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ABSTRACT Aromatic hydrocarbons contribute significantly to tropospheric ozone and16

secondary organic aerosols (SOA). Despite large efforts in elucidating the formation mechanism17

of aromatic-derived SOA, current models still substantially underestimate the SOA yields when18

comparing to field measurements. Here we present a new, up to now undiscovered pathway for19

the formation of highly oxidized products from the OH-initiated oxidation of alkyl benzenes20

based on theoretical and experimental investigations. We propose that unimolecular H-migration21

followed by O2-addition, a so-called autoxidation step, can take place in bicyclic peroxy radicals22

(BPRs), which are important intermediates of the OH-initiated oxidation of aromatic compounds.23

These autoxidation steps lead to the formation of highly oxidized multifunctional compounds24

(HOMs), which are able to form SOA. Our theoretical calculations suggest that the25

intramolecular H-migration in BPRs of substituted benzenes could be fast enough to compete26

with bimolecular reactions with HO2 radicals or NO under atmospheric conditions. The27

theoretical findings are experimentally supported by flow tube studies using chemical ionization28

mass spectrometry to detect the highly oxidized peroxy radical intermediates and closed-shell29

products. This new unimolecular BPR route to form HOMs in the gas phase enhances our30

understanding of the aromatic oxidation mechanism, and contributes significantly to a better31

understanding of aromatic-derived SOA in urban areas.32

KEYWORDS: Highly Oxidized Multifunctional Products; Bicyclic Peroxy Radicals;33

Unimolecular Hydrogen Migration; Mass Spectrometry34
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Introduction40

Aromatic compounds represent an important fraction of the total volatile organic compounds41

in the urban atmosphere and play an important role in the formation of both tropospheric ozone42

and secondary organic aerosols (SOAs).1-5 Typical anthropogenic sources of aromatic43

compounds include on-road vehicles, solvent usage, and industrial emissions. In industrialized44

regions of developing countries like China, serious pollutions from BTEX (Benzene, Toluene,45

Ethylbenzene, and Xylenes) were observed in winter due to coal combustion, e.g., BTEX46

concentrations were usually ~30 μg  m–3 (1μg  m–3 ~  7.5 × 109 molecules cm–3 ~ 0.3 ppbv) or47

higher in non-haze days and could easily exceed 100 μg m–3 in haze days in northern China6, 748

and other regions.8, 949

In the troposphere, oxidation of aromatic compounds is initiated by their reactions with OH50

radicals via H-abstraction from the alkyl groups and, more importantly, via OH addition to the51

aromatic ring, followed by further reactions to form bicyclic peroxy radicals (BPRs) (Scheme52

1).1, 10, 11 Based on the current mechanistic understanding, BPRs react with HO2 radicals forming53

bicyclic hydroxyhydroperoxides (ROOH) as the main product under low-NOx conditions. The54

reaction with NO yields bicyclic organic nitrates (RONO2) as well as the corresponding bicyclic55

oxy radicals that finally form carbonylic products, such as (methyl) glyoxal, and other SOA56

precursors.12-14 As a result of a smog chamber study on the oxidation of benzene, toluene, and57

xylene, it was found that SOA yields under low-NOx conditions were higher than those obtained58

under high-NOx conditions, presumably due to the formation of high yields of ROOHs from the59

reactions  of  BPRs  with  HO2 radicals.15 The bimolecular reactions of BPRs with HO2 and  NO60

have been incorporated into SOA formation models,16-18 which, however, still underestimated the61
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SOA formation from xylene and toluene under both high-NOx and low-NOx conditions.17, 18 The62

discrepancy between field measurements and modeling studies might suggest an alternative63

pathway of SOA formation from BPRs without the participation of HO2 or NO.64

65

SCHEME 1. Main oxidation routes of benzene66

Here we suggest an alternative reaction pathway of BPRs that starts with an unimolecular67

isomerization step of BPRs being competitive with the bimolecular BPR reaction, e.g. at 0.1 – 1068

s–1 with  NO  in  the  range  of  0.4  –  40  ppbv  or  at  ~0.01  s–1 with  HO2 of 40 pptv and the69

bimolecular rate coefficients of ~1 × 10–11 cm3 molecule–1 s–1.19 Our recent theoretical study on70

the oxidation of benzyl alcohol showed that the intramolecular H-migrations of the71

corresponding BPRs proceed with rate coefficients of ~10 s–1 at  298  K.20 Fast H-migrations72

under atmospheric conditions were also found for peroxy radicals formed in the oxidation of a73

series of important organic precursor compounds,21-29 resulting in the formation of highly74

oxidized multifunctional compounds (HOMs). Particularly, fast H-migration might partially75

account for the recently observed HOMs with an O:C ratio up to 1.09 in the OH-initiated76

oxidation of benzenes.30 Given the importance of alkylbenzenes in the urban atmosphere, we77

investigated here the role of H-migrations of BPRs from the oxidation of aromatic compounds78

using toluene (T), ethylbenzene (EB), and isopropylbenzene (IB) as the model substances.79
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80

Theoretical and Experimental Methods81

Theoretical Methods All molecular structures were optimized at DFT-M06-2X/6-82

311++G(2df, 2p) level which has been assessed to be suitable for thermokinetic studies.31 The83

optimized structures were submitted to electronic energies using restricted open-shell complete84

basis set model chemistry (ROCBS-QB3)32 which uses the spin-restricted wave functions to85

eliminate the need for empirical correction for spin contamination in UCBS-QB3. Values of the86

T1 diagnostic in ROCCSD/6-31+G(d’) calculations were used to check the multireference87

characteristic of the wavefunctions. Generally, a T1 diagnostic larger than 0.02 suggests a88

multireference nature of the wavefunction,33, 34 but Olivella et al. also found that RCCSD(T)89

agreed well with the multireference method CASPT2 in the calculations of benzene oxidation90

when the T1 diagnostic is less than 0.044.35 In this work, we found that the T1 diagnostics were91

all less than 0.03 for the transition states of critical steps, indicating the reliability of our92

calculations. All the quantum chemical calculations were carried out using the Gaussian 0993

package.3694

The reaction rate coefficients of the unimolecular reactions were calculated using the95

unimolecular rate theory coupled with the energy-grained master equation for collisional energy96

transfer (RRKM-ME),37, 38 and the rate coefficients of bimolecular reactions were determined97

using traditional transition state theory.39, 40 The RRKM-ME calculations were carried out using98

the Mesmer code.41 A single exponential-down model was used to approximate the collisional99

energy transfer with <ΔE>down of 200 cm–1. The collisional parameters were estimated using the100

method of Gilbert and Smith,42 and the asymmetric Eckart model was used for the tunneling101

correction factors.43 With the uncertainty in barrier heights (~4 kJ/mol by ROCBS-QB3) and in102
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tunneling correction factors, we estimate an uncertainty of about one order of magnitude for the103

unimolecular rates at 298 K.104

Experimental Methods The experimental studies were performed in a free-jet flow system at105

a temperature of 295 ° 2 K, a pressure of 1 bar air and a reaction time of 7.9 s.44, 45 The detection106

of highly oxidized peroxy radicals and closed-shell products was carried out by means of CI-107

APi-TOF (chemical ionization - atmospheric pressure interface - time-of-flight) mass108

spectrometry (Airmodus, Tofwerk, resolving power >3000 Th/Th) at atmospheric pressure using109

acetate as the reagent ion.44-47 The stated concentrations represent estimated lower end values110

assuming efficient clustering of acetate ions with the highly oxidized products with a rate111

coefficient at the collision limit.44, 45 This experimental approach allows following the early,112

highly oxidized products, including peroxy radicals, with a detection limit as low as 104113

molecules cm–3. OH radicals were generated via ozonolysis of tetramethylethylene. Calculated114

steady-state OH concentrations were in the range (2.4 - 53) ≥ 104 molecules cm–3. More115

experimental information is given in Supporting Information.116

Results and Discussion117

OH addition to T, EB, and IB forms four different adducts, denoted as R1-R4 for additions to118

ipso-, ortho-, meta-, and para-positions, respectively, resulting after two subsequent O2 additions119

in the formation of the corresponding BPRs in alkyl benzenes.11, 20, 48-51 Calculations showed that120

the first O2 adds to the aromatic ring from the same direction as the OH radical (syn), while the121

second O2 adds from the opposite direction relative to OH group (anti). BPRs are therefore122

denoted as Rn-ijOO-s-kOO-a, in which n is the site of OH addition, i and j are  the  sites123

connecting the –OO– unit, and k is  the  site  of  the  second  O2 addition, and a/s is anti/syn (see124
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Scheme 1 for the numbering of sites). Additions of OH to meta-position are usually ignored125

because of their small branching ratios. The radicals R1-26OO-s-3OO-a, R2-13OO-s-6OO-a and126

R4-35OO-s-2OO-a can possibly undergo intramolecular H-migrations as shown in Scheme 2,127

resulting in another set of peroxy radicals O2QOOH (HO-Ar-(O2)3, denoted as R1-QP, R2-QPH2128

and R4-QP1/R4-QP2) after the third O2 addition. H-migration channel is not available to R2-129

13OO-s-4OO-a, which could also be formed from R2 channel.130

131

132

133

Scheme 2. H-migrations in bicyclic peroxy radicals (a/s = anti/syn represents the direction of –134

OO– or –OO relative to –OH group)135

Theoretical Results In order to probe the feasibility of the proposed H-migrations, we first136

estimated their rate coefficients using quantum chemistry calculations and the unimolecular rate137

theory (RRKM-ME). The results are listed in Table 1. All H-migrations in R1-BPRs and R2-138
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BPRs are endothermic and therefore highly reversible. H-migrations in R4-BPRs are about139

thermal neutral due to the conjugated ο-bond in the radical products and fast recombination of140

R4-QOOH with O2, and are therefore virtually irreversible. Barrier heights for H-migrations are141

reduced by 9 - 20 kJ/mol upon successive methyl substitution from T to EB and to IB, and142

barrier heights in R4-BPRs are much lower than those in R1- and R2-BPRs. The lower barriers143

and irreversibility for R4-BPRs imply the importance or even the dominance of H-migration144

under atmospheric conditions for these radicals. For O2 addition to R4-QOOH, calculations show145

that radicals R4-QP1 and R4-QP2 are formed with branching ratios of 0.67 and 0.33 for T, 0.19146

and 0.81 for EB, and 0.56 and 0.44 for IB, respectively, at 298 K.147

Each bicyclic peroxy radical has multiple conformers due to internal rotations, of which the148

internal rotations of the alkyl groups and the –OO group are frozen in transition states for H-149

migrations. Therefore, we have paid special attention to identify the lowest energy conformer for150

each bicyclic peroxy radical by rotating all the rotatable bonds. In the kinetics calculations, we151

have also treated the two internal rotations as two uncoupled hindered rotors, and have obtained152

their potential energy profiles by fixing the corresponding dihedral angles while relaxing all153

other coordinates in optimization. The potential energy profiles are shown in Figures S1-S3 in154

the Supporting Information. The unimolecular rate coefficients obtained are listed in Table 1.155

Discussions below were based on rates predicted with consideration of internal rotations.156

Assuming steady state conditions for QOOH led to the effective rate coefficients ,  (in s–1)157

from BPRs to QPs via H-migration as158

, =
[O ]

+ [O ]159

160
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Table  1. Reaction energies and barrier heights (∆  and ∆ , in kJ/mol) at ROCBS-QB3161
level, the rates at 298 K and T-dependence rate coefficients ( , , and k , , all in s–1) for the162
intramolecular H-migrations in BPRs163

BPRs ∆ ∆ (a) (a) k , (a) (b) (b) k , (b)

T-R1- 65.2 110.1 5.2×10–6 1.9×106 5.1×10–6

ln , ( ) = 18.77 − 9.11 × 10 ⁄

T-R2- 67.8 101.8 5.2×10–5 2.8×108 8.0×10–6

ln , ( ) = 16.37 − 8.37 × 10 ⁄

T-R4- 12.5 93.2 2.6×10–2 2.6×101 2.6×10–2

ln , ( ) = 9.67 − 3.92 × 10 ⁄

EB-R1- 52.2 92.1 1.3×10–2 5.1×106 1.2×10–2

52.2 94.2 1.0×10–2 3.7×106 9.4×10–3

ln , ( ) = 23.54 − 7.37 × 10 ⁄

EB-R2- 53.3 85.8 1.0×10–2 3.7×106 1.6×10–2 1.2×10–2 2.0×108 2.5×10–3

ln , ( ) = 18.32 − 6.69 × 10 ⁄ ln , ( ) = 16.24 − 6.63 × 10 ⁄

EB-R4- –3.9 76.8 4.2×101 8.9×100 4.2×101 7.0 8.9 7.0

ln , ( ) = 13.00 − 2.71 × 10 ⁄ ln , ( ) = 10.167 − 2.40 × 10 ⁄

IB-R1- 51.3 81.3 4.5×10–1 6.1×107 2.0×10–1

ln , ( ) = 21.17 − 6.78 × 10 ⁄

IB-R2- 31.3 70.2 6.7×101 6.6×106 5.9×101 21 6.7×106 8.8

ln , ( ) = 21.29 − 5.11 × 10 ⁄ ln , ( ) = 17.34 − 4.51 × 10 ⁄

IB-R4- –7.7 67.6 4.7×102 3.2×101 4.7×102 14 33 14

ln , ( ) = 14.65 − 2.49 × 10 ⁄ ln , ( ) = 11.32 − 2.53 × 10 ⁄

T-R1-QP 149.2 < 10–8 (298 K)

132.0 < 10–8 (298 K)

T-R2-QP 93.3 1.1×10–2 (298 K)

T-R4-QP 84.0 ~ 8 (298 K)

EB-R4-QP2-s 83.0 ~0.6 (298 K)

IB-R4-QP2-s 79.4 ~16 (298 K)

(a) Treating internal rotations as hindered rotors; (b) Treating internal rotation as harmonic164
oscillators165

166
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167

168

169

170

171

Scheme 3. H-migrations in R1-QP, R2-QPH2, and R4-QP1/-QP2172

where kF, kR, and kb[O2] are defined in Scheme 2. We have estimated kb,Eff using our calculated173

values for kF and kR (see Table 1) and kb = 10–11 cm3 molecule–1 s–1 for a temperature range of174

243 - 333 K52 and [O2] = 5 ×1018 molecules cm–3. The results are also included in Table 1. The175

results clearly showed that H-migration in BPRs could be important under typical atmospheric176
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conditions except for T-R1- and T-R2-BPR. The estimated kb,Eff,298K's of ~7 s–1, ~9 s–1, and ~14177

s–1 in EB-R4-, IB-R2-, and IB-R4-BPRs, respectively, are higher than or comparable to the178

possible pseudo first-order rate coefficients of 0.1 –  10–1 s for the bimolecular removals with179

NO of 0.4 – 40 ppbv or ~0.01 s–1 with HO2 radicals of 40 pptv in the atmosphere, suggesting the180

importance of H-migration in BPRs even in the highly polluted atmosphere. H-migration in T-181

R4-BPR with kb,Eff,298K of ~0.02 s–1 could be comparable to the bimolecular removals when182

NO/HO2 concentrations are low in remote areas and even in the urban atmosphere in the183

afternoon (NO concentrations < 1 ppbv).53 Expectedly, the H-migration becomes faster at high184

temperatures and slower at low temperatures. It should be still important even in the cold winter185

with kb,Eff,263K of ~2.5 s–1, 1.2 s–1, and 4.7 s–1 for EB-R4-, IB-R2-, and IB-R4-BPRs.186

The R2-QPH2 and R4-QP1 radicals formed from H-migration of BPRs might undergo187

another H-migration (Scheme 3). We have obtained barriers of 93.3 and 84.0 kJ/mol for H-188

migrations in T-R2-QPH2 and T-R4-QP1 and estimated rate coefficients of ~1.1 × 10–2 and ~8189

s–1 at 298 K. The H-migrations in T-R1-QP would be too slow because of high barriers of > 130190

kJ/mol. For EB and IB, the R4-QP2 radicals could undergo a different H-migration from the191

methyl group with barriers of only 83.0 kJ/mol and 79.4 kJ/mol. Radicals R4-QP2-OO as HO-192

Ar-(O2)4 are followed by the addition of the fourth O2.  A  third  H-migration  in  R4-QP2-OO  is193

also possible in analogy to that in R4-BPRs (Scheme 3). It should be noted here that the barrier194

heights might be over-estimated because the T1 diagnostics in ROCCSD calculations of these195

transition states were higher than 0.05. Similar effective rate coefficients for EB- and IB-QPs are196

expected because methyl substitution would have a small effect on the barrier height (might be197

slightly smaller due to the increased size of the radicals). HOMs are formed as Ar(O2)3 isomers198
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from both R2-QPH2 and R4-QP1s and Ar(O2)4 from  R4-QP2,  all  with  a  recycling  of  OH199

radicals.200

The theoretical results here suggested potential formation pathways for highly oxygenated201

HO-Ar-(O2)3 radicals as R4-QP1 and R4-QP2 in T and as all possible QPs in EB and IB via the202

first H-migration in BPRs (Scheme 2), as well as the formation of the corresponding closed-shell203

HOMs as Ar-(O2)3 (from R2-QPs and R4-QP1) after a second H-migration (Scheme 3). In the204

atmosphere, radicals HO-Ar-(O2)3 would also react with NO and HO2 radicals forming organic205

nitrates, hydroperoxide moiety-containing HOMs, and others.52206

207

Figure 1. Mass spectra recorded from the reaction of OH radicals with isopropylbenzene, IB.208
The red spectrum represents the background measured in absence of isopropylbenzene. Products209
are detected as adduct with acetate. The spectrum depicted in part A was measured in absence of210
NO and that in part B with a NO concentration of 5 ≥ 1010 molecules cm–3. Reactant211
concentrations (unit: molecules cm–3): ΖO3∴ = 6.6 ≥ 1011, ΖTME∴ =  1.0 ≥ 1011 and212
Ζisopropylbenzene∴ = 1.64 ≥ 1013.213
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Experimental Results The predicted formation of highly oxidized radicals and closed-shell214

products having undergone multiple H-migration steps was further investigated in a flow tube215

reactor. At the low radical concentrations and short reaction times (7.9 s) used, bimolecular216

reactions between radicals are negligible and any detected highly oxidized RO2 radicals should217

arise dominantly from unimolecular pathways. Low radical concentrations suggest negligible218

reactions between BPRs and between BPRs and other peroxy radicals or HO2 radicals.219

Figure 1A shows a measured mass spectrum during an experiment where IB was oxidized by220

OH radicals. Signals at nominal mass-to-charge ratios 260, 292 and 324 Th were attributed to the221

acetate adducts of RO2 radicals with chemical formula HO-C9H12-(O2)x with  x  =  2,  3  and  4,222

respectively. The radicals with x = 2 would thus correspond to BPRs, those with x = 3 to R2-223

QPH2 and R4-QP1/QP2, and those with x = 4 to R4-QP2-OO in Schemes  2  and  3.  Signals at224

275 and 307 Th can correspond to the closed-shell products arising from the RO2 radicals with x225

= 3 and 4, respectively, after formal loss of one -OH group (-17 Th). The signals at 275 Th and226

307 Th are consistent with the products Ar-(O2)3 and Ar-(O2)4, i.e. C9H12-(O2)3 and C9H12-(O2)4227

in IB in Scheme 3.228

Experiments in the presence of NO were carried out in order to test for the functionality of the229

supposed RO2 radicals by measuring the corresponding organic nitrates formed via RO2 + NO ↑230

RONO2. Figure 1B clearly illustrates the occurrence of the expected nitrates from the RO2231

radicals with x = 2 and 3 for [NO] of 5 ≥ 1010 molecules cm,3, strongly supporting the232

identification of highly oxidized RO2 radicals. Moreover, H/D exchange experiments with D2O233

have been performed to identify the number of acidic H atoms in the products, i.e. the total234

number of HO- and HOO-groups.54 Figures S4a and S4b show mass spectra from the reaction of235
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OH radicals with IB recorded in absence and presence of D2O, respectively. According to that,236

the RO2 radical HO-C9H12(O2)x with x = 2 (BPRs) contains only one acidic H-atom, very likely237

the HO-group from the attacking OH radical on the aromatic ring, being in line with the assumed238

BPR structure in Scheme 2. Two acidic H-atoms were found for the RO2 radical with x = 3 and239

its corresponding closed-shell product formed after elimination of one OH group, consistent with240

the expected RO2 radicals R2-QPH2 and R4-QP1/QP2 and closed-shell Ar-(O2)3, respectively,241

which either contain one HO- and one HOO-group or two HOO-groups (Scheme 3). Similarly,242

three acidic H-atoms were found for the RO2 radical with x = 4 and closed-shell compounds after243

eliminating one OH group, consisting with the expected R4-QP2-OO and Ar-(O2)4 in Scheme 3.244

It should also be noted that the HO-Ar-(O2)x intensities for x = 2 are most likely underestimated245

due to the presence of only one HO-group and the associated relatively low acetate-cluster246

stability, and better detection sensitivity is expected for the radicals with x = 3 and 4 as well as247

for the closed-shell products with x = 3 -17 Th due to the presence of a second functional group248

that enhances the cluster stability.55249

Figure 2 shows a comparison of the detected RO2 radicals and closed-shell HOMs from the250

OH radical reactions of benzene (part A) and IB (part B). The almost linear increase of the RO2251

radical concentrations with rising precursor conversion indicates the absence of significant252

bimolecular reactions with other RO2 or HO2 radicals. Low HO-C6H6(O2)x with x = 3 and 4 from253

benzene is consistent with the extremely high barriers of more than 120 kJ/mol for H-migrations254

in BPR of benzene (Figure S5). The detection of the corresponding nitrates from HO-C6H6(O2)x255

with x = 3 and 4 in benzene was impossible due to insufficient signal intensities. Results for256

toluene and ethylbenzene are given in Figures S6 and S7.257
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258

Figure 2. Signals attributed to RO2 radical HO-aromatic(O2)x for x = 2, 3 and 4 as a function of259
reacted benzene (part A) and isopropylbenzene (part B). The closed-shell product formed from260
the RO2 radical with x = 3 (x = 3 -17 Th) is given in B as well. Reactant concentrations (unit:261
molecules cm–3): ΖO3∴ = (3.4 – 75) ≥ 1010, ΖTME∴ =  1.0 ≥ 1011, Ζbenzene∴ =  1.0 ≥ 1014 and262
Ζisopropylbenzene∴ = 1.64 ≥ 1013. Organic nitrate detection for RO2 radicals shown with a263
dashed line was not successful caused by low signal intensity.264

265

266
Figure 3. RO2 radical concentrations HO-Ar-(O2)x with x = 3 normalized by the RO2267
concentration for x = 2 observed from the reaction of OH radicals with benzene, toluene,268
ethylbenzene and isopropylbenzene. The given ratio for the benzene system represents an upper269
limit because of the large uncertainty of the HO-(C6H6)(O2)3 concentration.270
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The importance of alkyl substitution for the formation of highly oxidized RO2 radicals271

becomes obvious from the comparison of the experimental results for the four aromatic272

compounds investigated (Figure 3). The ratio HO-Ar-(O2)3/HO-Ar-(O2)2 is independent of the273

amount of converted aromatic compound for all four reaction systems, being in line with the274

almost linear signal increase with rising precursor conversion as given in Figures 2, S5 and S6.275

The observed trend of the ratios is in accordance with the predicted overall rates of ~(8.8 – 14),276

~7.0, and ~2.6 ≥ 10,2 s,1 from BPRs (x = 2) to HO-Ar-(O2)3 for IB, EB, and T. Note that some277

HO-Ar-(O2)2 radicals have no H-migration channel, such as the R2-13OO-s-4OO-a, because no278

neighboring hydrogen is available in these structures.279

Atmospheric Implication We have predicted theoretically and confirmed experimentally the280

occurrence of intramolecular H-migrations in BPRs formed in the atmospheric oxidation of T,281

EB, and IB and the subsequent formation of HOMs in gas phase. These HOMs should contribute282

significantly to the formation of SOA in urban areas. Earlier studies have shown the importance283

of HOMs in the OH-initiated oxidation of biogenic VOCs,44 and we have now found that similar284

HOM formation pathways exist also for alkylbenzenes in the atmosphere. The recycling of OH285

radicals along with the gas-phase formation of Ar-(O2)3 from R2/R4-BPRs suggests a certain286

degree of autoxidation without the involvement of HO2/NO. The role of H-migration might be287

more important in m-xylene, 1,2,4-trimethylbenzene, and 1,3,5-trimethylbenzene than in toluene288

because of the higher branching ratios of ~13%, ~27%, and >90% for R4 radicals than that of289

~5% in toluene amongst the OH addition channels.11, 48, 49290
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