 0.01 mg/L (WHO, 2004), the water is in most of the samples unfit for human 162 

consumption, as 70% of them are above this value. In the case of fluorides, the 163 

maximum limit is 1.5 mg/L, with 28% of the samples from the phreatic aquifer being 164 

above such a limit. As regards pH, it can be observed that the concentrations of both 165 

fluoride and arsenic tend to increase towards more alkaline pH values (Fig. 4b and c).  166 
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As for isotope content, the samples are aligned along the local meteoric water 167 

line (Dapeña and Panarello, 2004) with δ18O values between −4.3 and −6.2, and δ2H 168 

values between −22 and −39 (Fig. 5a). However, isotopic enrichment associated with a 169 

slight increase in salinity (Fig. 5b) indicates, together with the deviation of some 170 

samples from the local meteoric water line, processes of water evaporation. It should be 171 

noted that in the graph representing δ2H as a function of the TDS, two samples show a 172 

tendency towards a salinity increase without isotopic enrichment (Fig.5b). 173 

 174 

3.2. Characterisation of freshwater lenses in relation to mining 175 

The study area comprises a shell ridge that, according to the topographic charts, 176 

has a length of 14 km, a width close to 400 m and topographic heights reaching 7.7 177 

m.a.s.l. Towards the east, it borders with the marsh, which comprises a littoral fringe 178 

with an average width of 5.2 km where the topography does not rise above 1.7 m.a.s.l. 179 

and which is flooded periodically by the Río de la Plata tide. To the west, it borders 180 

with the tidal plain, where the former tidal channels constitute frequently waterlogged 181 

depressed areas. The shell ridge is intersected by the Canal 15, which drains the water 182 

surplus of the Salado River, with the locality of Cerro de la Gloria situated on the right 183 

bank of the canal (Fig. 1). 184 

At the bay, the shell ridges have been exploited as building material since the 185 

early 20th century. The main environmental problems related to mining are the 186 

degradation of the freshwater lenses and the depletion of the native Celtis tala forest, 187 

which only occurs in the shell-ridge areas of the wetland (Fig. 6).  188 

The analysis of aerial photography from 1984 and satellite images from 2013 189 

allowed the documentation of the temporal evolution of the mining operations. These 190 
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can be identified by the presence of excavations intersecting the water table and forming 191 

ponds, or of areas with remobilised material, where the calcareous sediment can be 192 

observed on the surface (Fig. 7). When comparing the surface occupied by the shell 193 

ridges in the topographic chart and in the aerial photographs from 1984, it can be 194 

observed that by that time nearly 35% of the shell-ridge area (corresponding to 2.42 195 

km2) had been exploited by mining. Out of this surface, 0.48 km2 (7%) correspond to 196 

exploitations below the water table and 1.94 km2 (28%), to exploitations at the same 197 

topographic level as the tidal plain (2.5 m.a.s.l.). Taking into consideration that mining 198 

exploitations generally have a depth of 1.5 m below such a level when forming pits or 199 

are at the same height as the tidal plain or the adjacent marsh, the volume of material 200 

removed by that time was 3.76 hm3. Considering the effective porosity and the average 201 

thickness of the UZ, it can be estimated that such a volume of removed material reduced 202 

the groundwater reserves in the freshwater lens 0.52 hm3. 203 

By the year 2013, several of the abandoned quarries were being exploited once 204 

again, deepening the excavations or broadening the extraction area. However, it can also 205 

be observed that some quarries with lakes were refilled with sandy reject material and 206 

taken to the same topographic level as the adjacent coastal plain (Fig. 7). By that time, 207 

the total surface exploited reached 3.72 km2 (54% of the shell-ridge area), out of which 208 

1.06 km2 (16%) correspond to excavations below the water table and 2.66 km2 (38%), 209 

to exploitations at the same height as the topographic level of the tidal plain, increasing 210 

the estimated volume of extracted material to 6.63 hm3.Taking into consideration these 211 

calculations, it can be estimated that the subsurface freshwater reserves decreased 0.97 212 

hm3. 213 
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When the mining exploitations from 1984 and 2013 are compared, four sectors 214 

in which the mining activity caused major modifications can be recognised (Fig. 7). 215 

Sector a shows a 100% increase of the surface affected by mining, with a reduction of 216 

the Celtis tala forest of almost 50% (Fig. 7a). In Sector b, there are no significant 217 

changes, showing pits in the same sectors in both periods (Fig. 7b). In Sector c, the 218 

surface of mining exploitation increased almost 100%, with a larger number of pits and 219 

an almost complete depletion of the Celtis tala vegetation (Fig. 7c). Finally, in Sector d 220 

the situation is similar on both dates, showing a large number of pits (Fig. 7d). 221 

 222 

4. Discussion  223 

 224 

The hydrogeochemical studies based on the ion relations make it possible to 225 

determine the processes conditioning water quality, such as water/sediment interaction, 226 

saline intrusion, contamination, etc. (Gimenez and Morrel, 1997; Jorgensen, 2002; 227 

Marimuthu et al., 2005; de Montety et al., 2008; Silva-Filho et al., 2009). 228 

In the phreatic aquifers with limited areal extension, such as the case studied, 229 

most of the ions dissolved in water are acquired during rainwater infiltration in the 230 

unsaturated zone (UZ). This is mainly due to the fact that rainwater reacts with the 231 

CO2(g) in the atmosphere and in the sediment pores, generating HCO3
− and H+. The 232 

latter imparts acidity to water, which attacks the minerals, especially the carbonate 233 

phases. The dissolution of carbonates decreases acidity, which in the UZ is recovered by 234 

the dissolution of more CO2(g), mainly generated by the roots and the decomposition of 235 

organic matter in the soil, and secondarily by the atmosphere. These reactions occurring 236 

in the UZ and more superficial sectors of the aquifer create a buffer system that 237 
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maintains the pH values. When water reaches the water table and it mixes with the 238 

groundwater flow as the dissolution of carbonates consumes H+ and CO2(g), it loses 239 

acidity as it is unable to incorporate CO2(g) to the system, decreasing its capacity to 240 

dissolve and alter minerals (Hem, 1985; Appelo and Postma, 2005). In this way, when 241 

rainwater infiltrates, it dissolves the shells and the carbonate concretions, generating 242 

increased water hardness values. With the groundwater flow, the pH in the water tends 243 

to increase and, therefore, the reprecipitation of carbonates occurs, forming aggregates 244 

in the matrix or concretions in the sediments. Soil studies undertaken in the shell ridges 245 

show that the reprecipitation of carbonates is a common process in this environment in 246 

the areas affected by the oscillation of the water table (Imbellone and Giménez, 1997).  247 

The 1:1 ratio observed between the Na+ excesses and the Ca2+ deficiencies show 248 

that the Ca2+ released by the dissolution of carbonates is exchanged by Na+ adsorbed in 249 

the clayey fractions intercalated in the ridges. Besides, the incongruent dissolution of 250 

albite to kaolinite and/or montmorillonite, identified by mineralogical analysis, may 251 

potentially contribute to the groundwater Na+ and bicarbonate content (Kortatsi, 2006). 252 

The Ca2+/Na+ cation exchange processes, the alteration of albite and the reprecipitation 253 

of carbonates contribute to Na+ becoming the dominant cation, which leads to the 254 

predominance of Na – HCO3 facies.  255 

The contents of fluoride and arsenic in groundwater originate from the alteration 256 

of the volcanic glass occurring both in the volcanic sediments underlying the shell 257 

ridges (Tricart, 1973) and in the reworked loess material present in the shell ridges. The 258 

silica, which constitutes the volcanic glass, begins to dissolve as groundwater reaches 259 

slightly alkaline pH values (Apelo and Postma, 2005), increasing the concentrations of 260 

F− and As (Viswanathan et al., 2009). It should be noted that slightly alkaline pH 261 
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conditions occur in the middle and deep sectors of the water lens, where no buffer 262 

conditions occur associated to the dissolution of CO2(g) and the pH is above 8. This 263 

behaviour explains the positive correlation observed between the pH and the 264 

concentrations of arsenic and fluoride.  265 

In turn, nitrate is a very scarce ion, appearing in all of the analysed samples in 266 

concentrations lower than 6 mg/L. Given the presence of organic soils in the shell ridges 267 

(Giménez et al., 2008), the scarce nitrate content may be explained as a consequence of 268 

the decomposition of the soil organic matter (Canter, 1996).  269 

Finally, the evapotranspiration processes are also relevant in phreatic aquifers, 270 

given their connection with the atmosphere through the UZ and plant roots, mainly in 271 

the shallower ones, and also because rainwater may evaporate before it infiltrates. In the 272 

δ
2H vs δ18O relations, a slight isotopic enrichment can be observed, caused by the 273 

evaporation of the rainwater recharging the aquifer. It is also as a consequence of such 274 

evaporation that a slight increase in water salinity occurs. However, in two of the 275 

samples an increase in salinity without isotopic enrichment was registered, a 276 

characteristic which indicates the occurrence of salt dissolution or transpiration (Fass et 277 

al., 2007; Carol et al., 2009). In turn, given the absence of mineral facies of the halite or 278 

anhydrite type in the ridges, the low Cl− and SO4
2− contents may be mainly related to a 279 

concentration due to rainwater evaporation and transpiration, with the possible 280 

occurrence of contributions from the aerosol originating in the saline water of the 281 

estuary. A particular case can be observed in a supply well that reaches salinities of 282 

2400 mg/L and whose well design draws water close to the freshwater/saline water 283 

interface. All of the geochemical processes recognised are shown in the conceptual 284 

model in Fig.8. 285 
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As regards the sustainability of the freshwater lenses, it is essential to preserve 286 

the natural conditions of the shell ridges. In natural conditions, the high permeability of 287 

the shells and sand that compose them (200 m/d; Sala et al., 1978) favours rainwater 288 

recharge. Besides, their positive morphology causes the elevation of the water table, 289 

which prevents the saline groundwater occurring in the adjacent coastal plain and marsh 290 

(Sala et al. 1978, Carol and Kruse, 2012; Carol et al., 2013) from flowing towards the 291 

lens (Fig. 9a). The mining exploitations below the water table form lakes in which 292 

saline water may enter laterally from the coastal plain and the marsh, decreasing the 293 

quality of the freshwater lenses (Fig. 9b). Besides, the evaporation processes also 294 

contribute to the salinization, as well as exposing these areas to the direct entry of 295 

contaminants from the surface. When the mining exploitations are at the same height as 296 

the adjacent coastal plain and marsh, and even though the sandy sediments used to refill 297 

the quarries are permeable, the infiltration of rainwater is lower and, therefore, the lens 298 

is less thick. This, in addition to the loss of the positive morphology that determines the 299 

existence of the freshwater lens as a recharge zone, leads to the salinization of water in 300 

periods of scarce precipitations (Fig. 9c).  301 

In the vicinity of the locality of Cerro de la Gloria, few shell-ridge sectors still 302 

preserve the original morphology and maintain the natural hydrological behaviour of 303 

freshwater lenses. Even though at present some quarry sectors collect freshwater, these 304 

reserves are limited and can only supply the homesteads in neighbouring farms. It 305 

should be highlighted that in the vicinity of the village, mainly to the south, there are 306 

numerous pits with exploitations below the water table, which not only deteriorate the 307 

water resource but also stop urban development. 308 

 309 
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5. Conclusions  310 

 311 

The economic and population development of any region is strongly dependent 312 

on water sources. In the case studied, the water stored in the lenses of the shell ridges is 313 

the only possibility for the supply of fresh groundwater, which is why understanding the 314 

hydrogeochemical processes and the state of the reserves is vital in order to develop 315 

sustainable management plans. 316 

The hydrogeochemical processes regulating the quality of the groundwater in the 317 

freshwater lenses occurring in the shell ridges largely depend on the water/sediment 318 

interaction. Among the geochemical processes identified, the contribution of F−
 and As 319 

by dissolution of volcanic glass is the only process that supplies ions that may limit 320 

water potability. Such ions require further monitoring by health and management 321 

organizations.  322 

As regards the state of the reserves, mining operations have eliminated the shell 323 

ridges and caused the deterioration or loss of such water reserves. The magnitude of the 324 

water reserves depleted, according to the estimation carried out (0.97 hm3), is of no 325 

significance for the environmental conditions of the region where drinking water is 326 

scarce. Besides, it should be taken into consideration that these estimated values may be 327 

higher at present, since mining operations in the ridges continues to be authorised with 328 

very lenient environmental legal requirements as regards the preservation of the 329 

freshwater lenses.  330 

The exploitation of the shell ridges should be undertaken in a rational manner, 331 

considering the sustainability of the freshwater reserves and seeking a balance between 332 

the social and economic development, and the preservation of the biological 333 
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environments of the wetland. In the case of the areas already exploited, refilling them 334 

with sandy reject material, levelling the existing pits and revegetating them with native 335 

species (Celtis tala) would be measures to be taken so as to minimise the impact on the 336 

environment. Even though such mitigating measures would not make it possible to 337 

recover the natural hydrological conditions, an UZ would be generated, impeding the 338 

contact with the contaminants on the surface and favouring the infiltration of rainwater, 339 

as well as the formation of small freshwater lenses. It should be noted that these lenses 340 

would only be functional during periods of water surpluses, in which there is higher 341 

infiltration of rainwater. In turn, as almost all of the calcareous material has been 342 

extracted, the geochemical processes related to the water/sediment interaction shall 343 

change. As the locality of Cerro de la Gloria is limited by mining excavations, the 344 

refilling of the quarries would also allow urban expansion and eliminate the deep 345 

excavations, which are dangerous areas for the inhabitants. Concerning the areas that 346 

still remain unexploited, it is essential to develop guidelines aimed at their preservation, 347 

in order to ensure the supply of freshwater reserves for the inhabitants of the region. 348 

 349 
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Captions 468 

Fig. 1. Location of the study area: geomorphological map, geological profileand 469 

sampling points.  470 

Fig. 2. Water classification diagram (Piper, 1944), and relation between Na+−Cl−and 471 

(CO3H− + SO4
2−) − (Ca2+ + Mg2+). 472 

Fig. 3. Relation between salinity content, pH and anions in the shell-ridge groundwater. 473 

Fig. 4. Relation between (a) arsenic and fluoride content; relation between pH with 474 

respect to fluoride and arsenic (b and c, respectively) in the shell-ridge groundwater. 475 

Fig. 5. Relation between (a) δ2H as a function of δ18O and (b) δ2H as a function of 476 

salinity.  477 

Fig. 6. (a) Shell ridge with Celtis tala vegetation; (b) and (c) mining exploitation where 478 

the land clearance can be observed. 479 

Fig. 7. Identification of mining exploitations in the shell ridges for 1984 and 2013. 480 

Fig. 8. Conceptual model of geochemical processes in freshwater lenses. 481 

Fig. 9. Diagram showing the hydrodynamic behaviour and the occurrence of freshwater 482 

lenses (a) in natural conditions, and (b) and (c) subsequent to mining exploitation. 483 

 484 

Table 1. Chemical data for the supply wells of the locality of Cerro de la Gloria. The 485 

location of the samples is shown in Figure 1. 486 

 487 
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Table 1. Chemical data for the supply wells of the locality of Cerro de la Gloria. The 
location of the samples is shown in Figure 1. 

Sample TDS pH SO4
2- Cl- NO3

- As F- Hardness 

1 570 8.3 50 58 1 0.04 1.3 144 

2 1414 7.6 343 322 2 0.04 1.1 590 

3 2400 7.4 800 535 2 0.01 0.5 728 

4 820 7.8 132 143 3 0.01 0.8 367 

5 834 8.1 132 90 5 0.03 0.8 277 

6 900 8.2 110 130 2 0.07 1.9 89 

7 1140 8.6 66 47 1 0.08 1.8 37 

 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 


