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Abstract  

Gaucher Disease (GD) is caused by mutations on the gene encoding for the lysosomal enzyme 

glucocerebrosidase. Type I GD (GD1) patients present anemia, hepatosplenomegaly and bone 

alterations. In spite of treatment, bone alterations in GD patients persist, including poor Bone 

Mineral Density (BMD). Mechanisms leading to bone damage are not completely understood, 

but previous reports suggest that osteoclasts are involved. Chitotriosidase (CHIT) is the most 

reliable biomarker used in the follow up of patients, although its correlation with bone status 

is unknown. The aim of this work was to study the pro-osteoclastogenic potential in patients 

and to evaluate its correlation with CHIT activity levels and clinical parameters. PBMCs from 

treated patients and healthy controls were cultured in the presence of M-CSF, and mature 

osteoclasts were counted. BMD, blood CHIT activity and serum levels of CTX, BAP, and 

cytokines were evaluated in patients. We found that blood CHIT activity and osteoclast 

differentiation were significantly increased in patients, but no correlation between them was 

observed. Interestingly, osteoclast numbers but not CHIT, presented a negative correlation 

with BMD expressed as Z-score. CTX, BAP and serum cytokines involved in bone remodeling 

were found altered in GD1 patients. These results show for the first time a correlation 

between osteoclast differentiation and BMD in GD1 patients, supporting the involvement of 

osteoclasts in the bone pathology of GD1. Our results also suggest that an altered immune 

response may play an important role in bone damage. 

Key words: Gaucher Disease, bone pathology, osteoclasts, chitotriosidase, bone mineral 

density. 
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1. Introduction 

Gaucher disease (GD) is an autosomal recessive disorder caused by deficient activity of the 

lysosomal enzyme glucocerebrosidase (GCase) due to pathogenic mutations in GBA1 gene. 

This deficiency leads to accumulation of glucosylceramide mainly in macrophages, which 

convert into the so-called “Gaucher cells”. The commonest phenotype is type I GD (GD1) which 

consists of visceral, hematological and skeletal alterations. About 90% of patients present bone 

affection characterized by Erlenmeyer flask deformity, reduced bone mineral density (BMD), 

bone infarcts, osteosclerosis, avascular necrosis, osteolytic lesions and pain. These alterations 

result in functionality and mobility disorders with reduction in quality of life (1,2). Bone disease 

results from a disruption of the balance between osteoblastic bone formation and osteoclastic 

bone resorption. However, the pathological mechanisms of bone alterations in GD are still 

poorly understood, and its knowledge would result in better treatment for patients. 

Pathophysiology is multifactorial, being fundamental the study of the relationship between 

bone marrow cells, Gaucher cells and bone cells. Evidence has demonstrated that the 

instauration of enzyme replacement therapy (ERT) substantially improves cytopenia, 

visceromegaly, growth (in children) and bone pain, reducing irreversible complications such as 

avascular necrosis, especially when initiated early (3–5). However, bone tissue is in some 

degree refractory to therapy (6,7). 

Usual methods for the evaluation of bone alterations are radiology of femurs, thoracic and 

lumbar spine, BMD determination by dual-energy X-ray absorptiometry (DXA) and magnetic 

resonance imaging (MRI) of femurs and spine with the application of different available scores, 

such as Bone Marrow Burden score (BMB) in order to quantify bone marrow infiltration (8–

10). Biochemical studies include markers of bone remodeling such as C-terminal telopeptide of 

type I collagen (CTX), a bone resorption marker, and bone alkaline phosphatase (BAP), a bone 

formation marker. However, different studies have shown highly variable results about these 

biomarkers in GD patients both, at baseline and during ERT (11). 

Bone remodeling is closely regulated by the immune system (12). Several cytokines regulate 

bone dynamics, including the differentiation and survival of osteoclasts. Among them, TNFα is 

known as a potent inductor of osteoclastogenesis (13); while IL-10, TGFβ and IFNγ act as early 

inhibitors of osteoclast differentiation (14,15). On the other hand, IL-6 is a pleiotropic cytokine 

that enhances RANKL expression in osteoblast and stromal cells but it is negative regulator of 

osteoclasts´maturation (16). In this context, it is worth pointing out that glucocerebroside 

accumulation in GD can induce macrophage activation and secretion of cytokines such as IL-6, 

IL-1β and TNFα (17,18). This altered cytokine environment created by macrophages as well as 
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dysfunctions on other immune cells (19), would favor bone resorption and inhibit bone 

formation (20,21). Indeed, increased levels of osteoclast precursors in peripheral blood 

mononuclear cells (PBMC) from GD patients with higher tendency to differentiate into 

functional osteoclasts were recently revealed (22,23). In addition, osteopenia caused by 

reduced bone formation was demonstrated in a murine model of GD (24). 

Chitotriosidase (CHIT) is the classical biomarker used in the follow up of the treatment of 

patients with GD. CHIT is an enzyme secreted by Gaucher cells, and it is elevated in untreated 

Gaucher patients. Plasma CHIT is thought to reflect the total body burden of Gaucher cells and 

it correlates with several clinical parameters of GD. Positive correlations between CHIT and 

organ volumes, and negative correlation between CHIT and platelet count have been 

described (25). Nevertheless, the relationship between plasma CHIT and bone alterations is 

more controversial. Recent reports have shown that CHIT is produced by osteoclasts, and plays 

a role in their maturation and their resorptive activity. It has also been suggested that CHIT 

may serve as an useful serum marker for osteolysis (26). As mentioned, previous reports have 

shown higher osteoclastogenesis in PBMCs from GD patients (22,23). However, the clinical 

relevance of this observation has not been evaluated.  

The aim of our work was to evaluate the correlation between pro-osteoclastogenic potential in 

GD patients with clinical bone parameters and CHIT activity levels. The results from this study 

would contribute to the understanding of bone pathophysiology in GD, looking for clinical 

implications of higher in vitro osteoclastogenesis.  
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2. Materials and methods 

2.1 Patients and samples 

A total of 29 GD1 patients (18 female and 11 male) were included in this study. All patients 

were under enzyme replacement therapy (ERT) with velaglucerase (VPRIV, Shire), although 

some of them had previously received imiglucerase (Cerezyme, Genzyme). Average time of 

ERT with velaglucerase was 3.5 years (range: 1-5). Patient demographic and clinical data are 

shown in Table 1. Splenomegaly and hepatomegaly were evaluated by quantitative abdominal 

MRI. Bone status is described according to bone densitometry and MRI studies. Twenty-five 

healthy volunteers were included as controls (Table 1). Healthy individuals were from 

Caucasian or South American origin (64% and 36%, respectively); while patients were from 

Caucasian (60%), South American (37%) or Ashkenazi Jewish origin (3%, corresponding to only 

one patient). No postmenopausal women were included in this study. 

Peripheral blood samples from patients and healthy controls were obtained by venipuncture at 

morning after fasting overnight. Heparinized blood was used for PBMC isolation. Dried blood 

spot (DBS) on filter paper and serum were collected at the same time for CHIT activity 

determination and CTX, BAP or cytokine quantification, respectively. This study was approved 

by the Ethical Committee of IBYME (Instituto de Biología y Medicina Experimental, Argentina). 

All patients or their guardians provided written informed consent to participate in this study. 
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Patients Controls 

Total included 29 25 

Female (n, %) 18/29, 62% 15/25, 60% 

Male (n, %) 11/29, 38% 10/25, 40% 

Age (years): mean; range 23; 4-59 28; 9-59 

Chitotriosidase 

Mean; range (µmol/l.h) 394; 48-2968 61; 24-110 

Elevated levels (n, %) 23/29, 79% 0/25 

Spleen and liver status (n, %) 
 Splenectomized 2/29, 7% 
 Non-splenectomized 27/29, 93% 
 Splenomegaly 5/27, 18,5% 
 Hepatomegaly 13/29, 45% 

 Genotype (Allele frequency, %) 
 R120W 2.3 
 L444P 25 
 N370S 38.6 
 F411I 6.8 
 R48W 2.3 
 RecNcil 13.6 
 T408M 2.3 
 R121W 2.3 
 R286C 2.3 
 unknown 2.3 
 Bone status 
 BMD: Z-score < -1 (n, %) 5/18 (28%) 
 Bone marrow infiltration (n, %) 6/18 (33%) 
 BMB Score (total skeleton): mean; range 2; 0-8 
 Patients with fragility fractures (n, %) 3/18 (17%) 
 Patients with osteonecrosis (n, %) 4/18 (22%) 
  

Table 1. Characteristics of patients and healthy individuals. Data are shown as percentages 
and as numbers of patients over total patients tested for each parameter. BMD: bone mineral 
density; Z-score refers to total skeleton and/or lumbar spine. Bone marrow infiltration was 
assessed by MRI. Patients with fragility fractures included two patients with femoral fracture 
and one patient with vertebral fracture. 

 

2.2 Osteoclast differentiation assay 

PBMCs from patients and healthy controls were obtained by Ficoll Hypaque gradient 

separation (Sigma, St Louis, MO, USA). PBMCs were seeded at 500,000 cells per well in α-

minimum essential medium (α-MEM) supplemented with 10% heat inactivated fetal bovine 

serum (Gibco-BRL, Life technologies, Grand Island, NY), 100 U/ml of penicillin and 100 μg/ml of 
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streptomycin and 30 ng/ml of recombinant human macrophage colony stimulating factor (M-

CSF) (R&D, Minneapolis, MN, USA). Cultures were performed at 37°C in 5% CO2 atmosphere 

for 14 days, replacing the media every 48 hs. The supernatant was harvested to assess CHIT 

activity. To evidence osteoclasts, cells were fixed in 4% paraformaldehyde and stained for 

tartrate-resistant acid phosphatase (TRAP; Sigma). Nuclei were stained with DAPI (Sigma). 

Samples were visualized in a Nikon Eclipse Ti fluorescence microscope with an X-Cites Series 

120 Q light source. TRAP-positive multinucleated (more than three nuclei) cells were defined 

as osteoclasts. Counting was performed over a total of five 20x fields and results were 

normalized by total cellular area using image J software. 

 

2.3 CHIT activity determination  

CHIT activity was assessed in DBS and supernatant as follows: a 3 mm diameter from DBS filter 

paper or 20 µl supernatant was placed into a well of a black microplate and 40 µl of 0.25M 

sodium acetate buffer pH=5.5 and 40 µl of 0.19 mM 4-Metilumbeliferil -D-N-N’-N’’- 

triacetylchitotrioside (Sigma) were added. After an incubation for 30 min at 37°C, the stop 

solution (220 µl of 0.1 mol/l ethylenediamine, pH = 11.4) was added. The fluorescence of the 

product (excitation 365 nm; emission 450 nm) was measured on a Twinkle LB 970 fluorometer 

(Berthold Technologies, Bad Wild- bad, Germany). A standard curve of 4-methylumbelliferone 

(Sigma, Saint Louis, MO, USA) was used to extrapolate fluorescence counts to moles of 

enzymatic product. Enzymatic activity was expressed as micromoles of 4-methylumbelliferone 

produced per liter per hour. 

 

2.4 Determination of serum cytokines, CTX and BAP  

CTX and BAP were assessed in serum samples from healthy individuals and GD1 patients by 

electrochemiluminescence (Roche) and enzyme immunoassay (Abbot), respectively. Cytokines 

concentration in the serum samples were measured by ELISA. Assays for IL-6, TNF-α, 

transforming growth factor (TGF)-β, and IFN-γ were from BD Pharmingen, San Diego, CA; while 

IL-10 assay was from eBiosciences, San Diego, USA. 

 

2.5 Bone Mineral Density and Magnetic Resonance Imaging  

DXA was carried out on a Lunar Prodigy Advance (GE Healthcare) of total skeleton and lumbar 

ACCEPTED MANUSCRIPT



AC
CE

PT
ED

 M
AN

US
CR

IP
T

 

 

spine. To analyze the results in this study, patients were classified according to their Z-score 

values in lower or higher than -1. This criterion is based on the increased risk of fractures in GD1 

patients with Z-score lower than -1 (27). 

MRI of lumbar spine (sagittal), both femurs (coronal plane) and total skeleton were performed 

in an Achieva 1.5 Tesla instrument (Phillips Medical Systems). T1 and T2-weighted images 

obtained in spine and both femurs were analyzed to establish the BMB score described by Maas 

et al. and adapted by Robertson et al.(9,28) Up to eight points were assigned for each lumbar 

spine and femoral sites according to the degree of bone marrow infiltration (0/1 considered 

normal and 8 considered severe). Total BMB score was calculated as the BMB score from femur 

plus BMB score from lumbar spine. 

 

2.6 Statistical analysis 

Statistical analyses were performed with the Prism v.5.0 software (GraphPad software Inc., La 

Jolla, CA, USA). Two-tailed p values less than 0.05 were considered significant. Comparisons 

between osteoclasts number, CHIT activity, serum markers or cytokines from healthy controls 

and GD1 patients were performed using unpaired t tests. Correlation analyses were performed 

using Pearson’s correlation test. 
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3. Results 

3.1 Pro-osteoclastogenic potential and CHIT activity in GD1 patients 

In agreement with previous reports (22,23), in vitro culture of patient´s PBMCs generated 

more osteoclasts than control cells (Figure 1A). As expected, CHIT activity in blood samples 

from patients was significantly higher compared to healthy controls (Figure 1B). We also 

evaluated the possible dependence of osteoclasts with age but no correlation was found 

(r=0.0645 and p=0.7594 for patients; r=0.1692 and p=0.4187 for controls). Similarly, blood 

CHIT activity did not correlate with age (r=0.3561 and p=0.0535 for patients; r=0.3722 and 

p=0.1167 for controls). 

As recent reports have shown a physiologic role of CHIT in osteoclast maturation (26), we 

evaluated CHIT activity in the supernatants from mature osteoclasts generated from patient 

and control´s PBMCs. Surprisingly, CHIT activity presented no difference between patients and 

controls (Figure 2A). Despite this observation, a correlation between osteoclast´s number and 

CHIT activity in the supernatant was observed in controls, while GD1 patients showed a similar 

trend (Figure 2B). On the other hand, we hypothesized that osteoclasts may contribute to 

blood CHIT activity, but no correlation was observed between supernatant and blood´s CHIT 

activities (r=0.0980 and p=0.7084 for controls, r=0.2100 and p=0.3742 for patients). In 

addition, no relation was found between osteoclast´s number and blood CHIT activity (Figure 

3).  

 

3.2 Bone mineral density correlates with pro-osteoclastogenic potential but not with blood 

CHIT activity 

We evaluated the relation between pro-osteoclastogenic potential (expressed as osteoclast 

number) and BMD, expressed as Z-score. Remarkably, correlation analysis between these two 

parameters from patients showed a significant inverse correlation: both total skeleton and 

lumbar spine Z-scores decrease as osteoclasts increase (Figure 4A). Moreover, patients with Z-

score (total skeleton or lumbar spine) lower than -1 presented higher numbers of osteoclasts 

than those with Z-score higher than -1 (Figure 4B). This is of particular interest since Z-scores 

lower than -1 have been associated with an increased risk of fractures in GD1 patients (27). 

MRI can also be used for monitoring bone status in GD1 (10,29), then we also evaluated the 

pro-osteoclastogenic potential in patients with an altered BMB score from total skeleton or 

normal BMB score, but no difference was observed (Figure 4C). Indeed, no correlation was 

found between BMB score and osteoclasts (r=0.2819 and p=0.2901; not shown). Finally, we 
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evaluated blood CHIT activity levels in relation to Z-score. However, no correlation was found 

(Figure 4D).  

 

3.3 Increased osteoclastogenic potential involves higher levels of bone remodeling markers 

We assessed CTX and BAP levels in serum samples from GD1 patients and healthy controls. 

Both groups showed a negative correlation with age for both markers (CTX: r=0.8100 and 

p=0.0001 for patients, r=0.5595 and p=0.0375 for controls; BAP: r=0.6000 and p=0.0085 for 

patients, r=0.5670 and p=0.0334 for controls). Due to the age-dependence, we compared the 

biomarkers levels in control and GD1 individuals younger (pediatric) or older (adults) than 20 

years old. Adult group included 14 GD1 patients (mean age: 30 years old, range 21-54) and 10 

healthy individuals (mean age: 35 years old, range 22-59); while pediatric group included 10 

GD1 patients (mean age: 9 years old, range 5-14) and 4 healthy individuals (mean age: 13 years 

old, range 9-16). We found that CTX and BAP levels were significantly higher in GD1 adult 

patients than in controls (Figure 5A and 5B). CTX and BAP levels in the pediatric group showed 

a similar trend (Figure 5A and 5B); however, these results should be interpreted with caution 

due to the small number of pediatric controls included in this study. In addition, we also 

observed a correlation between osteoclast numbers and serum CTX in the GD1 pediatric group 

(Figure 5C) but not in adult patients or controls (not shown). Serum BAP levels behaved 

similarly to CTX, although not statistical difference was found (Figure 5C). 

 

3.4 Serum cytokine profile in patients reveals a pro-osteoclastogenic status and a correlation 

with BMD 

Considering the involvement of immune molecules in bone remodeling, we decided to 

evaluate the concentration of TNFα, IL-6, TGFβ, IL-10 and IFNγ in serum samples (Figure 6). 

Compared to controls, GD1 patients presented higher levels of IL-6, and lower levels of TGFβ 

and IL-10. Differences in TNFα and IFNγ levels were not statistically significant. Remarkably, IL-

10 and IFNγ -negative regulators of osteoclastogenesis- positively correlated with Z-scores 

values from total skeleton (Figure 7A): as Z-score increases, IL-10 levels also increase; and the 

same situation was observed for IFNγ levels. In addition, we compared cytokine levels between 

patients with Z-score lower than -1 and patients with Z-score higher than -1 (Figure 7B). As 

expected, the first group of patients presented a trend towards decreased levels of IL-10 and 

IFNγ, but also IL-6. Furthermore, IL-6 serum levels negatively correlated with the number of 

osteoclast generated in vitro (p=0.0125; r=-0.5019).  
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4. Discussion 

Pathophysiology of skeletal alterations in GD1 is still poorly understood. Previous studies have 

evaluated osteoclastogenesis in different in vitro experiments and revealed that GD1 PBMCs 

secrete pro-osteolastogenic factors (30). Moreover, GD1 patients display higher numbers of 

circulating osteoclast precursors with a higher tendency to differentiate into functional 

osteoclasts (22,23). Taken together, these reports show a misbalance of bone homeostasis 

through higher resorption. We performed this study to evaluate the relation between the 

increased osteoclastogenic potential and clinical bone parameters in GD1 patients. We 

especially focused on BMD, a factor affected early during GD1 bone alterations. Our results 

showed for the first time that the increased differentiation of osteoclast precursors from GD1 

PBMCs correlates with poor BMD, as evaluated by Z-score from both, total skeleton and 

lumbar spine. The International Collaborative Gaucher Group (ICGG) Gaucher Registry revealed 

that osteopenia develops in childhood (5). ICGG also found that signature skeletal 

complications of GD1 were unrelated to standard measures of disease severity, such as 

visceral involvement, serum CHIT, or even genotype. The only risk factor for fractures was 

lumbar spine BMD (27). This study reinforces the idea that BMD is a main aspect of skeletal 

complications. We also studied the relation of osteoclast numbers with MRI studies, but our 

work showed no correlation between MRI evaluation and proosteoclastogenic potential. This 

observation is in agreement with Mariani et al. who established that the results of bone 

marrow imaging could not be directly correlated to a reference standard for the actual burden 

of Gaucher cells (31). However, previous work by Reed et al. showed that pro-osteoclastogenic 

potential was higher in patients with MRI-evidence of active bone disease than in those 

patients without it (23). Probably this discrepancy is because our study design involved not 

only the number of osteoclast precursors but also the microenvironment created by other 

PBMCs. 

The usefulness of bone turnover markers in GD1 is still unclear. Markers of bone formation in 

treatment-naive patients are usually normal or decreased, whereas markers of bone 

degradation are normal or increased (1). Therefore, GD1 patients would present both, 

increased bone degradation and impaired bone formation, leading to osteoporosis (32). 

Because previous studies are not conclusive, we evaluated serum markers in our cohort of 

patients. Our results showed that CTX is increased in adults with GD1 and suggest the same for 

children. In addition, a positive correlation between CTX and the number of osteoclasts 

generated in vitro was observed in children. On the other side, BAP showed higher levels in 

adult patients than in controls. These results reinforce the idea that higher remodeling is at 

least one of the hallmarks leading to osteopenia/osteoporosis in GD1. 
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CHIT is produced and secreted by lipid laden macrophages or Gaucher cells and the 

determination of its activity in blood reflects total body burden of Gaucher cells. There is 

relative discrepancy about the usefulness of CHIT as biomarker of skeletal problems. For 

example, Roca et al. reported the absence of correlation between CHIT and bone marrow fat 

fraction (33), and van Breemen et al. showed no efficiency of CHIT in the follow up of skeletal 

disease (34). On the contrary, Pavlova et al. showed a correlation between CHIT and 

osteonecrosis (35); while van Dussen et al. reported significantly reduced CHIT values in 

patients with no bone complications as compared to patients with bone problems at baseline 

or during ERT (25); however significant overlap was found between these two groups and bone 

alterations were studied as a whole group, without distinction among clinical parameters. In 

addition, CHIT was shown to be functionally involved in the osteolytic process and correlates 

with resorptive activity of the osteoclasts (26). Due to osteoclasts are derived from the 

macrophage lineage and CHIT plays a role in normal osteoclastogenesis, we hypothesized that 

osteoclasts could be a main source of CHIT, either in blood or extracellular space, and 

consequently blood CHIT could correlate with bone problems. Our results completely abolish 

this idea. Although CHIT activity in blood is higher in GD1 as compared to controls, no 

correlation was observed between blood CHIT and the number of osteoclasts produced in 

vitro. Moreover, CHIT activity in the supernatant from osteoclasts differentiation assays 

increases as more osteoclasts are produced, irrespective of the source of PBMCs. 

Consequently, neither blood CHIT nor supernatant CHIT reflected the increased number of 

osteoclasts obtained from GD1 cells. 

Finally, as bone remodeling and immune system are closely related, we studied the cytokine 

profile in GD1 patients. Increased osteoclastogenic potential accompanied by altered cytokine 

profile was reported for other pathologies (12). Proinflammatory status in GD1 was confirmed 

by different studies, although there is no consensus on what cytokines -if any- are the main 

mediators of bone damage (21,35,36). In this study, we evaluated the pro-osteoclastogenic 

cytokine TNFα but surprisingly its levels were not different between GD1 patients and controls. 

On the contrary, we confirmed elevated levels of serum IL-6 in GD1 patients. IL-6 is known to 

enhance RANKL secretion from osteoblast and stromal cells but at the same time it can 

negatively act over osteoclast precursors (16). In fact, despite observing increased levels of IL-6 

in serum from GD1 patients, we observed a negative correlation between this cytokine and 

osteoclastogenic potential. These results highlight the pleiotropic role of IL-6 in bone 

remodeling and suggest a predominant protective role for IL-6 in GD1, particularly evidenced 

by those patients with higher Z-scores presenting higher levels of IL-6. Similar results were 

report for different pathological conditions with bone compromise such as rheumatoid 
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arthritis (37). IL-10, TGFβ and IFN-γ act as early inhibitors of osteoclast differentiation 

(14,15,38,39), and presented lower levels in patients compared to controls, suggesting that an 

impaired negative regulation of osteoclastogenesis could contribute to the increased 

osteoclastogenic potential observed in GD1 patients. Moreover, IL-10 and IFN-γ presented an 

inverse correlation with BMD expressed as total skeleton Z-score.  

This study presents some limitations given by the characteristics of the group of patients: 

patients of both genders in a wide range of age were included. In addition, ERT time 

heterogeneity of patients could affect bone status in different ways. Nevertheless, by analyzing 

the whole group we can observe that an altered BMD is accompanied by an altered osteoclast 

generation. Further studies with a wider group of subjects, including more patients with poor 

BMD, would help to clarify the effect of ERT time on osteoclast potential. 

In conclusion, our study shows for the first time that the increased differentiation of osteoclast 

precursors from peripheral blood from GD1 patients correlates with poor BMD, evaluated as Z-

score both total skeleton and lumbar spine. On the contrary, CHIT activity does not correlate 

with BMD. In addition, an altered immune regulation in GD1 may play a significant role in bone 

pathophysiology although further studies are needed regarding the osteoimmunology of GD1 

in order to elucidate the pathological mechanism and find new complementary therapies.  
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Figures´ legends: 

Figure 1. Osteoclasts generated from PBMCs in vitro and blood CHIT activity. A) Osteoclast´s 
counting after 14 days-culture of PBMCs from healthy controls (n=25) or GD1 patients (n=29) 
in the presence of M-CSF. B) CHIT activity from blood samples was determined. Unpaired t 
test; ***p<0.001; **p<0.01. 

 

Figure 2. CHIT activity in supernatant and its correlation with osteoclast number. A) CHIT 
activity was evaluated in mature osteoclasts´ supernatant from controls (n=25) and patients 
(n=29). B) Correlation between osteoclasts and secreted CHIT activity for controls and GD1 
patients. Pearson´s coefficients and p values are shown. 

 

Figure 3. Correlation between blood CHIT activity and in vitro generated osteoclasts. 
Correlation between CHIT activity from blood samples and the number of osteoclasts 
generated in vitro from PBMCs. White circles (controls, n=25); black circles (GD1 patients, 
n=29). Pearson´s coefficients and p values are shown. 

 

Figure 4. Osteoclasts correlate with bone mineral density but not with blood CHIT activity. A) 
Correlation between osteoclasts and bone mineral density expressed as Z-score from total 
skeleton or lumbar spine in GD1 patients (n=18). Pearson´s coefficients and p values are 
shown. B) Osteoclasts from patients grouped according to Z-score values. Black bars: total 
skeleton Z-score lower (n=3) or higher (n=15) than -1. Grey bars: lumbar spine lower (n=4) or 
higher (n=14) than -1. Unpaired t test; *p<0.05. C) Patients were grouped according to the 
presence (n=6) or absence (n=12) of an altered BMB score in MRI studies and osteoclasts 
numbers were depicted, non-statistical difference was observed (unpaired t test, p=0.2384). D) 
Correlation between Z-score values from total skeleton or lumbar spine and blood CHIT activity 
in GD1 patients (n=18). Pearson´s coefficients and p values are shown. 

 

Figure 5. Biomarkers of bone resorption and formation are altered in GD1 patients. Serum 
CTX (A) and BAP (B) levels were evaluated in patients and controls. Data were evaluated in two 
age groups: younger (pediatric) and older (adults) than 20 years old. C) Correlation between 
osteoclasts and CTX or BAP levels in pediatric GD1 patients. Pearson´s coefficients and p values 
are shown. 

 

Figure 6. Cytokines involved in bone metabolism are altered in GD1 patients. Cytokine levels 
were assessed by ELISA in serum samples from patients (black bars, n=29) and controls (white 
bars, n=25). Unpaired t test, *p<0.05; **p<0.01. 

 

Figure 7. Relation between cytokines and BMD. A) Correlation between IL-10 or IFNγ and 
BMD expressed as Z-score from total skeleton. Pearson´s coefficients and p values are shown. 
B) Serum cytokines levels in patients with Z-score lower than -1 and patients with Z-score 
higher than -1. Unpaired t test, differences were not statistically significant.  
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Highlights 

 Increased osteoclastogenic potential from patients with GD1 associates with poor 

BMD. 

 CHIT values are not correlated with BMD or pro-osteoclastogenic potential. 

 Serum cytokines are altered in GD and could play a key role in bone pathology of GD. 
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