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This work deals with the spin contamination in N-electron wave functions provided by the excitation-
based configuration interaction methods. We propose a procedure to ensure a suitable selection of
excited N-electron Slater determinants with respect to a given reference determinant, required in
these schemes. The procedure guarantees the construction of N-electron wave functions which are
eigenfunctions of the spin-squared operator Ŝ2, avoiding any spin contamination. Our treatment
is based on the evaluation of the excitation level of the determinants by means of the expecta-
tion value of an excitation operator formulated in terms of spin-free replacement operators. We
report numerical determinations of energies and ⟨Ŝ2⟩ expectation values, arising from our proposal
as well as from traditional configuration interaction methods, in selected open-shell systems, in
order to compare the behavior of these procedures and their computational costs. Published by AIP
Publishing. [http://dx.doi.org/10.1063/1.4955159]

I. INTRODUCTION

The determination of electronic energies in N-electron
systems requires to solve the corresponding Schrödinger
equation. This task is usually performed representing
the N-electron system Hamiltonian operator in the space
constituted by the N-electron determinants of Sz spin quantum
number that can be constructed with a chosen one-electron
basis set. The diagonalization of the resulting N-electron
matrix provides the calculation of the wave functions of the
N-electron system, which are expanded on the N-electron
Slater determinant basis set. These expansions are the exact
solutions of the Schrödinger equation for the space in which
the Hamiltonian operator has been represented. This procedure
is denominated full configuration interaction (FCI) since the
formulation of the wave functions involves all the N-electron
determinants arising from the one-electron basis set used.
As is well known, the determination of the FCI wave
functions demands a high computational cost, due to the
large number of determinants involved, and consequently
it is necessary to search for approximations. One of the
most popular approaches for approximating wave functions
consists in truncating the corresponding expansions, limiting
the number of N-electron determinants used to represent the

a)Author to whom correspondence should be addressed. Electronic address:
qfplapel@lg.ehu.es

Hamiltonian; this type of treatment is known as configuration
interaction (CI). There are several commonly admitted criteria
to select the Slater determinants. One of them is based on the
classification of the determinants in terms of their seniority
number (the seniority number of a determinant is defined
as the number of unpaired electrons in that determinant).1,2

Alternatively, the more traditional CI procedure performs the
selection of the determinants according to their excitation
level with respect to a reference determinant.3–7

The seniority-number based CI treatment has proven
to be a suitable approach to describe systems which present
strong correlation.8–14 Likewise, the extension of the seniority-
number concept from Slater determinants to wave functions
and N-electron spin-adapted spaces15 has allowed us to tackle
studies of other type of related properties, such as compactness
of wave functions and scaling problems.16–22 Our algorithms,
arising from the commutation rules of the N-electron spin-
squared operator Ŝ2 and the N-electron seniority-number
operator, provide spin contamination-free CI wave functions
in both closed- and open-shell systems. Contrary to these
results, in open-shell systems, the CI wave functions provided
by the methods which select Slater determinants according to
their excitation level with respect to a reference determinant
can present spin contamination. The simple substitution of
some spin-orbitals in the reference determinant by other
spin-orbitals allows one to group Slater determinants in
subsets constituted by determinants of identical excitation

0021-9606/2016/145(1)/014109/7/$30.00 145, 014109-1 Published by AIP Publishing.
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level. However, it is not always possible to construct spin-
adapted configurations (eigenfunctions of the Ŝ2 operator) in
terms of combinations of Slater determinants belonging to one
of these subsets.23–27 The aim of this work is to propose an
N-electron spin-free excitation operator to evaluate excitation
levels in terms of orbitals for Slater determinants with respect
to a given reference determinant. This operator commutes with
the spin operator Ŝ2 and provides a procedure for classifying
Slater determinants that guarantees the construction of
spin-adapted configurations with determinants of identical
selected excitation level. This treatment can be applied to
systems with even or odd number of electrons and any spin
symmetry, and for open- or closed-shell reference Slater
determinants.

We have organized this work as follows. In Sec. II
we propose an N-electron spin-free excitation operator
formulated by means of spin-free replacement operators.
This operator allows one to calculate the excitation level,
with respect to a reference determinant, for an N-electron
determinant as well as for an N-electron wave function.
We also describe in this section the commutation relations
of this excitation operator with the N-electron one Ŝ2,
and with the N-electron system Hamiltonian operator Ĥ .
We show the ability of our proposal to construct spin-
adapted configurations with the Slater determinants possessing
a determined excitation level evaluated by our method.
Therefore, the diagonalization of the N-electron Hamiltonian
matrix leads to spin contamination-free wave functions.
Section III presents results of energies and expectation values
⟨Ŝ2⟩ for open-shell systems, in which the calculation of the
excitation levels has been performed by the conventional spin-
orbital excitation based CI procedure and by the expectation
values of the proposed excitation operator. The computational
details and the discussion of results are also included in this
section. Finally, in Sec. IV we report the conclusions of this
work.

II. THE EXCITATION LEVEL OF CI WAVE FUNCTIONS

Let {i, j, k, l, . . .} be a set of K orthonormal spatial
orbitals and let Êi

j and Êik
jl

be the spin-free first- and second-
order replacement operators, respectively, which have been
formulated as28–30

Êi
j =


σ

a†iσa jσ, (1)

Êik
jl =


σ1,σ2

a†
iσ1a

†
kσ2alσ2a jσ1, (2)

where a†iσ is the fermion creation operator which acting
on the vacuum state |0⟩ produces the state |iσ⟩, with one
particle in the orbital i and spin σ (α or β), and aiσ is its
corresponding annihilation operator. The expectation values
of the Êi

j and Êik
jl

operators with respect to an N-electron state
generate the spin-free first- and second-order reduced density
matrix elements, 1Di

j and 2Dik
jl

, respectively, corresponding to
that state, so that 1Di

j = ⟨Êi
j⟩ and 2Dik

jl
= 1

2 ⟨Êik
jl
⟩. In this last

expression, the one half-fraction provides the normalization of
the trace of the spin-free second-order reduced density matrix

to
(
N
2

)
electron pairs. The diagonal elements of these reduced

density matrices evaluate the occupancies of the orbitals and
pairs of orbitals, respectively, in the corresponding N-electron
states.

A. Evaluation of the excitation level

Using spin-free replacement operators, we formulate an
N-electron excitation number operator X̂exc with respect to a
reference Slater determinant as

X̂exc = N̂ −
rocc
i=1

Êi
i +

1
2

rsocc
i=1

Êii
ii , (3)

where N̂ is the particle number operator and in the first sumrocc
i=1 the index i runs over all the reference occupied (rocc)

spatial orbitals (singly and doubly), while in the second sumrsocc
i=1 that index only runs over the reference singly occupied

(rsocc) spatial orbitals. The expectation value of this operator
⟨X̂exc⟩ for an N-electron Slater determinant is an integer which
expresses the excitation level of this determinant with respect
to the reference Slater determinant.

In this evaluation of the ⟨X̂exc⟩ expectation value, the termrocc
i=1 ⟨Êi

i⟩ is the summation of the occupation numbers of
the spatial orbitals of the reference determinant which are
also occupied in the Slater determinant being characterized,
and consequently they do not contribute to the number
of excitations. The ⟨Êi

i⟩ quantity can only get the values
2, 1, 0, according to which the spatial orbital i in the
studied determinant is doubly occupied, singly occupied,
or unoccupied, respectively; these values are discounted from
the N = ⟨N̂⟩ quantity. The term 1

2
rsocc

i=1 ⟨Êii
ii⟩, proposed in

Eq. (3), is always zero, except for the spatial orbitals singly
occupied in the reference determinant which are doubly
occupied in the studied determinant; each of these orbitals
contributes with one unit to the total amount of excitations,
e.g., in the N = 3 case, the determinant |122̄⟩ possesses a value
⟨X̂exc⟩ = 1 with respect to the determinant |121̄⟩ (the bar means
a β-spin-orbital and α-one otherwise) due to the contribution
of the term 1

2 ⟨Ê22
22⟩ = 1. Obviously, in the case of closed-shell

reference Slater determinants, the term
rsocc

i=1 ⟨Êii
ii⟩ has no

contribution to the ⟨X̂exc⟩ value.
In the case of an open-shell reference Slater determinant,

one can find determinants which only differ from that
reference determinant in pairs of spin-orbitals with a spin
exchange, and consequently their excitation number vanishes,
Xexc = ⟨X̂exc⟩ = 0, e.g., for N = 4 electrons, the determinant
|131̄2̄⟩ has a value ⟨X̂exc⟩ = 0 with respect to the |121̄3̄⟩
reference determinant. This type of determinants of zeroth-
order excitation level with respect to a reference one must
also be taken into account to project the Hamiltonian in
the CI treatments. This formulation of the excitation number
operator in terms of spatial orbitals, instead of spin-orbitals
arising from the particle-hole approach, can be applied to any
system, with N (even or odd) number of electrons and any
Sz quantum number in the determinants (closed- and open-
shell situations), and coincides with other more conventional
formulations10 in the closed-shell case. The determination of
expectation values for the operator X̂exc formulated in Eq. (3)
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can be extended to N-electron wave functions expressed
by means of linear combinations of Slater determinants. In
such a case, the resulting expectation values are weighted
sums of the excitations of the determinants which express
the wave functions, and the quantities ⟨X̂exc⟩ are no longer
integers unless all the Slater determinants of the corresponding
expansion possess an identical excitation level.

B. Spin-adapted configurations

In order to analyze the spin features of wave functions
expanded by Slater determinants, we will use the spin-free
version of the N-electron spin-squared operator, which has
also been formulated in terms of spin-free second-order
replacement operators as31

Ŝ2 =
1
2


i, j,k,l


4 − N

2(N − 1) δi jδkl − δilδ jk


Êik
jl (4)

in which the δ symbols indicate the well-known Kronecker
deltas. The formulation of Eqs. (3) and (4) by means of second-
order replacement operators turns out to be especially suitable
to evaluate the commutation relation between the operators
X̂exc and Ŝ2, which requires to take the product of two second-
order spin-free replacement operators. The general procedure
to calculate products of spin-free replacement operators was
reported in Refs. 32 and 33. According to that procedure, the
product of two spin-free second-order replacement operators
turns out to be

Êik
jl Êpr

qs = Êik pr

jlqs
+ δp j Êikr

ql s + δr j Ê
ik p

slq
+ δpl Êikr

jqs

+ δr l Ê
ik p
jsq + δp jδr l Êik

qs + δplδr j Êik
sq (5)

in which third- and fourth-order spin-free replacement
operators appear,29,30 which can be defined similarly to the
lower order ones according to Eqs. (1) and (2). Taking into
account Eq. (5), one straightforwardly finds

[Ŝ2, X̂exc] = 0. (6)

Likewise, it can be shown that

[Ŝz, X̂exc] = 0. (7)

These commutation relations show that the spin-adapted
configurations (the eigenfunctions of the operators Ŝ2 and Ŝz
corresponding to an N-electron system) may be expressed
by means of linear combinations of Slater determinants
having the same Xexc value. As is well known, an open-shell
Slater determinant is not always an eigenfunction of the Ŝ2

operator; however, linear combinations of those determinants
possessing a zero excitation level lead to the construction
of spin-adapted configurations with Xexc = 0. Likewise, it
is possible to construct linear combinations of degenerate
eigenfunctions of the Ŝ2 and Ŝz operators with S and Sz
spin quantum numbers, corresponding to different values of
excitation number Xexc. These linear combination functions
are also eigenfunctions of both spin operators but they
are no longer eigenfunctions of the operator X̂exc, yielding
an expectation value ⟨X̂exc⟩ which may be a non-integer
number.

In this work, we describe N-electron systems by means
of nonrelativistic, clamped nuclei, and spin-independent
Hamiltonians formulated as32

Ĥ =
1
2


i, j,k,l

H ik
jl Êik

jl , (8)

where

H ik
jl = (ik | jl) + 1

N − 1
(δkl ϵ i j + δi j ϵkl) (9)

in which (ik | jl) are the standard two-electron integrals in the
(12|12) notation and ϵ i j the one-electron integrals.

The spin-free N-electron Hamiltonian operator Ĥ
expressed in Eq. (8) commutes with the Ŝ2 and Ŝz spin
operators. However the operators Ĥ and X̂exc do not commute,
i.e., [Ĥ , X̂exc] , 0. On the other hand, as is well known, the CI
methods carry out a representation of the operator Ĥ in a set
of N-electron Slater determinants with a given Sz quantum
number, constructed with K orbitals.34 Consequently, the
diagonalization of the N-electron Hamiltonian matrix arising
from that representation of the operator Ĥ yields spin-adapted
eigenstates with spin values S = |Sz |, (|Sz | + 1), . . . , N2 (in the
case of K ≥ N) or S = |Sz |, (|Sz | + 1), . . . , (K − N

2 ) (in the case
of K < N). All these eigenstates have an identical Sz value.
If the set of Slater determinants has been chosen according
to the excitation level provided by Eq. (3), this procedure
leads to eigenstates of the N-electron matrix which are linear
combinations of degenerate eigenfunctions of the Ŝ2 and Ŝz
operators corresponding to the selected Xexc,X ′exc, . . . values.
However, this result is not ensured in the case of CI methods
based on the construction of the N-electron Hamiltonian
matrix over the Slater determinants selected according to the
other criteria, i.e., sets of Slater determinants arising from
the spin-orbital excitations of a reference Slater determinant,
where it is possible to find spin-contaminated states.23,26

This feature appears in open-shell systems, coming from the
ambiguity in defining the excitations either in terms of orbitals
or in terms of spin-orbitals.

The number of excited N-electron Slater determinants
with respect to a given reference determinant that can be
constructed with K orbitals is constrained by the value
of the Sz spin projection. It is possible to derive simple
expressions which calculate the number of determinants
corresponding to excitation levels Xexc according to Eq. (3).
In the Appendix, we formulate the dimensions, dim(Xexc),
corresponding to the subspaces with lowest excitation values
Xexc. These expressions show that the number of determinants
of each of the subspaces scales polynomially with the K
parameter. For example, in the simplest cases CI(Xexc = 0),
CI(Xexc = 0,1), CI(Xexc = 0,2), and CI(Xexc = 0-2), one finds
that the computational cost of diagonalizing the corresponding
N-electron matrices is O(1), O(K3), O(K6), and O(K6),
respectively. This computational cost is identical to that
found for the traditional spin-orbital excitation-based CI
methods. However, the proposed procedure has the advantage
of assuring that the eigenvectors of the counterpart CI(Xexc)
N-electron matrices are eigenfunctions of the Ŝ2 operator.
This behavior has been numerically tested in Sec. III.
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III. COMPUTATIONAL DETAILS, RESULTS,
AND DISCUSSION

We have determined energies and expectation values ⟨Ŝ2⟩
arising from CI wave functions expanded on N-electron Slater
determinants whose excitation levels with respect to restricted
open-shell Hartree-Fock (ROHF) Slater determinants have
been cataloged according to their corresponding ⟨X̂exc⟩
values in Eq. (3). These results have been compared with
those provided by the traditional spin-orbital excitation-
based determinant-selection procedure, at the corresponding
excitation levels with respect to the identical reference
determinants. We have chosen some open-shell diatomic
molecules and radicals constituted by second-row elements
from 11 up to 16 electrons, as prototype systems of several
spin symmetries. The STO-3G atomic basis sets have been
utilized in order to be able to implement the calculations at
an affordable computational cost. In all cases, we describe the
lowest energy states of each spin symmetry at experimental
equilibrium bond lengths,35 using the molecular orbital
bases. The one- and two-electron integrals, which define
the N-electron Hamiltonians according to Eq. (8), and the
ROHF energies have been evaluated by a modified version of
the PSI 3.3 package.36 We have elaborated our own codes for
determining spatial-orbital-excitation based CI, spin-orbital-
excitation based CI, and FCI energies, as well as expectation
values ⟨Ŝ2⟩.

Table I reports energy and ⟨Ŝ2⟩ expectation values
corresponding to the 11, 12, and 13 electron diatomic species
BC, C2, and CN in the lowest quartet, triplet, and doublet spin
states, respectively. The excitation level in both treatments
is indicated by means of the parameter value Xexc and by

the traditional nomenclature (i.e., configuration interaction at
single excitations (CIS), at double ones (CID), and at single
and double ones (CISD)), respectively. The number of Slater
determinants involved in each case has also been included in
this table, in order to show the computational cost required
for each system. Likewise, in Table II we have gathered
results from the diatomic molecules CO, NO, and O2, which
correspond to systems with 14, 15, and 16 electrons, in their
lowest triplet, doublet, and triplet energy states, respectively.
As can be observed in both tables, the zeroth-order excitation
determinants (Xexc = 0) are the simple ROHF ones for these
spin symmetries; these determinants are eigenfunctions of
the Ŝ2 and Ŝz operators (we are referring to the highest
quantum number Sz substate Sz = S). However, adding to
that CI wave functions the determinant sets corresponding,
respectively, to spatial-orbital excitations and spin-orbital
excitations at single level Xexc = 1 and CIS, at double level
Xexc = 2 and CID, at single and double levels Xexc = 1,2
and CISD, or at higher levels yields, in all cases, different
⟨Ŝ2⟩ results according to the nature of the procedure are
used to count the excitations. As expected, in the case of
spatial excitations, the resulting CI wave functions are again
spin-adapted configurations, while this feature is no longer
maintained in the spin-orbital excitation based procedure
which leads to spin contaminated wave functions. In fact,
a Slater determinant such as | · · · 132̄ · ··⟩ is doubly excited
with respect to the reference determinant | · · · 121̄ · ··⟩ within
the spin-orbital excitation approach. However, according to
Eq. (3) that determinant turns out to be singly excited
in the spatial excitation based procedure and consequently
the determinant | · · · 132̄ · ··⟩ is necessary to construct a
spin-adapted space with the determinants having Xexc = 1

TABLE I. CI energies (in Eh), ⟨Ŝ2⟩ values, No. of determinants, and excitation levels for quartet, triplet, and doublet systems with 11, 12, and 13 electrons,
respectively. Results correspond to standard STO-3G basis sets.

Spatial excitations Spin-orbital excitations

System EROHF EFCI Xexc

No. of
determinants Energy ⟨Ŝ2⟩ exc level

No. of
determinants Energy ⟨Ŝ2⟩

BC −61.477 359 −61.582 949 0 1 −61.477 359 3.750 00 1 −61.477 359 3.750 00
0,1 82 −61.484 641 3.750 00 CIS 46 −61.478 162 3.751 86
0,2 1 162 −61.546 556 3.750 00 CID 658 −61.550 156 3.751 49
0-2 1 243 −61.571 284 3.750 00 CISD 703 −61.570 268 3.751 16
0-3 6 564 −61.578 780 3.750 00 CISDT 4 220 −61.577 108 3.750 96
0-5 23 064 −61.582 949 3.750 00 CISDTQQ 20 930 −61.582 949 3.750 00

C2 −74.489 374 −74.640 478 0 1 −74.489 374 2.000 00 1 −74.489 374 2.000 00
0,1 77 −74.501 563 2.000 00 CIS 47 −74.492 946 2.006 67
0,2 1 109 −74.620 129 2.000 00 CID 689 −74.623 323 2.001 98
0-2 1 185 −74.626 318 2.000 00 CISD 735 −74.625 765 2.001 10
0-3 6 605 −74.631 921 2.000 00 CISDT 4 545 −74.629 654 2.001 18
0-6 29 830 −74.640 478 2.000 00 CISDTQQ 29 267 −74.640 478 2.000 00

CN −90.997 412 −91.173 247 0 1 −90.997 412 0.750 00 1 −90.997 412 0.750 00
0,1 64 −91.009 344 0.750 00 CIS 46 −91.002 723 0.786 84
0,2 883 −91.142 724 0.750 00 CID 658 −91.148 368 0.763 27
0-2 946 −91.155 128 0.750 00 CISD 703 −91.154 996 0.750 10
0-3 5 300 −91.159 735 0.750 00 CISDT 4 220 −91.158 027 0.751 62
0-6 24 900 −91.173 242 0.750 00 CISDTQQS 24 675 −91.173 239 0.750 00
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TABLE II. CI energies (in Eh), ⟨Ŝ2⟩ values, No. of determinants, and excitation levels for triplet, doublet, and triplet systems with 14, 15, and 16 electrons,
respectively. Results correspond to standard STO-3G basis sets.

Spatial excitations Spin-orbital excitations

System EROHF EFCI Xexc

No. of
determinants Energy ⟨Ŝ2⟩ exc level

No. of
determinants Energy ⟨Ŝ2⟩

CO −111.016 441 −111.127 053 0 1 −111.016 441 2.000 00 1 −111.016 441 2.000 00
0,1 65 −111.024 002 2.000 00 CIS 41 −111.019 531 2.023 33
0,2 758 −111.109 730 2.000 00 CID 503 −111.114 716 2.017 42
0-2 822 −111.120 907 2.000 00 CISD 543 −111.120 728 2.000 07
0-3 3630 −111.124 104 2.000 00 CISDT 2735 −111.123 758 2.000 15
0-5 9225 −111.127 053 2.000 00 CISDTQQ 9030 −111.127 050 2.000 00

NO −127.526 064 −127.659 338 0 1 −127.526 064 0.750 00 1 −127.526 064 0.750 00
0,1 52 −127.527 768 0.750 00 CIS 38 −127.526 708 0.751 94
0,2 547 −127.645 811 0.750 00 CID 428 −127.646 934 0.751 59
0-2 598 −127.650 611 0.750 00 CISD 465 −127.650 520 0.750 05
0-3 2460 −127.654 061 0.750 00 CISDT 2046 −127.653 980 0.750 04
0-4 4665 −127.659 113 0.750 00 CIDSTQ 4420 −127.659 084 0.750 00

O2 −147.632 161 −147.744 030 0 1 −147.632 161 2.000 00 1 −147.632 161 2.000 00
0,1 45 −147.635 123 2.000 00 CIS 31 −147.633 825 2.002 98
0,2 323 −147.736 236 2.000 00 CID 253 −147.737 632 2.002 69
0-2 367 −147.739 518 2.000 00 CISD 283 −147.739 349 2.000 09
0-3 955 −147.740 315 2.000 00 CISDT 885 −147.740 297 2.000 01
0-4 1200 −147.744 030 2.000 00 CISDTQ 1200 −147.744 030 2.000 00

excitations. We have included in these tables excitations
up to the level required so that the spin-orbital based
selection procedure starts to yield spin contamination-free
wave functions, e.g., Xexc = 0-5 (CISDTQQ) in the BC
molecule and Xexc = 0-6 (CISDTQQS) in the C2 one. As
shown in both tables, the number of Slater determinants
involved in the construction of each CI wave function at the
reported excitation levels turns out to be higher in the spatial
excitation case. This is because a given spatial excitation
level may include determinants belonging to upper levels in
terms of spin-orbital excitations. However, as mentioned in
Section III, both methods scale with identical power of the
parameter K , the number of orbital functions constituting
the basis set, and consequently both of them have the same
order of computational cost. We must also point out that
the energies arising from the spatial excitation based CI
procedure are closer to the FCI values than those obtained
from the spin-orbital excitation based CI method, except
for the Xexc = 0,2 and CID levels. In this case, some CID
level determinants belong to the Xexc = 1 one and they are
not included in the Xexc = 0,2 determinant set; similarly,
some Xexc = 2 level Slater determinants correspond to higher
levels than the CID ones in the spin-orbital treatment.
Hence, the variational principle cannot be applied in this
case.

IV. CONCLUDING REMARKS

In this work, we have proposed a spin-free N-electron
excitation operator X̂exc which allows to classify the
N-electron determinants that can be constructed with a given

one-electron basis set, in terms of their excitation level
with respect to a reference determinant. The operator X̂exc

commutes with the N-electron spin operators Ŝ2 and Ŝz,
and consequently each of its expectation values with respect
to those Slater determinants defines a subset of N-electron
determinants which can be used to formulate spin-adapted
configurations. This feature guarantees the construction of
spin contamination-free CI wave functions expanded on
N-electron determinants selected by this criterion. Our
procedure can be applied to any open- or closed-shell
system, with even or odd number of electrons. Our proposal
provides, in most cases, energies closer to the FCI values
than those arising from conventional CI methods based
on spin-orbital excitation criteria, at similar computational
cost. We are currently working on hybrid methods which
combine the seniority- and excitation-based treatments.19

These methods also lead to spin-adapted CI wave functions
if the excitation-based component is constructed according
to Eq. (3), following the spatial-orbital-based selection
criterion. Likewise, the efficiency and the computational
cost are being compared to the multi-reference methods
in which the excited configurations are generated as spin
eigenfunctions.
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APPENDIX: NUMBER OF EXCITED SLATER
DETERMINANTS WITHIN THE SPATIAL-ORBITAL
APPROACH

The evaluation of the number of Slater determinants of
Sz spin quantum number and excitation level Xexc according
to formula (3) with respect to a reference determinant is a
straightforward calculation. Here, we report the simplest cases
corresponding to the excitation values Xexc = 0, Xexc = 1, and
Xexc = 2,

dim(Xexc = 0) =
(

A
A
2 + Sz

)
(A1)

dim(Xexc = 1) = OV
(

A + 2
A+2

2 + Sz

)
+ A (O + V )

(
A

A
2 + Sz

)
+

A (A − 1)
2

(
A − 2

A−2
2 + Sz

)
(A2)

dim(Xexc = 2) =

O (O − 1)

2
V (V − 1)
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 (
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A+4
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+


O (O − 1)

2
V +O

V (V − 1)
2

+
O (O − 1)

2
AV +OA

V (V − 1)
2

 (
A + 2

A+2
2 + Sz
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+


O (O − 1)

2
A (A − 1)

2

+
A (A − 1)

2
V (V − 1)

2
+OV + 2OAV +OA (A − 1)V

 (
A

A
2 + Sz

)
+


O

A (A − 1)
2

+
A (A − 1)

2
V +O

A (A − 1) (A − 2)
2

+
A (A − 1) (A − 2)

2
V
 (

A − 2
A−2

2 + Sz

)
+


A (A − 1) (A − 2) (A − 3)

4

 (
A − 4

A−4
2 + Sz

)
, (A3)

where A = N − 2O is the number of singly occupied orbitals
in the reference determinant, O stands for the number of
repeated orbitals in the reference determinant (counted once),
V = K − (N −O) means the number of unoccupied orbitals
in the reference determinant, and K is the number of orbitals
of the basis set used.
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