
ar
X

iv
:1

20
8.

62
72

v1
  [

co
nd

-m
at

.st
at

-m
ec

h]
  2

9 
A

ug
 2

01
2 Damage Spreading in a Driven Lattice Gas Model

M. Leticia Rubio Puzzo1, Gustavo P. Saracco1, Ezequiel V.

Albano2,3
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Abstract.

We studied damage spreading in a Driven Lattice Gas (DLG) model as a function

of the temperature T , the magnitude of the external driving field E, and the lattice

size. The DLG model undergoes an order-disorder second-order phase transition at the

critical temperature Tc(E), such that the ordered phase is characterized by high-density

strips running along the direction of the applied field; while in the disordered phase

one has a lattice-gas-like behaviour. It is found that the damage always spreads for all

the investigated temperatures and reaches a saturation value Dsat that depends only

on T . Dsat increases for T < Tc(E = ∞), decreases for T > Tc(E = ∞) and is free of

finite-size effects. This behaviour can be explained as due to the existence of interfaces

between the high-density strips and the lattice-gas-like phase whose roughness depends

on T . Also, we investigated damage spreading for a range of finite fields as a function

of T , finding a behaviour similar to that of the case with E = ∞.

PACS numbers: 05.10.Ln, 05.50.+q, 64.60.De, 64.60.Ht, 68.35.Rh

Submitted to: Journal of Statistical Mechanics: Theory and Experiment

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Servicio de Difusión de la Creación Intelectual

https://core.ac.uk/display/328874909?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://arxiv.org/abs/1208.6272v1


Damage Spreading in a DLG Model 2

1. Introduction

The statistical mechanics of equilibrium phenomena is very useful for understanding

the thermodynamic properties of many-particle systems from a microscopical point of

view. From its beginnings up to now, new developments and theories have enriched it,

culminating in the renormalization-group approach [1, 2]. In nature, most many-particle

systems are under far-from-equilibrium conditions, and yet there is not a well-established

theoretical framework to treat them, as in the case of their equilibrium counterpart.

In order to overcome this shortcoming, many attempts have been made to gain some

insight into the far-from-equilibrium behaviour, e.g. by studying simple models that are

capable on capturing the essential non-equilibrium behaviour. Within this context, one

of the best known paradigms of far-from-equilibrium systems is the two-dimensional

driven lattice gas (DLG) model proposed by Katz, Lebowitz and Spohn [3]. This

model consists of a set of particles located in a two-dimensional square lattice in contact

with a thermal reservoir. Particles exchange places with nearest-neighbour empty sites

according to spin exchange, i.e. the Kawasaki dynamics. Also, an external drive is

applied, causing the system to exhibit non-equilibrium stationary states (NESS) in the

limit of large evolution times. If a half-filled two-dimensional system is considered (as in

this paper), and for low enough temperatures, the DLG model develops an ordered phase

characterized by strips of high particle density running along the driving direction [4].

However, by increasing the temperature a second-order non-equilibrium phase transition

into a disordered (gas-like) phase takes place. The critical temperature (Tc) depends on

the value of the driving field E, and in the limit of E → ∞ one has Tc ≃ 1.41 TO, where

TO is the Onsager critical temperature of the Ising model [5]. The critical behaviour

of the DLG model has been studied by using many different techniques [6], such as

field theoretical calculations [7, 8, 9, 10], Monte Carlo simulations [11, 12, 13, 14, 15],

finite-size scaling methods [13, 14], and short-time dynamic scaling [16, 17, 18], but the

complete understanding of this model is still lacking and has originated a long-standing

controversy [6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18]. It should be noticed that

Monte Carlo studies of the DLG model are mostly focused on understanding the critical

behaviour of NESS for half-filled lattices.

From the theoretical point of view, it is interesting and challenging to study the

dynamic evolution of a very small perturbation in a non-equilibrium system. One way to

do this is to apply the concept of damage spreading. Originally introduced by Kauffmann

[19, 20], this method is based on the point-to-point comparison between two slightly

different configurations of a system that are allowed to evolve simultaneously. In order

to achieve these configurations, one sample is initially perturbed by slightly changing

its configuration, so that it is called the ”damaged” sample, while the original sample

remains unperturbed. Then the time evolution of the perturbation, defined as the

difference between configurations, is followed. In the long-time limit, the perturbation

can either survive or vanish, according to the values of the control parameters of the

system. In some cases, it is known that the passage from the survival of the perturbation
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to its vanishing is effectively an irreversible phase transition that can be related to

directed percolation processes [21, 22].

Damage spreading studies were originally applied to the Ising model, spin glasses

and cellular automata, but they have also been applied to magnetic systems such as

the Potts model with q-states, Heisenberg and XY models, two-dimensional trivalent

cellular structures, biological evolution, non-equilibrium models, opinion dynamics, and

small world networks (see e.g. [23] and references therein, and for more recent results

see [18, 24, 25, 26, 27, 28, 29, 30]).

Within the broad context discussed above, the goal of our work is to give an overall

description of the damage spreading process in the DLG model as a function of the

control parameters, i.e. the temperature and the field magnitude, and also of the lattice

dimensions.

The manuscript is organized as follows: the DLG model is described in Section 2,

while in Section 3 details of the damage spreading technique are explained. The results

are presented and discussed in Section 4, and finally our conclusions are stated in

Section 5.

2. The Model

The DLG model [3] is defined on the square lattice of size L×M with periodic boundary

conditions along both directions. The driving field, E, is applied along theM−direction.

Each lattice site can be empty or occupied by a particle. If the coordinates of the site

are (i, j), then the label (or occupation number) of that site can be ηij = {0, 1}. The

set of all occupation numbers specifies a particular configuration of the lattice. The

particles interact among them through a nearest-neighbour attraction with positive

coupling constant (J > 0). So, in the absence of any field, the Hamiltonian is given by

H = −4J
X

hij;i′j′i

ηijηi′j′, (1)

where h.i means that the summation is made over nearest-neighbour sites only.

The attempt of a particle to jump to an empty nearest-neighbour site, Wjump, is

given by the Metropolis rate [31] modified by the presence of the driving field, that is,

Wjump = min[1, e[∆H−ǫ1E]/kBT ], (2)

where kB is the Boltzmann constant, T is the temperature of the thermal bath, ∆H is

the energy change after the particle-hole exchange, and ǫ1 = (1, 0, −1) assumes these

values when the direction of the jump of the particle is against, orthogonal or along

the driving field E, respectively. The field is measured in units of J and temperatures

are given in units of J/kB. In this context, the critical temperature for the case with

E = ∞ is Tc ≃ 3.2. The dynamics imposed does not allow elimination of particles, so

the number of them is a conserved quantity. Also, in the absence of a driving field, the

DLG model reduces to the Ising model with conserving (i.e. Kawasaki) dynamics. For

further details of the DLG model, see e.g. [4, 6, 32].
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3. The Damage Spreading Method

The Damage Spreading (DS) method was initially introduced by Kauffman [19, 20] to

investigate the effects of tiny perturbations introduced in the initial condition of physical

systems on their final stationary or equilibrium states. In order to implement the DS

method in computational simulations [33, 34], two configurations or samples S and S ′,

of a given stochastic model, are allowed to evolve simultaneously. Initially, both samples

differ only in the state of a small number of sites. Then, the difference between S and

S ′ can be considered as a small initial perturbation or damage. In order to give a

quantitative measure of the evolution of the perturbation, the “Hamming” distance or

damage D(t) is defined as

D(t) =
1

N

NX

i,j

1− δηij(t),η′ij (t), (3)

where N = L × M is the total number of sites in the lattices, η′ij(t) (ηij(t)) is the

occupation number of site (i, j) in the sample S ′(S), and δηi(t),η′i(t) is the Kronecker

delta function. The sum runs over all sites in both samples, so 0 ≤ D(t) ≤ 1. If the

perturbation introduced in S ′ is small (D(t = 0) ∼ O(1/N)), there are two possible

scenarios: (i) the perturbation disappears after some time and D(t → ∞) → 0 in the

thermodynamic limit; or (ii) D(t → ∞) is finite and the perturbation is relevant. Thus,

in some cases there may be a transition between a state where damage heals and a state

where the perturbation propagates throughout the system. Often, this is a continuous

and irreversible critical transition [23] that is named the Damage Spreading transition.

It is well known that the critical behaviour of the DS transition depends on the dynamic

rules used to implement the algorithm (e.g. heat-bath, Glauber, Swendsen-Wang,

Metropolis, and Kawasaki dynamics), in Monte Carlo simulations [22]. This dependence

can be explained in terms of the detailed balance condition [22, 34] that assures that the

system will arrive at an equilibrium state, but it does not establish a unique way for the

dynamic evolution. For example, in the Ising model with Glauber or Metropolis dynamic

rules, the initial damage goes to zero below a damage temperature TD ≈ TO, where

TO is the Onsager critical temperature, and it spreads above TD, while the opposite

scenario (D > 0 for T < TD, and D = 0 for T > TD) is observed when using the

heat-bath dynamics. It is worth mentioning that the Glauber, Metropolis, and heat-

bath dynamics are examples of non-conserved order parameter dynamic rules. On the

other hand, a different behaviour is observed when conserved order parameter rules, as

e.g. in the case of the Kawasaki dynamics, are applied to the Ising model. In fact, by

studying the two-dimensional Ising model, Glotzer and Jan [35] did not observe any

phase transition in the damage spreading probability at the critical temperature TO,

so they concluded that damage always spreads. A few years later, Vojta [36] studied

the kinetic Ising model with Kawasaki dynamics by using an effective-field theory and

Monte Carlo simulations. He found that two systems, whose initial configurations differ

only in a few sites, become completely uncorrelated in the long-time limit. Moreover,
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Figure 1. Log-log plot of D versus t, as obtained for a lattice of size L×M = 60×120,

and keeping E = 50 ≈ ∞ constant. The different values of the temperature T are

indicated in the legend.

he also found that the asymptotic average damage is equal to 1/2. To the best of our

knowledge, the DS behaviour of the DLG has not been studied yet. However, in the

broad context of the above-discussed results, it is expected that damage in the DLG

will tend to the Ising model with Kawasaki dynamics in the limit E → 0, and therefore

D(t → ∞) → 1/2, but the role played by the driving field remains to be clarified and

will provide valuable hints for the understanding of far-from equilibrium systems.

4. Results and Discussion

Monte Carlo simulations were performed by using square lattices of sizes L ×M with

30 ≤ L, M ≤ 480 lattice units (LU) and by varying the aspect ratio L/M . In order to

introduce a perturbation into the system, NESS states were generated after a very long

time evolution of the system, typically t > 106 Monte Carlo time steps (MCS), where

an MCS is defined as L × M attempts for a randomly chosen particle to jump into a

neighbouring site. Then, two samples of the system, S and S ′, are obtained. In one

of them, let us say S ′, some particles are taken out and relocated in empty positions,

so that the initial configurations for each sample S and S ′ are slightly different. After

generating that damage, both systems are allowed to evolve with the same sequence of

random numbers. The total damageD(t) given by equation (3) is measured as a function

of time for different values of the external field 0 ≤ E ≤ 50 and the temperature T in

the range 0.5 ≤ T ≤ 16.

Figure 1 shows the results of D versus time obtained for a lattice of size L×M =

60×120, E = 50 ≈ ∞ (notice that according to the transition rule given by equation (2),
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Figure 2. Log-log plot of the temporal evolution of the damage obtained for

T = 3.2 ≈ Tc(E = ∞), E = 50 ≈ ∞ and different lattice sizes L×M , as indicated.

E = 50 is in practice equivalent to E ≡ ∞) and different temperatures, as indicated. In

all cases the initial damage is taken as D(t = 0) = 1/LM . As can be observed, damage

always spreads within the temperature range investigated and after some time it reaches

a saturation value Dsat that depends on the temperature. In order to establish the

dependence of the saturation valueDsat on the lattice size, we also performed simulations

of the temporal evolution of damage for E = 50, and T = 3.2 ≈ Tc(E = ∞), by taking

different lattice sizes L × M and aspect ratios L/M . The results obtained are shown

in figure 2. The absence of finite-size effects in the asymptotic or saturated value of D,

Dsat, can clearly be observed and confirms that for E = ∞, Dsat depends only on T ,

but it is no longer dependent on the lattice size and the aspect ratio.

By keeping E = 50 and varying the temperature of the system, we then studied the

dependence of Dsat on T (see figure 3). For T < Tc, Dsat increases and close to T ≃ Tc

it shows a peak; subsequently it starts to decrease monotonically. It is important to

notice that in both regimes, Dsat behaves as a power law, i.e. Dsat ∼| T − Tc |κ1,2,

where κ1 = 4.2(3) for T < Tc and κ2 = −0.23(2) in the T > Tc regime. This increase

and decrease behaviour can be explained in terms of the presence of solid strips with

interfaces between particles and empty sites. In fact, at low enough temperatures, the

system is almost frozen in the ordered phase, the high-density strips are quite compact,

and their interfaces are flat [37]. For this scenario, the sample S and its perturbed

counterpart S ′ are almost identical, even in the long-time limit. So, the saturated

damage, Dsat, is constrained to a small value. When the temperature is raised, the

interface roughness increases [37], leading to the generation of configurations where

damage can spread. This process continues until T ≃ Tc, where the strips vanish in

the disordered phase. In this way, Dsat increases up to T ≃ Tc. On the other hand,
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Figure 3. Linear-linear plot of Dsat versus the distance to the critical temperature

T−Tc obtained for E = 50 ≈ ∞ and different lattice sizes L×M , as indicated. The full

lines are power-laws obtained fitting the data by means of a linear regression in each

regime, while the vertical dashed line indicates the location of the critical temperature

T = 3.2 ≈ Tc(E = ∞), in order to guide the eye.
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Figure 4. Transversal damage profiles measured during the NESS for t = 107 MCS

and obtained for the indicated temperatures. The lattice size is L = 300, M = 150.

The dashed line indicates the initial position of the interface at i = L/2.

when T & Tc the system enters into a disordered phase without well-defined strips, but

large clusters of particles are still present, whose interface sizes tend to zero in the limit

T → ∞. Consequently, Dsat also decreases in this limit due to the lack of interfaces,

as is shown in figure 3 for T > Tc. It is worth mentioning that similar results were

obtained for external driving fields in the range 0.5 ≤ E ≤ 10 (not shown here for

the sake of space). For a better illustration of the above statements, we recorded the
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damage profiles in the transversal direction (i.e. perpendicular to the external driving

field axis) when the system had reached the NESS, which can be defined as

hPL(i, t → ∞)i =
1

M

MX

j=1

1− δηij ,η′ij , (4)

where the averages h.i are taken over 100 independent samples. All simulations are

started from the same initial configuration, where all particles are disposed in a compact

band on the left-hand side of the sample, i.e. for 0 < i < L/2. The profiles were obtained

by the following procedure: (i) a particle of the perturbed sample is removed from the

interface at i = L/2 and placed at a randomly selected position in the remaining half

of the lattice; (ii) the system is allowed to evolve for t = 107 MCS up to NESS states,

and (iii) the profiles hPL(i, t → ∞)i are registered for the next t = 107 time steps. The

obtained profiles are shown in figure 4. At low temperatures, for T < Tc, (see panels

(a) and (b)), the damage is concentrated in one peak that corresponds to the diffusion

of damaged sites along the interface at i = L/2. Near and at the critical temperature

T ≤ Tc (see panels (c)-(d)), the peak broadens. This behaviour can be attributed to the

increase in the roughness of the interface with temperature (see below) [37]. For T > Tc

(panel (e)), the peak is missing, damage spreads and becomes spatially uniform. Finally,

at T ≫ Tc (panel (f)), the damage decreases and also remains spatially uniform. It is

worth mentioning that this is consistent with that shown in figure 3, and it is confirmed

by the snapshots of the system (left panels) and the corresponding damaged sites (right

panels), as shown in figure 5. In fact, by starting from a random configuration the

system evolves to NESS. For T < Tc we observe the formation of strips and the damage

is naturally segregated at the interfaces between the high-density strips and the gas-like

phase. Also, for T > Tc the distribution of the particles in the system, as well as the

damage, becomes more uniform.

Since the damage has a strong correlation with the interfaces of the system, it turns

out to be reasonable that it can be related to its average position and roughness W ,

defined as the root-mean-square of the former [37]. In order to study this relationship, we

performed extensive simulations by starting the system with all the particles forming

a compact strip (i.e. without holes inside) and placed at the centre of the sample,

i.e. for L/4 ≤ i ≤ 3L/4, but in this case only one particle was removed from the

middle, so the initial damage is of order O(1/LM) and it is placed at i = L/2,

1 ≤ j ≤ M . The time evolution of the coordinate of the damage centre of mass Ycm

in the direction perpendicular to the driving was recorded for different temperatures in

the range 1.0 ≤ T ≤ 3.0. Figure 6 (a) shows the obtained results. In the short-time

regime, the damage behaves diffusively inside the strip, Ycm ≈ t1/2 for all temperatures.

Subsequently, a saturation value is reached at long times. Figure 6 (b) exhibits the

average position of the interfaces, which remains close to the centre of the sample. So,

by comparing the average location of the damage (e.g. figure 6 (a)) and the average

position of the interface (e.g. figure 6 (b)) one unambiguously concludes that the damage

remains confined to the interface. Furthermore, it is well known that in the DLG model
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Figure 5. Snapshots of NESS (left-hand side panels) where the particles are

represented by black dots. In the right-hand side panels, damaged sites are shown

in black dots. Configurations corresponding to E = 50 ≈ ∞, L ×M = 60 × 120, and

obtained at (a) T = 2 < Tc, (b) T = 3 ≈ Tc(E = ∞), and (c) T = 4 > Tc.

the stationary value of the interface width W grows with T up to Tc in the ordered

phase [37], a fact that can also be observed in figure 5. This means that the interfacial

configurations become rougher when T approaches Tc and are energetically favourable

for the creation and spreading of damaged sites, explaining the growing regime shown

in figure 3 and figure 4, which can be confirmed by a direct inspection of both the left-

and right- hand side panels of figure 5. Also, due to this fact one concludes that damage

saturates when it approaches the interface position, even in the case of T = 3.0 depicted

in figure 6 (b) (the error bars in this figure are not shown for the sake of clarity).

Finally, we performed further simulations at finite values of E in the range

0.25 ≤ E ≤ 10. Figure 7 shows the dependence of Dsat on the external applied field E

for different temperatures T and L × M = 60 × 120. As can be observed, Dsat grows

with T for low temperatures and then starts to decrease when the temperature increases.

This behaviour is similar to the already discussed case with E = 50 ≈ ∞, which exhibits

a peak at Tc(E = ∞) (cf. figure 3). Then, we conclude that for a large driving field

(e.g. E ≥ 10) the saturation damage becomes independent of the magnitude of the field

for all the studied temperatures. The fact that in the presence of a driving field Dsat is

smaller than the pure Ising model with Kawasaki dynamics (i.e. E ≡ 0) points out that

the field tends to enhance the healing of damage. This healing effect is most likely due

to the existence of a preferential direction of motion, which established a macroscopic

stationary current in the direction parallel to the driving.
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Figure 6. (a) Time series of Ycm on a log-log scale. The dashed line has slope 1/2

and has been drawn for the sake of comparison. The inset shows the saturation regime

of the data shown in the main panel. (b) Interface height as a function of time. In

both cases the lattice size is L × M = 120 × 60 and the temperatures employed are

indicated.
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Figure 7. Saturation damage Dsat versus the external field E (left-hand side panel,

on a linear-linear scale) and the temperature T (right-hand side panel, on a linear-log

scale), obtained for different values of T and E, indicated in the respective legends.

The data are obtained by using lattices of size L×M = 60 × 120.

5. Conclusions

In this work we studied damage spreading in a DLG model, i.e. in an archetypical

model that evolves towards non-equilibrium stationary states. By setting the magni-

tude of the external field E = 50, which is taken as infinite for practical purposes, we

found that the damage always propagates as a consequence of the conservative dynam-
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ics and reaches a saturation value Dsat that is independent of the system size and the

aspect ratio, but depends on T . In fact, figure 3 shows that Dsat < 0.5 for all tempera-

tures, it increases for T < Tc and decreases for T > Tc, so it exhibits a peak close to Tc.

The discontinuity in the slope of Dsat around Tc observed for E = ∞ suggests that the

damage is sensitive to the presence of interfaces. This fact has already been observed in

equilibrium systems such as the confined magnetic systems (see [23]). In order to show

this, we started the system from an ordered configuration (see section 4) and studied

the stationary transversal damage profiles as a function of the temperature. In a low

temperature interval 2.5 < T < 2.8 (panels (a)-(b) of figure 4), almost all the damage

is concentrated in one peak located very close to the imposed interface at the middle of

the lattice. This happens because the interface width is small (see figure 5 (a)) and thus

damage cannot spread all over the system. Then, near and at the critical temperature,

3.0 ≤ T ≤ Tc = 3.2 (figure 4 (c)-(d)), the interface width is rougher than in the previous

cases (see figure 5 (b)), so damage can be generated and spreads easily. Also, due to

the diffusive nature of the system holes develop in the bulk of the high-density strips,

where new interfaces can be formed and consequently create some new damaged sites.

For T > Tc there are still some extended clusters in the system (figure 5 (c)) with a

large scattering of their interfacial width. In this case the damage is no longer located

at the interface of the strips but it becomes delocalized, as is shown in figure 4 (e). Fi-

nally, at T ≫ Tc the temperature has reduced the size of the clusters, the interfaces are

disappearing, and damage decreases (figure 4 (f)). Furthermore, the maximum value of

Dsat around Tc in figure 3 suggests that this observation could be employed as a new

method to obtain a rough estimate of the critical temperature in other non-equilibrium

systems of different nature.

Concerning damage evolution inside the high-density strips, figure 6 shows that for short

times its transversal motion is diffusive (i.e. from the centre to the border of the strips)

and then the damage remains attached to the interface where its motion becomes es-

sentially parallel to the driving field that, of course, establishes a macroscopic current

along its preferential direction. In this way, we can conclude that the interfaces play a

crucial role in the creation and spreading of damaged sites in the DLG model.

The behaviour described above was also observed in the range 0.5 < E < 50 (see right-

hand side panel of figure 7). In this context, damage spreading could be a useful method

to study the role of interfaces in the critical behaviour of non-equilibrium systems. Fur-

thermore, we have also shown that the driving field enhances the healing of damage as

compared with the pure Ising model with E = 0.
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