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Network-pharmacology is a field of pharmacology emerging from the observation that most clinical drugs have 
multiple targets, contrasting with the previously dominant magic bullet paradigm which proposed the search of 
exquisitely selective drugs. What is more, drug targets are often involved in multiple diseases and frequently present co-
expression patterns. Therefore, useful therapeutic information can be drawn from network representations of drug 
targets. Here, we discuss potential applications of drug-target networks in the field of antiepileptic drug development.     
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Introduction 

Two decades ago, the prevailing paradigm in the drug 
discovery field proposed the development of maximally 
selective ligands acting on a single disease target. 
Selectivity and potency were thus essential aspects to 
decide whether a drug candidate would progress into 
further development phases. Such reductionist approach 
was founded on two notions: a) highly specific drugs 
would avoid off-target side-effects, thus leading to safer 
therapeutics and; b) at least some diseases could be 
adequately treated using a single target intervention 
(“one gene, one drug, one disease”  paradigm). 
However, recent discoveries have challenged the earlier 
paradigm in favor of a more holistic approach in line with 
the philosophy of systems biology.    

First, most of the approved drugs interact with more 
than one target [1]. Drugs developed or discovered using 
“black box”, phenotypic screens are in fact, frequently, 

multi-functional (multi-target) therapies, with more and 

more action mechanisms being uncovered each day [2]. 
Second, multi-target drugs usually affect their targets 
only partially, that is, they present only low affinity 
interactions with many of their targets [2]. Contrary to 
previous beliefs, low-affinity multifunctional drugs may 
represent and advantage: weak links may stabilize the 
systems, buffering changes after system perturbations. 
Third, due to redundant functions and compensatory 
mechanisms, phenotypes are robust, i.e. resilient to 
perturbation [3].  

Under this novel perspective, disease can be regarded 
as a breakdown of the robustness of normal physiological 
systems and the re-establishment of also robust (and 
potentially progressive) disease states [1]. This modern 
conception of disease might well sound familiar in the 
area of epilepsy: acquired epilepsy is typically initiated 
by a brain insult followed by a silent period during which 
molecular, biochemical and cellular alterations (including 
adaptive remodeling of neural circuits) occur in the brain 
and eventually lead to the recurrent spontaneous seizures 
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Figure 1. Drug-target network considering antiepileptic, anti-inflammatory and mood 
stabilizer drugs (up) and a zoom in on the interface between antiepileptic and anti-
inflammatory agents.  
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that characterize the chronic condition [4-6]. It has been 
suggested that the degree of neural reorganization during 
epileptogenesis might be linked to the tractability of 
chronic disorder [6, 7].  

In the light of the observation that redundancy and 
compensatory mechanisms limit the phenotypic impact of 
single perturbations to biological systems, disease will 
more probably manifest whenever multiple perturbations 
occur simultaneously. Remarkably, those disorders with 
significant unmet clinical needs are etiologically complex 
and often involve a combination of environmental and 
intrinsic factors (e.g. Alzheimer disease, epilepsy, cancer) 
[8, 9].    

There are many good reasons to consider applications 
of drug-target networks in the field of antiepileptic drug 
discovery. Inconclusive but persuasive evidence suggests 
that some refractory patients may achieve seizure 
remission on poly-pharmacy, with isobolographic studies 
in animals and clinical experience indicating that 
combinations of drugs with distinct primary action 
mechanisms tend to be beneficial [10-13]. On the other 
hand, the normal function of neural networks may be 
more likely preserved by multiple small adjustments than 
by a single, strong perturbation, reducing not only the 
likelihood of central side-effects but also the induction of 
counter-regulatory processes related to drug resistance 
[14]. Furthermore: many currently used antiepiletic drugs 
are in fact unintended multi-target agents -from a drug-
protein network analysis perspective, antiepileptic agents 
are highly connected nodes that bridge several targets- [12, 

14] and much interest has been given to the broader range 
of therapeutic effects possessed by many antiepileptic 
drugs [15, 16].  

The potential contribution of drug-target network to 
epilepsy 

Today, scientific information is produced at an 
unprecedented rate. Before it can be regarded as 
knowledge (and thus exploited) such information must be 
organized. Particularly, the ligand-drug and protein-
protein interactomes (i.e. the set of molecular 
interactions) have revealed themselves so complex that 
they often have to be either summarized or condensed 
through the use of manageable representations, or 
explored with the help of computational resources. 
Networks deal with complexity by simplifying complex 
systems: system elements are represented as nodes while 
relationships between nodes are represented as edges [17]. 
In such representation –strongly linked to mathematical 
Graph Theory- functional and dynamic features of the 
nodes are often lost and emphasis is given to the 
connectivity between the nodes, i.e. the topological 

architecture of the net.        

The general philosophy of network science is then to 
drive attention to the wood, not the trees. Drug-protein 
networks have a number of practical applications which 
goes from rational drug repurposing (finding second 
medical uses of already known drugs) to prediction of 
side-effects [18, 19].  

Figure 1 shows a partial representation of a drug-
protein-animal model network focused on antiepileptic 
drugs; this network is currently under development 
within our research group. It is intended to guide drug 
repurposing (either to propose new indications for 
antiepileptic drugs or to reposition drugs from other 
therapeutic categories as antiepileptics), and to predict 
potential safety issues of antiepileptic drug candidates. 
To the moment, it includes three node types: a) approved 
drugs; b) drug targets that are either directly or indirectly 
modulated by such drugs and; c) animal models used in 
phase I of the NIH’s Anticonvulsant Drug Development 

Program. It is possible, however, to expand the network 
by including drug candidates under investigation or 
withdrawn drugs and additional seizure or epilepsy 
models, in the future. In the figure, the nodes have been 
distributed in arbitrary modules (distinctively colored 
according to the original therapeutic indication of the 
included drugs); identification of topological models 
through network clustering algorithms blind to the 
function of individual nodes will be performed once the 
whole network is completed. In order to illustrate the 
potential of the network we have isolated the modules 
that correspond to non-steroidal anti-inflammatory agents 
(red), antiepileptic drugs (blue) and bipolar disorder 
therapies (purple). Essentially, two approaches can be 
used to capture interactions between the nodes [17]. The 
first involves compilation and curation of existing 
experimental data available in the literature. The second 
consists of predicting (often with the help of 
cheminformatic and bioinformatic tools) the interactions. 
More details on these approaches and a clear illustrative 
example are presented separately in the next section of 
the article. Interactions shown in Figure 1 have emerged 
from curated literature and from the Supertarget database 
[20]. Since all the edges have been established from 
experimental data, we have weighted them all alike; 
however, important additional information could be 
obtained by considering other types of bridges and by 
incorporating a weighting scheme which reflects either 
the strength of the interaction (e.g. using inhibition 
constants as references) or its nature (experimental versus 
predicted interactions). The sizes of the nodes are 
proportional to their degrees.   
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There is solid scientific ground to choose the 
connection between inflammation and epilepsy to 
illustrate the potential of the drug-network approach. 
Contributing factors to epilepsy such as trauma, 
malignancies and infections are accompanied by different 
levels of central nervous system inflammation and 
abundant evidence points to the role of inflammation in 
epilepsy generation and exacerbation [21-23]. Note the 
profuse connectivity and the presence of hubs (highly 
connected nodes, here represented as larger nodes) in the 
interface between antiepileptic and anti-inflammatory 
agents. The inclusion of nodes representing animal 
models of seizure (MES, scPTZ and 6 Hz) has been 
critical to detect the relative abundance of nodes in this 
region, which reflects the fact that many approved non-
steroidal anti-inflammatory drugs have shown either 
anticonvulsant or proconvulsant effects in both MES and  
scPTZ tests [24-29]. The molecular basis of such effects 
remains largely unexplored. The inhibition of 
inflammatory mediators through downregulation and/or 
inhibition of cytosilic phospholipase A2 (cPLA2) and 
cycloxygenase (COX) isoforms (and the consequent 
reduction of proinflammatory cytokines) by chronic 
administration of carbamazepine, valproate and 
lamotrigine have been postulated as mechanisms of 
actions that may be involved in the effectiveness of these 
antiepileptic agents on bipolar disorder [30-32]; these 
actions are shared with classical bipolar disorder 
treatment (lithium) and justify the ongoing clinical trials 
of aspirin (which decreases pro-inflammatory mediators 
synthesis and stimulates anti-inflammatory signals) as a 
treatment for bipolar disorder [33].  Another interesting 
observation is that both antiepileptic and anti-
inflammatory agents share actions on different carbonic 
anhydrase (CA) isoforms. It has been demonstrated that 
some CA isoforms may play a role in experimental 
febrile seizure exacerbation [34], while inhibition of CA 
isozymes is linked to weight loss [35,36]. Randomized 
clinical trials have recently been performed to establish 
the efficacy of topiramate and zonisamide as anti-obesity 
treatments[37,38]. In late 2012, a combination of topiramate 
and phentermine gained FDA approval for the treatment 
of obesity.  

Finding regular links (patterns) between certain 
therapeutic categories pose relevant questions in the field 
of drug discovery and drug repositioning. E.g. should in-
development anticonvulsant candidates be systematically 
screened as CA inhibitors or anti-inflammatory agents? 
In such case, should both acute and chronic models be 
used? Is it worth screening therapeutics from other 
categories related to antiepileptic drugs (e.g. anti-obesity 

drugs, anti-inflammatory agents) as potential anticonvul-
sants? As a matter of fact, our group has shown a 
growing interest in testing our anticonvulsant prototypes 
as CA inhibitors during the last few years, with 
encouraging results [39, 40].          

Different approatches to establish links between drugs 
and targets  

So far, the observations derived from Figure 1 are 
merely descriptive, since to the moment the network only 
condensates available experimental data. So… how can 

network analysis be used to develop new knowledge?  

A helpful example to answer this question has recently 
been presented in the 2012 report from Talevi et al. on 
anticonvulsant effect of non-nutritive sweeteners [41]. A 
previously reported descriptor-based QSAR model [42] 
predicted that a number of artificial sweeteners 
(acesulfame, cyclamate, saccharin) might have anticon-
vulsant effect in the MES test. Subsequent bibliographic 
revision showed that one of them, saccharin, had already 
been tested in MES test in 1979 with positive results [43]. 
The model’s predictions were later validated 
experimentally, and both cyclamate and acesulfame 
showed protective effects in the MES test. The results 
made us wonder whether a structural link could exist 
between the sweet taste receptor and one or more 
molecular targets of antiepileptic drugs. Literature 
revealed that a family of proteins named T1R is the major 
mediator of the sweet and umami responses in mammals 
[44, 45]. Sweet flavor is elicited by a heterodimer formed 
by T1R2 and T1R3, while umami flavor is detected by 
the combination of T1R1 and T1R3. Noteworthy, one of 
the main stimuli sensed by the umami receptor is no other 
than glutamate, and response to glutamate flavor is totally 
abolished in T1r3 KO mice [46]. We searched for similar 
sequences to T1R3 in the NCBI non-redundant protein 
database, in order to investigate the possible link between 
T1R3 and molecular targets of antiepileptic drugs. 
BLAST showed that several of the significantly aligned 
sequences corresponded to metabotropic glutamate 
receptors (mGlu) from different species, among them rat, 
mouse and human. Interestingly, subtypes of mGlu that 
were retrieved in the BLAST search (mGluR1 and 
mGluR5) are upregulated in epileptogenesis and kindling 
models of epilepsy, and in patients with complex partial 
seizures [47-49]. They are also linked to augmented activity 
of NMDA receptors, release of arachidonic acid, 
excitotoxicity and neuronal injury [50-51]. A synthesis of 
the previous analysis is depicted in the network of Figure 
2. The relationships that had been experimentally 
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established previously to the report from Talevi et al. are 
presented as thick edges, while the associations that were 
predicted with computational (cheminformatic, bioinfor-
matic) tools are presented as thin edges. 

The previous example integrates the three general 
strategies to establish unknown (non-experimental) 
interactions between network nodes: a) cheminformatic 
predictions (e.g. predictions from automatic machine 
learning algorithms, molecular docking or molecular 
similarity searches); b) bioinformatic predictions (e.g. 
sequence alignment, functional relationships established 
from gene-order conservation, and others) and; c) 
literature analysis. This later approach relies on 
Swamson´s ABC model. Briefly, Swamson´s ABC model 
describes the possibility of linking different scientific 
disciplines though intermediate (shared) concepts [52]. 
Consider three separate scientific concepts A, B and C, 

where A is reported to be linked to B in one set of 
publications and B is reported to be related to C in other, 
while A is not reported to be directly associated to C. The 
relationships A-B and B-C allow inferring that A may be 
indirectly related to C. The unknown A–B–C relation 
may constituted a new finding. A practical and elegant 
example of the application of Swamson’s ABC model in 

the field of network-based drug discovery is presented in 
ref. [18], were the importance of a predicted relationship 
between two nodes depends on the share node count and 
the share node weight, and this share node weight 
depends, in turn, of the connection probability.    

Conclusions 

Due to the multifactorial nature of epilepsy, and 
having in mind that most antiepileptic drugs are in fact 
multi-target (multifunctional) agents, it is highly probable 

Figure 2. The thick lines in the 
network illustrate experimentally 
corroborated links; the thin lines 
correspond to cheminformatic 
(cyclamate-MES test, acesulfame-
MES test) and bioinformatic (T1R3-
mGluR) predictions. The first two 
predictions were later validated 
experimentally.  
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that drug-protein analysis will provide exciting advances 
in the field of antiepileptic drug discovery. Many 
antiepileptic drugs have already gained approval for other 
therapeutic indications, which suggests that development 
and analysis of drug-protein networks focused on 
antiepileptic drugs may reveal or reinforce connections 
between antiepileptic drugs and members of other 
therapeutic categories. Such knowledge might be useful 
to guide systematic screening of second or further 
medical applications of antiepileptic drugs and screening 
of drugs from other categories in seizure and/or epilepsy 
models. Prediction or explanation of side effects to 
antiepileptic drugs may also emerge from network 
analysis.    
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