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5] and swarming [6]. Both movements are propelled by flagella, 
while other movements such as e.g. twitching or gliding were 
not reported. Although there exists evidence of the presence of 
pili, which constitute the device required for twitching, these 
appendages were studied only for their role in cell adhesion [7].

Remarkably, B. diazoefficiens USDA 110 possesses two 
entirely different flagellar systems: a subpolar system and a 
lateral system [4-6]. These systems are encoded in different gene 
clusters, and it seems that each one possesses its own regulatory 
system for the control if its expression. Indeed, the expression 
of the subpolar system seems constitutive in planktonic cells, 
while the lateral system is inducible [5,6]. Induction of the lateral 
system was observed as obeying to the carbon and energy source 
of the growth medium: when the sole carbon and energy source 
is arabinose, the lateral system is expressed, but it is inhibited 
when the only carbon and energy source is mannitol [6]. Although 
several other bacterial species are known to possess inducible 
lateral flagellar systems, in general the inducer is the medium 
viscosity or the proximity of a surface, which are perceived by the 
polar/subpolar flagellar system that under these circumstances 
behaves as a mechanosensor [8]. However, B. diazoefficiens is the 
only example known where the lateral flagellar system is induced 
by the carbon and energy source, and therefore the identity of the 
signal transducer is a complete enigma. 

Structure and Rotation of Flagella
The flagellum consists in three main structures: the flagellar 

filament, the hook, and the basal body, which contains the 
motor [9]. Although the flagellar motor was not studied in B. 
diazoefficiens, there exists a great deal of knowledge in other 
species, in particular Escherichia coli [10]. The flagellar motor is 
embedded in the inner cell membrane and has two main rings: a 
stator formed mainly by the proteins MotA and MotB, and a rotor to 
which the rest of the flagellum is attached. The rotor is composed 
mainly by the proteins FliF, FliG, FliM and FliN, which play a 
central role in flagellar rotation. The Protonmotive Force (PMF) 
that is generated during cell respiration is the energy source for 
flagellar motor rotation. Protons pass from the periplasmic space 
towards the cytoplasm through a channel formed between FliG 
and MotA/MotB. Recent studies indicate that the rotor contains 
a ring of 26 FliG subunits faced against an external ring of MotA/
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Introduction
Bradyrhizobium is a soil bacterial genus that includes several 

species of importance due to their use as biofertilizers for 
soybean crops worldwide. Among these species, B. diazoefficiens 
and B. japonicum stand out as being the most widely employed. 

These bacteria fix atmospheric N2 in symbiosis with soybean 
plants, by reducing N2 to NH4

+ in a reaction catalyzed by 
bradyrhizobial nitrogenase. The NH4

+ thus produced is supplied 
as N-source to the plant, in such a rate that all its N-needs may be 
satisfied. To this end, the Bradyrhizobium bacteria are inoculated 
to soybean seeds before sowing with the aim that these bacteria 
infect the roots and develop the N2-fixing symbiosis inside them. 
Since the symbiosis only occurs in specialized organs in the roots, 
seed-inoculated bacteria need moving from the site of inoculation 
to the sites of infection, and this movement has to occur in the 
soil, a porous and tortuous medium, which not always contain 
water enough for bacterial swimming. Therefore, the study of 
bradyrhizobial motility is of prime importance to improve this 
ecologically sustainable technology for soybean fertilization.

B. diazoefficiens USDA 110 is the type strain of this species 
[1], and its genome was completely sequenced in 2002 [2]. In 
addition, this strain is the most studied biochemically, genetically, 
and physiologically, as well as in the relevant aspects of its 
symbiosis with soybean plants. The motility of this strain was 
characterized in two kinds of bacterial movement: swimming [3-
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MotB subunits in such a way that an array of negatively charged 
amino acids in MotA, MotB and FliG interact with the protons that 
traverse the channel, producing changes in the conformations of 
the ring proteins, allowing movement of the rotor. These amino 
acids are disposed in such a way that the passage of protons from 
the periplasm to the cytoplasm moves the rotor against the stator 
thus producing a torque sufficient to impulse the cell body into 
the liquid environment [10-12]. 

In general, bacterial species that possess two flagellar systems 
use the PMF to move one of the flagella, while the other is moved 
by a Na+ gradient that is also formed between the periplasm and 
the cytoplasm. However, in B. diazoefficiens both flagellar systems 
seem to be moved by the PMF [4], thus sharing this energy source 
with the synthesis of ATP. Ultimately, the PMF comes from the 
oxidation of organic carbon and energy sources, and therefore 
the availability of energy in the cell might be in connection with 
the regulation of the lateral flagellum expression by the carbon 
and energy source.

Catabolism of Arabinose and Mannitol
L-arabinose is catabolized through a pathway that resembles 

the Entner-Doudoroff (ED) pathway for catabolism of hexoses 
[13,14] (Figure 1). The first step is oxidation of L-arabinose to 

L-arabonate with formation of one mole of NADH per mole of 
L-arabinose. Then, L-2-keto 3-deoxy arabonate is formed, which 
splits in pyruvate and glycolaldehyde in a reaction catalyzed by 
an aldolase. The pyruvate continues through TCA cycle, while 
glycolaldehyde is oxidized in two sequential steps of NADH-
producing reactions to glyoxylate, which is finally converted to 
formate and oxidized to CO2 with production of another NADH 
[13-15]. Hence, a total of eight NADH moles plus one FADH2 mole 
are produced per mole of arabinose completely oxidized to CO2. 

D-mannitol is oxidized to fructose with production of one 
NADH mole per mole of mannitol in a reaction catalyzed by 
mannitol dehydrogenase [16]. Then, the fructose produced may 
be catabolized by the ED or the Emden-Meyerhof-Parnas (EMP) 
pathways [17], or the Pentose-Phosphate (PP) pathway [18] 
with production of 10 additional NADH moles plus two FADH2 
moles (ED, EMP pathways), or 11 additional NADH moles plus 
two FADH2 moles (PP pathway) in the complete oxidation of 
one mole of fructose to CO2. In Figure 1, the yields of NADH plus 
FADH2 with arabinose are compared with those with mannitol 
catabolized by the ED pathway as an example.

Thus, assuming that 10 H+ moles are passed to the periplasm 
per mole of NADH oxidized and 6 H+ moles are passed per mole of 
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Figure 1: Comparison of the catabolism of arabinose (left) and mannitol (through the ED pathway, right) in Bradyrhizobium diazoefficiens with em-
phasis in the reactions where reducing power is generated. KDA: 2-keto-3-deoxyarabonate; Glc6P: glucose-6-phosphate; 6PG: 6- phosphogluconate; 
KDPG: 2-keto-3-deoxyphosphogluconate; G3P: glyceraldehyde-3-phosphate; 3PG: 3-phosphoglycerate.
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FADH2 oxidized, it results that 86 H+ moles are passed per mole of 
arabinose or 122-132 H+ moles are passed per mole of mannitol 
completely oxidized to CO2. Despite this higher yield of mannitol 
with respect to arabinose, O2 consumption rate was reported 
many years ago as roughly twice higher with arabinose than with 
mannitol [19], but these observations should be repeated with 
B. diazoefficiens USDA 110, and modern culture conditions and 
analytic technologies. Anyway, these data indicate that although 
the molar yield of H+ is lower with arabinose than with mannitol, 
the net rate of H+ passage from cytoplasm to periplasm per mole 
of carbon source oxidized still might be around 50% higher with 
arabinose. Since growth rates in minimal medium with arabinose 
or mannitol are similar [6], energy consumption rates for growth 
should also be similar, and according to the above estimates, a 
higher PMF may remain available for maintenance functions 
when arabinose is the carbon and energy source.

Perspectives
We could envisage that the cell senses the conditions in 

which PMF is sufficient for ATP synthesis and motion of both 
flagella systems at the same time and only if these conditions are 
met, lateral flagella expression is allowed. The conditions need 
not necessarily involve high viscosity of the medium because 
the induction of the lateral flagellar system by arabinose was 
observed in liquid medium. If arabinose is present in the root 
exudates near the infection sites [3], the expression of lateral 
flagella in response to this carbohydrate might be useful for the 
bacteria to stabilize their swimming direction towards such sites 
[20]. To respond to the cell energy status, the regulator(s) of 
lateral flagella expression should perform some measure of the 
PMF. There exist some ways of measuring PMF in connection 
with motility. For instance, a group of chemoreceptors 
specialized in sensing the energy status of the cell is known. 
These chemoreceptors bind FAD and are able to sense the redox 
state of the electron transport chain to elicit energy taxis, i.e. the 
orientation of the bacterial cell swimming towards an energy-rich 
environment [21]. Another candidate is the Phosphotransferase 
System (PTS), which also participates in chemotaxis [22]. Despite 
these systems being known as sensors of energy status in relation 
with motility, they do not display a clear relationship with the 
control of transcription or translation. Whether these systems, 
or a yet unknown signal transduction system, play a role in the 
control of lateral flagellar expression in response to the carbon 
and energy source is a research issue that might provide new 
knowledge about regulation of energy use in bacteria.

This issue is of special importance in the Bradyrhizobium-
soybean symbiosis. For instance, in Argentina more than 20 
million hectares are cultivated with soybean, and 94% of 
producers use Bradyrhizobium-based inoculants to achieve 
N-nutrition through biological N2 fixation in their crops [23]. 
Motility of Bradyrhizobium bacteria in the soil is essential to 
achieve a successful symbiotic interaction [5] and therefore, 
understanding the control of motility and its stimulation by root-
exuded compounds is one key for the development of improved 
inoculants for agriculture.
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