
Detecting Web Requirements conflicts and

inconsistencies under a Model-Based Perspective

M.J. Escalona
1
, M. Urbieta

2
,

G. Rossi
2,3

, J. A. Garcia-Garcia
1
, E. Robles Luna

2

1 IWT2 Group. University of Seville, Spain

mjescalona@us.es, julian.garcia@iwt2.org
2 LIFIA, Facultad de Informática, UNLP, La Plata, Argentina

 {murbieta, gustavo, esteban.robles}@lifia.info.unlp.edu.ar

3 Conicet

Abstract. Web requirements engineering is an essential phase in the software

project life cycle for the project results. This phase covers different activities

and tasks that in many situations, depending on the analyst’s experience or

intuition, help getting accurate specifications. One of these tasks is the

conciliation of requirements in projects with different groups of users. This

paper presents an approach for the systematic conciliation of requirements in

big projects dealing with a model-based approach. The paper presents a

possible implementation of the approach in the context of the NDT

(Navigational Development Techniques) Methodology and shows the empirical

evaluation in a real project by analyzing the improvements obtained with our

approach.

Keywords. Web requirements, Consistency, Contradiction

1 Introduction

Eliciting Web application requirements implies understanding the needs of different

stakeholders, those that are related to the same underlying enterprise business. Most

of the times, requirements are agreed by stakeholders in such a way that the semantics

and meanings of each term used are well understood. However if there are different

points of view of the same business concept [17], ambiguities and/or inconsistencies

may arise, becoming them detrimental to the Software Requirement Specification

(SRS). Traditionally, conciliation tasks are performed through meeting-based tools

[5], in order to eliminate requirements ambiguity and contradictions. Whenever

requirement inconsistencies are not detected on time (being this one of the most

severe reason of project cost overrun [18][34]), they may imply defects in the Web

software. In this context, the effort to correct the faults is several orders of magnitude

higher than correcting requirements at the early stages [22][18].

Besides, inconsistencies may also arise from new requirements, which introduce

new functionality or enhancements to the application or, even, from existing

requirements that change during the development process. For example, an online e-

commerce site may plan a promotion for Christmas, where some products have free

shipping for a period of time, whereas other products keep the standard shipping cost.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Servicio de Difusión de la Creación Intelectual

https://core.ac.uk/display/328874680?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The user realizes the changes introduced by this new requirement through

promotional banners in different pages. It is noteworthy that the shipping cost

exception overrides and contradict the existing “shipping” requirement by introducing

some ambiguities: what products have the free shipping promotion? In which way

users are notified about the promotion? How long will the promotion be available?

During the last years, we have been studying different strategies to capture Web

software requirements. Specifically, we have developed WebSpec [33], a domain

specific language for capturing interaction and navigation requirements in Web

applications. Similarity to other approaches like Molic [6] and WebRE [10], it

provides primitives for describing inputs, outputs, navigations or interface transitions,

among others, by helping to describe the main application concerns in a more

accurate way.

As an initial work, we defined a model-based validation and inconsistency

detection technique for Web application requirements, which was incorporated in

WebSpec [30]. In this paper we adapt the approach to the practical environment of

NDT (Navigational Development Techniques) [8]. NDT is a Web methodology

mainly focused on requirements. Currently, this methodology has been and is being

used in many projects

The paper has these aims: firstly, the incorporation of our requirements systematic

validation in NDT; second the description of an empiric experiment to measure, in a

real project developed with this methodology, how the inclusion of our approach in

NDT can improve project results. This work opens new lines to extend our research to

the enterprise environment.

The rest of this paper is structured as follows. Section 2 presents the problem

which has been our catalyst to carry out this research (for this, we rely on a real

project) and our goals. Section 3 presents some related work in requirements

validation. Section 4 offers a global vision of NDT and a characterization of Web

requirement conflicts. Section 5 shows our approach for detecting inconsistencies and

dealing with them based on NDT by means of an illustrative example. Section 6

presents results of our experiment in a real project that was developed with NDT.

And, finally, Section 7 concludes by discussing the lessons learned, our main

conclusions and some further work on this subject.

2 Motivating Scenario: Mosaico Project

We summarize here which are the problems that our proposal aims to solve. To do

this, we rely on one of the large projects we have been involved: Mosaico [9]. This

project is a large project developed by the Regional Cultural Ministry of Andalusia

using NDT. This Web application is oriented towards managing and spreading out

each monument in the south area of Spain. It covers archaeological, architectural and

ethnological historic heritage. First, we will briefly introduce the system and then we

describe the original experience while gathering requirements. Finally, we present our

research objectives.

2.1 Mosaico Project

The Regional Cultural Ministry of Andalusia started to develop Mosaico in 2004. The

idea of this Web application was born from the need to manage all the information on

historic heritage in Andalusia. Before Mosaico, there were several systems in charge

of managing this information, what caused a lot of problems since the information

was distributed, disconnected and different users worked in different platforms.

Consequently, the growing need of managing and maintaining historic heritage

promoted a project like this. Mosaico was developed by two important companies and

it covered 5670 requirements, out of which 3253 were functional requirements.

Due to space restrictions, we will present the improvement our approach meant in

the requirement gathering step of a Mosaico’s module called Subject to registration.

2.2 Subject to registration: a Mosaico’s module

In this subsystem, Mosaico stores the functionality to manage the basic information of

each kind of monument or historical site that it supports. This module defines the

basic structure of each piece of information managed by Mosaico.

The requirements phase of this subsystem was executed during three months and

more than 60 end-users participated in this phase. The basic problem of this

subsystem can be summarized with this example: The Giralda. This Arabian tower

can be analysed under different points of view. An archaeologist, for example, will be

interested in a set of attributes of the tower different from those an architect will be

interested in.

This subsystem is complex because the different terminology used by each expert

makes difficult the analysis of requirements conflicts. For this reason, it was the

subsystem selected to present and to study our approach. We next analyse how the

requirements gathering phase of this subsystem was executed:

Step 1. Selecting experts. We first selected a group of 10 experts from 60 final

users. This group included people who worked in historic heritage research,

diffusion and management. We also included some other experts such as

archaeologists, architects, ethnologists and art historians.

Step 2. Brainstorming alone for presentation. Each specialist was required to

define the elements needed under his/her view and criteria.

Step 3. First conciliation. The requirements analyst group received each

proposal from each expert in a spreadsheet document with attributes grouped by

categories and typologies. Manually, they review each approach and decided to

organise historic monuments in three groups:

a. Immovable heritage, which included physical monuments, like The

Giralda.

b. Movable heritage, which grouped physical but movable monuments

such as historic pictures or statues.

c. Immaterial heritage, which grouped non-physical historic heritage,

for instance, the Flamenco.

Step 4. Second conciliation. After organising each proposal, a set of attributes

was defined for each group. They were sent to each expert and one week later we

started to work together to find out inconsistencies. We hold seven meetings of

three hours working in liaison to define the set of attributes for each kind of

historic heritage. During these meetings, we defined each attribute and those

which presented inconsistencies, for instance in terminology, were discussed.

Step 5. Brainstorming alone for presentation. After deciding which elements

were stored in each kind of heritage, experts were required to decide how this

information had to be presented to different end-users.

Step 6. Third conciliation. The requirements analyst group received each

proposal and, again by hand, tried to define a conciliated model. According to

them, attributes were grouped in different sets depending on their nature. In total,

seven different groups were defined. For instance, Basic information group, that

presented the essential data on historic heritage such as its name or the

description information group, which presents information that described the

monument, such as its short history or its historic style.

Step 7. Final Validation. The result of the third conciliation was presented to the

experts and, again, some meetings were celebrated. After eight meetings of two

hours, the model was closed.

The group of analysts that participated in this process was composed by three

experts: a project manager and two analysts.

We have no information about the number of hours dedicated by experts to this

process, although the complete number of hours required by the analyst group was

registered. The complete process took 34 work-days. During these days, the project

manager dedicated 20% of the time and analysts worked at 100%.

Table 1 presents the total result in hours, with an average of eight hours per day.

We calculated the cost of an hour according to the official cost used by the

Andalusian Government in 2005 [15], when this requirements phase was executed.

Role Dedication
Hours

per day

Total of

hours

Cost per

hour (€)

Total

cost (€)

Project manager 20 1,6 54,4 68,20 3.682,80

Analyst 1 100 8 272 51,16 13.915,62

Analyst 2 100 8 272 51,16 13.915,62

Table 1. Initial Cost

According to that, the total cost for the analyst group in this aspect was 31.513,84

€ (Euros).

Checking the dedication in each activity, the result was the as follows:

Task Project manager Analyst 1 Analyst 2

Meetings with users 37 37 35

First Conciliation 6 80 82

Third Conciliation 5 93 101

Documentation 4 47 42

Others 2,4 15 12

Table 2. Detailed cost by phases

2.3 Our Research Goals

In view of the results shown in Section 2.2, one can easily understand why the

requirements elicitation task is one of the most expensive tasks in the development

process. In addition, when a conciliation of requirements is necessary costs are

significantly increased.

The analyst group dedicated too much time to the first and third conciliations; it

supposed 367 hours for the analyst group, almost 61% of the work. It was only

executed by analysts, without experts, and it aimed at reaching a consensus on the

results obtained from different users. This pattern does not only appear in Mosaico. In

fact, for the complexity of this system, this problem is very relevant but the necessity

of requirements conciliation is crucial in software development.

 We aim at improving time and effort saving using a model-driven approach for

modelling requirements that will help requirement gathering tasks. In this work, we

will assess the use of the model-driven paradigm and the definition of a requirement

conciliation process that systematized requirements conciliation. We will study in

next sections how model-checking can help reducing required effort for detecting and

resolving conflicts that can be automated. In the following sections we analyse how

these activities can be improved.

3 Related Works

Both the analysis and detection of conflicts, errors and mistakes in the requirements

phase are the most critical tasks in Requirements Engineering [26]. Although there are

several approaches for requirements treatment, a global view presented in [11]

divides this phase in three main tasks: requirements capture, requirements definition

and requirements validation. The detection of conflicts is normally executed in the

last one. In [11] the authors surveyed the way in which Web Engineering approaches

treated these three phases and concluded that most approaches use classical

requirements techniques to deal with requirements. According to these techniques,

there are four main techniques for requirements validation: reviews, audits,

traceability matrix and prototypes; in the Web Engineering literature, requirements

validation is one of the less studied subjects. Besides, none of these techniques offers

a systematic detection of conflicts in requirements.

In the broad field of software engineering, [29] enriches this set of techniques

adding requirements test. It consists in the generation of early test cases derived from

requirements, which enables the early validation with users.

Several works related to requirements validation can also be mentioned in this

section, mainly, if we do not only focus on Web methodologies.

For instance, Leite [19] analyzes how relevant is a natural language in a systematic

way is so as to improve the communication with the user. In [20], the idea of reviews

based on requirements validation under different point of views is recommended. In

this sense, they introduce the concept of Viewpoint as a standing or mental position

used by an individual when examining or observing a universe of discourse and they

focus on the importance of assessing requirements under this different point of view.

Silva & Do Santos [28] propose the use of Petri Nets as a specific technique to

validate the consistency of requirements defined as use cases. This approach

generates Petri Nets from use cases and studies their consistency. It seems quite

interesting as it tries to normalize requirements validation with an important

constraint, since it is oriented to use cases described with a very specific notation.

This technique cannot be used, if any special extension of use cases operates or other

techniques to describe requirements are applied.

However, this literature is not specific focused on techniques to try to sure the

consistency of requirements.

In this sense, Katasonov and Sakkinen [16] integrate some of the most classical

requirements validation techniques to cover a wider concept: the requirements quality.

They highlight the importance of both, requirements validation and requirements

verification, to assure the quality of the requirements phase. With this aim, they

present a framework of different techniques to review requirements by incorporating

prototypes, requirements testing and reviews. They present a complete taxonomy for

this framework and explain how to apply their approach. However, the lack of a

practical evaluation hinders the application of their ideas.

In the Web Engineering field, the situation is not different. Despite some

methodologies improved their requirements phase in the last years, the study of the

requirements remains too “handcrafted” and non-systematized yet. Thus, recently,

some Web design approaches, such as WebML[4] and NDT[8], improved

requirements management by using the model-driven paradigm. Nevertheless, even

offering systematic (or even automatic) support for early testing, the detection of

inconsistencies in the specification of requirements still depends on the analysts’

experience and their capability to support the review with customers and users. A

thorough survey presented in [31] describes how each Web Engineering methodology

handles Web requirements specification. Most approaches depict requirements using

use cases documents based on informal textual descriptions without any support for

reasoning over the resultant documents. In this survey, NDT appears as a leading

methodology providing a requirement meta-model. In this paper, we show how this

meta-model will help saving time and effort by allowing reasoning on requirements

models.

Focusing only on the detection of conflicts, [3] presents an approach to detect

concerned conflicts. The authors propose using a Multiple Criteria Decision Making

method to support aspectual conflicts management in aspect-oriented requirements. It

results limited since it points out the treatment of aspect-oriented requirements and it

only deals with concerned conflicts.

In other phases of the life cycle, the conflict-detection process has been deeply

studied by the model-driven community mainly based on UML model conflicts. In [2]

the author proposes detecting conflicts in a twofold process: analysing syntactic

differences by raising candidate conflicts and understanding these differences from a

semantic view. In [32] an approach based reasoning on logic descriptor; UML models

are transformed into logic descriptor documents that are later processed by a first-

order logic engine in charge of reasoning.

In [27], Sardinha et al. present a tool for identifying conflict in aspect-oriented

requirements called EA-Analized that process Requirement Definition Language

(RDL) specifications. By classifying text using Naive Bayes learning method, it is

possible to detect conflict dependencies with high accuracy. Despite of this work, our

work infers over Web requirement model in order to detect conflicts. We believe both

Sardinha et al. and our works are complementary in the point of view that [27] helps

detecting FR and NFR conflicts and our work focuses on detecting navigation

ambiguities.

4 Background

4.1 A global vision of NDT

NDT is a model-driven Web engineering approach. Initially, NDT dealt with the
definition of a set of formal meta-models for the requirements and analysis phases. In
addition, NDT defined a set of derivation rules, stated with the standard QVT [25],
which generated the analysis models from requirements model.

Subsequently, the methodology was improved and nowadays, NDT defines a set
of meta-models for every phase of the lifecycle of software development: the
feasibility study phase, the requirements phase, the analysis phase, the design phase,
the implementation phase, the testing phase, and finally, the maintenance phase.
Besides, it states new transformation rules to systematically generate models (these
new models are known as basic models). These transformations are identified by the

stereotype «QVTTransformation». Figure 1 shows the first part of the NDT lifecycle.
After carrying out these transformations systematic, NDT allow analysts can carry

out transformations in order to enrich and complete this basic model. Transformations

are represented in Figure 1 through the stereotype «NDTSupport».

In the last years, NDT has evolved again and now, NDT offers a complete support

for the whole development life cycle; additionally, In the last year, it evolved to

support different types of life cycles such as sequential, iterative and agile processes.

For the sake of conciseness we will focus mostly on those aspects of NDT related

with requirements.

Fig. 1. First part of the NDT sequential lifecycle.

On the other hand, an important number of companies in Spain, such as Icosis1,

Everis2, Emasesa3, and some institutions such as the Andalusian Regional

Government, Emasesa and other, work with NDT and the associated tools for

software development. This is possible due to the fact that NDT is completely

supported by a set of tools, grouped in the NDT-Suite [23][13]. NDT-Suite works

on/with a UML-based tool named Enterprise Architect (EA) [7]. To select Enterprise

Architect did not result an easy task. In fact, a comparative study developed by our

research group and the Andalusian Regional Government concluded that this was the

tool that offered the best ranking in price/quality4. Furthermore, EA offers several

important advantages, such as the possibility of defining profiles or tools for

document management by drawing UML diagrams, for instance, which have been

very relevant to carry out our work.

NDT-Profile is the main tool of NDT-Suite. NDT-Profile is a specific UML-profile

for NDT developed by means of Enterprise Architect. NDT-Profile offers the chance

1 Icosis’s website is http://www.icosis.es
2 Everis’s website is http://www.everis.com/
3 Emasesa’s website is http://www.aguasdesevilla.com/
4 This study was written in Spanish. It was not published but can be asked in www.iwt2.org.

http://www.icosis.es/
http://www.everis.com/
http://www.aguasdesevilla.com/

of having all the artefacts defining NDT easy and quickly, as they are integrated

within the EA tool. Apart from this tool, NDT-Suite integrates the following main

tools:

 NDT-Quality. It is a tool for measuring automatically the quality using NDT

methodology. It checks both, the quality of using NDT methodology in each

phase of software life cycle and the quality of traceability of MDE rules of

NDT. It also provides a report in different formats describing the

inconsistencies appeared during the review.
 NDT-Driver is a tool that allows the application of QVT transformations in

NDT. For instance, in the requirements phase, NDT-Driver enables the

automatic generation of transformations presented in Figure 1.

In addition, NDT-Suite has more tools: NDT-Report, NDT-Glossary, NDT-

Checker and NDT-Counter. You can see the purpose of these tools on IWT2 website5.

In conclusion, NDT-Suite enables the definition and use of every process and task

supported by NDT and offers relevant resources to develop software projects in terms

of quality assurance, management and metrics.

Moreover, just as we have commented previously, NDT uses a set of meta-models

for each development phase (requirements, analysis, design, implementation,

construction, test and maintenance) in order to support each artefact defined in the

methodology. All concepts in every phase of NDT are meta-modelled and formally

related to other concepts by means of associations and/or OCL constraints [24], as it

is presented in [11]. In this paper, we focused on the NDT requirement meta-models,

which are presented in detail in the next section. NDT implements its meta-models

with a set of profiles represented in NDT-Profile in order to offer a mechanism to use

them.

4.2 Supporting RIA features with NDT

RIAs (Rich Internet Applications) have particular features like sophisticated

interactive behaviour, client-side feedback of “slow” operations and different kinds of

client-side behaviour depending on the occurrence on the events, among others. For

this reason, the NDT requirement meta-model was enriched with these concepts as

shown in Figure 2.

In NDT, the original packages, structure and behaviour, were kept to preserve the

mapping between the concepts present in NDT and its ancestors.

In the structure package each concept deals with the conceptual aspect of Web

requirements. Since RIA applications are specially focused on client-side behaviour,

we added the UIElement metaclass. Instances of this metaclass are: buttons, textfields,

images, checkboxes, etc

The behaviour package includes metaclasses to represent users’ interaction and

navigation. We extended the package with the RIAEvent metaclass that is important to

clarify different situations; for example, when the user places the mouse over an item

or when the user types something on a field. In this case, we differentiate between two

5 www.iwt2.org

different subclasses: those events originated with the keyboard (subclass

KeyboardEvent) and those originated with the mouse (subclass MouseEvent).

Fig. 2. NDT Requirement meta-model

Additionally, we include a new metaclass UIActivity which captures the actions

that the user can perform over an element in the user interface of the application

(relationship between UIActivity and UIElement). Instances of UIActivity are “click”,

“type keys”, and execution of one of the actions may produce many events, e.g. when

typing a key on a user interface element three events are fired, namely onpressdown,

onpresskey and onpressup. UIActivity are grouped in concrete scenarios, which are

defined as instances of the RIASpecification class.

4.3 Initial Hypothesis: Characterizing Requirements Conflicts in Web
Applications

During requirement specification, there may be cases where two or more scenarios

that reflect the same business logic differ subtly from each other producing an

inconsistency. When these inconsistencies are based on contradictory behaviours, we

are facing a requirements conflict [14]. Conflicts are characterized by differences in

objects’ features, logical (what is expected) or temporal (when it is expected) conflicts

between actions, or even difference of terminology that creates ambiguity.

In this analysis we will emphasize Web application navigation, as well as users’

interaction peculiarities that are not covered in the traditional characterization of

requirement conflicts [14]. Consequently, we provide an interpretation of each

conflict type on the Web application realm by means of simple but illustrative

examples.

(1) Structural conflicts: They stand for a difference in the data expected to be

presented on a Web page by different stakeholders. A stakeholder may demand a data

to be shown on a Web page that contradicts other stakeholder’s requirement. For

example, none of them expects a product content description just as a read-only label,

while another one may expect the content as a list of packaged items with an overall

description contradicting the first requirement.

(2) Navigational conflicts: They take place when two Web application

requirements may contradict the way in which links are traversed producing

navigational conflicts, e.g. having a single source node but two targets. The target

nodes are different, although the events that trigger the navigation and the context

restrictions are the same, which poses an ambiguity of such requirement.

(3) Semantic conflicts: They occur when the same real-world object is described

with different terms. This situation may generate a false negative in the conflict

detection process since a conflict may not be detected and new terms are introduced

into the system space thus increasing its complexity. As a consequence the same

domain object is modelled in two entities with different terminology.

5 Our approach for detecting requirements conflicts in NDT

We propose a five-step approach for detecting requirements conflicts when NDT is

used. Below, we explain each one of these steps together with some examples for

clarifying our method. The examples described are based on the Mosaico project (see

Section 2).

Requirement gathering

Conciliation process
[Confirmed conflict]

Semantic analysisStructural analysis of the web
requirements model

Requirement modeling/
refinement

[Semantically
equivallent]

[Pending requirements]

Automate steps

 Fig. 3. The overall process for detecting requirement conflicts.

The process is applied iteratively each time a new set of requirement rises. The

new incoming set of requirements is checked with each of the already consolidated

requirements of the system space. In Figure 3, those steps that can be implemented to

become automated are grouped in a dashed ellipse.

These steps could be integrated in different requirements meta-models. In [30] we

have applied it with WebSpec.

Step 1 and 2. Requirement Gathering and Requirement Modelling

We propose to combine classical capture requirements techniques such as interviews

or brainstorming (see [8]) for the requirements gathering; for the requirements

modelling, we propose NDT-Profile. When analysts have completed the requirements

catalogue represented in NDT-Profile, they should execute the next steps with the aim

of detecting requirements inconsistencies.

Step 3. Detecting Syntactic Differences

A candidate conflict arises when the set of syntactic differences among requirements

appear. These differences may appear as a consequence of: (i) the absence of an

element in one model that is present in the other; (ii) the usage of two different

artefacts for describing the same information; or (iii) a configuration difference in an

element such as the properties values of an artefact. This situation may arise when

two different stakeholders have different views of a single functionality, or when an

evolution requirement contradicts an original one.

Structural conflicts detection can be implemented by a comparative operation

between interactions, represented in NDT meta-model under VisualizationPrototype

metaclass (see Figure 2), in order to detect the absence of elements or elements

configurations differences. For instance, in Figure 4.a and 4.b, different mockups so

called Option A and Option B are illustrated for the same set of requirements of the

Mosaico project. These mockups are concrete instances of the VisualizationPrototype

metaclass generated by the tool NDT-Suite. They present the same necessity of

looking for concrete moveable heritage of a specific historical period by using the

artefact FR of NDT6, which represents a kind of interaction requirements. Option A

6 The original prototype of Mosaico contains more fields for searching. In this figure, we only

present a simple example to explain the approach.

was proposed by archaeologists and the Option B was proposed by art historians. For

archaeologists the grade of certainty of the date of the moveable heritage is essential

in the search because they mainly work with very old pieces, which are very difficult

to date. However, it is not so relevant for art historians because their work in pieces

that are more recent. Despite art historians use the grade of certainty as an attribute

for moveable heritage, it is not a relevant field for searching for them. However, for

art historians, they need to include the name of the author in the search, which is

completely irrelevant for the archaeologists.

FR-04A
diff= FR-04A – FR-04B =

{grade of certainty}

FR-04B
diff= FR-04B – FR-04A =

{author’s name}

Inconsistencies=
 FR-04A

diff +FR-04B
diff =

{grade of certainty, author’s

name }

Fig. 4.a. Mockup for

archaeologists - Option A

Fig. 4.b. Mockip for

historians - Option B

Fig. 4.c. Mockup

differences detection

algebra

Since NDT interaction requirements are defined with concrete artefacts that are

stored in this tool, we can apply set’s difference operations in order to detect

inconsistencies. In Option A of Figure 4.a, a Search for Moveable Heritage version

called FR-04
A
 includes name of the piece, date and grade of certainty, and a Search

Button. On Option B of Figure 4.b, a different version called FR-04
B

comprises a

name of the piece, date, author’s name and Search Button. In Figure 4.c, Algebra

section shows how these differences are detected by means of set’s difference

operation.

It can be noticed that for the comparative operation, two elements are equal if and

only if they have the same identifier, the same artefact type and compatible

configuration.

Outgoing navigations from a given node with identical triggering events but

different targets must be checked in order to detect navigational conflicts. The task is

pretty straightforward; since navigations are described by an artefact with a set of

context constraints and a set of actions that trigger them, the navigations for a given

interaction requirements must be compared to each other taking into account their

context constraints and set of actions. The main challenge of this procedure is to

check whether the sets of actions that correspond to navigations are semantically

equivalent, given that the actions can be syntactically different.

Bellow, we introduce an analysis process that helps avoiding false positives.

Step 4. Semantic Analysis

As the result of the structural analysis of models, a list of candidate conflicts is

reported; this list must be verified in order to detect false positives (i.e. conflicts that

actually are not conflicts since the compromised specifications describe the same

requirement). This issue has been already studied in [2] and [21] where models are

analyzed in order to expose their underlying goals. When the underlying goals they

are different, we are facing a confirmed conflict.

On the other hand, there are requirements that can be documented twice in

different NDT diagrams duplicating specifications and injuring requirement

traceability. These cases are also studied in this process.

We use an approach proposed in [1] which focuses on having an additional

semantic view of requirements that complements the existing syntactic view. For

achieving this, requirements models are downgraded in terms of abstraction,

obtaining a simplified model formed only by semantically simple elements.

This approach is twofold: a meta-model called semantic view, in this case it is

NDT requirement meta-model without those meta-model elements that give RIA

support, and a transformation from the source model to one that obeys the semantic

view.

For each detected conflict, the compromised models (the new and the stable one)

are transformed into a semantic view where the derived models are finally compared

syntactically. This approach avoids false positives because the semantically

equivalent constructions compositions are disambiguated.

As a semantic view, we will use a reduced NDT requirement meta-model based on

the meta-model shown in Figure 2 where no RIA behaviour is taken into account

and, on the contrary, it focuses on allowing modelling basic user-interaction aspects.

That is, the meta-model aims to provide a simplified view in which traditional

navigation and RIA interaction are abstracted in a more generic interaction concept.

The new model removes Event´s hierarchy, RIASpecification feature and Activity’s

hierarchy, but Browser class as well as any orphan relationship in the meta-model

arise out of removing classes.

Finally a model transformation must turn a NDT model into a semantic one in

order to provide a simpler understanding. In the transformation, a set of rules closely

related to the Web requirement meta-model used is applied on the input model

obtaining the semantic view.

Some of the rules for NDT meta-model comprised by the transformation are:

 Disabled SpecificFields that are presented in the VisualizationPrototypes

are translated to Labels. As disabled TextFields do not allows user inputs

these are replaced by simple Labels.

 target relation in VisualizationPrototypes are translated to Buttons. Links

and Buttons are usually used for describing an action triggering.

Therefore, this relation that expresses navigation is normalized to Buttons.

 RIASpecification are simplified into a single Browse. This rule makes the

diagram focus more on the data itself instead of the way in which it is

accessed. Finally, Activity specifications are removed.

If other Web requirement meta-model is used, a different set of rules must be

defined where each one must increase the abstraction level in such a way the intent of

the model is emphasized. For example, each disabled TextField is transformed to

Label widget. In [30] a specific set of rules was developed for WebSpec meta-model.

A syntactic conflict is raised from two different views of the same requirement:

one based on labels and links (Figure 5.a) and other based on disabled TextFields (no

input is allowed) with buttons (Figure 5.b).

In order to detect if the syntactic conflict is in fact a conflict, the semantic

transformation is applied over both requirement specifications. Both transformations

produce the same model that is formed by Labels and a Button. Thus, as both

semantic views are equal, there is not conflict at all.

The result of applying the transformation to both conflicted NDT diagrams is a pair

of normalized diagrams that must be syntactically compared in order to detect

differences.

Fig. 5.a. Navigation from a ImmovableHeritage to Monument

VisualizationPrototype based on Labels after clicking over a name item.

Fig. 5.b. Navigation from a ImmovableHeritage to Monument

VisualizationPrototype based on TextFields after clicking over a name item.

Let’s use standard UML models removing NDT enhancements and obtaining a

graph of objects that will be used for describing the technique. Figure 8 shows the

unique result of applying the transformation to the examples presented in Figure 6 and

Figure 7 where Phase and UIAction were normalized into the more abstract Activity,

and the Home link was removed because it is not referenced anymore.

Then a semantic conflict is detected because both models are semantically

equivalent; in our tool a warning is produced in order to choose one of both models.

Fig. 6. Specification of conventional navigation requirement.

Fig. 7. Interaction based on a RIA feature.

Fig. 8. Normalized diagram into Semantic view after transformation.

Step 5. Conciliation Process

So far, we have shown how to detect conflicts that must be resolved in order to keep

the requirements document sound and complete. Next we will introduce a set of

heuristics that helps resolving structural and navigation conflicts that have been

implemented as suggested refactoring.

Structural Conflicts

When facing structural conflicts, there are NDT artefacts that may differ in their type

or configuration. For example, an expected data can be realized as a read-only

interaction element such a Label and, in another stakeholder’s point of view, it may

be a writable data modelled in a TextField.

In cases where a given artefact is absent in a model but present in the other, we can

take an optimistic position understanding that the best solution is to include the

construction as an improvement when it is not present. This idea comes from the fact

that new requirements may improve others requirement´s functionality; therefore the

new requirement artefact may enrich an existing interaction.

On the other hand, the artefact type incompatibility demands a deeper analysis, if

the context of difference is considered:

 Read-write over Read-only widgets. It may happen that the structural

comparison exposes a contrast between read-only widget (or disabled

TextField) and a TextField. In this case, we choose the most flexible one:

use an enabled TextField allowing to show and edit data.

 Fixed data values range over wide values range. Two widgets may deal

with the same data but differ in the manipulated range; masked text inputs

and restricted set of options are examples. In this case, restrictive widget

such as Combobox, RadioButton or masked TextFields are prioritized over

less restrictive widgets.

 Container vs. atomic widgets: When having one VisualizationPrototype

specifying a Container that defines an aggregation of data against a non

container widget such as a TextField, Containers must be preserved

because they establish a detailed information structure specification.

These are instances of the SpecificField metaclass (see Figure 2).

Navigational Conflicts

Navigational conflicts express ambiguity in the way in which the Web application is

browsed, when two stakeholders express different navigation in a same context. This

situation is naturally resolved by enriching the scenario in such a way that the conflict

is dissolved by increasing the scenario detail. In NDT context, there are two strategies

available for disambiguating: either adding context constraints or extending the

scenario path; both increase the scenario detail.

As we have previously seen, different stakeholders may provide slightly different

specification for the same application goal. Nonetheless, there are scenarios that are

prone to face inconsistencies such as the presence of business objects hierarchies. At

the requirement elicitation stage, business objects hierarchies may not be clearly

detected and defined, and as a consequence, several structurally different business

objects are referenced with the same name.

Conciliation cycles are strictly related to the introduction of a new requirement in

the system. As it is shown in Figure 3, each time a new requirement is identified, it is

modelled, and later syntactically and semantically analyzed. When an inconsistency is

detected, it must be resolved, if possible, following the previously proposed

conciliation rules or by means of meetings with stakeholders for disambiguating the

situation. Once there are no more conflicts, the requirement analysis process can start

over again the analysis cycle for new requirements

The set of presented heuristic helps to easily modify a given model that tries to

resolve a conflict; nonetheless, it can introduce inconsistencies when the outcome of

chosen refactoring contradicts other requirement. In order to avoid any inconsistency,

model checking process only finishes when there are no conflicts. Additionally, when

there is no valid heuristic like this case, our approach suggests resolving conflict by

means of meetings with stakeholders.

6 Experimentation and Validation

This section enables the experimentation and validation of our approach. According

to the introduction presented in section 2, we executed an experiment to value the

suitability of our approach in the real environment of Mosaico.

6.1 Improving Mosaico with requirements conciliation

Our approach tries to reduce the effort required by analysis tasks; that is 367 hours of

dedication. The approach presented in Section 5 systematizes the detection of these

conflicts. For that, we are going to analyse how this approach could have improved

steps three and six, that is first and third conciliation, originally developed.

In order to carry out our experiment, we proposed two junior analysts to apply our

approach in the context of Mosaico. For this experiment, we followed the next steps

presented in Table 3 bellow.

1. We presented our analysts the approach of the conciliation approach,

detailing each step.

2. As we cannot replicate the requirements gathering and requirements

modelling, we provide them with the results of these phases, step 1 and 2,

introduced in the original requirements elicitation of Mosaico. Thus, they

started with the requirements modelled in NDT-Profile by each group of

users.

3. Starting with these requirements, they had to apply the first conciliation of

the process. This application is explained in detail in Section 6.1.1.

4. Expert analysts that participated in Mosaico requirements phase reviewed

this conciliation, simulating users’ review.

5. With the result of this review, we asked junior analysts to the third

execution of our approach, which is presented in detail in Section 6.1.2.

6. The results of this conciliation were reviewed again for analyst experts.

 Table 3. Experiment scenario

We measure the times of steps 3 and 5 of this scenario in order to have comparable

results with the original conciliation of Mosaico. Besides, we collected results of

reviews in steps 4 and 6 in order to compare the effectiveness of the application.

In the next sections, the first and third conciliation (steps 3 and 5 of the experiment

scenario) will be presented in detail.

6.1.1 First Conciliation

During this step the analyst group was mainly focused on detecting structural and

navigational conflicts. Each expert delivered the analyst group a set of prototypes,

developed by users with the set of attributes for each group of historic heritage. Each

group received more than 100 attributes and this provoked a high number of manual

checking.

This revision could have been improved by applying requirement consistency

checking in order to obtain, for instance, a structural conflict similar to the one

presented in Figure 4.

During the review, for instance, our junior analysts detected a structural problem

presented in Figures 9 and 10. These Figures offer prototypes developed by the

analyst group following archaeologists’ guidelines (Figure 9) with id VP-01
A
 and

artists’ guidelines (Figure 10) with VP-01
B
:

For archaeologist, the name of the authors is not relevant; authors of

archaeological sites are normally unknown. However, for artists it is a basic aspect.

The application of our approach in this phase could reduce the number of hours

executed to check structural consistencies. For that, we could calculate, for instance

for the previous example:

VP-01diff= VP-01A – VP-01B = {Activities, Authors, Copy of, Origin, Archaeological Context,

History of the place}

Fig. 9. Archaeological Prototype (VP-01

A
)

By means of our approach, the junior analysts detected 100% of inconsistencies

produced in Mosaico. Even, they detected some errors that in the original

requirements phase of Mosaico were not detected in the first review. In this sense, the

approach succeeded.

Despite we presented in Figures 9 and 10 a prototype, our junior analyst did not work

with them directly. It would produce a high cost for the manual review. The manual

comparison of these prototypes is not easy; in fact, our junior analysts prepared a list

with every prototype defined by the user and the attributes presented by them. This

list was generated directly from the data base of NDT-Profile. NDT-Profile stores

each artefact and element in an internal database. Thus, in fact, they compared a list

of artefacts and attributes. It made easier the manual review. This work with the

database directly is one of the mechanisms proposed in the conclusion as a future

work because this comparison could be automatic using directly the database.

6.1.2 Third Conciliation

In the third conciliation, we asked experts to explain how information should be

presented to the user, who can manage it and how an end-user could navigate

spreading out this information. In this case, conciliation was oriented towards

detecting navigational and semantic conflicts.

The junior analysts received the original set of visualization prototypes in NDT

developed by each expert stating how information will be presented.

Fig. 10. Artistic Prototype (VP-01

B
)

We could improve this phase if our approach is used to detect navigational and

semantic conflicts. For instance, reviewing the navigation, we offer our junior

analysts an initial prototype to the ethnological group based on prototypes developed

for artists (Figure 9). However, for them, information was not presented in the same

order. In fact, originally, they proposed a new set of attributes, represented by

activities, which group information on how the monument was or is used, as it is

presented in Figure 11.

Our analysts studied a total of 98 attributes, which were initially presented as three

proposals, one for each specialist, with the attribute grouping and names that each of

them selected. Again, they did not work with the visualization prototype directly, they

worked with the information in the database. In the experiment, as it is comment, all

syntactic and navigational inconsistencies were detected. However, the semantic

problems were not automatically detected.

For instance, at the beginning, ethnologist named activities as uses, whereas

archaeologists and artists referenced like activities. In our experiment, it was detected

as a syntactic error in the first conciliation. Nevertheless, it did not seem different to

the remainder differences.

Fig. 11. Ethnologic Prototype

6.3 Measuring the improvement

Mosaico is now an implanted system that it is being used by a high number of users.

For this reason, we cannot replicate the whole process. However, we could do our

experiment to measure the grade of efficiency and effectiveness reached when

applying it.

About the efficiency, the improvement was clear. In Table 4, we present hours

used by each junior analyst for the first and third conciliation (step 3 and 5 of the

scenario described in Table 3).

Task Analyst 1 Analyst 2

First conciliation 16 hours 19 hours

Third conciliation 22 hours 27 hours

Table 4. Detailed cost by phases

Obviously the improvement only can be noticed in this two phases. In the first

reduction, the time using the approach is reduced 78,4% and in the third conciliation,

it supposes 74,4%. This could have saved in the budget 6.497,32 € in the first

conciliation and 7.418,2 € in the third conciliation; this adds up 13.915,52 € (44% of

the budget). Obviously, these measures are only a simulation but they offer very

attractive results to continue with the incorporation of this approach in NDT.

 About the efficiency, the detection of the syntactic and navigation inconsistencies

was 100%; that is, our approach detected the same inconsistencies that the original

analysis did. However, with the semantic inconsistencies, the approach only detected

differences but not inconsistencies.

The performance difference can be argued with the fact of having a method that

ruled the experience. Originally, inconsistencies have been analyzed untidy that led

analysts to perform this task together with stakeholders. With the approach, most of

the work was organized and, although it was tedious to analyst as it will be discussed

next, the whole process was controlled and effective.

Additionally, because the lack of a case tool for this approach, analysts leaned on a

spreadsheet derived from Enterprise Architect tool. This document stored different

data structure obtained in requirement analysis. Using the embedded spreadsheet

query engine, it was implemented the most important set of operations (described in

section 5) needed to automate analysis tasks. This simple resource ease with the

method already described decreased the effort and time spent originally.

6.4 Analysts’ review

Obviously, the advantages in the cost described in Table 4 are quite encouraging.

However, in the application of our approach, our junior analysts detected some

relevant problems:

1. The manual application of the approach is completely a crazy. In fact, they

have to check every prototype manually and quoting their words “It is a

very tired and bored task”. Even, using the list of attributes generated from

the database, this work is impossible to be executed by hand.

2. The concept of meta-models profiles is in fact very complex for them. They

recognized that they used the approach without understanding these

concepts and only following the process.

3. They highlight that the application of the approach is quite complex and

they think that it could be difficult to be applied with users.

Nevertheless, they also stand out that the approach guides them to establish an

objective and structured way to review requirements. Even though they do not have

too much experience; they recognize that they feel targeted and coordinated.

7 Concluding Remarks and Further Work

The requirements phase is one of the most relevant phases in the life cycle of a

software project. With the increase of complexity of applications, this phase acquires

a more relevant role. In Web application, where new characteristics like RIA aspects

are incorporated, the situation is similar or even more complex.

One important aspect in this phase, mainly in big projects, is the conciliation of

requirements. When there are different final users and different set of requirements,

they have been merged in order to obtain conciliate requirements to initiate the system

development of the system. However, this task frequently depends on the analyst’s

experience or is done manually, without a specific a normalized support to develop it.

In this paper, we present the application of a general model-driven approach for the

systematic detection of requirements inconsistencies that was initially presented in

[30]. This approach is adapted and extended to improve the NDT methodology. The

paper presents how with the use of meta-models the initial approach can be adapted to

a concrete methodological environment and illustrates it with a real example

measuring the improvement that could offer with an empirical example named

Mosaico that originally was conciliated by hand without the use of any mechanism to

check it.

Results obtained after applying this approach in a project like of Mosacio, open a

very attractive line for our research works. As NDT is applied in a high number of

companies, our next step is the inclusion of this approach in NDT-Suite, particularly

in NDT-Quality. This implementation will improve NDT-Quality. We want to test the

implementation in a complementary set of real projects to try to measure, in an

objective way, the number of consistencies that are detected. This work will be made

with companies and analyst groups that use NDT for Web software development.

The analysts’ review pointed out in section 6.4 the need of a CASE tool with a

real-time validation that checks inconsistencies as analysts model requirements.

Therefore, we will work on an Enterprise Architect plug-in that helps with conflict

detection and conciliation tasks. This solution will be based in the comparison of

attributes stored in the database of NDT-Profile.

Besides, we are interested in the improvement of the set of heuristic to solve

conflicts in the semantic conciliation process. The automation of this phase could be

an important improvement because it consumes a high number of resources in Web

development. Additionally, we are completing the approach with a set of ontology

matching algorithms[12] in order to improve semantic conflicts detection.

Finally, catalogue of refactoring for recurrent conflicts can be specified. This will

help producing a formal knowledge basis for analysts and, once consolidated, each

refactoring can be automated in the CASE tool.

Acknowledgements

This research has been supported by the project QSimTest (TIN2007-67843-C06_03),
by the Tempros project (TIN2010-20057-C03-02) and by the project NDTQ-
Framework (TIC-5789) of the Junta de Andalucia, Spain.

References

[1] Altmanninger, K., Kotsis, G.: Towards Accurate Conflict Detection in a VCS for

Model Artifacts: A Comparison of Two Semantically Enhanced Approaches.

APCCM 2009:139-146 (2009).

[2] Altmanninger, K.: Models in Conflict - Towards a Semantically Enhanced Version

Control System for Models. MoDELS Workshops 2007:293-304 (2007).

[3] Brito, I. S., Vieira, F., Moreira, A., Ribeiro, R. A.: Handling conflicts in aspectual

requirements compositions. In Transactions on aspect-oriented software development

III, LNCS, Vol. 4620. Springer-Verlag, Berlin, Heidelberg 144-166 (2007).
[4] Ceri, S., Fraternali, P., Bongio, A., Brambilla, M., Comai, S., Matera, M.. Designing

Data-Intensive Web Applications. Morgan Kaufmann Publishers Inc., San Francisco,

CA, USA (2002).
[5] De Lucia, A., Qusef, A.: Requirements Engineering in Agile Software Development.

In Journal of Emerging Technologies in Web Intelligence, Vol. 2, No 3 (2010), 212-

220 (2010).

[6] de Paula, M. G., da Silva, B. S., Barbosa, S. D.: Using an interaction model as a

resource for communication in design. In CHI '05 Extended Abstracts on Human

Factors in Computing Systems, pp 1713-1716, Portland, USA, April 02-07 (2005).
[7] Enterprise Architect 9.0. Available in www.sparxsystems.com.au. Accessed in April

2012.

[8] Escalona, M.J., Aragón, G. NDT: A Model-Driven Approach for Web requirements,

IEEE Transactions on Software Engineering. Vol. 34. Nº 3. pp 370-390 (2008).

[9] Escalona, M.J., Equipo de Coordinación. Mosaico. El sistema de Información para la

Gestión del Patrimonio Histórico Andaluz. Proceedings of XI International Congress

on Project Engineering. (2007)

[10] Escalona, M.J., Koch, N.: Metamodeling Requirements of Web Systems. In Proc.

International Conference on Web Information System and Technologies (WEBIST

2006), INSTICC, 310--317, Setubal, Portugal (2006).

[11] Escalona, M.J., Koch, N.: Requirements Engineering for Web Applications: A

Survey. Journal of Web Engineering. Vol. II. Nº2. pp. 193-212 (2004).

[12] Euzenat, J., Shvaiko, P.: Ontology Matching. Springer, 1 edition, ISBN: 978-

3540496113 (2007).

[13] García-García J. A., Alba M., García-Borgoñon L., Escalona M. J.: NDT-Suite: A

Model-Based Suite for the Application of NDT, LNCS 7387, M. Brambilla, T.

Tokuda, and R. Tolksdorf (Eds.): ICWE 2012, LNCS 7387, pp. 469–472, (2012)

[14] IEEE Recommended Practice for Software Requirements Specifications. IEEE Std

830-1998 (1998).

[15] Junta de Andalucia. Consejería de Empleo. Dirección General de Trabajo y

Seguridad Social. Pliego de prescripciones técnicas para la contratación del análisis y

http://www.sparxsystems.com.au/

diseño de un sistema de gestión integral de expedientes del centro de mediación,

arbitraje y conciliación. pp. 10-11. (2005)

[16] Katasonov, A., Shakkien, M. Requirements Quality Control. A Unifying Framework.
Vol. 11. No. 1. Pp. 42-57. (2006).

[17] Kotonya, G.; Sommerville, I.: Requirements engineering with viewpoints. Software

Engineering Journal , vol.11, no.1, pp.5-18 (1996).

[18] Leffingwell, D.: Calculating the Return on Investment From More Effective

Requirements Management. AMERICAN PROGRAMMER, 1997, VOL 10;

NUMBER 4, pages 13-16 (1997).

[19] Leite, J.C.S.P., Eliciting Requirements Using a Natural Language Based Approach:
The Case of the Meeting Scheduler Problem. Monografias em Ciência da
ComputaÇao. No. 13. (1993).

[20] Leite, J.C.S.P., Requirements Validation through Viewpoint Resolution. IEEE
Transaction on Software Engineering. vol. 17, No.12. pp.1253-1269. 1991.

[21] Li, C., Ling, T. W.: OWL-Based Semantic Conflicts Detection and Resolution for

Data Interoperability. ER (Workshops) 2004:266-277 (2004).

[22] McConnell, S.: Rapid Development: Taming Wild Software Schedules. Microsoft

Press. ISBN 1-55615-900-5 (1996).

[23] NDT-Suite. Available in www.iwt2.org. Accessed in April 2012.

[24] Object Management Group, Object Constraint Language, Version 2.2,

http://www.omg.org/spec/OCL/2.2/. Accessed in April 2012.

[25] Query/View/Transformation. Available in www.omg.org/spec/QVT/1.1/. Release
1.1. 2011. Accessed in April 2012.

[26] Robles, E., Garrigós, I., Grigera, J., Winckler, M.: Capture and Evolution of Web

Requirements Using WebSpec. ICWE 2010:173-188 (2010).

[27] Sardinha A., Chitchyan R., Weston N., Greenwood P., Awais Rashid: EA-Analyzer:

Automating Conflict Detection in Aspect-Oriented Requirements. ASE 2009: 530-

534, (2009).

[28] Silva, J.R., dos Santos, E.A., Applying Petri Nets to requirements validation. ABCM

Symposium. Series in Mechatronics. Vol 1. pp. 508-517. (2004).

[29] Sommerville, I.: Software Engineering. Addisson Wesley (2002).

[30] Urbieta, M., Escalona, M.J., Robles-Luna, E., Rossi, G. Detecting Conflicts and

Inconsistencies in Web Application Requirements. ICWE 2011 Workshops. Lecture

Notes in Computer Science 7059, pp. 278–288 (2011).

[31] Valderas P., Pelechano V.: A Survey of Requirements Specification in Model-Driven

Development of Web Applications. TWEB 5(2):10 (2011)

[32] Van Der Straeten, R., Mens, T., Simmonds, J., Jonckers, V.: Using Description Logic

to Maintain Consistency between UML Models. UML 2003:326-340 (2003).

[33] WebSpec Language, http://code.google.com/p/webspec-language/. Accessed in
April 2012.

[34] Yang, D., Wang, Q., Li, M., Yang, Y., Ye, K., Du, J.: A survey on software cost
estimation in the chinese software industry. ESEM 2008:253-262 (2008).

http://www.iwt2.org/
http://www.omg.org/spec/OCL/2.2/
http://code.google.com/p/webspec-language/

	M.J. Escalona1, M. Urbieta2,
	G. Rossi2,3, J. A. Garcia-Garcia1, E. Robles Luna2
	1 Introduction
	2 Motivating Scenario: Mosaico Project
	2.1 Mosaico Project
	2.2 Subject to registration: a Mosaico’s module
	2.3 Our Research Goals

	3 Related Works
	4 Background
	4.1 A global vision of NDT

	Fig. 1. First part of the NDT sequential lifecycle.
	4.2 Supporting RIA features with NDT
	Fig. 2. NDT Requirement meta-model
	4.3 Initial Hypothesis: Characterizing Requirements Conflicts in Web Applications
	5 Our approach for detecting requirements conflicts in NDT
	Step 1 and 2. Requirement Gathering and Requirement Modelling
	Step 3. Detecting Syntactic Differences
	Step 4. Semantic Analysis
	Fig. 8. Normalized diagram into Semantic view after transformation.
	Step 5. Conciliation Process
	6.1 Improving Mosaico with requirements conciliation

	6.1.1 First Conciliation
	Fig. 9. Archaeological Prototype (VP-01A)
	6.1.2 Third Conciliation
	Fig. 10. Artistic Prototype (VP-01B)
	Fig. 11. Ethnologic Prototype
	6.3 Measuring the improvement
	6.4 Analysts’ review

	References

