
RESEARCH ARTICLE

Deep learning for EEG-based Motor Imagery

classification: Accuracy-cost trade-off

Javier LeónID
1*, Juan José Escobar1, Andrés Ortiz2, Julio Ortega1, Jesús GonzálezID

1,

Pedro Martı́n-Smith1, John Q. Gan3, Miguel Damas1

1 Department of Computer Architecture and Technology, University of Granada, Granada, Spain,

2 Department of Communications Engineering, University of Málaga, Málaga, Spain, 3 School of Computer

Science and Electronic Engineering, University of Essex, Colchester, United Kingdom

* jaleon@correo.ugr.es

Abstract

Electroencephalography (EEG) datasets are often small and high dimensional, owing to

cumbersome recording processes. In these conditions, powerful machine learning tech-

niques are essential to deal with the large amount of information and overcome the curse of

dimensionality. Artificial Neural Networks (ANNs) have achieved promising performance in

EEG-based Brain-Computer Interface (BCI) applications, but they involve computationally

intensive training algorithms and hyperparameter optimization methods. Thus, an aware-

ness of the quality-cost trade-off, although usually overlooked, is highly beneficial. In this

paper, we apply a hyperparameter optimization procedure based on Genetic Algorithms to

Convolutional Neural Networks (CNNs), Feed-Forward Neural Networks (FFNNs), and

Recurrent Neural Networks (RNNs), all of them purposely shallow. We compare their rela-

tive quality and energy-time cost, but we also analyze the variability in the structural com-

plexity of networks of the same type with similar accuracies. The experimental results show

that the optimization procedure improves accuracy in all models, and that CNN models with

only one hidden convolutional layer can equal or slightly outperform a 6-layer Deep Belief

Network. FFNN and RNN were not able to reach the same quality, although the cost was

significantly lower. The results also highlight the fact that size within the same type of net-

work is not necessarily correlated with accuracy, as smaller models can and do match, or

even surpass, bigger ones in performance. In this regard, overfitting is likely a contributing

factor since deep learning approaches struggle with limited training examples.

1 Introduction

Over the last decades, computational power has experienced significant increases thanks to a

wide array of new technologies and computing paradigms. As a result, many problems can

now be tackled and many lines of research have appeared with the advances in other fields. In

particular, bioinformatics attempts to understand biological data through computer science,

mathematics, and statistics. Applications to gene expression analysis [1–3] or brain activity

analysis are popular examples.

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0234178 June 11, 2020 1 / 30

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: León J, Escobar JJ, Ortiz A, Ortega J,

González J, Martı́n-Smith P, et al. (2020) Deep

learning for EEG-based Motor Imagery

classification: Accuracy-cost trade-off. PLoS ONE

15(6): e0234178. https://doi.org/10.1371/journal.

pone.0234178

Editor: Ruxandra Stoean, University of Craiova,

ROMANIA

Received: December 30, 2019

Accepted: May 13, 2020

Published: June 11, 2020

Peer Review History: PLOS recognizes the

benefits of transparency in the peer review

process; therefore, we enable the publication of

all of the content of peer review and author

responses alongside final, published articles. The

editorial history of this article is available here:

https://doi.org/10.1371/journal.pone.0234178

Copyright: © 2020 León et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant datasets

are available in the paper and its Supporting

Information files, and under the following URL:

http://orcid.org/0000-0003-4698-1089
http://orcid.org/0000-0002-0415-1821
https://doi.org/10.1371/journal.pone.0234178
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0234178&domain=pdf&date_stamp=2020-06-11
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0234178&domain=pdf&date_stamp=2020-06-11
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0234178&domain=pdf&date_stamp=2020-06-11
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0234178&domain=pdf&date_stamp=2020-06-11
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0234178&domain=pdf&date_stamp=2020-06-11
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0234178&domain=pdf&date_stamp=2020-06-11
https://doi.org/10.1371/journal.pone.0234178
https://doi.org/10.1371/journal.pone.0234178
https://doi.org/10.1371/journal.pone.0234178
http://creativecommons.org/licenses/by/4.0/


Brain activity can be recorded and analyzed in several ways through Brain-Computer Inter-

faces (BCIs). BCI paradigms can be divided into three categories: invasive, partially invasive,

and non-invasive. Invasive procedures like visual [4, 5] or motor [6] implants are the most

powerful, but they also carry many risks derived from surgery such as scar tissue, infections, or

rejection. On the other hand, non-invasive procedures such as Electroencephalography (EEG)

or Functional Magnetic Resonance Imaging (fMRI) can aid medical diagnosis [7] and research

[8], and also tackle real-world problems [9]. Electrocorticography (ECoG) [10, 11] represents a

partially invasive middle ground, where surgery is still needed but only to place devices on the

surface of the brain.

EEG analysis is the focus of this paper. To record brain activity, slight voltage changes in

the brain are measured with a set of electrodes placed on the scalp. Although as a non-invasive

method it has poor spatial resolution (it is hard to locate the area that originated the activity),

its high sampling rate provides high temporal resolution. Flexibility and ease of use are its

main advantages over the other alternatives. However, it still presents some challenges that can

be faced with the help of machine learning. EEG, like many other biological sources of data, is

known for producing samples with a high dimensionality, i.e., a large number of features.

Moreover, observations are in turn scarce, often due to the cost of data acquisition. In this

case, for each recording session, subjects are often asked to perform certain actions in order to

obtain new data. Repeating this process many times involves a considerable inconvenience for

both researchers and participants.

Derived from this type of data, the curse of dimensionality problem [12] is usually present,

as the features vastly outnumber the observations. In the particular case of this work, machine

learning algorithms may lose ability to generalize knowledge. A possible solution is Feature

Selection (FS), which brings several benefits: noise and redundancy removal, reduced compu-

tational costs, and improved classification accuracy.

FS is often highlighted in the existing literature on BCI applications [13], citing its impor-

tance in real-time performance or the understanding of the brain, among other benefits. How-

ever, FS is an NP-hard problem [14], which renders brute-force approaches unfeasible due to

the size of the search space. The three main types of alternative methods are filter, wrapper and

embedded [15]. Filter methods measure the relationship between features and the dependent

class variable. Wrapper methods evaluate the performance of a classifier using different feature

subsets. Embedded methods integrate FS into the classifier. The advantage of filters lies in

their lower computational complexity, whereas wrapper and embedded approaches frequently

achieve better results. In this paper, a wrapper method based on a Genetic Algorithm (GA) is

employed. GAs are popular for BCI tasks, be it for FS [16–18] or other purposes [19].

Neural networks are a promising alternative to address the complexity of BCI data, since

they are universal approximators and thus they can represent a wide variety of continuous

functions. Besides standard Feed-Forward Neural Networks (FFNNs), which are the simplest

kind of neural network in terms of structural design, there is growing interest in architectures

that are able to leverage context. Convolutional Neural Networks (CNNs) extract local patterns

through the convolution operator, and have been successfully applied to EEG signals [20, 21].

Recurrent Neural Networks (RNNs) [22, 23], which are not as widespread as CNNs yet, can

dynamically store context to improve processing of individual bits of data.

In EEG-based Motor Imagery (MI), many machine learning algorithms and feature extrac-

tion methods have been studied to try to overcome the limitations of small dataset and poor

signal-to-noise ratios. The Support Vector Machine (SVM), despite its age, can still produce

promising results when paired with the right features: in [24], mutual information is calculated

from Common Spatial Pattern (CSP) features to select optimal frequency bands, and

dimensionality is further reduced by means of Linear Discriminant Analysis (LDA) before

PLOS ONE Deep learning for EEG-based Motor Imagery: Accuracy-cost trade-off

PLOS ONE | https://doi.org/10.1371/journal.pone.0234178 June 11, 2020 2 / 30

(https://atcproyectos.ugr.es/hpeecobe/index.php?

menu=deliverables).

Funding: Javier León, Julio Ortega, Jesús

González, Miguel Damas, Pedro Martı́n-Smith,

Juan José Escobar Pérez: Grant number PGC2018-

098813-B-C31 (Spanish Ministerio de Ciencia,

Innovación y Universidades, http://www.ciencia.

gob.es/portal/site/MICINN/) Andrés Ortiz: Grant

numbers PGC2018-098813-B-C32 and PSI2015-

65848-R (Spanish Ministerio de Ciencia,

Innovación y Universidades, http://www.ciencia.

gob.es/portal/site/MICINN/) The funders had no

role in study design, data collection and analysis,

decision to publish, or preparation of the

manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0234178
https://atcproyectos.ugr.es/hpeecobe/index.php?menu=deliverables
https://atcproyectos.ugr.es/hpeecobe/index.php?menu=deliverables
http://www.ciencia.gob.es/portal/site/MICINN/)
http://www.ciencia.gob.es/portal/site/MICINN/)
http://www.ciencia.gob.es/portal/site/MICINN/)
http://www.ciencia.gob.es/portal/site/MICINN/)


finally classifying the patterns with SVM; in a later study [25], the same authors use LDA for

spatial filtering and a Long Short-Term Memory (LSTM) network for temporal filtering before

classifying again with SVM. Alternative approaches to classic machine learning also exist, such

as classification by Riemannian geometry [26] or by a residual norm-based strategy [27].

Deep learning-based proposals have also become fairly common in the last few years. A

4-layer FFNN is the model of choice in [28], where the authors successfully combine EEG sig-

nals with readings of hemodynamic responses to increase classification accuracy. LSTM,

which is a type of RNN, is used this time as a classifier in [23]. In the study, the EEG signals are

preprocessed to favor context extraction, which is what RNNs excel at. In [29], four different

CNNs with increasing depths are used to learn temporal and spatial features that are then

fused and fed to either a multi-layer perceptron or an autoencoder for classification. CNNs are

also explored in [30] in combination with FBCSP, a spatial filtering algorithm, and their own

approach to extract temporal features. In [31], a recurrent convolutional network (called

RCNN) is implemented to also leverage the ability of RNNs to store context, aside from a stan-

dard CNN model (called pCNN). The authors compare their proposals to two other CNNs

from the state-of-the-art, a shallow one and a deep one. The deep one is found to be as compet-

itive as their pCNN, but they make the case for pCNN by conducting a real-time experiment

where the deep CNN has a longer delay of roughly 2.5 seconds against 1.4 of pCNN. Indeed,

the feasibility of less complex networks can be worth exploring with the goals of real-time

responsiveness and cost-saving in mind. The trade-off between quality and its associated cost

is not usually given much relevance, as the search for reliable classification frameworks across

sessions and test subjects is already a daunting task.

In this paper, we analyze the performance of three types of neural networks (CNN, FFNN,

and RNN) after a GA-based hyperparameter optimization procedure. We compare the three

architectures among themselves and to previous work in terms of classification accuracy, but

we also place emphasis on energy and time consumption during training, which need to be

taken into account when creating a BCI framework but are often relegated to the background.

Moreover, since the experiments are repeated several times, we take a look at the variability of

network sizes within the same architecture to determine the relationship between complexity

and accuracy. In our previous work [32], we optimized and compared CNNs and SVMs. The

optimization process for CNN in [32] dealt only with learning hyperparameters, which is now

the second step of the method presented here. SVMs are not considered again, since the results

in [32] showed a substantial quality loss with respect to CNNs.

This paper is organized as follows: Section 2 describes the data; Section 3 explains the neural

network models, the genetic algorithm, the performance measurements, and the statistical

analysis; Section 4 contains the experimental results; finally, the conclusions can be found in

Section 5.

2 The datasets

The EEG datasets used to evaluate the proposed procedures were recorded in the BCI Labora-

tory at the University of Essex, UK, specifically collected for the purpose of the study reported

in [33]. This paper presents a continuous study aiming to improve the results of the above

paper. There were 12 healthy subjects recruited for the BCI experiment, aged from 24 to 50

(58% female, 50% naïve to BCI). Before the experiment, the subjects gave their written

informed consent using a form approved by the Ethics Committee of the University of Essex

and were paid for their participation. More details about this dataset can be found in [33].

The EEG data used here was generated by MI. In this paradigm, limb movement imagina-

tion produces a series of brief amplifications and attenuations: Event-Related

PLOS ONE Deep learning for EEG-based Motor Imagery: Accuracy-cost trade-off

PLOS ONE | https://doi.org/10.1371/journal.pone.0234178 June 11, 2020 3 / 30

https://doi.org/10.1371/journal.pone.0234178


Desynchronization (ERD) and Event-Related Synchronization (ERS), respectively. EEG trials

were recorded from 15 electrodes (see Fig 1) at a sampling rate of 256 Hz, and were used to

create patterns through the discrete wavelet transform, a type of Multiresolution Analysis

(MRA) [34], as seen in [33].

The signal obtained from each electrode was divided into consecutive and partially overlap-

ping segments (20 segments in total). MRA was performed for each segment with 6 wavelet

levels to produce sets of coefficients of two types, approximation and details, with decreasing

size in powers of two (128, 64, 32, 16, 8, and 4 coefficients for levels 6 to 1). Altogether, an EEG

pattern has 2 × S × E × L sets of coefficients, where S is the number of segments, E is the num-

ber of electrodes, and L is the number of wavelet levels. With the parameters already described,

S = 20, E = 15, and L = 6. This means 3, 600 sets of coefficients, and a total of 151, 200 coeffi-

cients. By computing the within-set variance, that number can be reduced to 3, 600 coefficients

[33]. The resulting patterns are also normalized between 0 and 1, and no missing values are

present in the dataset.

The amount of patterns for training and testing is 178, with each pattern containing 3, 600

features. Since the ratio between sample size and number of features is still far from ideal, the

Fig 1. Electrodes used in the recording process. Placement of the 15 electrodes according to the extension of the

International 10-20 system.

https://doi.org/10.1371/journal.pone.0234178.g001

PLOS ONE Deep learning for EEG-based Motor Imagery: Accuracy-cost trade-off

PLOS ONE | https://doi.org/10.1371/journal.pone.0234178 June 11, 2020 4 / 30

https://doi.org/10.1371/journal.pone.0234178.g001
https://doi.org/10.1371/journal.pone.0234178


classification could benefit from a further dimensionality reduction. In this regard, wrapper

and filter multi-objective evolutionary FS techniques were proposed in [16, 35].

Thus, the aim of this paper is the classification of EEG patterns into three classes that repre-

sent imagined left and right hand movements and imagined feet movement. Due to time con-

straints, three datasets with balanced classes, corresponding to the most promising three BCI

subjects (104, 107, and 110), will be used for the experiments. In addition to model accuracy,

emphasis is also placed on computational efficiency by measuring time and energy consump-

tion. More in-depth studies on the smart use of available computing devices applied to our

datasets can be found in [36, 37].

3 Methodology

In this section, the three types of neural networks considered in this paper are presented, along

with the genetic algorithm used in the optimization procedure. Afterwards, the quality mea-

sures and the statistical analysis are also described.

3.1 Feed-Forward Neural Networks

The Feed-Forward Neural Network (FFNN) [38] is the simplest kind of artificial neural net-

work. Loosely based on the human brain, it is composed of processing units called neurons

that are organized in three kinds of layers: input, output, and hidden layers. The input layer

contains as many units as the number of features in the data. The output layer has one neuron

for each possible data class (classification) or a single neuron (regression). The hidden layers

are inserted between the input and output layer.

The non-linear boundary approximation capabilities of the network are given by the con-

nections between neurons of adjacent layers. As the name implies, connections in FFNNs are

strictly one-way starting from the input layer, and the input values are successively trans-

formed by hidden layers until they reach the output layer (see Fig 2).

FFNNs are usually fully-connected. This means that, in principle, every neuron from a

given layer passes its output to every neuron of the next layer. The weights of the connections,

learned when the network is trained, dictate exactly how these interactions happen. For

instance, for the structure depicted in Fig 2, the total input of a certain neuron j in L2 (the

Fig 2. FFNN with one layer of each kind: Input, hidden, and output (bottom to top). Connections between neurons

are depicted with arrows, and every one of them has an associated weight.

https://doi.org/10.1371/journal.pone.0234178.g002

PLOS ONE Deep learning for EEG-based Motor Imagery: Accuracy-cost trade-off

PLOS ONE | https://doi.org/10.1371/journal.pone.0234178 June 11, 2020 5 / 30

https://doi.org/10.1371/journal.pone.0234178.g002
https://doi.org/10.1371/journal.pone.0234178


hidden layer) can be written as in Eq 1:

zj ¼
X

i2L1

wij � yi; ð1Þ

where yi is the output of the i-th neuron in L1. The output of a neuron is determined by a non-

linear function of its total input called the activation function. There are a number of activation

functions in the literature, of which some of the most common are (see also Fig 3):

• Hyperbolic tangent (TanH): a widely used function due to being bounded, which increases

training efficiency. However, its shape at both ends can be problematic for gradient compu-

tation in backpropagation.

• Rectifier Linear Unit (ReLU): it is defined by fact(x) = max(0, x). There is empirical evidence

to prove an improvement in training of deep networks with respect to the hyperbolic tangent

[39].

• Leaky ReLU: a variant of ReLU that tries to avoid the dying ReLU problem, where some neu-

rons could become perpetually inactive (always produce null outputs), by setting fact(x) =

0.01x when x� 0. The Parameterized ReLU [40] is a generalization.

• Exponential Linear Unit (ELU): a recent alternative to ReLU that replaces its negative part

with an exponential function [41].

The output yi of a neuron can then be defined as in Eq 2:

yi ¼ factðziÞ; ð2Þ

where fact is some activation function fixed before model training.

Learning is done via backpropagation [38], an algorithm used to compute weight updates

with respect to a loss function (usually, training error). In backpropagation, classification error

on the training set is calculated with the current configuration of the network. This error is

recursively propagated from the output layer to the input layer. Afterwards, the weights of the

network are updated by taking into account the output of each neuron and the error calculated

at each connection, so that error-inducing weights are corrected.

As a consequence of the complexity of neural networks, there are many hyperparameters

(parameters fixed before learning) to tune in order to maximize the quality of the final model.

The ones considered in this paper are the structure (optimized in the first step of our proce-

dure) and the learning rate, training epochs and dropout rate (optimized in the second step).

A brief definition of each one is provided below:

• Structure: it refers to the number of hidden layers and their corresponding widths (number

of neurons).

Fig 3. TanH, ReLU, Leaky ReLU, and ELU activation functions.

https://doi.org/10.1371/journal.pone.0234178.g003

PLOS ONE Deep learning for EEG-based Motor Imagery: Accuracy-cost trade-off

PLOS ONE | https://doi.org/10.1371/journal.pone.0234178 June 11, 2020 6 / 30

https://doi.org/10.1371/journal.pone.0234178.g003
https://doi.org/10.1371/journal.pone.0234178


• Learning rate: it represents the fraction of the measured error that is used to correct the

weights of the network (thus being between 0 and 1). Smaller values make the training

slower but more accurate, whereas larger values do the opposite. Finding a value that allows

a faster training without missing promising error minima is fundamental.

• Number of epochs: an epoch corresponds to one forward and one backward pass of the

training data through the network, in order to calculate its training error rate and adjust its

weights accordingly. Too few epochs cause underfitting, while too many cause overfitting, as

the number is proportional to the degree to which the class boundaries found by the network

resemble the training set.

• Dropout rate: dropout [42] is a technique where random neurons are disabled with a certain

probability p for each training example in a batch, and then the error calculations are aver-

aged. As a consequence, it is essentially a form of regularization [43] because, in practice, dif-

ferent independent sub-models with less predictive power than the whole network are

combined. Again, p (the dropout rate) needs to be tuned so that the final network neither

overfits nor underfits.

3.2 Convolutional Neural Networks

The Convolutional Neural Network (CNN) is driven by the convolution operator. Although it

also retains the layers found in FFNNs, fully-connected layers are no longer the main asset of

the network. The convolution operator (?) takes two functions and outputs a third one. The

one-dimensional discrete convolution, used in this paper, is defined in Eq 3:

H½i� ¼
X1

u¼� 1

F½u� � G½i � u�; ð3Þ

where H is the result of convolving F and G, written as F ? G, and i points to a discrete value.

Some properties of convolution are commutativity, associativity, and distributivity.

Nevertheless, a practical application to finite functions requires a finite convolution effect

range. For this purpose, a number called filter size in the context of CNN delimits the range of

the operation. Eq 4 shows the modified convolution with filter size k:

H½i� ¼
Xk

u¼� k

F½u� � G½i � u�; 8i 2 f1; . . . ; ng; ð4Þ

where n is the number of elements in G. When applied to CNNs, the two functions passed to

the convolution are interpreted as an input observation (G) and a filter (F) of a smaller size. An

example can be found in Fig 4.

Fig 4. 1-D convolution example. A filter of size 3 is iteratively convolved with each element of the input (top row) to

produce the output (bottom row). In this case, border values are discarded.

https://doi.org/10.1371/journal.pone.0234178.g004

PLOS ONE Deep learning for EEG-based Motor Imagery: Accuracy-cost trade-off

PLOS ONE | https://doi.org/10.1371/journal.pone.0234178 June 11, 2020 7 / 30

https://doi.org/10.1371/journal.pone.0234178.g004
https://doi.org/10.1371/journal.pone.0234178


The goal of the process is to produce a modified version of the observation by iteratively

sweeping the filter along its axes. Note that, since the center of the filter must be aligned with a

position of the observation, k must be an odd number. This also raises the issue of whether to

consider the border values or not. If they are discarded, the output is reduced in size, and oth-

erwise either some calculations must be ignored or performed with placeholder values.

The density of FFNNs often leads to overfitting to the training data. Conversely, CNNs are

sparser and more flexible. Through a series of chained convolution operations, the network

builds a hierarchy of information that is progressively transformed from detailed to abstract as

it goes through convolutional layers [38]. By using its own interpretation of the input data, the

model extracts basic pieces of knowledge and understands them in relation to each other.

Convolution, thus, brings along new types of hidden layers:

• Convolutional layer: it is composed of multiple filters or functions that are convolved with

an instance of the input data. The weights (values) of these filters are adjusted in the learning

process of the model. The number of filters and the separation between consecutive convolu-

tions along the input instance must be fixed before training.

• Pooling layer: it is a downsampling process whereby the original dimensions of the data are

reduced in size, usually through a summarizing operation such as the average or the maxi-

mum of neighboring values. Since the relative location of values is more important than

their absolute location, this reduction can be safely achieved. The range of application (filter

size) is a hyperparameter of the summarizing function.

Fig 5 depicts the structure of a CNN with a single convolutional layer before a fully-con-

nected output layer. Notice that the additional dimension created by stacking convolution

results must be flattened, as fully-connected layers are one-dimensional.

3.3 Recurrent Neural Networks

The Recurrent Neural Network (RNN) can be viewed as an extension of the FFNN that works

with variable-length inputs. This is made possible by a working memory in the form of a recur-

rent internal state. Therefore, it uses not only the information coming from each isolated value

but also the surrounding context.

The most basic form of RNN involves a loop that adds a variable amount of feedback from

previous values to the processing of subsequent ones. The loop can be unrolled as in Fig 6,

where xt is a value of the input vector, ot is the output of the unit that has a hidden state ht, and

cf is the context information carried forward through the different units.

Fig 5. 1-D CNN. Multiple filters are applied on a one-dimensional input, creating a two-dimensional stack of

convolution results. The data structure is transformed (flattened) before the fully-connected output layer.

https://doi.org/10.1371/journal.pone.0234178.g005

PLOS ONE Deep learning for EEG-based Motor Imagery: Accuracy-cost trade-off

PLOS ONE | https://doi.org/10.1371/journal.pone.0234178 June 11, 2020 8 / 30

https://doi.org/10.1371/journal.pone.0234178.g005
https://doi.org/10.1371/journal.pone.0234178


A simple recurrence scheme where cf (the context) is just ht−1 (the hidden state from the

previous unit) is described in Eqs 5 and 6, where θ represents the set of model parameters that

affect the calculations. Note that there are other schemes of recurrence, such as bi-directional

recurrence [44], but they are not relevant here.

ht ¼ f ðht� 1; xt; yÞ; ð5Þ

ot ¼ f ðht; yÞ; ð6Þ

which show that the output of the unit (that can be thought of as the activation function) is

obtained solely from its hidden state. The current hidden state is calculated by using both the

input and the hidden state from the previous unit. This mechanism allows the network to take

into consideration already-seen inputs.

However, this architecture suffers from learning issues: as context size requirements grow,

basic RNNs become unable to handle dependencies between inputs [45]. Two of the most

prominent types of recurrent units that were designed to solve this problem are the Long

Short-Term Memory (LSTM), first proposed in [46], and the more recent Gated Recurrent

Unit (GRU), introduced in [47]. Although GRU is usually faster, as demonstrated in [48],

whose notation is largely used from here on, LSTM is strictly more powerful.

LSTM units make use of five elements to tackle long-term dependencies:

• Input gate (Eq 7): it controls the extent to which new information is stored in the cell.

it ¼ slogðWixt þ Uiht� 1 þ biÞ: ð7Þ

• Forget gate (Eq 8): it decides which parts of the existing context must be forgotten based on

the current input. It was added to the LSTM architecture in [49].

ft ¼ slogðWfxt þ Uf ht� 1 þ bf Þ: ð8Þ

• Output gate (Eq 9): it controls the degree to which the input to the current unit and the cell

state are relevant to the output.

ot ¼ slogðWoxt þ Uoht� 1 þ boÞ: ð9Þ

• Cell state (Eq 10): it is where relevant contextual information is stored. As the contents do

not suffer substantial changes once stored, the network is able to keep track of important

details for a large number of time steps.

ct ¼ ft � ct� 1 þ it � tanh ðWcxt þ Ucht� 1 þ bcÞ: ð10Þ

Fig 6. Unrolled RNN loop. Input values are at the bottom. Output values are at the top. Recurrent units lie in the

middle, and are connected by a one-way context loop.

https://doi.org/10.1371/journal.pone.0234178.g006

PLOS ONE Deep learning for EEG-based Motor Imagery: Accuracy-cost trade-off

PLOS ONE | https://doi.org/10.1371/journal.pone.0234178 June 11, 2020 9 / 30

https://doi.org/10.1371/journal.pone.0234178.g006
https://doi.org/10.1371/journal.pone.0234178


• Hidden state (Eq 11): it is where the output of the LSTM is computed.

ht ¼ ot � tanh ðctÞ: ð11Þ

In Eqs 8, 9, 10 and 11, lowercase variables are vectors (with xt being the input vector of the

unit) and uppercase variables are weight matrices learned during training (W matrices contain

weights associated with the input and U matrices contain weights for the connections coming

from network units). σlog represents logistic sigmoid functions. The operator � is the Hada-

mard product (element-wise product).

The GRU is a simplified version of the LSTM. The cell element is no longer present, and

only two gates are required: the reset and update gates, shown in Eqs 12 and 13. The reset gate

determines how to combine the existing information with the new input, whereas the update

gate decides what parts of the context should be discarded. The output of the unit is given by

Eqs 14 and 15.

rt ¼ slogðWrxt þ Urht� 1 þ brÞ: ð12Þ

zt ¼ slogðWzxt þ Uzht� 1 þ bzÞ: ð13Þ

~ht ¼ tanh ðWhxt þ Uhðrt � ht� 1 þ bhÞ: ð14Þ

ht ¼ zt � ht� 1 þ ð1 � ztÞ � ~ht: ð15Þ

Fig 7 depicts the operations taking place inside LSTM and GRU units according to the

equations described above.

3.4 Genetic Algorithm for optimization

The Genetic Algorithm (GA) is an iterative search procedure that employs a population

of individuals that compete on the basis of some fitness measure that drives the survival of

the fittest. Through this mechanism, solutions to a problem evolve over a fixed number of

generations by producing new offspring that share some similarities with their parents.

More formally, the concepts illustrated in Fig 8 work together to form the structure of a GA.

The GA makes use of three sets of individuals. Solutions from the current generation are

stored in the population. The set of parents from which new offspring will be created is chosen

from the population. The set of offspring is combined in some way with the current population

to form the population of the next generation. The population of the first generation is often

filled (initialized) with random but valid solutions.

The selection operator uses the quality of the solutions to decide which are picked out from

the population as parents. Candidate selection is usually randomized, so that lower-quality

Fig 7. LSTM and GRU schemes. (a) Inside an LSTM unit. (b) Inside a GRU unit.

https://doi.org/10.1371/journal.pone.0234178.g007

PLOS ONE Deep learning for EEG-based Motor Imagery: Accuracy-cost trade-off

PLOS ONE | https://doi.org/10.1371/journal.pone.0234178 June 11, 2020 10 / 30

https://doi.org/10.1371/journal.pone.0234178.g007
https://doi.org/10.1371/journal.pone.0234178


solutions have a small chance to win too. This is a mechanism to avoid excessive convergence

to local optima. Selection operators are problem-agnostic, which means that they are indepen-

dent from problem representation, and the role in balancing exploitation of quality solutions

and exploration of alternatives has been extensively studied [50].

The crossover operator dictates the way parents, most commonly two, pass their informa-

tion to new offspring. The procedure involves some degree of randomness, but it places a

strong emphasis on the preservation of desirable traits. On the other hand, the mutation opera-

tor relies solely on stochastic calculations to cause unbiased changes with the purpose of intro-

ducing variability and innovation in the gene pool.

The replacement operator controls how the newly-created offspring are merged with the

current population. As opposed to the real world, population size in GAs is almost always

fixed, and consequently existing individuals may be replaced by newer, fitter ones. With regard

to the extent of the replacement, in a steady-state paradigm only a few offspring are generated,

while in a generational paradigm the whole population may be replaced by offspring. A bias

towards quality (elitism) can also be introduced, for example, by merging both sets of individ-

uals and performing a fitness-based ranking.

Individuals can encode the information of a valid solution to a problem in a variety of ways.

The encoding is problem-dependent, although it is common to have multiple options whose

pros and cons must be assessed. Some operators, like crossover and mutation, are in turn

dependent on the chosen encoding. The fitness of an individual is evaluated by one or more

fitness functions, which may check the quality of a solution in a direct or indirect way. The lat-

ter becomes essential when the computational cost of the former is prohibitive.

For more details on GAs, and on evolutionary algorithms in general, refer to [51].

Two different procedures are performed in this paper: FS and model optimization. FS is

done just once, and the sets of selected features are common for all models. Model optimiza-

tion consists of two sequential steps (structure optimization and learning optimization) that

tackle different hyperparameter sets. In total, three types of search are performed, each by a

GA specifically tailored to the task whose characteristics will be detailed in the experimental

setup section. An overview of the experimental procedure can be seen in Fig 9.

3.5 Performance evaluation

The classification accuracy of the models is evaluated according to two different performance

measures: cross-validation accuracy (to guide the optimization algorithms) and the Kappa

coefficient (to compare final models to each other):

Fig 8. Overview of a genetic algorithm. Blue boxes represent sets of individuals. Purple boxes represent operations.

https://doi.org/10.1371/journal.pone.0234178.g008

PLOS ONE Deep learning for EEG-based Motor Imagery: Accuracy-cost trade-off

PLOS ONE | https://doi.org/10.1371/journal.pone.0234178 June 11, 2020 11 / 30

https://doi.org/10.1371/journal.pone.0234178.g008
https://doi.org/10.1371/journal.pone.0234178


• Cross-validation accuracy: the training set is split into n sections, iteratively using n − 1 of

them for model training and leaving the remaining one out for testing. The final value is the

arithmetic mean of the n test accuracies. The range of possible values is [0, 1].

• Cohen’s Kappa accuracy [52]: similar to the test set accuracy, but also taking into account

the possibility of classifying correctly by chance. It is computed as:

k ¼
p0 � pc
1 � pc

; ð16Þ

where p0 is equivalent to the test set accuracy, and pc is the sum of the probabilities of ran-

dom agreement for all possible classes. Its values lie within the range [−1, 1].

3.6 Statistical analysis

The assessment of differences in performance between alternatives can benefit from statistical

analysis, as it allows for safer extrapolation. In the present paper, we make use of two statistical

approaches: Null Hypothesis Significance Testing (NHST) and Bayesian Testing.

Three alternatives (one for each type of neural network) will be involved in the final com-

parison. The general issue of whether there are any differences between the alternatives has to

be addressed before carrying out more specific, pairwise comparisons. For this purpose, the

non-parametric Friedman test [53, 54] will be employed.

If the Friedman test rejects the null hypothesis of equivalence (p< 0.05), post-hoc tests will

be performed to find pairwise differences. However, since it can be inconsistent in some cases

[55], we will use instead the Wilcoxon Signed-Rank test, as in [56]. Moreover, the Family-

Wise Error Rate (FWER) must be taken into account [57]. The FWER is the probability of

incorrectly rejecting the null hypothesis (type I error, or false positive) when carrying out mul-

tiple comparisons. A number of p-value corrections have been proposed to solve this problem,

among them the Holm method [58] used here. When applicable, adjusted p-values will be

reported in the experimental results section.

Fig 9. General scheme of the experiments. The parameters from the best individual in the first optimization step are

used in the second step.

https://doi.org/10.1371/journal.pone.0234178.g009

PLOS ONE Deep learning for EEG-based Motor Imagery: Accuracy-cost trade-off

PLOS ONE | https://doi.org/10.1371/journal.pone.0234178 June 11, 2020 12 / 30

https://doi.org/10.1371/journal.pone.0234178.g009
https://doi.org/10.1371/journal.pone.0234178


Nonetheless, NHST has several known shortcomings. For instance, it does not provide

probabilities for the tested hypotheses. Furthermore, as perfect equivalence is highly unlikely,

strict null hypotheses are always false in practice, which can detract from the interpretation of

the results. In addition, no conclusions can be drawn when NHST fails to reject the null

hypothesis, and even the threshold for the p-value is as customary as it is arbitrary. Lastly,

NHST does not directly answer the question of whether the experimental results show differ-

ences between alternatives, but rather the question of how likely the obtained results are

assuming that the null hypothesis is true. For these reasons (among others, all described in

[59]), we complement NHST with Bayesian Testing, which is able to overcome the aforemen-

tioned limitations.

The Bayesian Signed-Rank test is suitable for pairwise comparisons over multiple datasets

and will help to ascertain pairwise differences between alternatives. This test obtains the distri-

bution of a certain parameter z under the assumption that it is a Dirichlet distribution. Let A
and B be the sets of quality measurements of two algorithms. The distribution is calculated by

counting the occurrences in the available data of b − a> 0, b − a< 0, and b − a� 0, where a
and b are elements of A and B. The last one represents the Region of Practical Equivalence

(rope), which contains non-significant differences in the range [ropemin, ropemax]. The Dirich-

let distribution is built from these results, and is then sampled to obtain triplets of the form

shown in Eq 17:

½Pðz < ropeminÞ ¼ Pðb � a < 0Þ;Pðz 2 ropeÞ ¼ Pðb � a � 0Þ; Pðz > ropemaxÞ ¼ Pðb � a > 0Þ�: ð17Þ

Every triplet, if interpreted as barycentric coordinates, can be represented as a point con-

tained within the boundaries of an equilateral triangle. Each value of a triplet is associated with

a different vertex of the triangle. The location of the point described by a triplet is determined

as follows: for each of its three values in isolation, the distance between its associated vertex

and the point (in the direction of the opposing side) is proportional to the value. Thus, the

higher the value, the closer the point will be to that vertex. A heatmap can be created by doing

this for every sampled triplet. Since there are three possibilities for b − a (negative, positive,

and equivalent), each one is associated with one vertex (left, right, and top, respectively).

Broadly speaking, the heatmap can be interpreted as: the closer the point cloud is to a vertex,

the higher the probability of that option being true. The heatmap is the visual representation of

the probabilities calculated by the Bayesian test for the dominance of either algorithm and

their equivalence. Fig 10, which exemplifies this, shows a point cloud mostly within the upper

region and partly crossing into the lower right region, which means that a tie is expected in a

majority of cases, but otherwise the advantage is often for algorithm B.

4 Experimental results and discussion

The contents of this section are organized as follows: firstly, the experimental setup is

described, including software, hardware, and parameters for the GAs; secondly, the effects of

FS and the subsequent hyperparameter optimization procedure are discussed in a separate sec-

tion for each type of neural network (CNN, FFNN, and RNN); thirdly, the three optimized

alternatives are compared in terms of classification accuracy and energy-time cost.

4.1 Experimental setup

The code was written in Python 3.4.9. A number of state-of-the-art machine learning libraries

are available for this language, some of which are used here: Scikit-Learn 0.19.2 [60], NumPy
1.14.5 [61], and TensorFlow 1.10.1 [62] as a backend for Keras 2.2.2 [63]. The Friedman test

PLOS ONE Deep learning for EEG-based Motor Imagery: Accuracy-cost trade-off

PLOS ONE | https://doi.org/10.1371/journal.pone.0234178 June 11, 2020 13 / 30

https://doi.org/10.1371/journal.pone.0234178


and the Wilcoxon test are provided by the R library scmamp [64]. Bayesian tests are imple-

mented in the R library rNPBST [65].

The experiments were carried out on a four-node cluster, of which two nodes equipped

with an NVIDIA TITAN Xp GPU were used. The energy-time measurements were recorded

on Node 4, which has the following hardware specifications:

• Two Intel1 Xeon1 E5-2620 v4 @ 2.10 GHz: 16 cores/32 threads and a Thermal Design

Power (TDP) of 85W.

• NVIDIA TITAN Xp: 3, 840 CUDA cores, 12 GB of GDDR5X RAM memory, and a TDP of

250W.

As previously stated, GAs are used to perform three different searches: one in FS, and two

in the two-step hyperparameter optimization procedure (structure and learning). They have

some details in common: selection is done by binary tournament, replacement is elitist, and

fitness is evaluated by 5-fold cross-validation. Note that the model used in cross-validation to

evaluate the folds depends on the application. For FS, Logistic Regression is a very light model

that allows for many fitness evaluations, but the choice is free. On the contrary, for hyperpara-

meter optimization the only option is the particular type of neural network that is being opti-

mized. The genetic parameters that are specific to each application are presented below.

The encoding of the individuals in FS is straightforward: one binary value for each of the 3,

600 features, where 1 means the feature is active and 0 means inactive. This enables the use of

simple yet powerful operators: Uniform crossover, which ensures all common elements in the

parents are passed on to the offspring and randomly assigns the rest, and Bit-flip mutation,

which inverts a randomly chosen binary value. The first population is initialized by sampling

amounts of active features from a uniform distribution between 1 and 3, 600. See Table 1 for a

summary. Before performing any hyperparameter optimization procedure, the use of FS will

be discussed for each type of network by taking into account its properties.

The FS procedure is performed only once, and the selected features for each dataset are

common to any neural network that finally makes use of them. For dataset 104, 25 features

from a total of 3, 600 were selected. For datasets 107 and 110, 28 features were selected.

Fig 10. Example of heatmap from the Bayesian Signed-Rank test. The probabilities associated with the heatmap are:

P(b − a< 0) = 0.078, P(b − a> 0) = 0.382, and P(b − a� 0) = 0.540.

https://doi.org/10.1371/journal.pone.0234178.g010

PLOS ONE Deep learning for EEG-based Motor Imagery: Accuracy-cost trade-off

PLOS ONE | https://doi.org/10.1371/journal.pone.0234178 June 11, 2020 14 / 30

https://doi.org/10.1371/journal.pone.0234178.g010
https://doi.org/10.1371/journal.pone.0234178


The configuration of the GA for each step of the hyperparameter optimization procedure is

different for each type of network. However, to ensure a minimum degree of fairness, the

amount of individuals (40) and generations (10) is common. The method used to initialize the

first population is also common: the values are sampled from a normal distribution centered at

the middle of the allowed ranges.

The hyperparameters considered for CNN layers are filter size and number of filters

(width), while for FFNN and RNN layers only their width is tuned. The structures of CNN and

RNN will have fixed depth due to complexity and time constraints, and will have one hidden

layer (convolutional and GRU, respectively) whose parameters will be optimized. Moreover,

for the case of CNN, the ordering of a variable amount of heterogeneous layers, such as convo-

lutional and pooling, through crossover and mutation can prove cumbersome. FFNN, on the

other hand, is allowed to have up to two hidden layers (of uncapped width to preserve layer

size ratios found by the GA). Although the resulting networks will be shallow, the existing liter-

ature suggests that deeper networks are harder to calibrate with the often small EEG datasets

[13]. Finally, each alternative uses the same activation function throughout the experiments:

ReLU for CNN and RNN, and ELU for FFNN (we observed that FFNN got stuck in learning

with ReLU).

Given that CNN and RNN structures are encoded by fixed-size individuals, the genetic

operators can be similar to those applicable to real-coded optimization problems. The Single-

point crossover creates a cutoff point in both parents so that the offspring inherits the first part

from one parent and the second part from the other. The Gaussian mutation multiplies the

individual by a value sampled from a normal distribution centered at 1. The depth variability

of FFNN structures is reflected in the operators. In the Midpoint crossover, the offspring

inherits one half of the structure from each parent. In the Single-layer and scaling mutations, a

Gaussian modification is applied to one layer or the whole network, respectively. Table 2 con-

tains a summary of the parameter values.

Table 1. Summary of parameter values for the GA used in the FS procedure.

Parameter Value

Encoding Binary (one bit for each feature)

Population 1000 individuals

Generations 100 generations

Crossover Uniform

Mutation Bit-flip

Constraints Maximum of 30 features out of 3, 600

https://doi.org/10.1371/journal.pone.0234178.t001

Table 2. Summary of parameter values for the GA used in CNN, FFNN, and RNN structure optimization.

Parameter Value

CNN FFNN RNN

Encoding Real (fixed size) Real (variable size) Real (fixed size)

Population 40 individuals

Generations 10 generations

Crossover Single-point Midpoint Single-point

Mutation Gaussian Single-layer/scaling Gaussian

Constraints 250 filters, size 19 2 hidden layers 60 neurons per layer

https://doi.org/10.1371/journal.pone.0234178.t002

PLOS ONE Deep learning for EEG-based Motor Imagery: Accuracy-cost trade-off

PLOS ONE | https://doi.org/10.1371/journal.pone.0234178 June 11, 2020 15 / 30

https://doi.org/10.1371/journal.pone.0234178.t001
https://doi.org/10.1371/journal.pone.0234178.t002
https://doi.org/10.1371/journal.pone.0234178


The second optimization step is much more homogeneous than the first. The learning rate

and the number of epochs are tuned for all three types of networks, and the dropout rate is

also tuned for FFNN. The individuals are real-coded and fixed in size. Because of their similar-

ities with the previous step for CNN and RNN, the Single-point and Gaussian operators are

used again, with the only novelty being a Gaussian mutation specifically for the dropout rate

(when mutation is needed, one of the two options is chosen at random). The summary of this

step can be found in Table 3.

The structure constraints of CNN and RNN, which are the two most expensive alternatives,

have been set with a balance between freedom for the GA and feasibility in terms of computa-

tion times in mind. The limit on the amount of training epochs is the same across the 3 alter-

natives to make the comparison fairer, as it is a less architecture-specific hyperparameter. As a

final note, we highlight that the experimental results have been averaged over 15 executions.

4.2 CNN optimization

The design of the CNN allows it to perform implicit FS through the application of convolution

filters that find meaningful local patterns in the data. Intuitively, prior FS done by a different

algorithm could hinder the process by removing features that could be important in relation to

others. This could cancel any benefits brought by dimensionality reduction, such as a decrease

in overfitting. In particular, our FS procedure evaluates candidate feature subsets with Logistic

Regression, whose optimally informative features do not necessarily coincide with those of

CNN. To illustrate this, Table 4 compares average test-set Kappa values of 15 CNN models

trained using selected features (CNN + FS) and 15 CNN models using all features (CNN

+ noFS). As can be observed, CNN combined with FS appears to perform significantly worse.

In this case, the choice of not using FS seems reasonable (and is also supported by our previ-

ous paper [32]), since there could be a dramatic drop in quality. Hyperparameter optimization

is then performed on CNN with 3, 600 input features (CNN + noFS). Table 5 compares the

unoptimized results with the optimized results (CNN + noFS + OPT), again averaged over 15

executions. Fig 11 offers a visual comparison.

Table 3. Summary of parameter values for the GA used in CNN, FFNN, and RNN learning optimization.

Parameter Value

CNN FFNN RNN

Encoding Real (fixed size)

Population 40 individuals

Generations 10 generations

Crossover Single-point

Mutation Gaussian Gaussian/dropout Gaussian

Constraints 200 training epochs

https://doi.org/10.1371/journal.pone.0234178.t003

Table 4. Test-set Kappa for CNN with FS (CNN + FS) and without FS (CNN + noFS). SD: Standard Deviation. Trained with 60 epochs, learning rate of 0.1, one hidden

convolutional layer of 130 filters of size 5, and ReLU activation.

Subject CNN + noFS CNN + FS

Avg. ± SD Best Avg. ± SD Best

104 0.7096 ± 0.0130 0.7295 0.6210 ± 0.0098 0.6353

107 0.7099 ± 0.0125 0.7306 0.5414 ± 0.0114 0.5632

110 0.6185 ± 0.0170 0.6376 0.5606 ± 0.0180 0.5871

https://doi.org/10.1371/journal.pone.0234178.t004

PLOS ONE Deep learning for EEG-based Motor Imagery: Accuracy-cost trade-off

PLOS ONE | https://doi.org/10.1371/journal.pone.0234178 June 11, 2020 16 / 30

https://doi.org/10.1371/journal.pone.0234178.t003
https://doi.org/10.1371/journal.pone.0234178.t004
https://doi.org/10.1371/journal.pone.0234178


The original unoptimized CNN models without FS already offered decent performance for

datasets 104 and 107, but the optimized models offer an improvement of roughly 0.03 and 0.01

average points. The quality for dataset 110, while more modest, shows the biggest improve-

ment: roughly 0.035 average points. Peak Kappa values also exhibit marked increases in all

datasets.

4.3 FFNN optimization

Admittedly, networks with densely-connected sequences of layers as FFNN have considerable

function approximation power. Nevertheless, the amount of learnable parameters (one per

connection between two given neurons) can be inordinate for small datasets, as the network

becomes unable to ignore trivial details and suffers from overfitting. With 3, 600 features and

only 178 training examples in our datasets, this situation is foreseeable. Aside from establishing

preemptive size limits in the tuning procedure, FS can also be helpful in removing uninterest-

ing features. As can be seen in Table 6, where we compare 15 FFNNs using FS to 15 FFNNs

without using FS, reduced feature sets seem to alleviate overfitting on average. Moreover, qual-

ity appears to stabilize, according to the observed differences in standard deviation.

For the reasons discussed above, considering only selected features is probably the best

option in this case. In consequence, Table 7 and Fig 12 compare 15 FFNN + FS models to their

15 optimized counterparts (FFNN + FS + OPT). The results show notably superior test-set

Kappa values in favor of FFNN + FS + OPT: about 0.03, 0.04, and 0.035 average points for

datasets 104, 107, and 110, respectively. Peak values also show significant gains.

Table 5. Test-set Kappa for CNN with optimization (CNN + noFS + OPT) and without optimization (CNN + noFS). SD: Standard Deviation.

Subject CNN + noFS CNN + noFS + OPT

Avg. ± SD Best Avg. ± SD Best

104 0.7096 ± 0.0130 0.7295 0.7396 ± 0.0055 0.7546

107 0.7099 ± 0.0125 0.7306 0.7218 ± 0.0121 0.7392

110 0.6185 ± 0.0170 0.6376 0.6527 ± 0.0088 0.6713

https://doi.org/10.1371/journal.pone.0234178.t005

Fig 11. Test-set Kappa for CNN with and without optimization. Bars represent averages, points mean peak

performance, and lines delimit the range of the standard deviation.

https://doi.org/10.1371/journal.pone.0234178.g011

PLOS ONE Deep learning for EEG-based Motor Imagery: Accuracy-cost trade-off

PLOS ONE | https://doi.org/10.1371/journal.pone.0234178 June 11, 2020 17 / 30

https://doi.org/10.1371/journal.pone.0234178.t005
https://doi.org/10.1371/journal.pone.0234178.g011
https://doi.org/10.1371/journal.pone.0234178


4.4 RNN optimization

The effects of combining RNN with FS are not as clear as for CNN and FFNN. On one hand,

the ability of RNN to store context information could be impaired by external FS. On the other

hand, the use of 3, 600 features could greatly increase training time and risk of overfitting,

because each GRU unit performs several operations and the architecture of the network is still

fully-connected. Table 8, where the two alternatives are compared on two sets of 15 RNNs,

suggests that neither of them has a decisive advantage: each one is noticeably better in one

dataset, and both are approximately equivalent in the third. In light of this, it may be more

interesting to find out the potential quality of the faster alternative (FS). Therefore, hyperpara-

meter optimization will make use of the selected feature sets.

Table 9 and Fig 13 contain the comparison between unoptimized RNN (RNN + FS) and

optimized RNN (RNN + FS + OPT). The latter achieves improvements in average Kappa

Table 6. Test-set Kappa for FFNN with FS (FFNN + FS) and without FS (FFNN + noFS). SD: Standard Deviation. Trained with 60 epochs, learning rate of 0.1, one hid-

den fully-connected layer of size 100, and ELU activation.

Subject FFNN + noFS FFNN + FS

Avg. ± SD Best Avg. ± SD Best

104 0.4800 ± 0.1376 0.5870 0.6612 ± 0.0121 0.6784

107 0.3742 ± 0.1769 0.5777 0.5242 ± 0.0184 0.5467

110 0.3979 ± 0.2024 0.5783 0.5950 ± 0.0266 0.6379

https://doi.org/10.1371/journal.pone.0234178.t006

Table 7. Test-set Kappa for FFNN with optimization (FFNN + FS + OPT) and without optimization (FFNN + FS). SD: Standard Deviation.

Subject FFNN + FS FFNN + FS + OPT

Avg. ± SD Best Avg. ± SD Best

104 0.6612 ± 0.0121 0.6784 0.6901 ± 0.0147 0.7289

107 0.5242 ± 0.0184 0.5467 0.5630 ± 0.0107 0.5796

110 0.5950 ± 0.0266 0.6379 0.6299 ± 0.0109 0.6464

https://doi.org/10.1371/journal.pone.0234178.t007

Fig 12. Test-set Kappa for FFNN with and without optimization. Bars represent averages, points mean peak

performance, and lines delimit the range of the standard deviation.

https://doi.org/10.1371/journal.pone.0234178.g012

PLOS ONE Deep learning for EEG-based Motor Imagery: Accuracy-cost trade-off

PLOS ONE | https://doi.org/10.1371/journal.pone.0234178 June 11, 2020 18 / 30

https://doi.org/10.1371/journal.pone.0234178.t006
https://doi.org/10.1371/journal.pone.0234178.t007
https://doi.org/10.1371/journal.pone.0234178.g012
https://doi.org/10.1371/journal.pone.0234178


values of about 0.035, 0.045 in datasets 104 and 107, but most notably of nearly 0.1 in dataset

110 (where it severely lagged behind the other two alternatives).

4.5 Accuracy comparison

In the previous three sections, the results of the hyperparameter optimization procedure have

been analyzed within the context of each type of network. In this regard, the proposed proce-

dure has proven to be able to enhance the accuracy of the models. However, a comparison of

the three alternatives is mandatory, both in terms of accuracy and energy-time cost.

Table 10 and Fig 14 hold the test-set Kappa values obtained by each optimized alternative

in their corresponding sections. CNN is superior to FFNN and RNN in all datasets, and

Table 8. Test-set Kappa for RNN with FS (RNN + FS) and without FS (RNN + noFS). SD: Standard Deviation. Trained with 60 epochs, learning rate of 0.1, one hidden

GRU layer of size 16, and ReLU activation.

Subject RNN + noFS RNN + FS

Avg. ± SD Best Avg. ± SD Best

104 0.5829 ± 0.0153 0.6103 0.6326 ± 0.0225 0.6779

107 0.6316 ± 0.0127 0.6470 0.5249 ± 0.0129 0.5546

110 0.5005 ± 0.0319 0.5533 0.4965 ± 0.0225 0.5367

https://doi.org/10.1371/journal.pone.0234178.t008

Table 9. Test-set Kappa for RNN with optimization (RNN + FS + OPT) and without optimization (RNN + FS). SD: Standard Deviation.

Subject RNN + FS RNN + FS + OPT

Avg. ± SD Best Avg. ± SD Best

104 0.6326 ± 0.0225 0.6779 0.6697 ± 0.0216 0.7125

107 0.5249 ± 0.0129 0.5546 0.5704 ± 0.0089 0.5799

110 0.4965 ± 0.0225 0.5367 0.5901 ± 0.0206 0.6208

https://doi.org/10.1371/journal.pone.0234178.t009

Fig 13. Test-set Kappa for RNN with and without optimization. Bars represent averages, points mean peak

performance, and lines delimit the range of the standard deviation.

https://doi.org/10.1371/journal.pone.0234178.g013

PLOS ONE Deep learning for EEG-based Motor Imagery: Accuracy-cost trade-off

PLOS ONE | https://doi.org/10.1371/journal.pone.0234178 June 11, 2020 19 / 30

https://doi.org/10.1371/journal.pone.0234178.t008
https://doi.org/10.1371/journal.pone.0234178.t009
https://doi.org/10.1371/journal.pone.0234178.g013
https://doi.org/10.1371/journal.pone.0234178


especially in 107, which is remarkable since in previous papers using the same data it is usual

for proposals to achieve similar performance in datasets 104 and 107.

In contrast, FFNN and RNN have much smaller differences, with FFNN scoring higher in

two of the three datasets. When merely looking at the numbers, FFNN is slightly better than

RNN, but we will later make use of statistical testing to determine the extent of all the observed

differences.

Concerning the underlying reasons for the experimental results, the variability of the results

has two primary sources: dataset potential and model performance. In relation to the former,

it is important to remember that the instances of the datasets correspond to human attempts at

imagining limb movements. Some subjects are more skilled at this task than others, which

affects the amount of useful information present in the EEG patterns. In addition, EEG tech-

nology suffers from artifacts in the recording process that can only be partially mitigated and

add uncertainty to the data.

The observed differences in model performance can be largely attributed to the characteris-

tics of each network. In particular, CNN appears to be the best here at finding key relationships

between features. The convolution operator allows CNN to focus on relative changes rather

than absolute ones, and this flexibility is a valuable asset when dealing with inconsistent inputs.

On the other hand, FFNN has a tendency to overfit the training examples due to its more rigid

architecture, but in view of the experimental results, FS probably alleviates this problem by

Table 10. Test-set Kappa comparison for CNN + noFS + OPT, FFNN + FS + OPT, and RNN + FS + OPT. SD: Standard Deviation.

Subject Measure CNN + noFS + OPT FFNN + FS + OPT RNN + FS + OPT

104 Avg. ± SD 0.7396 ± 0.0055 0.6901 ± 0.0147 0.6697 ± 0.0216

Best 0.7546 0.7289 0.7125

107 Avg. ± SD 0.7218 ± 0.0121 0.5630 ± 0.0107 0.5704 ± 0.0089

Best 0.7392 0.5796 0.5799

110 Avg. ± SD 0.6527 ± 0.0088 0.6299 ± 0.0109 0.5901 ± 0.0206

Best 0.6713 0.6464 0.6208

https://doi.org/10.1371/journal.pone.0234178.t010

Fig 14. Test-set Kappa for RNN with and without optimization. Bars represent averages, points mean peak

performance, and lines delimit the range of the standard deviation.

https://doi.org/10.1371/journal.pone.0234178.g014

PLOS ONE Deep learning for EEG-based Motor Imagery: Accuracy-cost trade-off

PLOS ONE | https://doi.org/10.1371/journal.pone.0234178 June 11, 2020 20 / 30

https://doi.org/10.1371/journal.pone.0234178.t010
https://doi.org/10.1371/journal.pone.0234178.g014
https://doi.org/10.1371/journal.pone.0234178


removing unnecessary features that misguide the network. RNN is able to extract knowledge

by leveraging context, although it might be more effective if learning from the 3, 600 features

were computationally viable.

Regarding the statistical analysis, the Friedman test to detect significant differences rejects

the null hypothesis (p = 1.99 � 10−15, χ2 = 67.744), which means that further pairwise tests are

appropriate. This is not surprising, though, seeing how CNN stands out from the other two.

Table 11 reports the Wilcoxon post-hoc p-values.

For a significance level of 5% all pairwise null hypotheses are rejected, which means the test

finds the three methods sufficiently different from one another. This result is especially rele-

vant for the comparison of FFNN and RNN, whose average accuracies are relatively close.

The Bayesian Signed-Rank test supports these conclusions from another point of view.

Table 12 reports the pairwise probabilities of dominance and tie (depicted in the heatmaps of

Fig 15). The test confirms the advantage of CNN over FFNN and RNN. A probability of exactly

0.0 could seem extreme, but it is reasonable: unlike NHST, where the probability of obtaining

the existing data is calculated assuming that the null hypothesis is true, Bayesian tests compute

probabilities based on the data; if the data contains no observations where CNN is worse than

FFNN or RNN, the output will change accordingly.

As for FFNN against RNN, the test assigns a fairly high probability to FFNN being better

(see the location of the point cloud), which is consistent with the previous NHST results.

Although equivalence is not fully discarded either, the sum of these two probabilities renders

an advantage in favor of RNN highly unlikely.

As a consequence of the probabilities, the heatmap for FFNN and RNN contains a point cloud

that is close to the FFNN vertex but is also reasonably near the Region of Practical Equivalence,

and the heatmaps involving CNN have all points at maximum distance from the left vertex.

Lastly, given the existence of previous work on these datasets, it is possible to make a com-

parison with other approaches. Table 13 compares Deep Belief Networks (DBNs) from [66] to

CNN + noFS + OPT. The results of the two are comparable, with small differences in favor of

either one depending on the dataset. What is interesting about this comparison, though, is that

the DBNs needed six fully-connected layers to produce these results, while the CNNs only

needed three layers (input, convolutional, and output).

4.6 Energy-time comparison

When dealing with computationally intensive algorithms, the quality of the solutions they pro-

vide is not the only matter of interest. Time constraints and hardware limitations are

Table 11. Holm-adjusted p-values for the pairwise Wilcoxon post-hoc tests. Non-significant differences (p> 0.05)

in bold.

Alternative FFNN + FS + OPT RNN + FS + OPT

CNN + noFS + OPT p = 7.78 � 10−9 p = 7.78 � 10−9

FFNN + FS + OPT p = 4.34 � 10−4

https://doi.org/10.1371/journal.pone.0234178.t011

Table 12. Probabilities (rounded) given by the Bayesian Signed-Rank test for the pairwise comparisons. For each

pair, the first method corresponds to a, and the second method to b.

Comparison P(b − a< 0) P(b − a� 0) P(b − a > 0)

RNN + FS + OPT vs. FFNN + FS + OPT 0.079 0.334 0.587

FFNN + FS + OPT vs. CNN + noFS + OPT 0.000 0.038 0.962

RNN + FS + OPT vs. CNN + noFS + OPT 0.000 0.022 0.978

https://doi.org/10.1371/journal.pone.0234178.t012

PLOS ONE Deep learning for EEG-based Motor Imagery: Accuracy-cost trade-off

PLOS ONE | https://doi.org/10.1371/journal.pone.0234178 June 11, 2020 21 / 30

https://doi.org/10.1371/journal.pone.0234178.t011
https://doi.org/10.1371/journal.pone.0234178.t012
https://doi.org/10.1371/journal.pone.0234178


commonplace, and thus computational costs must also be factored in when assessing available

options. Moreover, energy-saving has become a relevant issue in computer science and engi-

neering. Besides the economic and environmental reasons, energy is an important concern to

reach exascale performance, which would be required in many big data applications that need

high performance computing for processing the corresponding neural network models (a

2010 report by the US Department of Energy estimates the annual power cost of operating an

exascale system implemented with current technology to be about 2.5 billion dollars per year)

[67]. With this in mind, energy-time measurements have been obtained from Node 4 (see

experimental setup). The averages are displayed in Table 14.

At first glance, each model is readily distinguishable from the others. Computing time is

roughly doubled from FFNN to RNN and again from RNN to CNN. Energy consumption fol-

lows a similar trend from FFNN to RNN, but the pattern is broken from RNN to CNN: the lat-

ter consumes three times more energy than the former. This can be observed in Fig 16, where

the energy and time bars of CNN have been represented with the same height to facilitate the

comparison.

Fig 15. Heatmaps for the Bayesian pairwise comparisons of the three networks. a) RNN + OPT and FFNN + OPT.

b) FFNN + OPT and CNN + OPT. c) RNN + OPT and CNN + OPT The left vertex corresponds to b−a< 0, the right

vertex to b−a> 0, and the top vertex to b−a� 0. Sample size of 2, 000 points. Red means lower density, while brighter

colors mean higher densities.

https://doi.org/10.1371/journal.pone.0234178.g015

Table 13. Test-set Kappa values for CNN + noFS + OPT and DBN-opt. SD: Standard Deviation.

CNN + noFS + OPT DBN-opt

Subject Avg. ± SD Best Avg. ± SD Best

104 0.740 ± 0.006 0.755 0.733 ± 0.011 0.750

107 0.722 ± 0.012 0.739 0.723 ± 0.007 0.733

110 0.653 ± 0.009 0.671 0.672 ± 0.008 0.683

https://doi.org/10.1371/journal.pone.0234178.t013

PLOS ONE Deep learning for EEG-based Motor Imagery: Accuracy-cost trade-off

PLOS ONE | https://doi.org/10.1371/journal.pone.0234178 June 11, 2020 22 / 30

https://doi.org/10.1371/journal.pone.0234178.g015
https://doi.org/10.1371/journal.pone.0234178.t013
https://doi.org/10.1371/journal.pone.0234178


This phenomenon can be explained by looking at Fig 17. The energy consumed by a node

is determined by its running time and instantaneous power (the energy consumption is equal

to the area under the instantaneous power curve along the running time). FFNN and RNN

consume less instantaneous power than CNN, and therefore their total energy consumption is

Table 14. Average energy-time behavior for the three optimized networks. SD: Standard Deviation.

Alternative Time (s) ± SD Energy consumed (W � h) ± SD

CNN + noFS + OPT 20, 141 ± 4, 005 1, 608 ± 390

FFNN + FS + OPT 6, 552 ± 122 301 ± 5

RNN + FS + OPT 11, 492 ± 484 544 ± 20

https://doi.org/10.1371/journal.pone.0234178.t014

Fig 16. Energy-time behavior for the three optimized networks. Bars represent averages and lines delimit the range

of the standard deviation.

https://doi.org/10.1371/journal.pone.0234178.g016

Fig 17. Instantaneous power for the three optimized networks.

https://doi.org/10.1371/journal.pone.0234178.g017

PLOS ONE Deep learning for EEG-based Motor Imagery: Accuracy-cost trade-off

PLOS ONE | https://doi.org/10.1371/journal.pone.0234178 June 11, 2020 23 / 30

https://doi.org/10.1371/journal.pone.0234178.t014
https://doi.org/10.1371/journal.pone.0234178.g016
https://doi.org/10.1371/journal.pone.0234178.g017
https://doi.org/10.1371/journal.pone.0234178


certain to be even lower in proportion than their running time. In fact, even at equal running

times they would consume less energy than CNN. Conversely, the gap in instantaneous power

between FFNN and RNN is not significant enough to produce vastly different energy-time

ratios. Regarding the underlying cause of the differences in instantaneous power, it is probably

related to the degree to which each type of network takes advantage of GPU cores. This also

includes the fact that only CNN uses 3, 600 features, which require many more parallel calcula-

tions than the reduced subsets.

4.7 Relationship between model quality and complexity

As shown in the previous section, the varying levels of complexity of different architectures

such as convolutional, recurrent, or feed-forward have a great impact on training times. None-

theless, variation can also exist within the same type of network. For instance, the amount of

epochs needed to converge to a local optimum linearly affects training costs, and the size of the

network (e.g. amount of filters in CNN, neurons in FFNN, and recurrent units in RNN) is also

a major contributor to computational loads.

Therefore, it is worth looking at the characteristics of the solutions found by the optimiza-

tion procedure. In Fig 18 the test-set Kappa values are shown against the total amount of con-

volutional filters of the 15 CNN for each dataset. It is possible to observe that there is not

necessarily a well-defined correlation between quality and size of the network. While the best

overall results are found in the 104 cluster, which is further than the other two in the complex-

ity axis, the best solution for dataset 104 is closer to the middle within that context. A closer

look at the 107 and 110 clusters also supports this, as they are rather uniformly distributed but

with more peaks around the middle. Training epochs do not appear to follow an identifiable

pattern. Although more data points would increase the confidence in the inference, it could be

argued that favoring simpler architectures in the optimization procedure could still allow for

similar quality at a reduced cost.

In Fig 19, the total amount of neurons in the 15 FFNN is depicted against their correspond-

ing test-set Kappa values. As opposed to Fig 18, this time the network configurations for data-

set 104 have a marked tendency towards simplicity. For the other two datasets there is more

dispersion, but the overall conclusion seems to be that substantially cheaper structures with

competitive quality are feasible for FFNN as well.

Fig 18. Test-set Kappa values against amount of convolutional filters in CNN.

https://doi.org/10.1371/journal.pone.0234178.g018

PLOS ONE Deep learning for EEG-based Motor Imagery: Accuracy-cost trade-off

PLOS ONE | https://doi.org/10.1371/journal.pone.0234178 June 11, 2020 24 / 30

https://doi.org/10.1371/journal.pone.0234178.g018
https://doi.org/10.1371/journal.pone.0234178


Regarding RNN, the data points in Fig 20 are arranged in a more unique way. The results

for dataset 104 are split into two groups with clearly distinct amounts of recurrent units. In

this case, a more complex RNN achieves the best test-set Kappa value, though it does not have

a considerable advantage over the second-best. The 107 and 110 clusters overlap, but there is

no apparent correlation between quality and complexity either.

The training epochs for each of the models are not shown in the previous figures to prevent

clutter. However, upon examination, no straightforward link with network size was found,

which is probably caused by the interdependence between learning rates and epochs. What

should be highlighted, nevertheless, is that the optimization process found RNN models that

learned in substantially fewer epochs (see Table 15).

Fig 19. Test-set Kappa values against amount of neurons in FFNN.

https://doi.org/10.1371/journal.pone.0234178.g019

Fig 20. Test-set Kappa values against amount of recurrent units in RNN.

https://doi.org/10.1371/journal.pone.0234178.g020

Table 15. Average training epochs needed by each alternative. SD: Standard Deviation.

Average training epochs ± SD (by test subject)

Alternative 104 107 110

CNN 76.46 ± 34.98 114.80 ± 41.76 84.87 ± 48.17

FFNN 75.07 ± 18.13 82.27 ± 12.52 78.53 ± 12.12

RNN 11.46 ± 4.25 14.27 ± 7.99 15.13 ± 9.72

https://doi.org/10.1371/journal.pone.0234178.t015

PLOS ONE Deep learning for EEG-based Motor Imagery: Accuracy-cost trade-off

PLOS ONE | https://doi.org/10.1371/journal.pone.0234178 June 11, 2020 25 / 30

https://doi.org/10.1371/journal.pone.0234178.g019
https://doi.org/10.1371/journal.pone.0234178.g020
https://doi.org/10.1371/journal.pone.0234178.t015
https://doi.org/10.1371/journal.pone.0234178


For more details, the complete list of final models with their tuned hyperparameters can be

found in S1 Table (CNN), S2 Table (FFNN), and S3 Table (RNN).

5 Conclusions

Classification in high-dimensional spaces poses by itself a challenge due to the curse of

dimensionality. The difficulty is further amplified when training data is scarce in proportion,

as is usual in BCI applications. EEG classification, the focus of this paper, is no exception. In

addition to feature reduction procedures, such as FS, model hyperparameters must be carefully

chosen in order to avoid overfitting. This is especially true of neural networks, whose excellent

function approximation capabilities can be a double-edged sword.

In this paper, we propose a new procedure that divides hyperparameter search into two

steps, each of them involving a certain group of related hyperparameters, in an attempt to

reduce the search space and decrease computation time. The procedure is performed on three

types of neural networks (namely: CNN, FFNN, and RNN) that are then evaluated and com-

pared in terms of classification accuracy and energy-time consumption. The suitability of FS

for each particular case is also discussed. In this regard, we have found that CNN achieves the

best accuracy overall and probably works better without FS. FFNN and RNN, which do use FS,

do not reach the same standards, but not using FS on them does not appear to guarantee

improvements. However, RNN could benefit from a more in-depth study, since the evidence

in favor of FS on the basis of quality alone is not as strong as for FFNN.

With regard to model complexity, the networks evaluated are quite shallow: CNN and

RNN models only have one hidden layer, and FFNN can have two at most. In spite of this,

they have been able to produce at least partially good results (FFNN and RNN in dataset 104),

and even results comparable to deeper networks (CNN against DBN) across all datasets. Inci-

dentally, shallow networks appear to be more effective according to the literature on EEG-

based BCI.

In turn, model complexity has a direct impact on optimization and training cost, be it for

the amount of input features or for the properties of each network. It may also be true that

some networks leave less room for tweaking, as for instance CNN probably needs to use the

full 3, 600 features to reach its potential, and FFNN probably benefits the most from subsets of

under 30 features. In any case, the vast differences in time and energy consumption among the

three alternatives studied mean that available computing resources must be taken into account

to strike a balance between quality and feasibility. CNN provides the best results on average

but at the highest cost, which may not always be practical, while FFNN and RNN are cheaper

but not as competitive in quality. Furthermore, the variability of intra-class cost-quality ratios

is also a factor to keep in mind: there are often solutions with very similar accuracies but con-

trasting training costs, i.e., smaller networks can be competitive too. This could motivate intro-

ducing some mechanisms into optimization procedures to try to leverage this insight.

With cost-saving in mind, future work could take a more in-depth look at the differences

between networks of the same type but varying sizes, generalize this analysis to different data-

sets, or tackle the tuning of neural network hyperparameters by using other techniques, such

as Bayesian optimization to guide the search in a more informed (and thus, perhaps more effi-

cient) way.

Supporting information

S1 Table. Hyperparameter description of the CNN models used in the comparisons.

(PDF)

PLOS ONE Deep learning for EEG-based Motor Imagery: Accuracy-cost trade-off

PLOS ONE | https://doi.org/10.1371/journal.pone.0234178 June 11, 2020 26 / 30

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0234178.s001
https://doi.org/10.1371/journal.pone.0234178


S2 Table. Hyperparameter description of the FFNN models used in the comparisons.

(PDF)

S3 Table. Hyperparameter description of the RNN models used in the comparisons.

(PDF)

S1 Data.

(ZIP)

Author Contributions

Conceptualization: Javier León, Juan José Escobar, Andrés Ortiz, Julio Ortega, Pedro Martı́n-

Smith.

Data curation: Julio Ortega, John Q. Gan.

Formal analysis: Javier León.

Funding acquisition: Julio Ortega, Jesús González, Miguel Damas.

Investigation: Javier León.

Methodology: Javier León, Andrés Ortiz.

Project administration: Jesús González, Miguel Damas.

Resources: John Q. Gan.

Software: Javier León, Juan José Escobar.

Supervision: Julio Ortega, Jesús González, John Q. Gan, Miguel Damas.

Validation: Javier León, Andrés Ortiz.

Visualization: Javier León, Juan José Escobar.

Writing – original draft: Javier León, Andrés Ortiz, Julio Ortega, Pedro Martı́n-Smith, John

Q. Gan.

Writing – review & editing: Javier León, Juan José Escobar, Andrés Ortiz, Julio Ortega, Pedro

Martı́n-Smith, Miguel Damas.

References
1. Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression

analysis of digital gene expression data. Bioinformatics. 2010; 26(1):139–140.

2. Trapnell C, Hendrickson DG, Sauvageau M, Goff L, Rinn JL, Pachter L. Differential analysis of gene

regulation at transcript resolution with RNA-seq. Nat Biotechnol. 2013; 31(1):46–53.

3. Oghabian A, Kilpinen S, Hautaniemi S, Czeizler E. Biclustering Methods: Biological Relevance and

Application in Gene Expression Analysis. PLOS ONE. 2014; 9(3):1–10.

4. Stingl K, Bartz-Schmidt KU, Besch D, Braun A, Bruckmann A, Gekeler F, et al. Artificial vision with wire-

lessly powered subretinal electronic implant alpha-IMS. Proceedings of the Royal Society B: Biological

Sciences. 2013; 280 (1757). https://doi.org/10.1098/rspb.2013.0077 PMID: 23427175

5. Stingl K, Bartz-Schmidt KU, Besch D, Chee CK, Cottriall CL, Gekeler F, et al. Subretinal visual implant

alpha IMS–clinical trial interim report. Vision research. 2015; 111:149–160.

6. Hochberg LR, Serruya MD, Friehs GM, Mukand JA, Saleh M, Caplan AH, et al. Neuronal ensemble con-

trol of prosthetic devices by a human with tetraplegia. Nature. 2006; 442(7099):164–171. PMID:

16838014

7. Bajaj V, Pachori RB. Classification of seizure and nonseizure EEG signals using empirical mode

decomposition. IEEE Trans Inf Technol Biomed. 2011; 16(6):1135–1142.

PLOS ONE Deep learning for EEG-based Motor Imagery: Accuracy-cost trade-off

PLOS ONE | https://doi.org/10.1371/journal.pone.0234178 June 11, 2020 27 / 30

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0234178.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0234178.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0234178.s004
https://doi.org/10.1098/rspb.2013.0077
http://www.ncbi.nlm.nih.gov/pubmed/23427175
http://www.ncbi.nlm.nih.gov/pubmed/16838014
https://doi.org/10.1371/journal.pone.0234178


8. Eisenberger NI, Lieberman MD, Williams KD. Does rejection hurt? An fMRI study of social exclusion.

Science. 2003; 302(5643):290–292.

9. Ramirez R, Vamvakousis Z. Detecting emotion from EEG signals using the emotive epoc device. In:

International Conference on Brain Informatics. Springer; 2012. p. 175–184.

10. Hotson G, McMullen DP, Fifer MS, Johannes MS, Katyal KD, Para MP, et al. Individual finger control of

a modular prosthetic limb using high-density electrocorticography in a human subject. J Neural Eng.

2016; 13(2). https://doi.org/10.1088/1741-2560/13/2/026017 PMID: 26863276

11. Yanagisawa T, Hirata M, Saitoh Y, Goto T, Kishima H, Fukuma R, et al. Real-time control of a prosthetic

hand using human electrocorticography signals. J Neurosurg. 2011; 114(6):1715–1722. PMID:

21314273

12. Raudys SJ, Jain AK. Small sample size effects in statistical pattern recognition: Recommendations for

practitioners. IEEE Trans Pattern Anal Mach Intell. 1991; 13(3):252–264.

13. Lotte F, Bougrain L, Cichocki A, Clerc M, Congedo M, Rakotomamonjy A, et al. A review of classification

algorithms for EEG-based brain–computer interfaces: a 10 year update. J Neural Eng. 2018; 15(3).

14. Amaldi E, Kann V. On the approximability of minimizing nonzero variables or unsatisfied relations in lin-

ear systems. Theor Comput Sci. 1998; 209(1-2):237–260.

15. Guyon I, Elisseeff A. An introduction to variable and feature selection. J Mach Learn Res. 2003; 3

(Mar):1157–1182.

16. Ortega J, Asensio-Cubero J, Gan JQ, Ortiz A. Classification of motor imagery tasks for BCI with multire-

solution analysis and multiobjective feature selection. Biomed Eng Online. 2016; 15(73). https://doi.org/

10.1186/s12938-016-0178-x PMID: 27454531

17. Corralejo R, Hornero R, Alvarez D. Feature selection using a genetic algorithm in a motor imagery-

based Brain Computer Interface. In: International Conference of the IEEE Engineering in Medicine and

Biology Society. IEEE; 2011. p. 7703–7706.

18. Abootalebi V, Moradi MH, Khalilzadeh MA. A new approach for EEG feature extraction in P300-based

lie detection. Comput Methods Programs Biomed. 2009; 94(1):48–57.

19. Kee CY, Ponnambalam SG, Loo CK. Multi-objective genetic algorithm as channel selection method for

P300 and motor imagery data set. Neurocomputing. 2015; 161:120–131.

20. Lawhern VJ, Solon AJ, Waytowich NR, Gordon SM, Hung CP, Lance BJ. EEGNet: a compact convolu-

tional neural network for EEG-based brain–computer interfaces. J Neural Eng. 2018; 15(5).

21. Acharya UR, Oh SL, Hagiwara Y, Tan JH, Adeli H. Deep convolutional neural network for the automated

detection and diagnosis of seizure using EEG signals. Comput Biol Med. 2018; 100:270–278.

22. Davidson PR, Jones RD, Peiris MTR. EEG-based lapse detection with high temporal resolution. IEEE

Trans Biomed Eng. 2007; 54(5):832–839.

23. Wang P, Jiang A, Liu X, Shang J, Zhang L. LSTM-based EEG classification in motor imagery tasks.

IEEE Trans Neural Syst Rehabil Eng. 2018; 26(11):2086–2095.

24. Kumar S, Sharma A, Tsunoda T. An improved discriminative filter bank selection approach for motor

imagery EEG signal classification using mutual information. BMC Bioinformatics. 2017; 18.

25. Kumar S, Sharma A, Tsunoda T. Brain wave classification using long short-term memory network

based OPTICAL predictor. Sci Rep. 2019; 9(1).

26. Gaur P, Pachori RB, Wang H, Prasad G. A multi-class EEG-based BCI classification using multivariate

empirical mode decomposition based filtering and Riemannian geometry. Expert Syst Appl. 2018;

95:201–211.

27. Jiao Y, Zhang Y, Chen X, Yin E, Jin J, Wang X, et al. Sparse Group Representation Model for Motor

Imagery EEG Classification. IEEE J Biomed Health Inform. 2019; 23(2):631–641. PMID: 29994055

28. Chiarelli AM, Croce P, Merla A, Zappasodi F. Deep learning for hybrid EEG-fNIRS brain–computer

interface: application to motor imagery classification. J Neural Eng. 2018; 15(3):036028.

29. Amin SU, Alsulaiman M, Muhammad G, Mekhtiche MA, Shamim Hossain M. Deep Learning for EEG

motor imagery classification based on multi-layer CNNs feature fusion. Future Gener Comput Syst.

2019; 101:542–554.

30. Sakhavi S, Guan C, Yan S. Learning Temporal Information for Brain-Computer Interface Using Convo-

lutional Neural Networks. IEEE Trans Neural Netw Learn Syst. 2018; 29(11):5619–5629.

31. Tayeb Z, Fedjaev J, Ghaboosi N, Richter C, Everding L, Qu X, et al. Validating Deep Neural Networks

for Online Decoding of Motor Imagery Movements from EEG Signals. Sensors. 2019; 19(1):210.

32. León J, Ortega J, Ortiz A. Convolutional Neural Networks and Feature Selection for BCI with Multireso-

lution Analysis. In: International Work-Conference on Artificial Neural Networks. Springer; 2019.

p. 883–894.

PLOS ONE Deep learning for EEG-based Motor Imagery: Accuracy-cost trade-off

PLOS ONE | https://doi.org/10.1371/journal.pone.0234178 June 11, 2020 28 / 30

https://doi.org/10.1088/1741-2560/13/2/026017
http://www.ncbi.nlm.nih.gov/pubmed/26863276
http://www.ncbi.nlm.nih.gov/pubmed/21314273
https://doi.org/10.1186/s12938-016-0178-x
https://doi.org/10.1186/s12938-016-0178-x
http://www.ncbi.nlm.nih.gov/pubmed/27454531
http://www.ncbi.nlm.nih.gov/pubmed/29994055
https://doi.org/10.1371/journal.pone.0234178


33. Asensio-Cubero J, Gan JQ, Palaniappan R. Multiresolution analysis over simple graphs for brain com-

puter interfaces. J Neural Eng. 2013; 10(4). PMID: 23843600

34. Daubechies I. Ten lectures on wavelets. vol. 61. Siam; 1992.

35. Martı́n-Smith P, Ortega J, Asensio-Cubero J, Gan JQ, Ortiz A. A supervised filter method for multi-

objective feature selection in EEG classification based on multi-resolution analysis for BCI. Neurocom-

puting. 2017; 250:45–56.

36. Kimovski D, Ortega J, Ortiz A, Baños R. Leveraging cooperation for parallel multi-objective feature

selection in high-dimensional EEG data. Concurr Comput. 2015; 27(18):5476–5499.

37. Escobar JJ, Ortega J, González J, Damas M, Dı́az AF. Parallel high-dimensional multi-objective feature

selection for EEG classification with dynamic workload balancing on CPU–GPU architectures. Cluster

Comput. 2017; 20(3):1881–1897.

38. LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015; 521(7553):436–444.

39. Glorot X, Bordes A, Bengio Y. Deep sparse rectifier neural networks. In: International Conference on

Artificial Intelligence and Statistics; 2011. p. 315–323.

40. He K, Zhang X, Ren S, Sun J. Delving deep into rectifiers: Surpassing human-level performance on

imagenet classification. In: IEEE International Conference on Computer Vision; 2015. p. 1026–1034.

41. Clevert DA, Unterthiner T, Hochreiter S. Fast and Accurate Deep Network Learning by Exponential Lin-

ear Units (ELUs). In: International Conference on Learning Representations; 2016.

42. Srivastava N, et al. Dropout: A simple way to prevent neural networks from overfitting. J Mach Learn

Res. 2014; 15(1):1929–1958.

43. Bühlmann P, Van De Geer S. Statistics for high-dimensional data: methods, theory and applications.

Springer Science & Business Media; 2011.

44. Graves A, Schmidhuber J. Framewise phoneme classification with bidirectional LSTM and other neural

network architectures. Neural Netw. 2005; 18(5-6):602–610.

45. Bengio Y, Simard P, Frasconi P, et al. Learning long-term dependencies with gradient descent is diffi-

cult. IEEE Trans Neural Netw. 1994; 5(2):157–166. PMID: 18267787

46. Hochreiter S, Schmidhuber J. Long short-term memory. Neural Comput. 1997; 9(8):1735–1780.

47. Cho K, Van Merriënboer B, Gulcehre C, Bahdanau D, Bougares F, Schwenk H, et al. Learning phrase

representations using RNN encoder-decoder for statistical machine translation. In: Conference on

Empirical Methods in Natural Language Processing; 2014. p. 1724–1734.

48. Weiss G, Goldberg Y, Yahav E. On the Practical Computational Power of Finite Precision RNNs for

Language Recognition. In: 56th Annual Meeting of the Association for Computational Linguistics. vol. 2;

2018. p. 740–745.

49. Gers F, Schmidhuber J, Cummins F. Learning to forget: continual prediction with LSTM. Neural Com-

put. 2000; 12(10):2451–2571.

50. Back T. Selective pressure in evolutionary algorithms: A characterization of selection mechanisms. In:

IEEE Conference on Evolutionary Computation. IEEE; 1994. p. 57–62.

51. Eiben AE, Smith JE, et al. Introduction to evolutionary computing. vol. 53. 2nd ed. Springer; 2015.

52. Cohen J. A coefficient of agreement for nominal scales. Educ Psychol Meas. 1960; 20(1):37–46.

53. Friedman M. The use of ranks to avoid the assumption of normality implicit in the analysis of variance. J

Am Stat Assoc. 1937; 32(200):675–701.

54. Friedman M. A comparison of alternative tests of significance for the problem of m rankings. Annals of

Mathematical Statistics. 1940; 11(1):86–92.

55. Benavoli A, Corani G, Mangili F. Should we really use post-hoc tests based on mean-ranks? J Mach

Learn Res. 2016; 17(1):152–161.

56. Demšar J. Statistical comparisons of classifiers over multiple data sets. J Mach Learn Res. 2006; 7:1–

30.

57. Derrac J, Garcı́a S, Molina D, Herrera F. A practical tutorial on the use of nonparametric statistical tests

as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evol Comput.

2011; 1(1):3–18.

58. Holm S. A simple sequentially rejective multiple test procedure. Scand J Stat. 1979; 6:65–70.

59. Benavoli A, Corani G, Demšar J, Zaffalon M. Time for a change: a tutorial for comparing multiple classi-

fiers through Bayesian analysis. J Mach Learn Res. 2017; 18(1):2653–2688.

60. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine

Learning in Python. J Mach Learn Res. 2011; 12:2825–2830.

PLOS ONE Deep learning for EEG-based Motor Imagery: Accuracy-cost trade-off

PLOS ONE | https://doi.org/10.1371/journal.pone.0234178 June 11, 2020 29 / 30

http://www.ncbi.nlm.nih.gov/pubmed/23843600
http://www.ncbi.nlm.nih.gov/pubmed/18267787
https://doi.org/10.1371/journal.pone.0234178


61. Oliphant TE. A guide to NumPy. vol. 1. Trelgol Publishing USA; 2006. Available from: https://docs.

scipy.org/doc/numpy/reference/.

62. Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, et al. TensorFlow: Large-Scale Machine

Learning on Heterogeneous Systems; 2015. Available from: https://www.tensorflow.org/guide.

63. Chollet F, et al. Keras; 2015. Available from: https://keras.io.

64. Calvo B, Santafé Rodrigo G. scmamp: Statistical comparison of multiple algorithms in multiple prob-

lems. The R Journal, Vol 8/1, Aug 2016. 2016.

65. Carrasco J, Garcı́a S, del Mar Rueda M, Herrera F. rnpbst: An R package covering non-parametric and

bayesian statistical tests. In: International Conference on Hybrid Artificial Intelligence Systems.

Springer; 2017. p. 281–292.

66. Ortega J, Ortiz A, Martı́n-Smith P, Gan JQ, González-Peñalver J. Deep belief networks and multiobjec-

tive feature selection for BCI with multiresolution analysis. In: International Work-Conference on Artifi-

cial Neural Networks. Springer; 2017. p. 28–39.

67. O’brien K, Pietri I, Reddy R, Lastovetsky A, Sakellariou R. A survey of power and energy predictive

models in HPC systems and applications. ACM Comput Surv. 2017; 50(3).

PLOS ONE Deep learning for EEG-based Motor Imagery: Accuracy-cost trade-off

PLOS ONE | https://doi.org/10.1371/journal.pone.0234178 June 11, 2020 30 / 30

https://docs.scipy.org/doc/numpy/reference/
https://docs.scipy.org/doc/numpy/reference/
https://www.tensorflow.org/guide
https://keras.io
https://doi.org/10.1371/journal.pone.0234178

