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Abstract

Variational extremization of the relative Fisher information (RFI, hereafter) is per-
formed. Reciprocity relations, akin to those of thermodynamics are derived, employ-
ing the extremal results of the RFI expressed in terms of probability amplitudes.
A time independent Schrödinger-like equation (Schrödinger-like link) for the RFI
is derived. The concomitant Legendre transform structure (LTS, hereafter) is de-
veloped by utilizing a generalized RFI-Euler theorem, which shows that the entire
mathematical structure of thermodynamics translates into the RFI framework, both
for equilibrium and non-equilibrium cases. The qualitatively distinct nature of the
present results vis-á-vis those of prior studies utilizing the Shannon entropy and/or
the Fisher information measure (FIM, hereafter) is discussed. A principled rela-
tionship between the RFI and the FIM frameworks is derived. The utility of this
relationship is demonstrated by an example wherein the energy eigenvalues of the
Schrödinger-like link for the RFI is inferred solely using the quantum mechanical
virial theorem and the LTS of the RFI.
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1 Introduction

The Fisher information measure (FIM, hereafter) [1-3]

I[f ] =
∫

ℜn

f (x)

(

∂ ln f (x)

∂x

)2

dx =
∫

ℜn

1

f (x)

(

∂f (x)

∂x

)2

dx, (1)

where x is a vector (∂f(xi)
∂xj

= 0; i 6= j), has played a prominent role in statistics,

information theory, physics, and allied disciplines. In addition to the applica-
tions cited in Ref. [3], the FIM has also been successfully employed in areas
as diverse as biology, social science, econophysics, and encryption of covert
information amongst a number of other applications (eg. see [4]). The relative
Fisher information (RFI, hereafter) defined by [5, 6]

ℑ [f |g] =
∫

ℜn

f (x)

∣

∣

∣

∣

∣

∇ ln
f (x)

g (x)

∣

∣

∣

∣

∣

2

dx, (2)

where |•|2 is the square norm, has been primarily studied within the context
of mathematical physics and optimal transportation in statistical physics (eg.
Refs. [7,8] and the references therein). Note that ℑ[f |g] = 0 when f(x) = g(x),
and ℑ[f |g] 6= ℑ[g|f ] (asymmetric). An alternate form of the n-dimensional
RFI has been suggested by Carlen and Soffer [9] for a Gaussian g(x)

ℑ [f |g] = 4
∫

ℜn

∣

∣

∣

∣

(

∇+
x

2

)

√

f (x)
∣

∣

∣

∣

2

dnx, (3)

where
(

∇ + x
2

)

is the lowering operator of the harmonic oscillator Hamiltonian

with ground state
√

g (x). Here, g (x) = (2π)−
n
2 exp

[

−x2

2

]

.

Recently, the RFI has been the subject of intense investigations in a quest to
obtain a better perspective of its physical implications [10-14], and to formally
establish its role in information theory and estimation theory [15, 16]. Still,
many of the fundamental properties and physical implications of the RFI
remain uninvestigated. The RFI has recently been related to the Kullback-
Leibler divergence (K-Ld, hereafter)[2]

D [f‖g] =
∫

ℜn

f (x) ln
f (x)

g (x)
dx, (4)
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with the aid of the de Bruijn identity [2] by Verdú [15], and Guo, Shamai
(Shitz), and Verdú [16] as

d

dδ
D
[

X +
√
δZ

∥

∥

∥Y +
√
δZ
]

δ=0
= −1

2
ℑ [X |Y ] , (5)

where X and Y are random variables, and Z is random variable (not neces-
sarily Gaussian), which is independent of X and Y . When random variables
X and Y have the densities f and g, respectively, the K-Ld and the RFI of
X with respect to Y are defined by D[X‖Y ] = D[f‖g] and ℑ[X|Y ] = ℑ[f |g],
respectively.

Akin to the K-Ld, the RFI may not only be construed as being a measure
of uncertainty, but also a measure of discrepancy between two probability
densities. The RFI relates to the FIM in a similar manner to which the K-Ld
relates to the Shannon entropy. In contrast to the FIM and the RFI, whose
derivative term induces the effect of ”localization”, the Shannon entropy and
the K-Ld are ”coarse-grained”.

It is important to state that this Letter treats the case of one-dimensional time
independent probability density functions and their concomitant probability
amplitudes. Thus, within the framework of optimal transportation theory [5],
the analysis presented herein is applicable to steady-state models. On the
other hand, the results of this paper are directly applicable to the RFI models
studied in [13-16]. Further, the reference probability g(x) in the expression of
the RFI (Eq.(2)) may be treated as representing prior knowledge. Thus, like
the K-Ld the RFI possesses the ability of being employed in inference studies.

This Letter accomplishes the following objectives: (i) Setting g(x) = exp[−V (x)]
where V (x) is a convex potential described in Section 2, a principled relation
between the RFI, the FIM, and derivative terms of the convex potential V (x)
is established (Section 3). (ii) A time independent Schrödinger-like Sturm-
Liouville equation (hereafter referred to as the Schrödinger-like link for the
RFI), resulting from the variational extremization of the RFI is derived (Sec-
tion 4). (iii) The reciprocity relations and the Legendre transform structure
for the RFI are derived, thereby explicitly demonstrating that the entire math-
ematical structure of thermodynamics translates into the RFI framework (Sec-
tions 5 & 6). (iv) The utility of the relationship between the RFI and FIM
frameworks (derived in Section 3) is demonstrated by inference of the en-
ergy eigenvalues of the Schrödinger-like link for the RFI (Section 7). This is
achieved by solely utilizing the quantum mechanical virial theorem [17] and
the Legendre transform structure of the RFI, without recourse to solving the
Schrödinger-like link for the RFI. To the best of the authors’ knowledge, none
of the above stated results have been hitherto accomplished.

3



2 Theoretical preliminaries

It is common in optimal transportation theory (eg., see [5, 7, 8]) to define
the probability g(x) as a reference probability, alternately referred to as the
equilibrium probability. Specializing Refs. [5, 7, 8] and numerous other works
to the one-dimensional case

g (x) = e−V (x),

∫

e−V (x)dx = 1,

(6)

which is known as the Gibbs form, where V (x) is a convex potential.Thus, (2)
is re-written with the aid of (6) as

ℑ
[

f
∣

∣

∣e−V (x)
]

=
∫

f (x) |∇ (ln f (x) + V (x))|2 dx. (7)

It is noteworthy to mention that the term ln f(x) + V (x) in (7) is exactly the
potential Ψ whose expectation in time independent stochastic thermodynam-
ics is an analog to the Helmholtz free energy, for kBT = constant [18, 19].
Note that in this Letter, all expectation values denoted by 〈•〉 are evaluated
with respect to f(x) = ψ2(x). Here, ψ(x) is the probability amplitude which
extremizes the RFI.

3 Relation between the FIM and the RFI

Expanding (7) yields

ℑ
[

f
∣

∣

∣e−V (x)
]

=
∫

{

1
f(x)

(

df(x)
dx

)2
+ 2Vx (x)

df(x)
dx

+ V 2
x (x) f (x)

}

dx

=
∫ 1
f(x)

(

df(x)
dx

)2
dx+

∫

2Vx (x)
df(x)
dx

dx+
∫

V 2
x (x) f (x)dx,

(8)

where Vx (x) = dV (x)
dx

. Integrating by parts the second term in the second
expression of (8), and specifying f(x)Vx(x) to vanish at the boundaries yields

2
∫

Vx (x)
df (x)

dx
dx = −2

∫

Vxx (x)f (x) dx = −2 〈Vxx (x)〉 , (9)
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Vxx (x) =
d2V (x)
dx2

. Substituting (9) into (8) yields

ℑ
[

f | e−V (x)
]

=
∫

1

f (x)

(

df (x)

dx

)2

dx− 2 〈Vxx (x)〉+
〈

V 2
x (x)

〉

. (10)

Invoking the definition of the FIM in (1) results in the critical relationship

ℑ
[

f
∣

∣

∣e−V (x)
]

= I [f ]− 2 〈Vxx (x)〉+
〈

V 2
x (x)

〉

. (11)

Here, (11) unambiguously relates the RFI with the FIM and the expectations
of the derivatives of the convex potential V (x). Thus, (11) tacitly demonstrates
that the results presented in this Letter for the RFI qualitatively differ from
any results obtained for the FIM (eg. see [3]).

4 Schrödinger-like link for the RFI

In physics, it is often desirable to express probabilities in the form of ampli-
tudes. In the one-dimensional case, it is tenable to treat probability amplitudes
as real quantities [20]. Expressing (7) in terms of probability amplitudes by
specifying f(x) = ψ2(x) and performing variational extremization, results in

δ
δψ(x)

∫

{

4
(

dψ(x)
dx

)2 − 2Vxx (x)ψ
2(x) + V 2

x (x)ψ2(x)

−
M
∑

i=1
λiAi (x)ψ

2 (x)− λ0ψ
2 (x)

}

dx = 0,

(12)

where 〈Ai (x)〉 =
∫

Ai (x)ψ
2 (x) dx are the constraint terms entailing M La-

grange multipliers λi, and
∫

ψ2 (x) dx = 1 is the normalization condition.
Carrying through with the variational extremization of (12) yields a time in-
dependent Schrödinger-like equation

− 1

2

d2ψ (x)

dx2
− URFI (x)ψ (x) =

λ0

8
ψ (x) . (13)

The pseudo-potential in (13) comprising of data driven terms, and derivatives
of the potential V (x) is defined by

URFI (x) =
1

8

[

M
∑

i=1

λiAi (x)− V 2
x (x) + 2Vxx (x)

]

. (14)
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Note that (13) is a special case of the Sturm-Liouville equation denoted

by: − d
dx

[

q (x) dψ(x)
dx

]

+ g (x)ψ (x) = µh (x)ψ (x), where q(x), g(x) and h(x)

are suitable arbitrary functions, and µ is the eigenvalue. Specifying: q (x) =
1, g (x) = −URFI (x) , h(x) = 1 and µ = λ0

8
= E yields the form of the usual

time independent Schrödinger equation, for ~2

m
= 1 and having energy eigen-

value E.

At this stage it is important to highlight two facts. First, the normalization
Lagrange multiplier:λ0 = λ0(λ1, ..., λM), and, ψ

(

x,
−→
λ
)

are the solution of

(13), where
−→
λ is a M-vector of Lagrange multipliers. Next, the convex poten-

tial V (x) and its derivatives are not functions of
−→
λ , and the exact form of

V (x) is assumed to be known a-priori. For the sake of generality, the form of
V (x) is kept arbitrary in the above analysis. Note that ψ(x) is the probabil-
ity amplitude that extremizes the RFI. It is interesting to note that setting
g(x) = exp[−

√
kx2] results in the potential for the harmonic oscillator, which

is one of the most fundamental systems in quantum mechanics.

5 Reciprocity relations

It is known that standard thermodynamics makes use of derivatives of the
Shannon entropy with respect to both parameters, i.e. the Lagrange multi-
pliers λi and expectation values 〈Ai (x)〉 (for instance, pressure and volume,
respectively). The basis for the reciprocity relations is the generalized Euler
theorem [21]. In [22], it was shown that the Euler theorem [21] is recovered
within the Fisher-context by the formulation of a generalized Fisher-Euler
theorem. Given a generic measure of uncertainty ℵ and expectation values
〈Ai (x)〉, the generalized Euler theorem is required to be of the form [21]

∂ℵ
∂λi

=
M
∑

j=1

λj
∂ 〈Aj(x)〉
∂λi

. (15)

Here, ℵ may be the Shannon entropy, the FIM, or the RFI (as will be demon-
strated in this Section). Specifically, this Section qualitatively extends the
analysis in [22] by establishing a principled generalized RFI-Euler theorem.
Substituting (14) into (13) and multiplying the resulting expression through-
out by 8 yields

− 4
d2ψ (x)

dx2
−

M
∑

i=1

λiAi (x)ψ (x)−
[

2Vxx (x)− V 2
x (x)

]

ψ (x) = λ0ψ (x) .(16)
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From [3], the FIM after a single integration by parts is defined by

I [ψ] = 4
∫

(

dψ (x)

dx

)2

dx = −4
∫

ψ (x)
d2ψ (x)

dx2
dx. (17)

Multiplying (16) by ψ(x), integrating and re-arranging the terms results in

− 4
∫

ψ (x)
d2ψ (x)

dx2
dx− 2 〈Vxx (x)〉+

〈

V 2
x (x)

〉

= λ0 +
M
∑

i=1

λi 〈Ai (x)〉, (18)

where the normalization condition
∫

ψ2 (x) dx = 1 has been invoked. From (17)
and the relation (11) it is readily seen that the LHS of (17) is a re-statement
of the RHS of (11) expressed in terms of probability amplitudes, i.e.

ℑ
[

ψ
∣

∣

∣e−V (x)/2
]

= I [ψ]− 2 〈Vxx (x)〉+
〈

V 2
x (x)

〉

. (19)

Thus, from (18) and (19) the following relation is obtained

ℑ
[

ψ
∣

∣

∣e−V (x)/2
]

= λ0 +
M
∑

i=1

λi 〈Ai (x)〉, (20)

where 〈Ai (x)〉 =
∫

Ai (x)ψ
2 (x) dx. Taking the derivative of (20) with respect

to λi yields

∂ℑ
[

ψ
∣

∣

∣e−V (x)/2
]

∂λi
=
∂λ0

∂λi
+ 〈Ai(x)〉+

M
∑

j=1
j 6=i

λj
∂ 〈Aj(x)〉
∂λi

. (21)

Specifying

∂λ0

∂λi
= −〈Ai(x)〉 , (22)

and substituting (22) into (21) yields

∂ℑ
[

ψ
∣

∣

∣e−V (x)/2
]

∂λi
=

M
∑

j=1

λj
∂ 〈Aj(x)〉
∂λi

. (23)

To demonstrate that the Lagrange multipliers and the expectation values are

conjugate variables (see Section 6), it is required to establish:
∂ℑ[ψ|e−V (x)/2 ]

∂〈Al(x)〉
=

7



λl; l = i, j. While this is evident from (27) in Section 6, the thermodynamic
counterpart of the generalized RFI-Euler theorem (23) is considered by eval-
uating the derivative of the RFI with respect to the expectation values as

M
∑

i=1

∂ℑ
[

ψ
∣

∣

∣e−V (x)/2
]

∂λi

∂λi

∂ 〈Aj〉
=

M
∑

i=1

M
∑

k=1

λk
∂ 〈Ak(x)〉

∂λi

∂λi

∂ 〈Aj(x)〉
. (24)

Eq. (24) readily reduces to

∂ℑ
[

ψ
∣

∣

∣e−V (x)/2
]

∂ 〈Aj(x)〉
= λj, and likewise,

∂ℑ
[

ψ
∣

∣

∣e−V (x)/2
]

∂ 〈Ai(x)〉
= λi. (25)

The generalized Euler theorem for the Shannon entropy bears similarities to
that for the FIM, which has now been shown to bear similarities to that for the
RFI. The utility of the generalized Euler theorem is to establish the conjugate
relationship between the Lagrange multipliers and the expectation values for a
given measure of uncertainty. To establish this conjugate relationship between
the Lagrange multipliers and the expectation values for the RFI, it is impera-
tive to utilize Eqs. (23) and (25) above. For the case of the RFI, this conjugate
relationship is established in Section 5. In summary, while (23) naturally bears
similarities to the form of the generalized Fisher-Euler theorem established in
[22] and the Euler theorem within the Boltzmann-Gibbs-Shannon (B-G-S,
hereafter) framework [21], it qualitatively differs from the previous studies.

These qualitative distinctions may be summarized as (i) the measure of un-
certainty (which in this case is also a measure of discrepancy) is the RFI,
(ii) the expectations are evaluated with respect to the probability amplitude
ψ(x), which extremizes the RFI, and (iii) the concomitant Lagrange multipli-

ers, which comprise the solution of (13), viz. ψ(x,
−→
λ ), are dissimilar to those

obtained in previous studies. viz. [21, 22]. Specifically, correspondence rela-
tionships between the solutions and the Lagrange multipliers of the B-G-S
model and the FIM model have been established (eg., see [23])), and the so-
lutions of the variational extremizations of the Shannon entropy and the FIM
are known to coincide for the case of equilibrium distributions [3]. Apart from
seamlessly relating the RFI and the FIM frameworks, Eq. (11) also provides
the basis for relating their respective extremal solutions (and by extension to
the extremal solutions of the B-G-S framework) by drawing analogies to the
approach adopted in Ref. [23]. This is the objective of ongoing work.
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6 Legendre transform structure

The objective of obtaining the Legendre transform structure is to place the
Lagrange multipliers (λi’s) and the expectation values (〈Ai (x)〉’s) on an equal

footing for the purpose of determining ℑ
[

ψ
∣

∣

∣e−V (x)/2
]

. This entails that the
Lagrange multipliers and the expectation values play reciprocal and symmetric
roles thermodynamically, thereby allowing for the input information to be
provided also in the form of the Lagrange multipliers. In the usual case, of
course, one employs expectation values [24]. Re-stating (20) and re-arranging
the terms yields

λ0 = ℑ
[

ψ
∣

∣

∣e−V (x)/2
]

−
M
∑

i=1

λi 〈Ai(x)〉. (26)

From the arguments stated in Section 4, ℑ = ℑ(x,−→λ ). From (26), it is evident
that

λ0 (λ1, ..., λM) = ℑ (〈A1(x)〉 , ..., 〈AM(x)〉)−
M
∑

i=1

λi 〈Ai(x)〉. (27)

Here, (27) is the Legendre transform of the RFI since it changes the identity of

the relevant variables; viz. ℑ(x,−→λ ) ↔ ℑ (〈A1(x)〉 , ..., 〈AM(x)〉). Specifically,
the Legendre transform relates the input parameters (independent variables

of the RFI), such that {ℑ, 〈A1(x)〉 , ..., 〈AM(x)〉} ↔
{

λ0, ~λ
}

. Note that within

the context of (27), λ0 may also be construed as being the generalized ther-
modynamic potential of the RFI.

From (27) and (25) (which has been derived on the basis of the generalized
RFI-Euler theorem (23)), the following result is obtained

∂λ0

∂λi
=

M
∑

j=1

∂ℑ
∂ 〈Aj(x)〉

∂ 〈Aj(x)〉
∂λi

−
M
∑

j=1

λj
∂ 〈Aj(x)〉
∂λi

− 〈Ai(x)〉 = −〈Ai(x)〉 .(28)

Eq.’s (25) and (28) yield

∂λi

∂ 〈Aj(x)〉
=

∂λj

∂ 〈Ai(x)〉
=

∂2ℑ
∂ 〈Ai(x)〉 ∂ 〈Aj(x)〉

, (29)

and

∂ 〈Aj(x)〉
∂λi

=
∂ 〈Ai(x)〉
∂λj

= − ∂2λ0

∂ 〈Ai(x)〉 ∂ 〈Aj(x)〉
, (30)
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respectively. As a consequence of (30), the generalized RFI-Euler theorem (23)
is re-stated as

∂ℑ
[

ψ
∣

∣

∣e−V (x)/2
]

∂λi
=

M
∑

j=1

λj
∂ 〈Ai(x)〉
∂λj

. (31)

Here, Eqs. (25), (27) and (28)-(31) constitute the Legendre transform structure
for the RFI. In essence, (22) and (25) constitute the necessary and sufficient
conditions for casting the generalized RFI-Euler theorem (23) in the form
specified by (15). Further, (22), (23), and (25) form the basis for establishing
the conjugate relationship between the Lagrange multipliers (λi’s) and the ex-
pectation values (〈Ai (x)〉’s). The above results demonstrate the translation of
the entire mathematical structure of thermodynamics into the RFI framework.
Further, the role of the generalized RFI-Euler theorem (23) in deriving the
Legendre transform structure is established.

7 Inference of energy eigenvalues

The reciprocity relations and Legendre transform structure of the FIM [22]
have only employed the data driven information theoretic term 〈Ai (x)〉 as the
expectation value. The Schrödinger-like link for the RFI significantly modifies
this scenario by including the derivatives of the convex potential V (x) into
the expectation values, since they form an integral part of the potential of the
Schrödinger-like link for the RFI. This is evident in Eq’s. (13) and (14). It is
important to note that while in the FIM model [22], the data driven terms
in the pseudo-potential term of the FIM model constitute an information-
theoretic potential, the RFI pseudo-potential (14) also has a physical content
owing to the presence of derivatives of V (x) [5]. The leitmotif of this Section
is to seamlessly infer the energy eigenvalues of the Schrödinger-like link for
the RFI employing only the quantum mechanical virial theorem [19] and the
RFI Legendre transform structure (derived in Section 6). This is accomplished
without recourse to numerically evaluating the Schrödinger-like link for the
RFI. In this context, the work presented in this Section represents a significant
qualitative advancement of the analysis in [25].

Multiplying (13) by 2 and re-arranging the terms yields

− d2ψ (x)

dx2
+ ŨRFI (x)ψ (x) =

λ0

4
ψ (x) , (32)

10



where the RFI pseudo-potential (14) is re-defined as

ŨRFI (x) = −1

4

[

M
∑

i=1

λiAi (x)− V 2
x (x) + 2Vxx (x)

]

. (33)

Note that (32) is of the form of the usual time independent Schrödinger equa-
tion having energy eigenvalue E, for ~

2

2m
= 1 and λ0

4
= E. The quantum

mechanical virial theorem for Schrödinger models is [17]

−
∫

ψ (x)
d2ψ (x)

dx2
dx =

〈

x
dŨRFI

dx

〉

. (34)

The RFI pseudo-potential (33) is expressed in terms of its physical and data
driven components as

ŨRFI (x) = Ũ
Physical
RFI (x) + ŨData

RFI (x) , (35)

where

Ũ
Physical
RFI (x) = −1

4
[V 2
x (x)− 2Vxx (x)] ,

and,

ŨData
RFI (x) = −1

4

M
∑

i=1
λiAi (x).

(36)

Multiplying (34) by 4 and invoking (17) and (35) yields

I [ψ] = 4

〈

x
dŨRFI (x)

dx

〉

= 4

〈

x
dŨ

Physical
RFI (x)

dx

〉

+ 4

〈

x
dŨData

RFI (x)

dx

〉

. (37)

Eq. (37) yields

I [ψ]− 4

〈

x
dŨ

Physical
RFI (x)

dx

〉

= 4

〈

x
dŨData

RFI (x)

dx

〉

. (38)

Substituting (36) into (38) and invoking (19) yields

ℑ
[

ψ
∣

∣

∣e−V (x)/2
]

= −
M
∑

i=1

λi

〈

x
dAi (x)

dx

〉

. (39)

11



Here, (39) requires that the physical pseudo-potential of the Schrödinger-like
link for the RFI relates to the convex potential V (x) as

4

〈

x
dŨ

Physical
RFI (x)

dx

〉

= 2 〈Vxx (x)〉 −
〈

V 2
x (x)

〉

. (40)

Comparison of (20) and (39) results in

λ0 +
M
∑

i=1

λi 〈Ai (x)〉 = −
M
∑

i=1

λi

〈

x
dAi (x)

dx

〉

. (41)

The data driven terms in the RFI pseudo-potential may be expressed as mo-
ments of the independent variable, because the powers xk constitute a basis
in Hilbert space. Thus, without loss of generality one can write

〈Ai (x)〉 =
〈

xk
〉

. (42)

Invoking now the Legendre transform derived in (28) yields

∂λ0

∂λi
= −

〈

xk
〉

. (43)

Substituting (43) into (41) yields the linear PDE

λ0 =
M
∑

i=1

(1 + k) λi
∂λ0

∂λi
. (44)

The procedure for the inference of the energy eigenvalues of the Schrödinger-
like link for the RFI without recourse to the SWE (13) is tacitly encapsulated
in the linear PDE (44). Solution of (44) and specifying λ0 = 4E yields the
energy eigenvalues of the the Schrödinger-like link for the RFI. This has only
been rendered possible by the invoking of Eq. (19), which is the relationship
between the RFI and the FIM. This explicitly demonstrates the immense utility
of (19). Apart from constituting a significant condition in its own right, (44)
lays the basis for establishing a comprehensive quantal connection for the RFI.
Further, (44) requires that the RFI Legendre transform structure be specified
in the form derived in Section 6. By induction, this justifies the physical utility
of the generalized RFI-Euler theorem (23).
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8 Summary and discussions

A critical relation between the RFI and the FIM has been derived (Eq. (11)
in Section 3). It has been shown that the mathematical structures underly-
ing thermodynamics can be variationally reproduced by recourse to the RFI.
This is accomplished in Section 5, in which a principled generalized RFI-Euler
theorem was derived, and in Section 6, in which thermodynamics’ Legendre
transform structure were expressed in terms of the RFI. The qualitatively
distinct nature of these relations within the context of the RFI framework,
vis-á-vis prior studies utilizing the B-G-S model and FIM model, have been
highlighted. Further, the Schrödinger-like link for the RFI which forms the
basis for deriving correspondence relations between the extremal solutions of
the RFI and the FIM and/or the Shannon entropy constrained by Lagrange
multipliers has been established in Section 5.

A thermodynamic basis for employing the RFI as a measure of uncertainty in
areas such as statistical inference and allied disciplines, parallelling the min-
imum relative cross entropy principle [26], has been established. Furtherance
of this objective comprises the focus of ongoing work. The efficacy of the re-
lation described by (19), which is the manifestation of (11) in the form of
probability amplitudes has been highlighted in Section 7. Herein, (19) (and
thus (11)) facilitates a principled procedure to infer the energy eigenvalues of
the Schrödinger-like link for the RFI (13), with recourse only to the quantum
mechanical virial theorem and the Legendre transform structure of the RFI.

Finally, the results of Sections 5 and 7 give rise to an interesting conjecture
concerning the nature of the wave function ψ(x), for a physical potential V (x),
and, the probability densities f(x) = ψ2(x) and g(x) = exp [−V (x)] (note
that, in one dimension, the wave function can always be taken to be real
[20]). Here, ψ(x) is the amplitude that extremizes the RFI. Thus, prima facie
the RFI associates the pair {ψ, V (x)} in a definite manner that does not, in
principle, explicitly involve the Schrödinger wave equation. Specifically, given
V (x) and performing a search within Hilbert space for the function ψ(x) that
extremizes the RFI, it is mathematically feasible to envisage a method of
finding ψ(x), without recourse to the Schrödinger-like link for the RFI.
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