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Abstract

According to theory, the functional traits of species dictate how environmen-
tal selection affects them, and also the functioning of ecosystems that those
species form. However, we lack a general understanding about how exactly
environmental selection affects the trait composition of communities, and
consequently, ecosystem functions.

In this thesis, I study how the effects of environmental selection manifest
in the functional composition of field-layer plant communities in the tundra
and in boreal forests. My aims are 1) to sharpen our understanding about
the effects of trait-based selection on plant communities by accounting for
the microenvironment in models of trait composition, 2) to elucidate the
effects of that selection on tundra carbon cycling, and 3) to reveal how
forestry and reindeer husbandry, two forms of human land use, modulate
long-term vegetation changes by favouring certain trait combinations over
others. The study areas span four tundra landscapes in Finnish Lapland,
Greenland, Svalbard, and the southern Indian Ocean, and hundreds of herb-
rich boreal forest patches in Northern Finland. I use linear modelling to
study how the results of vegetation surveys, visual, sensor-based and labora-
tory measurements of traits and the environment, and carbon flux chamber
measurements relate to each other.

My results suggest the following. 1) The environment strongly determines
the functional composition of plant communities when accounting for mi-
croenvironmental conditions. Warm, ungrazed and unshaded conditions
favor larger plants. Leaf traits that confer fast returns on invested re-
sources are favoured in conditions of high soil resource availability, in un-

iii



iv

grazed areas, and in the shade. 2) In the tundra, communities consisting of
larger plants cycle carbon more rapidly and have larger above-ground car-
bon stocks. Communities with “fast” leaf traits also cycle carbon with higher
intensity, but they have lower above-ground carbon stocks than communities
with “slow” leaf traits. 3) In boreal forests, forestry modifies the functional
composition of understory communities by decreasing the amount of light
in the long term. While forestry seems to accelerate vegetation change,
reindeer husbandry could be seen to counteract it by inhibiting the growth
of average plant size observed in areas without reindeer.

These results show that the functional traits of plants dictate how they
are affected by environmental selection pressures. The effects of this selec-
tion are consistent at the community level across locations up to 15000 km
apart. Furthermore, human land use is an important control of the func-
tional composition of communities alongside natural environmental varia-
tion. This information will be useful in predicting which species will suffer
and which benefit from global change, and what will be the consequences
for ecosystem functioning.
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Yhteenveto

Lajeja on miljoonia, ja jokainen niistä elää rajallisella alueella. Tutkijat
tarvitsevat keinoja yleistää yksittäisiä lajeja koskevat tiedot käyttökelpoi-
siksi muiden lajien tutkimiseen. Yleistää voi esimerkiksi eliöiden mitat-
tavien ominaisuuksien pohjalta. Voidaan esimerkiksi kysyä, onko jokin
elinympäristö yhtä hyvä suurille ja pienille lajeille. Väitöskirjassani tutkin,
voidaanko kasvilajien ominaisuuksia käyttää ennustamaan niiden suosimia
elinympäristöjä ja vaikutusta ekosysteemitoimintoihin.

Väitöskirjani tutkimusalueet ovat neljä tundramaisemaa Lapissa, Grönlan-
nissa, Huippuvuorilla ja eteläisellä Intian valtamerellä, sekä lehtolaikuissa
Pohjois-Suomen metsissä. Ilmastonmuutos ja ihmisen maankäyttö aiheut-
tavat nopeita ympäristömuutoksia näillä alueilla. Jos ymmärtäisimme, mil-
laisia lajeja muuttuneet ympäristöt suosivat, voisimme ennustaa nykyistä
paremmin tulevaisuuden kasvillisuuden koostumuksen.

Tutkimukseni osoittavat, että kokoakseli ja lehtitalousspektri säätelevät la-
jeille suotuisia elinympäristöjä niin tundralla kuin metsissäkin. Lämpimät,
valoisat ja laiduntamattomat ympäristöt ovat hyviä suuriksi kasvaville la-
jeille. Rehevät, varjoisat ja laiduntamattomat ympäristöt taas suosivat “si-
joittajalajeja”, eli lajeja jotka laittavat kaikki resurssinsa peliin nopeiden
voittojen toivossa. Tätä lajien ominaisuuksien säätelemää lajiston valikoi-
tumista voidaan käyttää ennustamaan ekosysteemien muutosta. Ihmisen
aiheuttamat ilmaston ja maankäytön muutokset ovat jo vaikuttaneet tun-
dran ja boreaalisten metsien kasvillisuuteen ja ekosysteemitoimintoihin, ja
muutokset tulevat jatkumaan. Lämpimämmissä olosuhteissa suuret kasvit
syrjäyttävät pienemmät. Ihmisen muokkaamat rehevät metsät ovat var-
joisempia kuin luonnontilaiset, mikä suosii sijoittajalajeja säästäjien kus-
tannuksella. Toisaalta kasvaneet porotiheydet poronhoitoalueella saattavat
hidastaa kasvillisuusmuutoksia viemällä suurilta kasveilta niiden valintae-
dun.

Lajien ominaisuuksia voidaan siis käyttää ennustamaan niiden ympäristö-
vaatimuksia ja vaikutusta ekosysteemitoimintoihin. Ominaisuudet ovat yh-
teisiä suureita, joiden avulla yksittäisten lajien vuorovaikutussuhteet ym-
päristönsä kanssa voidaan tehdä vertailukelpoisiksi. Tämä tieto on mie-
lenkiintoista itsessään, mutta on myös hyödyksi lajien suojelun suunnit-
telussa sekä globaalimuutoksen seurausten ennustamisessa ekosysteemien
toiminnalle.
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1 Introduction

Robert MacArthur famously wrote that to do science is to search for re-
peated patterns, not simply to accumulate facts (MacArthur 1972). Such
an endeavour might seem hopeless to some in the face of biological diver-
sity, every species, every habitat being seemingly different from the next in
the most wonderfully unique way. Perhaps it is because of appreciation for
the beauty in details that the majority of ecological research still focuses
on single species (Carmel et al. 2013). However, I must slightly disagree
with MacArthur, as I feel that gathering fundamental knowledge about the
ecology of single species is still a worthwhile scientific endeavour, a feeling
that is shared with many in the research community, and materialized as an
increased push for acknowledging data collectors (Data Citation Synthesis
Group 2014). For how are we to generalize without data? Nonetheless, I
share MacArthur’s enthusiasm for uncovering patterns that apply beyond
the scope of single species and geographic locations. Much of the present
work tries to achieve just that, with the caveat that it deals exclusively with
vascular land plants.

There are several paths to uncovering generality in ecology; here, I have
adopted two of them. First, this work is done in the context of community
ecology (sensu Vellend 2016), which is the study of species assemblages of
one trophic level sharing the same space. By focusing on emergent proper-
ties of communities, such as diversity and composition, I am able to abstract
away the species, and extract signals from their collective responses. Vellend
argues that communities are formed by four high-level processes: Specia-
tion, Dispersal, Ecological drift, and Selection (Vellend 2010; Vellend 2016),
which mirrors the more traditional view of local communities resulting from
the removal of species from the regional species pool by a hierarchical set of
filters (Zobel 1997). In the present work, I focus exclusively on the effects of
selection on communities, and more precisely, the consequences of external
variables changing the relative fitness differences of constituent species.

However, merely focusing on community properties is not enough to uncover
general ecological patterns, as the composition of every local community is
contingent on a unique history of speciation and dispersal. How does one
compare two sets of communities if they share none of the same species?

Fortunately, species are not unique. There are many reasonable compar-
isons that can be made between apples (Malus domestica) and oranges
(Citrus x sinensis), for example. They both have woody stems, which al-
low them to reach a height of several meters, and both produce fleshy fruits,
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an adaptation for endozoochorous seed dispersal. Furthermore, the spec-
tral qualities of their fruits are very similar (Sandford 1995). They differ in
several characteristics too: the apple has deciduous leaves, an adaptation
to surviving unfavorable periods such as winters, whereas the orange has
broad evergreen leaves. Just as unique species can be compared based on
their non-unique traits, so too can the species composition of two distinct
communities be compared based on the average trait values of the resident
species (Garnier et al. 2004). This allows the researcher to transcend the
constraints of unique species pools and search for general rules governed by
the traits that unify species. The traits that are important for the growth,
survival, and reproduction of individuals, and thus the niches of species
are called functional traits (Violle et al. 2007), and the line of ecological
research based on such traits functional ecology (Keddy 1992; McGill et al.
2006). This is the other way I will try to achieve generality, the scope of
this thesis is thus being functional plant community ecology.

Central questions on the agenda of functional community ecology include
the identification of axes of trait covariation, and how those trait axes gov-
ern the fundamental and realized niches (McGill et al. 2006). The above-
ground traits of land plants have been found to vary primarily along two
independent axes: the leaf economics spectrum (Wright et al. 2004), and
the size-structural axis, which together form the global spectrum of plant
form and function (Díaz et al. 2016, Fig. 1). The leaf economics spectrum
describes trade-offs between traits that are adapted for fast acquisition of
resources, and traits that promote survival in low-resource conditions. On
the ‘fast’ end of the spectrum, species tend to have leaves with high nutrient
concentrations, low dry matter content, low C:N ratios, and short lifespans.
An example of such a species would be the woodland cranesbill, Geranium
sylvaticum. ‘Slow’ species have the opposite traits, a prime example be-
ing the crowberry Empetrum nigrum with its evergreen, needle-like leaves.
The size-structural axis describes plant height, but also other traits that
necessarily vary with it, such as stem specific density. These axes apply not
just to variation between species, but between plant communities as well
(Bruelheide et al. 2018).

It has been shown that many of the traits that constitute these axes are rel-
evant for species vital rates, and consequently, niches. For example, wood
density seems to predict the sensitivity of populations to changes in sur-
vival, whereas leaf nitrogen content is a better correlate of sensitivity of
responses to changes in fecundity (Adler et al. 2014). However, we are still
only beginning to understand how these relationships map into community
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Figure 1: The axes of above-ground trait variation between vascular plant
species and communities (Díaz et al. 2016; Bruelheide et al. 2018). Small
text next to the axes lists traits used in this thesis to represent these axes.
Images highlight boreal and tundra species with different trait combina-
tions. As this thesis deals primarily with field-layer vegetation, the focus
of individual studies lies with species on the left side of the figure. Image
copyrights (CC-BY-SA): P. abies- Ivar Leidus, P. padus - Udo Schröter
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properties in the context of the abiotic environment and the biotic interac-
tion landscape (McGill et al. 2006). To phrase the matter differently, we
still need to study how selection that varies with abiotic conditions and
species interactions affects the functional composition of communities.

This line of inquiry has relevance beyond being interesting for its own sake.
Functional traits are linked to individual performance, and individual per-
formance is, in effect, just a measure of how efficiently said individual diverts
matter and energy to increase its fitness. Scaled to the community level, the
functional traits of member species can be used to predict how that com-
munity affects flows of matter and energy, such as light, carbon, water, and
nutrients (Díaz et al. 2004). In addition to controlling species responses
to the environment, functional traits thus also predict species effects on
ecosystem functions (Lavorel and Garnier 2002). Because human welfare
critically depends on plant communities regulating the carbon and water
cycles (Díaz et al. 2019), it is imperative that we try to understand how
trait-based selection will change the functional composition and diversity of
plant communities that are affected by multiple global change drivers.

There is reason to focus much of this attention on high-latitude systems.
The boreal and tundra biomes cover 19 and 7.5 million km2, respectively
(Brandt et al. 2013; Callaghan, Velichko, and Borisova 2011), and together
make up about 20% of the Earth’s ice-free land area (FAO 2011). Because
of the polar amplification of climate change, high-latitudes, especially in
the northern hemisphere, are warming much faster than the planet as a
whole (Serreze and Barry 2011). Arctic tundra, the northernmost biome,
could stand to lose the climate needed for its existence in over a third of
its current area by the end of the century (Feng et al. 2012). The shrink-
ing of the tundra will come about by the invasion of large plants, which is
already detectable in tundra communities around the northern hemisphere
(Bjorkman et al. 2018a). Again, while changes in the functional character-
istics of high-latitude plant communities are important from a conservation
perspective, they are also important from a climate change mitigation per-
spective. Up to 1700 Pg of carbon is stored in the soils of the tundra and
boreal zones (Deluca and Boisvenue 2012), which is equivalent to >150 years
of anthropogenic carbon emissions at current rates (IPCC 2018). Warmer
temperatures are expected to cause decreases in net carbon storage via in-
creased soil respiration (Xue et al. 2016), but it is as of yet unknown whether
they will be partially or even completely offset by changes in plant commu-
nities, as results remain mixed (Belshe, Schuur, and Bolker 2013; Schuur
et al. 2009). This uncertainty highlights a need to learn more about the
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responses of high-latitude plant communities to shifting environmental se-
lection (Abbott et al. 2016). Such uncertainties could perhaps be reduced, if
study results could be compared using universal metrics such as functional
traits.

The transitions of fine-scale plant community functional composition along
environmental gradients remain poorly understood (but see Wieczynski et
al. 2019 for a coarser scale example). In a global study, Bruelheide et al.
(2018) did not find strong correlations between trait averages and vari-
ances and coarse-resolution environmental variables for most traits, and
note that this points to the importance of local climate, soil properties,
disturbance regimes and biotic interactions in structuring those communi-
ties. Likewise, Bjorkman et al. (2018a) found coarse-scale environmental
variables to explain a very limited amount of variation in functional com-
munity properties. Further, they found that temporal predictions of com-
munity change based on spatial trait-environment correlations were biased,
predicting acceleration of leaf economics when none had occurred. Future
research into trait-environment relationships in the functional community
ecology research program should thus strive to include environmental pre-
dictors at a scale that is relevant for the studied communities. Most plant
species are of very limited stature (Kattge et al. 2020), and thus cannot
experience environmental conditions further than a few meters away from
their point of germination, or the microenvironment. Descriptions of this
microenvironment should account for the effects of canopy characteristics,
snow conditions, soil effects and local topography, which are known to be
important modulators of the microenvironment by decoupling communities
from free-air temperatures (Hallinger, Manthey, and Wilmking 2010; Ge
and Gong 2010; De Frenne et al. 2019; Niittynen and Luoto 2017; Lem-
brechts et al. 2020), and by affecting resource availability (Maes et al. 2020;
Niittynen and Luoto 2017), among other effects.

Climate change is not the only global change driver affecting plant com-
munities, however. Land use and land-use change still remain the most
important drivers of biodiversity decline (Butchart et al. 2010; Díaz et al.
2019). High-latitude ecosystems are widely affected by human management.
Only a third of boreal forest remain outside human management, the aim
of which is usually wood production (Gauthier et al. 2015). Forest manage-
ment modifies canopies and understories alike. For example, recent cuttings
increase light availability and the cover of light-adapted species in the under-
story (Tonteri et al. 2016). In addition, humans control the densities of large
herbivores, such as reindeer and muskoxen, in both the boreal and tundra
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biomes. Population sizes are affected by habitat conversion, hunting, and
management as domesticated or semi-domesticated livestock, among other
drivers (Ripple et al. 2015). As an example, semi-domesticated reindeer are
kept as livestock in nine Arctic countries in the tundra and boreal zones, and
have been found to buffer tundra communities against invasion by shrubs
(Vowles et al. 2017; Sundqvist et al. 2019; Vuorinen et al. 2017), highlight-
ing the importance of understanding the modulating effects of land-use on
directional selection driven by climate change. From a conservation per-
spective, studying the effects of land-use -mediated species filtering in the
light of trait-based selection can be informative for management recommen-
dations that are not contingent on species identities and unique locations,
but universally measurable properties of species and environments (Keddy
1992).

In this thesis, I provide new evidence on how trait-based selection shapes
high-latitude plant communities. Specifically, I have three aims:

1. To sharpen our understanding about the effects of trait-based selec-
tion on plant communities by accounting for the microenvironment in
models of trait composition, both on local (paper I), regional (IV),
and global scales (II).

2. To elucidate the effects of that selection on tundra carbon cycling
(III).

3. To reveal how trait-based directional selection caused by land use
and land-use change modulates long-term change trajectories in plant
communities (IV).

I connect my findings to a causal framework (Fig. 2), to underline how my
results fit in the larger context of interacting human land use, environmen-
tal filtering and ecosystem functions. This will facilitate generalizing my
results beyond the extents of these individual studies, and help in identify-
ing interesting future research questions that still need answering.

2 Materials and methods

2.1 Study areas

These studies were conducted in the tundra and in the boreal zone, the
two northernmost biomes warming more rapidly than the rest of the planet
(Serreze and Barry 2011). Both biomes are characterized by comparatively
low annual temperatures and seasonal snow cover (Eugster et al. 2000). The
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study sites fall into two Köppen climate classes ET (polar, tundra I–III) and
Dfc (cold, no dry season, cold summer, IV), which together cover a large
part of the Earth’s land surface especially in the northern hemisphere (Fig.
3).

2.1.1 Papers I & III

These studies were conducted above the forest line in Kilpisjärvi, in the
northernmost part of the Scandinavian mountain range in northwestern
Finnish Lapland (69.05° N, 20.81° E). The area is oroarctic tundra (Vir-
tanen et al. 2016), dominated by ericoid-graminoid heaths and streamside

Figure 2: Connections between studied phenomena, and the papers that
address them. Studies I–III were conducted in the tundra, and study IV in
boreal forests.

Figure 3: Locations of the study areas and the Köppen climate classes they
cover. Climate data from Beck et al. (2018). The projection used is the
Mollweide equal-area projection.
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meadows. At a nearby weather station (Kilpisjärvi kyläkeskus, 480 m.a.s.l),
mean annual temperature is -1.9℃, and annual precipitation is 487 mm
(Pirinen et al. 2012). Some abundant species include the dwarf shrubs Em-
petrum nigrum and Betula nana, the graminoids Deschampsia flexuosa and
Carex bigelowii, and the herbs Viola biflora and Polygonum viviparum.

2.1.2 Paper II

This study was conducted in four climatically distinct sites: high-Arctic,
low-Arctic, sub-Arctic and sub-Antarctic. The sub-Arctic site is Kilpisjärvi
and is described above.

The high-Arctic site is in the valleys of Adventdalen and Endalen (78.20° N,
15.73° E). Mean annual temperature is -5.9℃ and annual precipitation is 196
mm, measured at Svalbard airport (28 m.a.s.l) ca. 8 km from the study sites
(Norwegian Centre for Climate Services 2019). Dominant species include
the dwarf shrubs Dryas octopetala, Salix polaris, and Cassiope tetragona, the
graminoids Festuca rubra and Poa pratensis, and the herb Bistorta vivipara.

The low-Arctic site is in western Greenland, in the Ammalortup Nunaa
highland (66.95° N, -50.72° W). Mean annual temperature is -4.9℃ and an-
nual precipitation is 252 mm, as measured at Kangerlussuaq airport (50
m.a.s.l) 7 km away from the study site (Danish Meteorological Institute
2019). Dominant species include the dwarf shrubs Vaccinium uliginosum,
Betula nana, Salix glauca, Cassiope tetragona, Salix herbacaea, and Rhodo-
dendron groenlandicum.

The sub-Antarctic site is on Marion Island, located in the southern Indian
Ocean (-46.90° S, 37.73° E). The mean annual maximum temperature is
8.7 ℃, the mean annual minimum temperature is 3.2℃, and mean annual
precipitation is 1800 mm, measured at a weather station 1 km away from
the study site. Dominant species include the fern Blechnum penna-marina,
the graminoid Agrostis magellanica, and the keystone cushion plant Azorella
selago (Le Roux et al. 2005).

2.1.3 Paper IV

This study was conducted in Northern Finland. The study area is bounded
between 64.02–68.25° N and 23.81–29.70° E, from Kajaani in the south to
Kittilä in the North, Oulu in the west to Kuusamo in the East. Mean annual
temperatures in Kajaani and Kittilä are 2.0℃ and -1.3℃, and mean annual
precipitations are 556 mm and 547 mm, respectively (Kittilä Pokka and Ka-
jaani airport weather stations, Pirinen et al. 2012). The study subject was
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the understory vegetation of boreal herb-rich forests. Compared to the sur-
rounding boreal forest matrix, their soils are mould or mould-podzol tran-
sitions instead of pure podzol, they have higher species richness, and higher
abundance of herbaceous species in the field layer and deciduous species in
the tree layer. The spatial distribution of these forests becomes patchier
the further north one goes, and correlates with calcareous bedrock and soils
(Maliniemi, Happonen, and Virtanen 2019). The vegetation type is of con-
servation importance, as about half of threatened forest species in Finland
use herb-rich forests as their primary habitat ((Hyvärinen et al. 2019). The
tree-layer is dominated by Picea abies, Alnus incana, and Betula pubescens.
Some dominant field-layer species include the herbs Geranium sylvaticum
and Filipendula ulmaria, the ferns Gymnocarpium dryopteris and Athyrium
filix-femina, the graminoids Milium effusum and Elymus caninus, and oc-
casionally even dwarf-shrubs such as Vaccinium myrtillus and Vaccinium
vitis-idaea.

2.2 Environmental measurements

In all papers, I used locally measured environmental variables to predict
the functional composition of communities. Information about the variables
studied in each paper are summarized in Table 1.

2.2.1 Papers I & III

Our research group has set up an environmental monitoring network be-
tween the fells Saana and Korkea-Jehkas. The network consists of 220
locations. Most of these are laid evenly on a 1.5 km × 2 km grid, but a few
of the locations were manually chosen to capture extreme values of temper-
ature, snow depth, and soil moisture. Monitoring has been going on since
2016. Each monitoring location consists of a central plot, and 4 additional
plots 5 metres away, one in each cardinal direction.

Of the 220 locations, 114 have loggers in their central plots that record
air temperatures 10 cm above ground and soil temperatures 10 cm below
ground with 2–4 h intervals (Thermochron iButton DS1921G and DS1922L)
throughout the year. In these papers, I used mean daily air temperatures in
July and mean daily soil temperature in February as temperature variables,
as they are the warmest and coldest months in the area, respectively.

All 220 locations have manual soil moisture monitoring during the grow-
ing season. The locations are measured at least three times during each
growing season, each measurement campaign taking place at least 24h after
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any rainfall event. The central and additional plots are both monitored.
During a measurement campaign, each plot is measured three times with
a hand-held time-domain reflectometry sensor (FieldScout TDR 300; Spec-
trum Technologies Inc., Plainfield, IL, USA), and these measurements are
averaged (Kemppinen et al. 2018).

All 220 have manual snow depth monitoring during winter. In April, which
is the time of maximum snow depth in Kilpisjärvi, each plot is measured
for snow depth with an aluminium probe. Snow was measured because it
affects vegetation by providing protection from extreme cold temperatures,
frost, and abrasion by wind-blown ice particles, as well as by providing water
sometimes long into the summer, and by limiting the length of the growing
season (Braun-Blanquet, Conard, and Fuller 1932; Niittynen, Heikkinen,
and Luoto 2018).

I used random effects modelling with the R package lme4 (Bates et al. 2015)
to predict average environmental conditions in each location for the years
2016–2018. Random effects modelling allows borrowing information from
other plots and reduces the influence of measurement error on calculated
averages. I modelled July air temperatures and February soil temperatures
using location and year as random effects (y�(1|location+year)). Since they
were only measured in the central plot, including plot as a predictor was not
necessary. Snow depth and soil moisture, however, I modelled using plot
nested in location, and year as random effects (y�(1|location/plot+year)).
I log-transformed soil moisture before modelling. Finally, I predicted the
values of the environmental variables for the central plot, averaging out the
random effects. I back-transformed soil moisture before further analyses.

We collected samples of the soil organic layer from 200 locations to measure
soil pH. Low soil pH (pH < 5) typical in tundra soils is indicative of reduced
nutrient mineralization (Sumner and Yamada 2002). The samples were
taken ca. 2 m away from the central plot of each location to avoid perturbing
long-term monitoring in these plots. Measurements were performed in the
laboratory of the University of Helsinki following ISO standard 10390.

Soil pH and soil moisture were highly correlated with each other (ρ > 0.8).
I thus reduced them to their first principal component. The resulting vari-
able I shall refer to as soil resources. Thus to characterize the microenvi-
ronment of the studied plant communities, I had information on July air
temperatures, February soil temperatures, maximum snow depth, and soil
resources.
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2.2.2 Paper II

The environmental and plant community data in this study were collected
in a hierarchical manner. Several study grids were founded in each study
site, and each study grid consisted of 160 study plots of 1 m2. There were
42 grids in total: six in the high-Arctic, six in the low-Arctic, 21 in the sub-
arctic, and nine in the sub-Antarctic. The high-Arctic and low-Arctic sites
were surveyed in 2018, the sub-Arctic site in 2013, and the sub-Antarctic
site in 2017. Grids were placed within each site in such a way as to max-
imize between- and within-grid variation in mesotopography and commu-
nity composition. The sub-Arctic grids have been used to study patterns
of plant community properties along environmental gradients (Roux, Aalto,
and Luoto 2013; Kemppinen et al. 2019).

Soil moisture was measured as volumetric water content (VWC) in each
plot using a hand-held time-domain reflectometry sensor (FieldScout TDR
300; Spectrum Technologies, Plainfield, IL, USA). Measurements were taken
from a depth of 10 cm in the low-Arctic site and 7.5 cm in the others. Soil
moisture measurement campaigns were performed during the growing sea-
son. During each measurement campaign, three measurements were taken
from each plot, and the average value was used as the value for that plot.
Only one measurement campaign was done in the high-Arctic and low-
Arctic sites, but soil moisture in the sub-Arctic and sub-Antarctic sites is
represented as the average of three and five campaigns, respectively. All
measurements were done during daytime, when at least 24 h had passed
without precipitation.

Miniature sensors were used to record soil temperature (Thermochron iBut-
ton DS1921G and DS1922L). Loggers were installed 5–10 cm below ground
and left to measure temperature with 2–4 h intervals for a year. In to-
tal, data was obtained from 69 loggers from the high-Arctic, 72 from the
low-Arctic, 322 from the sub-Arctic, and 52 from the sub-Antarctic. Each
grid had measurements from 3–18 loggers. Mean annual temperature was
calculated for each logger. These values were subsequently bilinearly in-
terpolated to each plot in the grid, with the additional constraint that the
values had to stay between the minimum and maximum of the measured
mean annual temperatures in each grid.

Soil pH was measured from soil samples taken from a subset of the grids.
In the high-Arctic and low-Arctic sites samples were collected from 12 plots
per grid, in the sub-Arctic 18 plots per grid, and in the sub-Antarctic 16–39
plots per grid. Soil pH was bilinearly interpolated for remaining plots, with
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the additional constraint that the values had to stay between the minimum
and maximum of the measured mean annual temperatures in each grid.

In the three Arctic sites, soil pH was determined from air-dried soil samples
using distilled water as a solution liquid following the International Organi-
zation for Standardization 10390:1994 (E) protocol, with the exception that
the high-Arctic and low-Arctic samples were oven-dried, and the sub-Arctic
samples were freeze dried. Soil pH in the sub-Antarctic site was determined
from air-dried soil samples and measured in calcium chloride solution (0.01
M). Soil pH values measured in calcium chloride solutions can be lower
compared to measurements made in water (Miller and Kissel 2010), which
is a potential source of error in this study.

Incident radiation was calculated as the maximum potential solar radiation
per plot using field-quantified slope and aspect values (McCune and Keon
2002; McCune 2007).

2.2.3 Paper IV

This paper uses vegetation resurvey data. In the years 1968–1975, Eero
Kaakinen surveyed boreal herb rich forests in northern Finland (Kaakinen
1971; Kaakinen 1974, Kaakinen, unpublished). In 2013–2019, we located
and revisited 254 of the original sites. Relocation was based on the help
of the original surveyor, and field notes that included information on slope,
aspect, elevation, and nearby landmarks. The study setting is thus based on
semi-permanent plots (Kapfer, Hédl, Jurasinski, et al. 2017). The original
surveyor visually estimated canopy variables from a 10 m x 10 m plot. These
variables were the relative covers of all tree species, and total tree cover on a
three-point ordinal scale (0–30%, 31–70%, 71–100%). These measurements
were repeated with the same methodology in 2013–2019.

Data on reindeer densities was provided by Jouko Kumpula from the Natu-
ral Resources Institute Finland. Management intensity was estimated based
on the protocol used for the assessment of threatened habitats in Finland
(Kouki et al. 2018, p. 180). The original protocol assigns sites on an ordi-
nal scale of pristineness ranging from zero to four. We omitted deforested
sites and inverted the scale to arrive at a four-level ordinal variable de-
scribing management impact (Table 2). Management intensity was only
assessed in 2013–2019. However, since the purpose of the original surveys
was phytosociological description of typical herb-rich vegetation, they were
not conducted in very disturbed forests.
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Table 2: The one-out-all-out criteria for inclusion in a management intensity
class.

1: Natural sites 2: Semi natural sites 3: Managed sites 4: Heavily managed sites

Management
intensity Not managed Light management Intensive management, but no

ditching or mounding
Very intensive management
e.g. ditching or fertilization

Soil Undisturbed
Disturbed, but enables
persistence of herb-rich
forest species

Disturbed, declined condi-
tions for herb-rich forest
species

Severely disturbed, soil may
have dried up or topsoil
eroded, prevalence of herb-
rich forest species endangered

Vegetation
layers All layers present Layer variability de-

clined
Layer variability clearly de-
clined Layers missing

Stand
structure

Natural variation
and gap dynamics

Variability declined, im-
pacts of management
visible in gap dynamics

Pronounced decline in vari-
ability Even-aged stand, plantation

Deadwood Varying in age
and size

Impacts of management
visible in the amount of
decaying wood

Scarce or homogenous in age
in size Scarce or missing

2.3 Plant community data

2.3.1 Paper I & III

I measured species composition in 143 locations with the point-intercept
method, using a circular frame with a diameter of 20 cm, and 20 evenly
spaced pinholes. The frame was placed as close to the central plot of each
location, without perturbing the long-term measurements (average distance
was 2.9 m). I quantified the abundance of each vascular plant species as
the total number of times each species touched any of the 20 pins lowered
into the vegetation through the frame.

2.3.2 Paper II

The absolute cover of each vascular plant species was estimated visually in
each plot.

2.3.3 Paper IV

During both survey times, the absolute cover of each vascular plant species
in the field layer was estimated visually from a 5 m x 5 m plot nested in the
10 m x 10m plot used to estimate canopy characteristics. I calculated species
richness, Shannon diversity, and species evenness for each plot during both
sampling times. I used effective numbers of species as the expression of
species diversity as per the true diversity framework (Jost 2006). Species
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evenness I expressed as Pielou’s J, or the ratio of log-transformed Shannon
diversity and log-transformed species richness, which is a measure of relative
evenness ranging from infinitesimal (complete dominance by one species) to
one (uniform relative abundance distribution, Jost 2010). I calculated plot-
specific turnover rates using the R package vegan (Oksanen et al. 2019),
using the version of Jaccard distance that takes into account species relative
abundances.

2.4 Functional traits

2.4.1 Paper I & III

I measured vegetative height, specific leaf area (SLA), and leaf dry matter
content (LDMC) for all observed species in all 143 plots with plant commu-
nity data, thus taking into account intraspecific variation. These traits align
well with the community-level size-structural and leaf economic trait axes
identified by Bruelheide et al. (2018). Trait sampling in each community
was done within the boundaries of the point-intercept frame.

I measured vegetative height as the height of the highest leaf for two random
ramets of each observed species within a plot. Leaf traits were measured
from leaf samples. One mature leaf was sampled from two random ramets
and put in a resealable plastic bag with a moist piece of paper towel. Sam-
ples were stored in 4℃ for up to 3 days and processed in batches. Each leaf
was weighed for fresh mass, scanned with a tabletop scanner, oven-dried at
70℃ for at least 48 h, and weighed for dry mass. Weighing was done with
a precision scale with a resolution of 0.001 g. I measured leaf area from the
scanned images using the Fiji distribution of the software ImageJ (Schin-
delin et al. 2012; Rueden et al. 2017). I calculated leaf dry matter content
as the ratio of fresh mass to dry mass (unitless), and specific leaf area as
the ratio of leaf area to dry mass (mm2mg-1). For each species in each plot,
I took the average of two trait measurements to represent its traits in that
location.

I calculated abundance-weighted or community-weighted means (CWMs)
for height, SLA and LDMC. If environmental selection acts via filtering
species with unsuitable traits, these values should change along environ-
mental gradients (Vellend 2016). They have been shown to be good sum-
maries of trait effects on ecosystem functions, as well (Garnier et al. 2004;
Díaz et al. 2004).

In paper I, I also calculated CWMs with coarser trait measurement reso-
lutions to study if intraspecific trait variation (ITV) is important for trait-
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based selection in this landscape. If ITV is important for trait-based selec-
tion, using coarser-scale trait measurements should decrease the strength of
observed trait-environment relationships. I calculated landscape-resolution
CWMs by using landscape-level averages of each trait for each species
instead of plot-specific averages. Further, I calculated global-resolution
CMWs by setting species trait values to averages from the Tundra Trait
Team database (Bjorkman et al. 2018b). Communities where less than 80%
of total species cover had trait values were excluded from analyses.

In paper III, I also calculated functional diversity for height and LDMC
as abundance-weighted coefficients of variation (CV). I chose this metric,
because many traits are log-normally distributed (Bjorkman et al. 2018b),
and using diversity metrics that depend on standard deviations or correlate
strongly with it introduces statistical dependency between functional com-
position and diversity. CV, on the other hand, avoids this codependence
because it normalizes the standard deviation with the mean.

2.4.2 Paper II

Species trait values for plant height, specific leaf area, seed mass, leaf dry
mass content, leaf area, leaf nitrogen content, and leaf phosphorus content
were extracted from the Tundra Trait Team database (Bjorkman et al.
2018b), when possible. Median values were calculated for species with at
least five trait observations. Such values were available for 73% of total plant
cover. For missing species-specific traits, values were supplemented with
trait observations from the TRY (Kattge et al. 2011), and BIEN databases
(Maitner et al. 2018), and with measurements made at the sub-Antarctic
site (Rossouw 2014; Louw 2016; Mazibuko 2019). This increased total trait
coverage to 97.8–99.6% of total plant cover. For the few remaining species
with no trait information, trait values were calculated as the mean of the
genus or family, preferably from the Tundra Trait Team database. These
were then refined to plot-specific community-weighted means. Ferns were
omitted from seed mass analyses, because they do not have seeds.

2.4.3 Paper IV

For field layer communities, I calculated CWMs for vegetative height, LDMC,
and SLA, using traits from the databases TRY (version 5, Kattge et al. 2011;
Kattge et al. 2020) and LEDA (Kleyer et al. 2008). These databases were
supplemented with our own measurements for a few species. Communities
where less than 80% of total species cover had trait values were excluded
from analyses. I also calculated a CWM for tree-layer SLA, using the same
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databases. All trait observations were log-transformed before CWM cal-
culations, because most traits follow a log-normal distribution ((Bjorkman
et al. 2018b).

2.5 Carbon cycling

In paper III, the carbon cycling variables were measured as follows. Carbon
fluxes were measured with the chamber method (Livingston and Hutchin-
son 1995), using a transparent, 25 cm high cylindrical acrylic measurement
chamber with a diameter of 20 cm (Vaisala, Vantaa, Finland). The cham-
ber was used to measure CO2 concentration, air temperature, and relative
humidity at 5-s intervals for 90 s. The CO2 measurements were done in the
exact same spot where community composition and traits were measured,
before trait sampling. Photosynthetically active radiation was measured
manually during the same time with 10-s intervals, using a quantum sen-
sor (Light Quantum Sensor 3668I, Spectrum Technologies, Inc., USA). Steel
collars (diameter 21 cm, height 6–7 cm), in which the chamber was mounted,
were inserted in the soil >=24 h before CO2 measurements to avoid CO2
flush from soil disturbance. The edges of the collar were sealed with inert
quartz sand. The collar was ventilated before each measurement series.

In each plot, measurement series were taken in different lighting conditions.
Light levels were progressively decreased from clear-sky conditions to ca.
80%, 50%, and 30% by shading the chamber with several layers of mosquito
net. In addition, CO2 concentration and its development was also measured
in total darkness by wrapping the chamber in a space blanket. Measure-
ment series in each lighting condition were repeated at least twice. These
measurements were used to parametrize light response curves and derive
estimates of photosynthesis and ecosystem respiration for each plot, de-
scribed in more detail in the modelling section. In addition, soil respiration
was measured by clipping above-ground vascular plant vegetation >=24 h
prior to measurements, and by performing three additional measurement
series in dark conditions.

Above-ground carbon stocks were measured by drying the clipped vascular
plant biomass at 70℃ for 48 h, weighing, and multiplying the mass by 0.475,
because the carbon content of biomass is 45–50% (Schlesinger 1991).

Soil organic carbon stocks were estimated by combining information on the
depths and carbon contents of the soil organic and mineral layers. Depth of
the organic and mineral layers were measured in three different locations in
the central measurement plot using a metal probe, and consequently aver-
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aged. Soil carbon contents were estimated by collecting samples of roughly
1 dl from the soil organic and mineral layers with metal soil core cylinders
(4–6 cm diameter, 5–7 cm height). The organic samples were collected from
the top soil, and mineral samples directly below the organic layer. Sam-
ples were freeze-dried before analyses. Bulk density (kg m-3) was estimated
by dividing the dry weight by the sample volume. Total carbon content
(C%) was analyzed using a Vario Elementar -analyzer (Elementar Analy-
sensysteme GmbH, Germany), or derived with a loss of ignition method in
the laboratory of the University of Helsinki. Before C% analysis, mineral
samples were sieved through a 2 mm plastic sieve. Organic samples were
homogenized by hammering the material into smaller pieces. Total soil or-
ganic stocks were calculated by multiplying relative carbon content with
soil bulk density and layer depth for both layers, and adding the stocks of
the two layers together.

2.6 Modelling

2.6.1 Paper I

CWMs were log-transformed before analyses. I used the method of Lepš
et al. (2011) to decompose trait variation between communities to contri-
butions from species turnover and intraspecific trait variation. The method
is based on regressing local-resolution CWMs against landscape-resolution
CWMs and ITV (the difference between landscape- and local-resolution
CWMs). I did this with the varpart function of the R (R Core Team 2019)
package vegan (Oksanen et al. 2019).

To study the relationship between environmental gradients and functional
community composition, I used generalized additive models as implemented
in the R package mgcv (Wood 2011). I regressed community-level height,
SLA and LDMC against July mean temperature, soil resources, and snow
depth. Each environmental variable was added to the model as a thin-plate
spline with the basis dimension set to three to avoid overfitting.

To assess the relative importance of each environmental variable for explain-
ing each community-level trait, I calculated the unique contribution of each
environmental variable to multiple R2 by subtracting its smooth term from
the fitted values while keeping the other smooth terms constant. The re-
sulting increase in error variance is the unique contribution of that smooth
term to the explained variation. To facilitate cross-trait comparisons, I
standardized the values to total 1 for each trait.
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2.6.2 Paper II

Community-level trait-environment relationships were modelled using hier-
archical generalized additive models (HGAMs, Pedersen et al. 2019). HGAMs
are an extension of the generalized additive model framework in the same
way that linear mixed models are an extension of linear models. HGAMs
can be used to study whether the relationship between responses and predic-
tors has the same functional form in different levels of a grouping variable.
Here, HGAMs were used to test whether plant community functional com-
position responds similarly to environmental gradients across the four study
sites, or whether there are site-specific deviations from this relationship.

Separate HGAMs were fitted for all seven CWMs, and the CWMs of plant
height, specific leaf area, seed mass, and leaf area were log-transformed
before analyses. Soil moisture, mean annual temperature, soil pH, and ra-
diation were used as predictors. The global effect of each predictor variable
was added to the model as a thin plate spline with the basis dimension
set to 20. Site-specific deviations from this global relationship were added
as factor-smooth interactions with the same basis dimension as the global
effect. To avoid overfitting, the smoothing parameters of each environmen-
tal response spline were set to have a minimum value of 1, based on visual
inspection of preliminary models. Higher values of the smoothing param-
eter correspond with less wiggly splines. In addition to the environmental
splines, a random intercept was included for each site-grid -interaction. A
separate random effect was not added for each site, because the number of
sites was less than five, and thus the variance estimate for the random ef-
fect would have been unreliable (Bolker et al. 2020). The models were fitted
with the package mgcv (Wood 2011), using restricted maximum likelihood
estimation.

The fitted values of these HGAM models are the sum of the global splines,
the site-specific factor-smooth interactions, the random intercept and the
global intercept. The relative importance of the global trait-environment
relationship in relation to site-specific deviations was assessed by first sub-
tracting the site-specific splines from the fitted values and noting the de-
crease in the squared correlation between fitted and observed values (r2).
After this, the global splines were further subtracted, and the decrease in
r2 recorded. The sum of these decreases can be interpreted as the amount
of variation in a CWM explained by the environment. The relative magni-
tudes of the amounts of r2 accounted for by global splines and deviations
from it were compared for each site-trait combination to infer whether plant
community functional composition can be explained by trait-environment
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relationships that hold across geographical locations.

2.6.3 Paper III

All models in this paper were built with brms (Bürkner 2018), an R (R Core
Team 2019) interface to the bayesian modelling platform Stan (Carpenter
et al. 2017).

2.6.3.1 Light response model and flux normalization

Each CO2 concentration measurement series was converted to net ecosys-
tem exchange of CO2 (NEE, μmol m-2s-1) following Kulmala et al. (2010),
after omitting the first and last 5 s of measurements from each series. In
this paper, positive NEE corresponds to carbon influx in the system. I built
a non-linear hierarchical light-response model to predict temperature- and
PAR-normalized photosynthesis and ecosystem respiration for each study
plot. I used the Michaelis-Menten equation as the functional form of the
relationship between PAR and NEE (Eqn 1), offset by an intercept term
(dark respiration, ER). The Michaelis-Menten equation additionally has
parameters for maximum gross primary productivity (GPPmax) and the
half-saturation constant (K). Furher, the model also contained an expo-
nential relationship between ER and chamber air temperature (Eqn 2).
Equations 2–4 and 6–8 describe the hierarchical parts of the model, i.e. all
k plot-specific GPPmax, K, and ER are assumed to come from a common
distribution. Equation 5 is the global error variance.

NEEij = −ERij +
GPPmax j PARi

Kj + PARi
+ eij

(i = 1 . . . n, j = 1 . . . k) (Eqn 1)
log(ERij) = InterceptER + Tijβtemperature + uER j (Eqn 2)
GPPmax j = InterceptGPP + uGPP j (Eqn 3)

log(K) = InterceptK + uK j (Eqn 4)
e ∼ N (0, σNEE) (Eqn 5)

uER ∼ N (0, σER) (Eqn 6)
uGPP ∼ N (0, σGPP ) (Eqn 7)

uK ∼ N (0, σK) (Eqn 8)

The Michaelis-Menten parameters GPPmax and half-saturation constant K
sometimes identify weakly, so that the data would be consistent with in-
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finitely increasing photosynthesis. This is especially true when CO2 fluxes
are small, which is frequently the case in tundra ecosystems. To counter this,
I set weakly informative priors on the plot-specific intercept terms based on
visual inspection of the scale of variation in our data and typical parameter
values reported in Williams et al. 2006a (Eqns 9–11). I also set a weakly
informative prior for the temperature effect on respiration βtemperature (Eqn
12). I left the priors for the variance parameters as the weakly informative
brms defaults (Eqn 13).

InterceptER ∼ N (1, 2) (Eqn 9)
InterceptGPP ∼ N (10, 10) (Eqn 10)

InterceptK ∼ N (6.2, 0.3) (Eqn 11)
βtemperature ∼ N (0, 1) (Eqn 12)

σER, σGPP , σK , σNEE ∼ student− t+(3, 10) (Eqn 13)

I fit the model with 4 Hamiltonian Monte Carlo chains, which were run for
2000 iterations each. The first 1000 iterations were discarded as warmup,
leaving a total of 4000 samples of each parameter.

I used this model to predict NEE at 0 and 600 PAR and at at 20℃ which
will be called ecosystem respiration (ER) and photosynthesis (GPP), re-
spectively.

I also used this model with PAR and temperature logger data to simulate
changes in carbon stocks during the peak growing season (30-day period
between 2017-07-08 and 2017-08-07). For this purpose, I interpolated the
temperature time-series from 2–4 h to 10 min resolution. The sum of these
predicted 10-minute resolution changes in carbon stocks I call the peak-
season carbon budget.

I used a hierarchical linear regression to model the relationship between
temperature and soil respiration. I added plot as a group-level (random)
intercept, and chamber air temperature as a population-level (fixed) effect.
Priors were left as the brms defaults. I used this model to predict soil
respiration at 20℃ (henceforth called SR).

2.6.3.2 Hierarchical model of tundra carbon cycling

I used bayesian linear regression models to relate environmental condi-
tions (July mean air temperature, soil resources, February soil tempera-
ture) to community trait composition (log-transformed CWMs of height
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and LDMC) and diversity (CVs of height and LDMC, submodel 1), commu-
nity functional properties to CO2 fluxes (log-transformed GPP,ER, and SR,
submodel 2) and carbon stocks above- and belowground (log-transformed
AGC and SOC, submodels 3 and 4), and GPP and ER to peak-season car-
bon budget (submodel 5). Each submodel included residual correlations
between responses, if there were more than one. Priors were left as the
brms defaults. I fitted each submodel using four HMC chains which I ran
for 2000 iterations. I then discarded the first 1000 iterations as warmup,
leaving a total of 4000 posterior samples of each parameter.

I then coupled the above-described submodels together to simulate the ef-
fects of warmer summer air and winter soil temperatures on carbon-cycling.
I first calculated median values for all environmental variables, and used
500 posterior draws from submodel 1 to derive fitted values for community
functional composition and diversity. I then used these 500 fitted values as
inputs for submodels 2–4, derived fitted values using 500 posterior draws
from said submodels, and thinned the 5002 fitted values to 500 by taking
the diagonal of the matrix of fitted values. I then repeated the procedure
for submodel 5. None of the fitted values took into account residual uncer-
tainty.

I then repeated the above-described procedure, but with datasets that had
+1℃ warmer mean July air temperatures, +1℃ warmer mean February
soil temperatures, or both. For the simulations with augmented July air
temperatures, I ran the simulations with and without direct temperature
effects on summer respiration. I took direct temperature effects into account
by multiplying fitted ER by the exponential of the temperature sensitivity
parameter from the previously fitted light-response model (βtemperature, Eqn
2).

Data and scripts used in this study have been deposited to Zenodo (Hap-
ponen et al. 2020a).

2.6.4 Paper IV

All models were fitted using brms, the R (R Core Team 2019) package for
bayesian modelling (Bürkner 2018), using default priors and four Hamilto-
nian Monte Carlo chains of 2000 draws. In each chain, the first 1000 draws
were discarded as warmup, leaving a total of 4000 draws of each parameter.

To study temporal differences in community composition and diversity, I
subtracted values of species richness, Shannon diversity, species evenness,
community-level height, LDMC and SLA during the original survey from
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those during the resurvey. These observed differences, along with logit-
transformed temporal turnover, are the response variables in the following
models, unless otherwise stated.

To study average plot-level changes, I fitted an intercept-only model with
residual correlations and gaussian errors. Length of the sampling inter-
val was originally included in the model, but was dropped because of its
statistical insignificance.

To study the effects of canopy changes and reindeer herbivory on vegetation
changes, I first calculated the temporal difference in Canopy SLA in the
same way as I did with the field layer variables. I also transformed the
ordinal canopy cover variable into a categorical measure of canopy cover
change with three levels: canopy cover decrease, stasis, and increase. I then
regressed the community changes against changes in canopy SLA, canopy
cover, and residence inside the reindeer herding area, to see how biotic
interactions might modulate changes in plant communities.

The number and distribution of reindeer are under complete human control,
but canopy layer properties are also affected by natural processes. To see
how forest management influenced canopy-layer changes, I made two mod-
els. First, I modelled canopy SLA using a hierarchical model with normally
distributed errors. Plot was added as a group-level (random) effect, and
management intensity, sampling time, and their interaction as population-
level effects. Second, I modelled canopy cover with the same explanatory
variables, but using hierarchical ordinal regression with a cumulative logit-
link (Bürkner and Vuorre 2019).

I used these two canopy models to study the indirect effects of management
intensity on community diversity and composition via changes in canopy
characteristics. I took 4000 draws from the posterior distributions of the
model parameters, and used them to acquire fitted values of canopy cover
and canopy SLA in each management intensity class during original sam-
pling and resampling. For the ordinal model, this was the probability of
each of the canopy cover classes. I then used these fitted values to cal-
culate the posterior probability of canopy cover transitions (canopy cover
decreased, canopy cover stayed the same, canopy cover increased), and the
posterior probability distribution of canopy SLA changes. Further, I used
these posterior distributions of canopy changes as predictors in the model
of community change described above to infer the indirect effects of for-
est management intensity on community properties via effects on canopy
characteristics.
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To study the direct effects of management intensity on community char-
acteristics, I looked at the distribution of residuals in different manage-
ment intensity classes. I calculated average residual bias for each response-
management intensity -combination, and standardized these values with the
standard deviations of the responses during the original sampling, or in the
case of turnover, their total standard deviation.

Finally, to quantify spatial correlations in community properties, I used a
hierarchical model explaining community diversity and functional composi-
tion with plot as a group-level (random) effect, time as a population-level
(fixed) effect, and modelled residual correlations in the response variables.
The model had gaussian errors. I then compared these spatial correlations
to temporal correlations to see whether temporal covariations in community
properties reproduce covariations observed spatially.

Data and scripts used in this study have been deposited to Zenodo (Hap-
ponen et al. 2020b).

3 Results and Discussion

Identified connections between land-use, abiotic conditions, functional com-
munity composition, and ecosystem functions are summarized in Table 3. I
have omitted results that are not directly related to selection in the context
of the global spectrum of plant form and function, most noteworthily all re-
sults that do not consider the traits listed in Fig. 1. These are discussed in
more detail in the constituent papers. In the following section, I go through
how these results attend to the aims of this thesis: to gain insight about
trait-based microenvironmental selection, to understand its consequences
for tundra carbon cycling, and to connect land-use -modulated vegetation
changes to a context of trait-based selection.

3.1 Trait-based responses to the microenvironment are strong
and consistent across scales

Our results suggest stronger environmental control of plot-scale community
functional composition than found in previous global analyses at local (I),
regional (IV), and global scales (II). While it is perhaps not surprising that
explaining functional community composition in one landscape is easier than
at pan-Arctic scales (paper I), our results in papers II and IV show that the
effects of microenvironmental selection are strong and consistent between
locations that lie up to 15000 km apart.
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Table 3: Connections between land-use (blue), abiotic conditions (cyan),
functional composition (green) and ecosystem functioning (yellow). Roman
numerals in parentheses refer to papers in this thesis in which the connec-
tions were identified. Canopy cover, although a biotic variable, is included
in abiotic conditions because it represents lack of light. Connections from
paper III that were identical with connections from paper I were omitted,
because they were based on the same data.

System Predictor Response Effect

Boreal Management intensity Canopy cover Positive (IV)
Height Positive (IV)

Reindeer husbandry Height Negative (IV)
SLA Negative (IV)

Canopy cover Height Negative (IV)
LDMC Negative (IV)
SLA Positive (IV)

Tundra Summer temperature Height Positive (I)

Soil resources Height Negative (I)
LDMC Negative (I)
SLA Positive (I)

Maximum snow depth LDMC Negative saturating (I)
SLA Unimodal or positive saturating (I)

Annual soil temperature Height Positive or saturating (II)
LDMC Negative (II)
Leaf N Positive or saturating (II)
Leaf P Positive or saturating (II)
SLA Positive or saturating (II)

Soil pH Height Negative (II)
LDMC Negative (II)
Leaf N Positive (II)
Leaf P Positive (II)
SLA Positive (II)

Soil moisture Leaf N Positive (II)
Leaf P Positive or saturating (II)
SLA Positive (II)

Potential solar radiation Height Positive (II)

Winter soil temperature Height Positive (III)
LDMC Negative (III)

Height Photosynthesis Positive (III)
Ecosystem respiration Positive (III)
Soil respiration Positive (III)
Above-ground carbon Positive (III)

LDMC Photosynthesis Negative (III)
Soil respiration Negative (III)
Above-ground carbon Positive (III)
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At the local scale, summer temperature, snow depth and soil resources ex-
plained 20%, 35% and 50% of variance in average plant height, SLA and
LDMC, respectively (Paper I). These figures are about 10, 15 and 20 times
larger than what was achieved by explaining functional composition with
univariate regression against remote-sensing based climate products across
the pan-Arctic (Bjorkman et al. 2018a), and 2, 9 and 6 times larger than
when the same type of analysis was applied to global vegetation plot data
(Bruelheide et al. 2018). This highlights the importance of within-landscape
variation in micro-environmental selection for trait-based community assem-
bly.

Most explained variation in vegetation height was accounted for by a posi-
tive response to summer air temperatures, variation in LDMC by a negative
response to soil resources, and variation in SLA by a positive saturating or
hump-shaped response to snow depth. The directions of these effects were
further consistent with results from studies that have treated correspond-
ing variables in isolation (Bruelheide et al. 2018; Choler 2005; Pérez-Ramos
et al. 2012). Averaged across the traits, snow depth was responsible for
the most explained variation. As in the tundra as a whole, variation of
plant height in this landscape is severely limited by temperature, whereas
variation in leaf economic traits covers a large fraction of the global spec-
trum of possibilities (Thomas et al. 2020; Bjorkman et al. 2018b). The
strongest responses of leaf economic traits were related to factors that can
have very large variation at local to landscape scales, namely, snow depth
and soil resources. This might explain why it can be hard to explain func-
tional composition in these traits with coarse-resolution predictors. The
results in this paper agree with other recent work that raise awareness on
the importance of winter conditions for ecological research performed in en-
vironments with seasonal snow cover. Among other effects, snow decouples
plant-experienced temperatures from the free-air temperatures that most
temperature products describe (Lembrechts et al. 2020), which is one ex-
planation for why snow has been observed to be very important for plant
distributions in the tundra (Niittynen and Luoto 2017), while coarse-scale
winter temperatures often show weak predictive power (Bjorkman et al.
2018a; Bruelheide et al. 2018).

Nevertheless, results from one location cannot necessarily be generalized to
others, as the community ecological literature is ripe with results contin-
gent on geography (Simberloff 2004). In paper II, we showed that vegeta-
tion height and leaf economic traits have strong and consistent responses
to mean annual soil temperature and soil pH across tundra sites located up
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to 15000 km apart from each other. Furthermore, the responses of height,
LDMC and SLA to temperature and soil pH were consistent with those of
paper I, if one takes into account that deeper snow correlates with higher
winter temperatures, and pH is a component of the soil resource variable
in paper I. An important issue to consider is that much of the variation in
mean annual soil temperatures was caused by variation in snow cover. The
distributions of soil temperatures in the Arctic sites with topographically
varying snow cover were wide and overlapping, whereas the snow-free hype-
roceanic sub-Antarctic site had a narrow distribution of soil temperatures,
again highlighting the importance of accounting for microclimate that can
be decoupled from free-air temperatures. Taken together, papers I and II
thus show that higher plant-experienced temperatures strongly select for
taller plants with faster leaf economic traits, while soil resource availability
selects for fast leaf economic traits, at least in the tundra. These effects
have been reported before in the literature (Bruelheide et al. 2018; Garnier
et al. 2004; Spasojevic and Suding 2012; Pérez-Ramos et al. 2012; Bjork-
man et al. 2018a), here I show that they are strong and consistent across
the tundra biome. The global spectrum of plant form and function (Díaz
et al. 2016) thus seems like an excellent set of traits for monitoring tundra
plant communities and the effects caused on them by global change factors
such as climate warming and eutrophication.

Moving away from the tundra, in paper IV I investigated the effects of
canopy cover changes on 40–50 year trends in the height, SLA and LDMC
of boreal forest understories. Canopy cover had increased across the study
area. Deepening shade correlated positively with SLA, while the correla-
tion with LDMC was negative. SLA has been previously identified as a key
trait predicting understory species responses to succession, i.e. lower light
availability, because high SLA maximizes light-capturing area in relation to
leaf carbon construction costs (Dahlgren et al. 2006). While LDMC has not
been directly identified as such a trait, it correlates negatively with SLA as
part of the leaf economic spectrum (Bruelheide et al. 2018). In addition, de-
creased canopy cover had an uncertain positive effect on vegetation height,
and increased cover an uncertain negative effect, leading to reasonable cer-
tainty that decreases and increases in canopy cover had affected vegetation
height differently. Decreasing height in response to shade is an expected
response if light is a limiting resource, as is the case in forest understo-
ries (Blondeel et al. 2020), especially among herbaceous plants that cannot
annually increment their heights. To sum up, the direct selection pres-
sure of increased shading thus pushed understory composition towards trait
values adapted to shadier conditions: faster leaf economics and decreased
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size, again highlighting how fundamental these trait axes are in explaining
species environmental responses. Since climate warming and other factors
are increasing the total leaf area of trees and, consequently, the shading of
understories globally (Zhu et al. 2016), the trait-based responses identified
here and in earlier literature will be important in predicting and explaining
understory composition and its changes. A key finding of my research is
thus that climate change will likely have additional indirect selection effects
on understory plants and their communities via changes in light availability
due to increased forest density.

3.2 Plant community functional composition mediates en-
vironmental effects on tundra carbon cycling

Returning to the tundra, in paper III I found the functional composition and
diversity of plant communities to be strong predictors for both carbon fluxes
and carbon stocks. Furthermore, as already identified in paper I, functional
composition had strong spatial relationships with environmental conditions.
Directional shifts in the composition of plant communities in response to
trait-based environmental selection thus has important consequences for
tundra carbon cycling.

The strongest connections between carbon cycling and the functional char-
acteristics of communities involved vegetation height. Communities com-
posed of larger plants had larger above-ground carbon stocks, and larger
CO2 influxes and effluxes. More is thus more, even in plant communities.
In addition, regression coefficients in the log-log model between vegetation
height and CO2 fluxes had values smaller than unity, leading to dimin-
ishing absolute rates of flux increase with plant size, agreeing with previ-
ous research on the allometric scaling of productivity (Niklas and Enquist
2001). This is a logical consequence, since a greater fraction of the biomass
of large plants needs to be allocated to metabolically inactive structural
tissues (Niklas et al. 2007).

Community-level LDMC, the leaf economic trait studied here, affected CO2
fluxes negatively, but above-ground carbon storage positively. Slow leaf eco-
nomic trait composition thus led to slower metabolic activity, manifesting
as smaller CO2 fluxes, which is a well-documented relationship (Williams
et al. 2006b; Street et al. 2007; Shaver et al. 2007). The positive effect
of LDMC on above-ground carbon storage is perhaps due to species with
slower strategies having more long-lived above-ground structures. Slower
leaf economic traits are found in low soil resource conditions (Paper I),
where slower turnover of leaves is favored due to nitrogen-use efficiency:
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plants try to minimize inevitable nitrogen losses caused by leaf senescence
(Hikosaka 2005). Longer leaf longevity then mandates higher investments
in structural carbon compounds, which manifest as higher LDMC. Perhaps
such a strategy applies to stems as well, as the stems of species with faster
leaf economics in the area are green and ephemeral, and building such stems
results in inevitable carbon and nutrient losses after each growing season.

Functional diversity also affected carbon cycling, and the effects could be
partitioned between the diversity in size and in LDMC. Size diversity in-
creased carbon stocks above ground, indicating that vegetation layeredness
minimizes empty space and increases the amount of carbon stored in the
ecosystem. LDMC diversity correlated with increased carbon fluxes and
below-ground carbon stocks. This points to the conclusion that increases
in the diversity of leaf economic traits but not size-structural traits lead
to a more efficient partitioning of resources in this landscape. Across the
landscape, the most important functional diversity measure was typically
as or more important than average LDMC for the various carbon cycling
variables, measured as standardized regression coefficients. However, the di-
versity measures were only weakly connected to environmental conditions,
suggesting that at this fine resolution environmental change is not very
consequential for diversity-driven changes in carbon cycling.

Warmer temperatures, both during winter and summer, selected for com-
munities with greater peak-season carbon uptake capacity. Both summer air
temperatures and winter soil (i.e. below-snow) temperatures were positively
correlated with plant size. Additionally, warmer winter temperatures cor-
related with faster leaf economics. Increased size and faster leaf economics
both increased standardized photosynthesis and ecosystem respiration. Ac-
cording to my simulations, the net consequence of these indirect warming
effects was increased CO2 sequestration during the peak season.

However, our study area in Kilpisjärvi lacked both wetlands with water-
logged peat soil and continuous permafrost, which in some other studies
have been shown to be important for CO2 release (Schuur et al. 2009; Heikki-
nen, Elsakov, and Martikainen 2002). Additionally, temperature effects on
carbon cycling extend beyond the peak growing season. A significant por-
tion of carbon losses might occur in the shoulder seasons (Euskirchen et
al. 2017). In addition, microbial respiration continues into winter, even in
frozen soils (Heikkinen, Elsakov, and Martikainen 2002; Drotz et al. 2010).
Thus, even though warmer summer and winter conditions probably increase
the carbon uptake capacity of vegetation, this will not necessarily lead to
higher annual net carbon assimilation because of the direct effect of tem-
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perature on soil respiration (Bond-Lamberty and Thomson 2010; Mikan,
Schimel, and Doyle 2002).

Lastly, increased temperature begins affecting respiration immediately, while
the increases in productivity will be delayed. Changes in species compo-
sition lag behind environmental changes due to dispersal limitation (Ash,
Givnish, and Waller 2017), extinction debts (Bertrand et al. 2011), priority
effects and other biotic interactions (HilleRisLambers et al. 2013; Kaar-
lejärvi, Eskelinen, and Olofsson 2013), and delays caused by ontogenesis, as
large plants take time to grow, especially in the tundra (Chapin and Shaver
1996). These lags are very consequential from a climate change mitigation
perspective, as I found even the peak-season carbon budget to be two times
more sensitive to standardized ecosystem respiration than to standardized
photosynthesis, since respiration continues day and night, while photosyn-
thesis follows a diurnal cycle. Thus, while lagged temperature responses are
probably good news from a conservation point of view, they also lead to a
larger net release of soil carbon to the atmosphere. My results should thus
not be interpreted as saying that warming will lead to a higher annual net
carbon sink.

To sum up, because average plant size has been shown to increase in com-
munities across the tundra (Bjorkman et al. 2018a), my research shows that
warmer temperatures have already caused major shifts in the functioning of
tundra ecosystems. Tundra carbon fluxes are accelerating. Since carbon as-
similation by plants is intimately linked to the cycles of water and nutrients
(Schimel, Braswell, and Parton 1997), increased plant average size across
tundra communities has already comprehensively accelerated the cycling of
matter and energy in this ecosystem.

3.3 Land use and land-use change cause directional selection
on understory functional traits

Moving back to boreal forests, in paper IV I showed how the direct and
indirect selective pressures exerted by forestry and reindeer husbandry had
shaped vegetation changes during 40–50 years.

I showed that forest management increased canopy cover in the long-term
except in recent clearcuts, leading to understory communities composed of
species with faster leaf-economic traits. While recent wood harvests have
been shown to increase light availability at the forest floor (Tonteri et al.
2016), in paper IV I argue that the long-term effects of forest management
can actually be decreased light availability. Forest management in the pre-



31

vailing periodic cover silviculture replaces natural gap dynamics with tem-
porally and spatially highly concentrated light availability after clearcuts,
followed by rapid development of a highly shading canopy whose architec-
ture is designed by humans to fill all gaps in the canopy. This decreased
light availability favors species with fast leaf economic traits; the so-called
“Oxalis effect” (Wilson, Thompson, and Hodgson 1999).

There was an ambient trend of increasing vegetation height in the absence of
canopy changes and reindeer herbivory, consistent with the reported effects
of climate warming (Bjorkman et al. 2018a). However, there was consid-
erable spatial variation in this trend. Within the reindeer herding area,
communities were actually composed of shorter species than 40–50 years
prior, with 88% probability. In addition, SLA remained stable outside but
decreased within the reindeer herding area in the absence of canopy changes,
with 98% probability.

Larger plants are typically more susceptible to mammalian herbivory than
small plants (Carmona, Lajeunesse, and Johnson 2011). Additionally, SLA
has been shown to correlate with traits that indicate forage quality for
herbivores, such as leaf nitrogen concentration (Díaz et al. 2016). Taking
the former into account, and the fact that reindeer density had increased
by 40% during the study period, these results suggest that reindeer hus-
bandry is reversing or at least negating the effects of climate change and
forest management on the functional composition of boreal herb-rich for-
est understories. This interpretation is further supported by the fact that
forests in the reindeer herding area had 8% lower temporal turnover. Such
biotic buffering of climate change effects has been reported before in the
tundra (Post and Pedersen 2008; Olofsson et al. 2009; Olofsson and Post
2018). My results suggest that the buffering effects of artificially increased
reindeer densities extend spatially to boreal forests.

Functional changes in the understories were also reflected in species diversity
measures. Most notably, changes in species richness, species evenness, and
Shannon diversity all correlated negatively with changes in species height.
Increase in average plant size, assuming plants cannot stretch in only one
dimension, leads necessarily to a decrease in the number of plant individuals
that can fit in a given area (Oksanen 1996). Consequently, there is a mech-
anistic link between vegetation height and plot-scale diversity. Thus, the
selective pressure towards shorter vegetation exerted by reindeer herbivory
was also manifested as increased species evenness and Shannon diversity.
Furthermore, these temporal correlations in community properties were also
evident spatially, suggesting that their coordination is controlled by more
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general processes than just incidental covariation.

3.4 Uncertainty and reservations

The studies in this thesis are based on observational data and correlative
methods, meaning that they do not provide direct evidence about causal
relationships between variables. Rather, their results should be interpreted
as exploratory or confirmatory, showing us how natural phenomena actually
co-occur, and providing confirmation for predictions based on experimental
work and theory (Shipley 1999). In the absence of the latter, observational
work can also act as inspiration for new experiments and theoretical syn-
thesis.

The most pervasive problem with observational data is multicollinearity
(Graham 2003). Situations where variables of interest vary completely inde-
pendently from each other and from confounding factors are rare in nature,
leading to uncertainty about the true causes of studied phenomena. Uncer-
tainty can sometimes be reduced by including all confounding variables in
the models explicitly (Mod et al. 2016), but often this is hard or impossible
due to the complexity of natural phenomena. However, basing research on
theoretically solid conceptual models reduces the probability of misidenti-
fying causal links between variables (Shipley 1999; Graham 2003). In this
work, I have opted for this latter path by studying traits that align well with
identified trait axes, by selecting as their predictors environmental variables
that are known to constrain plant vital rates in high-latitude ecosystems,
and by choosing to study ecosystem functions that could plausibly depend
on size-structural and leaf-economic traits. This does not make my analy-
ses impervious to problems arising from multicollinearity, however, and all
results should be interpreted in light of other available evidence. For ex-
ample, in Papers I–III, indicators of soil resource availability (soil moisture,
soil pH) correlated negatively with vegetation height, which goes against
predictions from theory (Tilman 1988) and reported effects from the liter-
ature (e.g. Harpole and Tilman 2007). Most likely this is because water
is not only a resource, but can also cause stress and disturbance on veg-
etation (Kemppinen et al. 2019). Still, most findings in this thesis are as
expected based on theory and previous observations about the linkages be-
tween studied variables. Conclusive evidence can only be acquired with
further experimental work, however.
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4 Conclusions and future perspectives

In this thesis, I have shown how the size-structural and leaf economic trait
axes modulate the effects of environmental selection on plant communi-
ties in the tundra and boreal zones. Large size confers an advantage in
warm, ungrazed, unshaded conditions, while fast leaf economic traits are
selected for by shade, high soil resource availability, and lack of herbivory.
Furthermore, I have shown how the effects of functional composition and
diversity on tundra carbon cycling differ between size-structural and leaf
economic traits. Carbon dioxide fluxes and above-ground carbon stocks in-
crease along with average plant size. Faster leaf economics similarly result
in higher carbon fluxes, but also in lower above-ground stocks. Addition-
ally, size-structural diversity increases carbon stocks above ground, while
leaf economic diversity correlates with increased carbon fluxes and below-
ground carbon stocks. Lastly, I have shown that these trait axes are able to
capture the signal of human economic actions (forestry and livestock graz-
ing) on forest understory communities that are of conservation importance.
These findings are summarized in Fig. 4.

The global spectrum of plant form and function (Díaz et al. 2016) thus
mediates the effects of different natural and anthropogenic selection pres-
sures on plant communities (Papers I, II & IV), and also how the effects
of that selection ripple on to ecosystem functions (Paper III). Functional
traits have been proposed as one set of “Essential Biodiversity Variables”
for monitoring biodiversity change across the planet (Pereira et al. 2013).
Traits that align well with the identified axes of variation, such as height,
LDMC and SLA, form a natural set of variables to monitor in plant com-
munities. Given how consistently the location of communities along these
trait axes seems to respond to selection across systems, basing trait-based
research around this paradigm could allow for meaningful global synthesis.
I have summarized some ideas for future research directions in Fig. 5, and
discuss them below.

My research suggests that the lack of strong explanatory power of environ-
mental variables in previous global studies of trait composition (Bruelheide
et al. 2018; Bjorkman et al. 2018a) is at least in part due to the importance
of micro-scale environmental heterogeneity, which remote-sensing products
cannot always reliably capture. Studies at the local scale are fortunately be-
ginning to take advantage of the decreasing prices of environmental loggers,
and development is underway for global temperature products that take
into account the different factors that decouple local temperatures from
free-air temperatures (Lembrechts et al. 2020). Improved access to remote-
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Figure 4: A conceptual summarization of the ways community position
on size-structural (a) and leaf economic (b) trait axes is affected by land-
use and abiotic conditions, and how these axes modulate carbon cycling.
Positive carbon balance equals more carbon sequestered.
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Figure 5: Future directions in the study of trait-based selection on plants
and plant communities.
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sensing cloud-computing tools such as Google Earth Engine (Gorelick et al.
2017) are also making it easier than ever to include directly observed rather
than modelled environmental properties at the resolution of up to 10 m in
models of trait composition. Technological advancement is thus opening up
possibilities to study trait-environment relationships at extents and resolu-
tions never seen before, paving the way for global syntheses of trait-based
microenvironmental selection effects on plant communities. However, as
observational work is always subject to confounding factors, a first step to
making such a synthesis could be the reanalysis of experimentally induced
vegetation changes from a functional trait perspective for experiments where
species composition data is available. Such a meta-analysis should already
be feasible given how fast the coverage of open species trait databases has
grown (Bjorkman et al. 2018b; Kattge et al. 2020; Maitner et al. 2018).

That the microenvironment is important does not mean that regional envi-
ronmental variation is not. We know that the availability of light is an im-
portant selective force structuring plant communities (Paper IV; De Frenne
et al. 2015; Dahlgren et al. 2006; Tonteri et al. 2016). Yet very little is
known about its effects on community composition beyond local-scale stud-
ies, despite light availability varying remarkably along with latitude and
climate. Solar radiation displays heterogeneous trends in space and time
(Wild 2012), leading to potentially biased inference on the causes of veg-
etation change in observational studies if changes in light availability are
not controlled for. Additionally, productivity in large parts of northern
ecosystems, even in the tundra, has been shown to be as or more sensitive
to changes in cloud cover than to changes in temperature (Seddon et al.
2016), hinting that changes in light quantity and quality could be impor-
tant drivers of vegetation change even in treeless ecosystems. Thus, many
interesting and important connections between the spatial and temporal
availability of light and the functional composition of plant communities
probably await discovery.

While the axes of above-ground traits seem a highly useful framework for
trait-based plant ecology, they are not a sufficient summary of plant prop-
erties. A sizable portion of plant biomass is allocated to below-ground parts
(Iversen et al. 2015). While some work suggests that especially chemical
fine-root properties vary in concert with above-ground traits as parts of a
whole-plant economics spectrum (Freschet et al. 2010; Pérez-Ramos et al.
2012), other analyses have shown that root structural properties such as
specific root length are quite free to vary in relation to chemical traits (Mc-
Cormack and Iversen 2019), highlighting the need for further research on
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where root traits fit in with the already identified global axes of variation.
Identifying below-ground trait axes that are independent from above-ground
traits would be a highly useful first step. Progress is hindered by the low
coverage of openly available root trait data, although steps are being taken
to tackle this (Iversen et al. 2017). Root traits could be thought to be espe-
cially important for the storage and cycling of belowground carbon, whose
fate under climate change is of utmost importance for human welfare. Tak-
ing into account that soil organic carbon was the ecosystem property with
the weakest links to above-ground traits (paper III), the functional ecology
of roots seems like one of the more timely research priorities in ecology.

I have hopefully demonstrated how trait-based community ecology is one
formidable path towards finding repeated patterns in nature, the goal of
ecology and science in general as suggested by MacArthur. Understanding
how communities react to natural and anthropogenic selection pressures
is important in itself, for protecting the intrinsically valuable species with
which we share this planet, but also for safeguarding human welfare against
unexpected changes in ecosystem functions that we rely on. After more
than a century of ecological research, we already know something about
how natural systems work, but much remains unexplored. I am in a happy
position to be able to follow the advancements made in this field by brilliant
researchers around the world, and perhaps also contribute something myself.
It took me 3.5 years to write this thesis. I look forward to returning to the
questions raised here in another 3.5 years, as I expect many of them to
be answered. Nothing is quite as exciting as getting an answer to a long-
standing question, except perhaps the process of arriving at the answer
yourself.
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