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Nucleant layer effect on nanocolumnar ZnO films
grown by electrodeposition
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Abstract

Different ZnO nanostructured films were electrochemically grown, using an aqueous solution based on ZnCl2, on
three types of transparent conductive oxides grow on commercial ITO (In2O3:Sn)-covered glass substrates: (1) ZnO
prepared by spin coating, (2) ZnO prepared by direct current magnetron sputtering, and (3) commercial ITO-
covered glass substrates. Although thin, these primary oxide layers play an important role on the properties of the
nanostructured films grown on top of them. Additionally, these primary oxide layers prevent direct hole
combination when used in optoelectronic devices. Structural and optical characterizations were carried out by
scanning electron microscopy, atomic force microscopy, and optical transmission spectroscopy. We show that the
properties of the ZnO nanostructured films depend strongly on the type of primary oxide-covered substrate used.
Previous studies on different electrodeposition methods for nucleation and growth are considered in the final
discussion.
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Background
Nanostructured ZnO thin films required a controlled
fabrication process for many applications based on semi-
conductor devices. ZnO thin films have been prepared
by a wide variety of techniques such as pulsed laser
deposition [1,2], sputtering [3,4], and electrodeposition
with or without templates [5-8]. In particular, the elec-
trodeposition technique has advantages over other
processes due to its simplicity, low equipment cost, and
the possibility of obtaining large-area thin films. Also,
electrodeposition is an efficient and reliable technique
for preparing ZnO nanocrystallites [9], nanowires
[10,11], and nanorods [5,12]. One of the key elements to
achieve high efficiency on nanostructured hetero-
junctions is the control on density, morphology, and
crystallinity during growth [13]. The resulting film
surface morphology depends on a variety of parameters,
like initial solution, ion concentration, bath temperature,
etc. [14]. To improve nanostructure morphology of
electrodeposited films, post-heat treatments are usually
applied [15]. In this sense, the evolution of optical and
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morphological properties with the annealing tem-
perature for ZnO electrodeposited films on FTO was
analyzed in a previous work [16]. Recently, it has been
found that the presence of a seed layer plays an import-
ant role in the properties of the nanostructured films
grown on top of them by different methods such as
hydrothermal synthesis [17-19]. This seed layer guaran-
teed a well-defined orientation and alignment of the
grown nanostructures, as well as optical property
improvements due to their very low roughness and small
particle size. Additionally, these primary oxide layers pre-
vent direct hole combination when used in optoelectronic
devices [20].
In this work, the influence of different seed layers on

the structural and optical properties of electrodeposited
ZnO nanorods is analyzed. The transparent conductive
oxide layer as seed layer was prepared by three different
methods: (1) spin-coated ZnO, (2) direct current (DC)
magnetron sputtered ZnO, and (3) commercial ITO
(In2O3:Sn)-covered glass substrates.
The ZnO growth process was also varied, taking into

account previous studies on different electrodeposition
procedures for nucleation and growth [5,13]. Poten-
tiostatic, galvanostatic, and pulsed-current electroche-
mical deposition methods were applied for each seed
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g/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction
roperly cited.

mailto:mareto@upvnet.upv.es
http://creativecommons.org/licenses/by/2.0


-2,0 -1,5 -1,0 -0,5 0,0
-0,025

-0,020

-0,015

-0,010

-0,005

0,000

0,005

I (
A

)

E (V)

Reaction AReaction B

Figure 1 Linear voltammetry curve. ZnCl2 5 × 10−3 M and 0.1 M KCl at 70°C on ITO substrate at 0.1 V/s.
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layer, analyzing their influence on the general properties
of the obtained nanostructure.
We have analyzed morphological and structural

properties by scanning electron microscopy (SEM)
and atomic force microscopy (AFM), and optical properties
by transmission spectra. Optical bandgap was determined
by Tauc's plot.
Methods
ZnO spin coated on ITO
A ZnO nucleant layer of 20-nm thickness and wurtz-
ite crystalline structure was obtained by spin-coating
technique. The substrates were 3 × 3-cm2 ITO (indium
tin oxide)-sputtered glass (resistivity at room temperature,
15 Ω/cm2) from Asahi Glass Company (Tokyo, Japan).
The solution used was a reagent-grade (RG) zinc acetate
[Zn(CH3COO2) · 2H2O] dissolved in RG methanol in a
0.02-mol/l solution.
Previously, the substrate was cleaned with neutral soap

for 10 min in ultrasonic bath, 10 min in distilled water,
10 min in isopropanol, and finally dried with N2. The
spin-coating process was done dropping 0.2 ml of solu-
tion on the cleaned substrate and rotating it at 3,000
Table 1 Electrochemical parameters for each nucleant layer u

Nucleant layer Potentiostatic Galvanostat

E (V) Time (s) I (mA) Ti

ITO −1 600 −4

Spin-coated ZnO −1 600 −1.75

Sputtered ZnO −0.8 600 −1.5
rpm. Then, heat treatment at 80°C was necessary to
evaporate the organic component from the layer.

ZnO sputtered on ITO
The second ZnO nucleant layer was prepared by DC
sputtering process on the same ITO substrate described
in the section ‘ZnO spin coated on ITO’ from a ZnO tar-
get of 99.999% purity. A homemade sputtering system
with a power of 100 W, 2 × 10−2 mbar of Ar pressure,
and a substrate temperature of 300°C was used. The
layer obtained has 60-nm thickness and a stable wurtzite
crystalline structure.

Growth of ZnO nanorods on three different substrates
ZnO nanorods were obtained by electrochemistry
technique in a classical three-electrode electroche-
mical cell, with the spin-coated ZnO films, sputtered
ZnO films, or ITO substrates as the working elec-
trode. A platinum sheet and Ag/AgCl (3 M KCl) were
used as auxiliary and reference electrodes, respec-
tively. The electrolyte used was 5 × 10−3 M ZnCl2
(RG) and 0.1 M KCl (RG) solution with O2 saturation
working at 70°C during the whole electrodeposition
sed

ic Pulsed current

me (s) I (mA) tON (s) tOFF (s) Time (s)

600 −4 1 1 1,200

600 −1.75 1 1 1,200

600 −1.5 1 1 1,200



Figure 2 SEM of ZnO nanorods obtained by electrodeposition method on ITO substrate. Via (a) Potentiostatic, (b) galvanostatic, and (c)
pulsed-current methods.
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process. The experiments were carried out in an
Autolab PGSTAT302N potentiostat (Metrohm, Utrecht,
The Netherlands) with an ADC 10M card for ultrafast
measurement acquisition (one sample every 10 ns). The
electrochemical experiments were performed potentio-
statically for 10 min, galvanostatically for 10 min, and by
pulsed current at a frequency of 0.5 Hz for 20 min, for
each of the substrates.
The optimal potential for each substrate was

chosen by means of a cyclic voltammetry curve with
the same variable process of 0.1 V/s. As an example,
a current–voltage study performed under these con-
ditions for the ITO substrate is shown in Figure 1.
Two different stages on the deposition branches can
be distinguished, corresponding to the dominant
reactions:
Reaction A: Zn+2 + 0.5 O2 + H2O→ 2e− + Zn(OH)n
Reaction B: Zn+2 + 0.5 O2→ 2e− + ZnO
Table 1 shows the electrochemical parameters ap-

plied for the potentiostatic, galvanostatic, and pulsed-
current growth of the ZnO process for each nucleant
layer.
Figure 3 AFM of ZnO nanorods obtained by electrodeposition metho
galvanostatic, and (c) pulsed current.
Results and discussion
Scanning electron microscopy and atomic force
microscopy
The morphological and structural ZnO nanorod proper-
ties for each different substrate were analyzed by SEM
(JSM-6300, Jeol scanning electron microscope, JEOL,
Tokyo, Japan) operating at 20 kV and AFM (Veeco
Multimode, Veeco Instruments Inc., Plainview, NY,
USA).
Figure 2 shows the ZnO nanorods obtained on ITO

substrates under the three different electrochemistry
processes: potentiostatic, galvanostatic, and pulsed-
current methods. It can be seen that the nanostruc-
ture density and alignment with pulsed-current
process improved and that the nanostructure becomes
a continuous layer. When pulsed current is applied
on a substrate without a previous ZnO nucleant layer,
the nucleus of ZnO is homogeneously formed along
the whole surface [13]. The average diameter obtained
in this case is 220 nm.
For the substrates with spin-coated ZnO as nucleant

layer, it is necessary to analyze the nanostructures with
d on ZnO spin-coated substrate. Via (a) potentiostatic, (b)



Figure 4 SEM of ZnO nanorods obtained by electrodeposition method on ZnO sputtered substrate. Via (a) potentiostatic, (b)
galvanostatic, and (c) pulsed current.
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AFM due to the low roughness of the sample (Ra = 4 nm).
In Figure 3, the nanorods obtained by potentiostatic,
galvanostatic, and pulsed-current methods are shown.
In the case of applying a pulsed current, the nano-
structure morphology results are more defined, with a
lower diameter than the ITO substrate case, around
100 nm of average diameter. The substrate obtained
by spin-coating process generates a homogeneous
layer across the surface, with very low roughness [21]
and small grains of material, so the current applied to
the surface is distributed homogenously.
For the ZnO sputtered nucleant layer substrate, the

result is quite different. Figure 4 shows the SEM
images for the three electrodeposition processes done.
In this case, the pulsed-current process yields the
worst obtained morphology in comparison with ITO
and spin-coated substrates. The sputtering process
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Figure 5 Transmission spectra. For ZnO nanorod growth by galvanostat
spin-coated ZnO as substrate.
generates a heterogeneous layer on the surface. This
is due to a small variation of thickness along the
surface due to the system geometry imposed on the
equipment, generating poor uniformity of the applied
current. Thus, a better nanostructure is obtained
through the potentiostatic electrodeposition process,
yielding an average nanorod diameter of 220 nm, like
the one obtained for ITO.
Optical characterization
Optical transmission characteristics were also realized at
room temperature with a Newport UV–VIS spectropho-
tometer (Irvine, CA, USA) in the 300- to 850-nm wave-
length range. The results for the galvanostatic and
pulsed-current electrodeposition samples are show in
Figure 5.
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Figure 6 Optical bandgap of ZnO nanowire array. Plot of (−lnT × hν)2 vs photon energy of ZnO nanowire array growth by galvanostatic and
pulsed-current electrodeposition on ITO, sputtered ZnO, and spin-coated ZnO as substrate.
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As shown in Figure 5, the transmission behavior is
strongly dependent on the substrate used in the
electrodeposition process, with all of them being
transparent at wavelength above 350 nm. Spin-
coated and sputtered substrates show similar features
on the transmission signal for the galvanostatic and
pulsed-current processes used. On the contrary, both
processes have a significant difference on ITO substrate,
with the one obtained by pulsed current having better
transmission.
The ZnO obtained revealed a poor crystalline nano-

structure when the potentiostatic growth method was
applied for the three substrates used. This effect can
be seen in the optical behavior of the transmission
curves where the optical bandgap is not clearly defined due
to electronic defects inside the structure. The best optical
result is for the spin-coated substrate, in agreement with
the AFM analysis (Figure 3), which shows a homogeneous
nanostructure.
Table 2 Optical bandgap for ZnO nanorods obtained by
electrodeposition on different substrates

Sample Eg (eV)

Pulsed current on ITO 3.51

Galvanostatic on ITO 3.33

Pulsed current on spin-coated ZnO 3.51

Galvanostatic on spin-coated ZnO 3.51

Pulsed current on sputtered ZnO 3.46

Galvanostatic on sputtered ZnO 3.56
Optical bandgap
Optical bandgap of ZnO has been reported from 3.27 eV
for the single crystal to 3.55 eV for the electrodeposited
films [21,22]. The electrodeposited ZnO films or nano-
structures exhibit bandgap between 3.3 and 3.55 eV,
depending on the structural morphologies and crystal
defects. Assuming an absorption coefficient α∝−lnT (T is
transmittance) corresponding to a direct bandgap of ZnO,
[23] the bandgap of the ZnO nanowires is estimated from
the linear fit in the plot of (−lnT × hν)2 against the energy
hν, as shown in Figure 6 and Table 2 for each sample.
Analysis is not presented for potentiostatic samples
because the absorption band edge is not sufficiently well
defined to be considered for the linear fit, as was described
in the optical characterization.
The optical bandgap for all samples obtained is in agree-

ment with the theoretical ZnO bandgap [24], although the
results show that galvanostatic electrodeposition on ITO
substrate is quite different from the other ones, which was
expected from microstructure analysis.
Conclusions
In the present work, the influence of the nucleant layer
on the process of vertically aligned ZnO nanowires
grown using electrochemical reactions has been de-
scribed and analyzed. It can be concluded that the
nucleant layer has a crucial role in the morphological,
structural, and optical properties of the electrodeposited
material. In this sense, the spin-coated substrate has
demonstrated to be the more easily controlled in order
to obtain optimal electrodeposited nanostructures.
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