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Tropospheric ozone (O3) is probably the air pollutant most damaging to vegetation.
Understanding how plants respond to O3 pollution under different climate conditions
is of central importance for predicting the interactions between climate change, ozone
impact and vegetation. This work analyses the effect of O3 fluxes on net ecosystem
productivity (NEP), measured directly at the ecosystem level with the eddy covariance
(EC) technique. The relationship was explored with artificial neural networks (ANNs),
which were used to model NEP using environmental and phenological variables as
inputs in addition to stomatal O3 uptake in Spring and Summer, when O3 pollution is
expected to be highest. A sensitivity analysis allowed us to isolate the effect of O3,
visualize the shape of the O3-NEP functional relationship and explore how climatic
variables affect NEP response to O3. This approach has been applied to eleven
ecosystems covering a range of climatic areas. The analysis highlighted that O3 effects
over NEP are highly non-linear and site-specific. A significant but small NEP reduction
was found during Spring in a Scottish shrubland (−0.67%), in two Italian forests (up
to −1.37%) and during Summer in a Californian orange orchard (−1.25%). Although
the overall seasonal effect of O3 on NEP was not found to be negative for the
other sites, with episodic O3 detrimental effect still identified. These episodes were
correlated with meteorological variables showing that O3 damage depends on weather
conditions. By identifying O3 damage under field conditions and the environmental
factors influencing to that damage, this work provides an insight into O3 pollution,
climate and weather conditions.

Keywords: net ecosystem exchange, european forest, stomatal deposition, tropospheric ozone, artificial neural
networks, climate change
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INTRODUCTION

Tropospheric ozone (O3) is a harmful air pollutant which affects
human health (Ainsworth et al., 2012), damages vegetation,
including natural ecosystems and crops (The Royal Society,
2008), and contributes to climate change, being a greenhouse
gas with a radiative forcing of 0.35–0.37 W m−2 (Shindell et al.,
2009). It is a secondary pollutant, mainly produced through
photochemical reactions of methane, carbon monoxide and
volatile organic compounds in the presence of nitrogen oxides
(Monks et al., 2015).

Although O3 is a natural component of the troposphere, its
concentration has been increasing since the pre-industrial era as
a result of anthropogenic emission of its precursors (Ainsworth
et al., 2012). Nowadays, the background O3 mixing ratio of
the northern hemisphere is 30 to 40 ppb (Parrish et al., 2012),
although large regional differences are recorded due to the strong
influence of weather, which promotes O3 formation in warm, dry
and sunny conditions (see Table 2 for mean O3 mixing ratio at
our study sites).

Following chemical destruction, the second most important
sink of tropospheric O3 is the dry deposition on land surfaces,
primarily controlled by vegetation, which contributes to O3
removal through stomatal uptake, deposition onto the surface,
and in-canopy chemistry (Stevenson et al., 2006). Major O3
uptake occurs at leaf level, controlled by stomatal absorption
(Cieslik, 2004; Fowler et al., 2009). Entering the leaves through
stomata, O3 sets off a chain of oxidative reactions within the
apoplast, damaging cell metabolism (Wohlgemuth et al., 2002).
The main detrimental effect is a reduction in carbon assimilation,
which represents the first evidence of O3 impact over vegetation,
before the occurrence of visible injuries.

Manipulation experiments have been widely used to assess
the impact of O3 over vegetation carbon assimilation capacity
(Karlsson et al., 2000; Manning, 2005; Gerosa et al., 2015).
While this approach has been useful in understanding vegetation
behavior in standard conditions and to derive dose-response
functions, it may be inadequate to provide the complete picture,
since plants are often exposed to unrealistic concentrations, the
approach is often limited to young plants, and the experimental
facilities alter the microclimate.

An ecosystem approach is thus of primary importance
for understanding how O3 pollution affects CO2 uptake by
vegetation and to assess the validity of extrapolating the effect
(Sitch et al., 2007). Eddy covariance (EC) towers, from which
the carbon flux is measured with a wide range of meteorological
variables at high temporal resolution, provide large datasets
which can be used to extrapolate information about ecosystem
responses to O3 pollution (Fares et al., 2018).

A useful tool for investigating functional relationships
between site characteristics and environmental factors such as
climate and other atmospheric conditions is Artificial Neural
Network (ANN) modeling (Aitkenhead and Coull, 2016).
ANNs are very powerful in analyzing and modeling non-linear
relationships owing to their capacity to learn from examples
and generalize, allowing them to explore relationships without
making assumptions about the shape of these relations (such as

are made by other approaches such as multiple linear regression)
(Olden and Jackson, 2002; Moffat et al., 2010). Although ANNs
are primarily used in the building of predictive models, methods
for quantifying the independent variable contributions within
networks have also been developed (Olden et al., 2004), allowing
researchers to use them to understand how climate variables drive
ecosystem responses (Moffat et al., 2010).

In this work, feed-forward ANNs were used to test the
hypothesis that current O3 concentration affect vegetation
photosynthetic CO2 assimilation under field condition by
isolating the effect of O3 on the net ecosystem productivity
(NEP) of eleven ecosystems, characterized by different climatic
condition and O3 concentration, taking into account the
influence of other NEP climatic drivers (solar radiation, air
temperature, vapor pressure deficit, soil water content) and
stomatal conductance. This approach is fully empirical and
avoids a priori assumption on the functional relationships
between the study variables, which are measured directly. The
analysis was conducted using daytime eddy covariance (EC) data
directly measured over: eight northern hemisphere open tree
canopies; one moorland; one grassland and one cropland. We had
the following aims: (1) to determine if current O3 concentrations
affect vegetation photosynthetic CO2 assimilation under field
condition; (2) to quantify potential CO2 assimilation decrease
due to O3; (3) to evaluate how O3 effects change according
to other environmental factors variations. Understanding how
O3 effect over NEP is linked to environmental factors variation
would help understanding vegetation behavior in the context of a
changing climate.

MATERIALS AND METHODS

Study Sites
Eleven sites from three eddy covariance flux measurement
networks were selected to test the effect of O3 pollution on
NEP different type of vegetation: four semi-natural forests,
three planted forests, one orange orchard, one moorland, one
grassland and one cropland. The study sites are spread across
five different Köppen climatic areas: Oceanic (Auchencorth
Moss, Grignon, Lochristi, Speulderbos), Semi-arid-Continental
(Bugac), Subartic (Hyytiälä), Humid-Subtropical (Bosco
Fontana, Ispra) and Mediterranean (Castelporziano, Blodgett,
Lindcove). Information about site location and ecosystem type
can be found in Table 1 and a map showing the ECLAIRE site
locations can be found in Fares et al. (2018).

Datasets
Data used in the development of the ANNs was recorded
continuously from EC towers, at half-hour intervals, from
January 2012 to December 2013 for all sites, except for:
(1) Blodgett where data was collected from January 2001 to
December 2007; (2) Lindcove which operated from 2009 to 2010;
(3) Castelporziano for which data were collected from 2013 to
2015 and (4) Grignon, where only the dataset with rapeseed was
used (31 August 2012 to 15 August 2013). Only relevant data
for detecting O3 effect over NEP were considered in the study.
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TABLE 1 | Brief description of location and ecosystem type for the study sites.

Acronym Site name Country Ecosystem type Main species Location Network References

Au Auchencorth
Moss

United Kingdom Moorland Sphagnum,
Deschampsia
flexuosa,
Eriophorum
vaginatum,
Juncus effusus

55◦47′33′ ′N,
3◦14′36′ ′W

ECLAIRE Flechard and
Fowler, 1998;
Helfter et al., 2015

Bu Bugac HU Grassland 46◦41′31′ ′N,
19◦36′06′ ′E

ECLAIRE Villányi et al., 2008

Gr Grignon FR Crop Brassica napus 48◦51′N, 1◦58′E ECLAIRE Loubet et al., 2011

Hy Hyytiälä FL Boreal Scots pine
forest

Pinus sylvestris 61◦51′N, 24◦17′E ECLAIRE Rannik et al., 2009

Sp Speulderbos NL Douglas fir
plantation

Pseudotsuga
menziesii

52◦15′4′ ′N,
5◦41′24′ ′E

ECLAIRE Erisman et al.,
1997; Copeland
et al., 2014

Lo Lochristi BG Poplar plantation Populus spp. 51◦06′44′′N, 3◦51′

02′′E
Zenone et al., 2016

BF Bosco Fontana IT Mixed forest Carpinus betulus,
Quercus robur,
Quercus cerris,
Quercus rubra

45◦11′51′′N,
10◦44′ 31′′E

ECLAIRE Acton et al., 2016

Is Ispra IT Mixed forest Quercus robur,
Alnus glutinosa,
Populus alba,
Carpinus betulus

45◦45′81′′N,
8◦63′40′′E

ECLAIRE Jensen et al., 2018

CPZ Castelporziano IT Holm oak forest Quercus ilex 41◦70′42′′N,
12◦35′72′′E

ECLAIRE Savi et al., 2016

BL Blodgett United States Pine plantation Pinus ponderosa 38◦53′42′′N,
120◦37′57′′W

AMERIFLUX Fares et al., 2013

Ci Lindcove United States Orange orchard Lindcove sinensis 36◦21′23′′N,
119◦5′32′′W

AMERIFLUX Fares et al., 2013

Last column indicates references where a detailed description of the sites is available.

Since damage occurs due to O3 stomatal absorption (Reich and
Amundson, 1985; Biswas et al., 2007; Broschè et al., 2010), we
reduced the dataset to daytime data (10:00 – 18:00 UTC time)
from the Spring and Summer seasons, when stomata are open
and O3 levels in the atmosphere are high. A summary of data used
in this study is given in Table 2.

Although data coverage was incomplete over the measured
period at each site, interpolation of large gaps was avoided in
order to make sure that the functional relationships captured by
ANNs were unbiased. Small gaps (less of 50% of missing data
over 10:00–18:00 period in a day) were replaced by the mean of
correspondent half-hour data of adjacent days (Falge et al., 2001).

Stomatal conductance to H2O (Gst , m s−1) was calculated as
the inverse of stomatal resistance (Rs), derived from measured
latent heat flux (E, kg m−2 s−1) using the evaporative/resistance
method (Monteith, 1981):

Rs =
cp ρ

(
qa − qs (z0)

)
γ λ E

(1)

where cp is the specific heat capacity of air (J kg−1 K−1), ρ is
the density of the dry air (kg m−3) qa is the vapor pressure at
measurement height (Pa), qs is the saturation mass fraction (Pa)
of H2O at air temperature and roughness length z0, γ is the

psychrometric constant (67 Pa K−1) and λ is the vaporization
heat for H2O (2.5× 106 J kg−1).

The use of E to calculate Rs is valid only if transpiration is
the only significant source of water vapor from the ecosystem
and thus only data recorded during dry-daylight conditions were
used. Data were discarded if they met any of the following criteria:
net solar radiation <20 W m−2, relative humidity > 80%, rainy
days (daily rainfall > 2 mm day−1) or the day after a rain
event. Discarded data are mainly located when Rs is also large,
hence little influence on overall dose is expected. Percentages
of data discarded by this procedure are as follow: 25% for
Auchencorth Moss (Au), 11% for Bugac (Bu), 24% for Grignon
(Gr), 18% for Hyytiälä (Hy), 19% for Speulderbos (Sp), 31% for
Lochristi (Lo), 15% for Bosco Fontana (BF), 18% for Ispra (Is),
15% for Castelporziano (CPZ), 6% for Blodgett (BL) and 11%
for Lindcove (Ci).

O3 stomatal uptake (FO3sto, nmol m−2 s−1) was calculated as:

FO3sto = Gst ∗ 0.61 ∗ [O3]canopy , (2)

where 0.61 is the ratio of diffusivity between O3 and
H2O (Marrero and Mason, 1972) and [O3]canopy is the O3
concentration at the canopy level. The latter was calculated
following the standard resistance analogy (Hicks et al., 1987).
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TABLE 2 | Mean ± standard deviation of the data recorded during daytime (10:00 – 18:00) of Spring and Summer seasons.

Site NEP St T vpd swc Gst FO3sto [O3]canopy

mmol m−2s−1 W m−2 ◦C kPa % m s−1 nmol m−2 s−1 ppb

Au SP 1.61 ± 1.22 345.62 ± 161.88 7.09 ± 3.51 0.39 ± 0.16 80.30 ± 0.27 0.32 ± 0.15 −6.72 ± 3.15 34.53 ± 6.38

S 4.60 ± 2.08 472.74 ± 193.24 16.25 ± 3.71 0.76 ± 0.35 77.46 ± 2.95 0.17 ± 0.09 −2.73 ± 1.29 27.46 ± 6.45

Bu SP 6.22 ± 4.29 463.2 ± 276.95 19.00 ± 8.00 1.34 ± 0.77 7.94 ± 2.93 0.20 ± 0.10 −4.71 ± 2.49 38.69 ± 10.03

S −0.25 ± 1.44 477.68 ± 271.36 27.35 ± 5.02 2.52 ± 1.12 4.68 ± 0.54 0.04 ± 0.03 −1.05 ± 0.73 48.16 ± 14.21

Gr SP 10.66 ± 8.03 421.20 ± 222.53 11.46 ± 5.16 0.62 ± 0.34 25.69 ± 3.65 0.29 ± 0.11 −5.77 ± 2.50 32.38 ± 8.46

S 4.55 ± 8.46 554.58 ± 218.16 21.18 ± 4.66 1.26 ± 0.64 26.37 ± 3.17 0.21 ± 0.15 −4.16 ± 2.94 35.25 ± 12.13

Hy SP 2.68 ± 3.26 393.11 ± 176.89 5.38 ± 7.53 0.55 ± 0.31 38.48 ± 4.00 0.13 ± 0.07 −3.10 ± 1.77 40.71 ± 5.11

S 10.68 ± 5.02 377.21 ± 183.58 16.42 ± 3.93 0.85 ± 0.43 32.01 ± 3.88 0.26 ± 0.11 −3.85 ± 1.82 25.98 ± 9.67

Sp SP 5.59 ± 4.86 378.06 ± 197.00 9.26 ± 5.52 0.54 ± 0.28 13.57 ± 0.94 0.14 ± 0.12 −2.41 ± 2.40 29.15 ± 9.64

S 13.00 ± 6.72 465.47 ± 200.74 19.18 ± 3.97 0.97 ± 0.44 11.38 ± 1.10 0.22 ± 0.12 −2.74 ± 1.88 22.34 ± 11.23

Lo SP 6.41 ± 5.76 489.82 ± 209.20 14.64 ± 3.70 0.76 ± 0.36 0.29 ± 0.03 0.20 ± 0.06 −3.94 ± 1.94 32.52 ± 11.32

S 12.51 ± 5.65 474.82 ± 202.04 20.33 ± 3.84 1.03 ± 0.49 0.21 ± 0.09 0.34 ± 0.15 −5.60 ± 3.41 27.70 ± 13.53

BF SP 3.59 ± 5.68 413.58 ± 185.12 17.32 ± 5.28 0.99 ± 0.51 29.46 ± 0.71 0.12 ± 0.08 −2.39 ± 1.41 36.20 ± 15.01

S 10.07 ± 5.83 522.51 ± 152.80 27.05 ± 3.70 1.89 ± 0.62 23.42 ± 3.53 0.17 ± 0.07 −4.44 ± 2.14 46.59 ± 18.08

Is SP 3.81 ± 7.08 511.90 ± 268.05 16.13 ± 5.44 1.06 ± 0.54 26.98 ± 4.62 0.11 ± 0.07 −1.97 ± 1.36 33.53 ± 15.99

S 16.18 ± 7.99 619.54 ± 218.26 24.74 ± 4.12 1.75 ± 0.62 22.70 ± 4.43 0.24 ± 0.11 −4.12 ± 2.46 30.73 ± 17.27

CPZ SP 8.78 ± 5.32 541.90 ± 248.77 17.98 ± 2.00 0.72 ± 0.28 12.27 ± 3.92 0.17 ± 0.08 −4.40 ± 2.06 44.82 ± 9.67

S 6.27 ± 5.15 576.44 ± 236.35 25.70 ± 3.03 1.14 ± 0.43 6.12 ± 1.79 0.12 ± 0.07 −3.69 ± 2.32 49.13 ± 11.57

BL SP 7.24 ± 4.47 558.01 ± 266.41 14.71 ± 5.26 1.04 ± 0.55 n.a. 0.18 ± 0.13 −3.94 ± 2.84 36.97 ± 9.95

S 7.26 ± 4.71 675.20 ± 236.97 22.82 ± 4.20 1.96 ± 0.68 n.a. 0.09 ± 0.06 −2.00 ± 1.23 39.64 ± 13.88

Ci SP 1.42 ± 3.53 616.90 ± 281.93 19.52 ± 4.20 1.44 ± 0.62 21.57 ± 2.43 0.16 ± 0.10 −3.29 ± 1.68 37.13 ± 10.59

S 1.89 ± 3.71 676.44 ± 268.21 27.47 ± 4.95 2.70 ± 1.02 22.64 ± 4.74 0.12 ± 0.07 −3.14 ± 1.50 50.81 ± 16.01

Net ecosystem productivity (NEP), used as output in ANN modeling and data used as inputs in ANN modeling: net solar radiation (St), air temperature (T), vapor pressure
deficit (vpd), soil water content (swc), stomatal conductance to H2O (Gst), stomatal O3 fluxes (FO3sto) and O3 mixing ratio at canopy level ([O3]canopy). Explanation of
acronyms of the site names can be found in Table 1.

A detailed explanation of the calculation can be found in
Supplementary Appendix 1.

Artificial Neural Network Modeling
Artificial neural networks (ANNs) were used to model the NEP.
An ANN can be defined as a large series of simultaneous
equations with each variable equivalent to a simple processing
element (node) connected to each other by connection weights.
Appropriate values within the connection weights provide the
network with the ability to store knowledge about some modeled
system. A supervised learning algorithm (i.e. with predefine input
and output values within the training data) adjusts the connection
weights, randomly assigned at the beginning, to approximate
relationships that are present in the data.

Three ANN model runs were conducted, trained using three
different groups of input variables. The three cases were used to
test the hypothesis that O3 influences NEP:

Case 1. ANNs were trained using solar radiation (St,
W m−2), air temperature (T,◦C), vapor pressure deficit
(vpd, kPa), soil water content measured between 10 and
30 cm depth (swc,%, not available for BL) and stomatal
conductance to H2O (Gst, m s−1).
Case 2. Included all Case 1 input variables plus O3
stomatal uptake (FO3sto, nmol m−2 s−1). The latter was
included in the analysis under the assumption that, if O3
has a detrimental effect on vegetation (and thus on NEP),

it would be caused by the O3 entering the leaves. If O3
absorbed through stomata affects NEP, the ANN model’s
ability to predict NEP would be improved.
Case 3. consisted of Case 1 input variables plus the
O3 dose absorbed through stomata integrated over 3 h
before the measure time (FO3cum, µmol s m−2). This
case was used to test if accumulated O3 entering the
stomata was a better predictor of NEP damage than
instantaneous O3 stomatal uptake, under the assumption
that antioxidants are consumed by O3 during the day
and a longer exposition to high O3 level reduces the
leaf capacity to detoxify O3 entering the stomata due to
fast scavenging of antioxidant defense in the intercellular
spaces. The 3-h interval was chosen because it was
the longest interval which permitted us to not include
the night-time data (i.e. at 10 am, FO3cum integrated
measurements between 7 am and 9 am).

In Case 1, O3 variables were not considered so that, if the
model performance was better using Case 1 rather than Case 2
or 3, O3 had no effect on NEP.

All input variables and NEP values within the dataset were
normalized by scaling between 0 and 1, to ensure that no variables
had an inherently greater effect than others. The dataset was
split into two subsets, Spring (from 21st of March to 20th of
June) and Summer (from 21st of June to 22nd of September),
and ANNs were trained separately for each subset, with the
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aim of highlighting the seasonal variability of the response of
NEP to O3. Feed forward ANNs with a sigmoid activation
function were used.

The feed-forward ANN was made of three layers: one
input layer, a single hidden layer and an output layer. In a
feed-forward ANN the information flows only in a forward
direction, from the input to the output through the hidden
layer. Layers are composed of nodes, with nodes in adjacent
layers fully interconnected by weights which are determined
by a supervised learning algorithm appropriate for non-linear
regression (backpropagation algorithm, Rumelhart, 1986). In this
work, the hidden layer consisted of 8 nodes. The number of nodes
of the hidden layer war chosen by comparing the performance
of different networks, with 1 to 10 hidden nodes, and choosing
the number that produced the best network performance (Gevrey
et al., 2003; Olden et al., 2004).

For each group, ANN training was repeated 100 times,
because different ANNs trained with the same dataset may
return different connection weights, depending on the training
procedure and initially randomized connection weights.
A common criticism of ANN modeling is “overfitting,” which
is the case that ANN memorizes the training data but may fail
to fit new data (Chan et al., 2006). Overfitting occurs when the
model is parameterized to give the best possible fit to the training
data, rather than to the “global dataset” possible from all possible
examples of the system being studied. While this is a risk of
all data mining or statistical regression approaches, the same
solution can be applied as here: datasets were split randomly
into three subsets: training (70% of dataset), test (15% of dataset)
and validation (15% of dataset). The training subset was used
to compute the weights of the network’s nodes and the test
subset for stopping the training process and checking the model
generalization ability. The validation subset was used to validate
the model and prove the ANN’s ability to generalize beyond the
training dataset.

Artificial neural network development and training was
carried out using Neural Network Toolbox (Matlab 2010, Natick,
MA, United States).

Performance of ANNs
One-way analysis of variance (ANOVA, confidence interval 95%)
was used to determine whether there were any statistically
significant differences between the means of the original
measured NEP and the 100 modeled NEP values derived from
ANN simulations of each case. If a statistical difference was
found, a post hoc test was performed to detect which specific
simulation differed from measured NEP, in order to discard
that simulation and train the ANN again. The coefficient of
determination (r2) was used as a measure of goodness of fit, and
as an indicator to evaluate if the inclusion of O3 parameters into
ANN models improved the model ability to simulate NEP, thus
suggesting an effect of O3 over NEP.

Artificial neural network model was compared with a linear
statistical approach, Multiple Linear Regression (MLR). MLR
model is used to explore the relationship between a dependent
variable and independent variables, under the assumption that
each independent variable has a linear relationship with the

dependent variable (Civelekoglu et al., 2008). In this work, MLR
was used to model the linear relationship between NEP and the
three groups of input variables (case 1, case 2 and case 3, see
above) which were the same input variables of ANN modeling.
The MLR r2 was calculated and compared with ANN r2, in order
to evaluate if the ANN approach better performed than the linear
approach in predicting NEP behavior.

Analysis Tools for Quantifying O3 Contributions as
NEP Driver in ANN Modeling
The integrated information gathered from ANNs can be
decomposed to disentangle the effects of different inputs on
the output values, to improve understanding of how each
input variable affects the predictions. Gevrey et al. (2003) and
Olden et al. (2004) provided a comparison of the different
existing methods for estimating variables importance in ANN
applications. In this work, the partial derivative method
(Dimopoulos et al., 1995) was used to isolate the effect of O3 over
NEP estimated by ANN modeling.

The partial derivative method produces a profile of the output
variations for unit change of selected input variable. The link
between the modification of the input, xj, and the variation of
the output, yj = f(xj), is the partial derivative of each activation
function with respect to its input (dj), with j = 1,. . .,N and N the
total number of observations.

Given an ANN with n inputs i (i = 1,. . .,n), one hidden
layer with mh nodes h (h = 1,. . .,mh) where the logistic sigmoid
function is used for activation, the partial derivative of yj with
respect to xi is dji (Dimopoulos et al., 1999; Gevrey et al., 2003):

dji = Sj ∗
mh∑
h=1

who ∗ Ihj
(
1− Ihj

)
∗ wih (3)

where Sj is the derivative of the output with respect to its input,
Ihj is the response of the h hidden node, who is the weight between
the output node and h, wih is the weight between h and the input
node (ni).

Partial derivatives were calculated for each of the ANN runs
and averaged to calculate the mean absolute change of NEP
associated with O3. To get information about positive and
negative change of NEP, positive and negative fraction of the
partial derivatives were averaged separately (Moffat et al., 2010).

The weather influence on O3 down-regulating effect was
tested using Spearman partial correlation. This is a non-
parametric measure of rank correlation that assesses monotonic
relationships of two variables whilst controlling for other,
potentially confounding variables. The negative fraction of
partial derivative associated with O3 (FO3st or FO3cum) was
correlated with environmental factors such as solar radiation,
air temperature, vapor pressure deficit, soil water content and
O3 concentration at canopy level. The latter was included in the
analysis with the aim of controlling the confounding effect it may
have on correlation coefficients, since O3 concentration strongly
depends on weather (Monks et al., 2015). All environmental
factors were transformed between 0 and 1 to avoid scale effects.

Frontiers in Forests and Global Change | www.frontiersin.org 5 April 2020 | Volume 3 | Article 42

https://www.frontiersin.org/journals/forests-and-global-change
https://www.frontiersin.org/
https://www.frontiersin.org/journals/forests-and-global-change#articles


ffgc-03-00042 April 9, 2020 Time: 16:52 # 6

Savi et al. Ozone Damage With Neural Network

TABLE 3 | Mean r2
± standard deviation of the 100 ANN simulations trained with Spring and Summer data.

Site r2 # of observation

Case 1 Case 2 Case 3

Spring Summer Spring Summer Spring Summer Spring Summer

Au 0.77 ± 0.00 0.76 ± 0.00 0.78 ± 0.00 0.76 ± 0.00 0.78 ± 0.00 0.76 ± 0.00 311 340

Bu 0.91 ± 0.00 0.48 ± 0.00 0.92 ± 0.00 0.51 ± 0.01 0.92 ± 0.00 0.52 ± 0.01 662 1197

Gr 0.94 ± 0.00 0.85 ± 0.00 0.94 ± 0.00 0.86 ± 0.00 0.94 ± 0.00 0.85 ± 0.00 1262 2274

Hy 0.93 ± 0.00 0.77 ± 0.00 0.93 ± 0.00 0.76 ± 0.00 0.93 ± 0.00 0.77 ± 0.00 368 705

Sp 0.64 ± 0.00 0.54 ± 0.00 0.63 ± 0.01 0.53 ± 0.00 0.66 ± 0.00 0.57 ± 0.00 359 950

Lo 0.87 ± 0.00 0.55 ± 0.00 0.87 ± 0.00 0.57 ± 0.00 0.84 ± 0.00 0.57 ± 0.00 342 736

BF 0.68 ± 0.00 0.36 ± 0.00 0.7 ± 0.00 0.37 ± 0.00 0.71 ± 0.00 0.4 ± 0.00 404 1265

Is 0.51 ± 0.00 0.5 ± 0.00 0.51 ± 0.00 0.5 ± 0.00 0.52 ± 0.00 0.5 ± 0.00 600 2315

CPZ 0.54 ± 0.00 0.49 ± 0.00 0.55 ± 0.00 0.5 ± 0.00 0.55 ± 0.00 0.5 ± 0.00 816 2545

BL 0.36 ± 0.00 0.52 ± 0.00 0.36 ± 0.00 0.52 ± 0.00 0.39 ± 0.00 0.52 ± 0.00 3341 10509

Ci 0.41 ± 0.00 0.52 ± 0.00 0.41 ± 0.00 0.53 ± 0.00 0.43 ± 0.00 0.53 ± 0.00 953 1581

Case 1: Artificial neural networks were trained using solar radiation (W m−2), air temperature (◦C), vapor pressure deficit (vpd, kPa), soil water content measured between
10 and 30 cm depth (swc,%, not available for BL) and stomatal conductance to H2O (Gst, m s−1). Case 2: Included all Case 1 input variables plus O3 stomatal uptake
(FO3sto, nmol m−2 s−1). Case 3: consisted of Case 1 input variables plus O3 dose absorbed through stomata during 3 h before the measurement time. Last column
reports the number of half-hour measurements available for the analysis at each site. Bold numbers indicate the case with the highest r2. Explanation of acronyms of the
site names can be found in Table 1.

RESULTS

Performance of ANNs
The ANOVA test highlighted that there are no statistically
significant differences between the means of the original
measured NEP and the 100 modeled NEP derived from ANN

TABLE 4 | r2 derived from MLR modeling of NEP calculated separately for Spring
and Summer from three combination of independent variables: Case 1: solar
radiation (W m−2), air temperature (◦C), vapor pressure deficit (vpd, kPa), soil
water content measured between 10 and 30 cm depth (swc,%, not available for
BL) and stomatal conductance to H2O (Gst, m s−1).

Site r2

Case 1 Case 2 Case 3

Spring Summer Spring Summer Spring Summer

Au 0.62 0.49 0.62 0.49 0.62 0.49

Bu 0.84 0.21 0.84 0.22 0.84 0.21

Gr 0.81 0.64 0.81 0.64 0.81 0.64

Hy 0.76 0.64 0.76 0.64 0.76 0.64

Sp 0.42 0.35 0.42 0.35 0.44 0.37

Lo 0.77 0.36 0.77 0.37 0.78 0.37

BF 0.54 0.20 0.54 0.21 0.53 0.22

Is 0.34 0.43 0.34 0.43 0.34 0.43

CPZ 0.36 0.36 0.36 0.37 0.36 0.36

BL 0.17 0.41 0.17 0.41 0.17 0.42

Ci 0.29 0.46 0.29 0.46 0.29 0.46

Case 2: Included all Case 1 input variables plus O3 stomatal uptake (FO3sto, nmol
m−2 s−1). Case 3: consisted of Case 1 input variables plus O3 dose absorbed
through stomata during 3 h before the measurement time. Half-hour measurements
available for the analysis at each site are the same as in Table 3. Explanation of
acronyms of the site names can be found in Table 1.

simulations (confidence interval 95%). The r2 values (Table 3)
attested the data mining capability of the ANNs: the best
performances were obtained for the northern sites, especially
Grignon and Hyytiälä (0.93 and 0.94, respectively), while the
lowest r2 values were from the Blodgett and Bosco Fontana sites
(0.39 and 0.40, respectively).

Multiple linear regression modeling produced poorer r2 values
(Table 4) in comparison to ANN modeling (Table 3) in every
single case. MLR modeling r2 are on average 0,16 ± 0,06 points
lower that ANN r2.

Do Current O3 Levels Affect NEP?
The inclusion of O3 stomatal uptake in the ANN simulation did
not change ANN performance (i.e. no impact of O3) in some
cases, and in others it improved the ANN performance (i.e. O3
had an impact). In particular, the results suggest that O3 damage
does not occur in most of the northern sites which are less
exposed to O3 pollution, while in the other ecosystems a limited
effect was observed.

Artificial neural networks trained with Spring data (Table 3)
showed no O3 effect on NEP for Hyytiälä, Grignon and Lochristi
sites, where the Case 1 model run returned the highest r2.
For the same period, we detected an effect of O3 on NEP for
Auchencorth Moss, Bugac and Castelporziano sites, where the
inclusion of O3 stomatal flux in the model (Case 2) resulted in
an r2 increase compared with the Case 1 model. For Speulderbos,
Bosco Fontana, Ispra, Blodgett and Lindcove the best ANN
performance was achieved for Case 3, (inclusion in the model
of 3-h O3 dose), indicating that the preceding O3 dose to which
vegetation is exposed is the best predictor of O3 effects over NEP
for these sites.

Different results were achieved by training the ANNs with
Summer data (Table 3). No O3 effect was found for Hyytiälä,
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FIGURE 1 | Positive and negative sensitivity of the NEP response to FO3st or FO3CUM (d NEP (O3), presented separately for Spring (SP) and Summer (S) seasons.
Bars represent standard deviations.

Auchencorth Moss, Ispra and Blodgett, while an O3 effect was
detected for Grignon, Lochristi, Castelporziano and Lindcove,
where the instantaneous stomatal O3 flux was the better predictor
for the O3 effect on NEP. For Bugac, Speulderbos and Bosco
Fontana, the cumulative O3 dose was the best predictor.

Since the 3-h O3 dose was calculated from cumulated
instantaneous O3 stomatal fluxes, r2 between the two parameters
was calculated at each site to verify the degree of independence
of the two variables. They were shown to be fully independent
(r2 = 0.00) for Lindcove, Blodgett, Castelporziano, Bosco
Fontana, Speulderbos and Hyytiälä. An r2 value of 0.00 was also
found for Auchencorth Moss and Ispra in Summer, while in
Spring r2 were 0.10 and 0.25, respectively. Higher r2 were found
for Grignon (0.45 and 0.73 for Spring and Summer, respectively),
Bugac (0.37 and 0.42 for Spring and Summer, respectively), and
Lochristi (0.25 and 0.48 for Spring and Summer, respectively).

Assessing the Sensitivity of NEP to
Current O3 Levels
Partial derivatives represent NEP rate of change with respect to
O3 (FO3st or FO3cum). If this rate is negative, then the NEP
will tend to decrease as FO3st or FO3cum increases while if the
rate is positive, NEP will tend to increase. Partial derivatives
were calculated for each half hour observation. Partial derivatives
calculated with respect to one predictor can be positive for some
half hours and negative for other half hours. This means that a
predictor has not always a positive or negative effect on NEP, and
that it depends on the combination of all ANN predictors values
occurring at that time.

Averaging separately positive and negative partial derivatives
helps to discern when O3 has a negative effect over NEP. Figure 1
shows that, although the O3 variables were significant factors for
predicting NEP in the ANN model runs, they did not always
lead to a reduction in NEP. Reduction of NEP related to O3 was
detected at Auchencorth Moss, Bugac, Grignon, Bosco Fontana,
Castelporziano, Blodgett and Lindcove in Spring, Grignon, Bosco

Fontana and Lindcove in Summer (Figure 1), with values ranging
from 0.15 to 2.64% average NEP loss due to O3 (Table 5).

In a few cases the response is only negative, indicating that
current O3 concentration level consistently reduces NEP during
Spring or Summer, for all combinations of the other predictors.
This is the case of Bosco Fontana in Spring and Lindcove in
Summer. In other cases, the ANN did not always determine O3
to be a damaging factor for NEP. To highlight how the rate
of change of NEP responds to different levels of O3 entering
the stomata, a profile of the NEP partial derivative versus O3
input (FO3st or FO3cum depending on the case) was plotted
(Figures 2, 3).

The relationships shown in Figures 2, 3 are highly non-linear
and present different behaviors at each site: at Auchencorth Moss
site (Figure 2A) a down-regulating effect was found in Spring for
FO3sto below the 40th percentile (−0.27 nmol m2 s−1), peaking
around 23rd percentile (−0.20 nmol m2 s−1). The same trend was
observed at the Castelporziano site (Figure 2C) during Spring,
where FO3sto below the 33rd percentile (−0.13 nmol m2 s−1)
negatively affected NEP. At the Bugac site (Figure 2B), the FO3sto
effect on NEP was almost linear, and the effect turned negative
above the 52nd percentile (−0.19 nmol m2 s−1). At the Blodgett
site, during Spring (Figure 2E), FO3cum negatively affected NEP
in a range between 29th (68.33 µmol m−2) and 49th (91.23 µmol
m−2 percentile, peaking at the 40th (80.67 µmol m−2) percentile.

At the Bosco Fontana site the ANN analysis predicted
a consistently negative effect of FO3cum flux for the Spring
data (Figure 2D), although the largest effect was recorded
for the smallest doses (below 20th percentile, 43.68 µmol
m−2). During Summer (Figure 3C), a depressing effect of
FO3cum over NEP was observed only below the 26th percentile
(70.72 µmol m−2). At the Lindcove site, during Spring
(Figure 2F), only low doses of FO3cum had a negative effect on
NEP (below 7th, 45.42 µmol m−2, and above 95th percentile,
151.02 µmol m−2), whilst during Summer (Figure 3A), all
FO3st values induced a decrease in NEP, peaking at 88th
percentile (0.19 nmol m−2 s−1). At the Grignon site, the
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TABLE 5 | Average NEP loss due to O3 in Spring and Summer seasons.
Explanation of acronyms of the site names can be found in Table 1.

Site Average NEP loss due to O3 (%)

Spring Summer

Au 0.97 ± 0.04 0

Bu 0.12 ± 0.09 0

Gr 0 0.1 ± 7.03

Hy 0 0

Sp 0 0

Lo 0 0

BF 1.37 ± 0.65 0.72 ± 0.49

Is 0 0

CPZ 1.02 ± 0.27 0

BL 2.64 ± 1.39 0

Ci 0.15 ± 0.16 1.25 ± 0.44

FO3st effect on NEP during Summer seemed to fluctuate,
peaking at 48th and 82st percentiles (nmol m−2 s−1 and nmol
m−2 s−1, respectively).

The negative fraction of dNEP(O3) was transformed between
0 and 1 (where 1 is the maximum negative effect of O3 over
NEP) and averaged as a function of time of day. This was
done with the aim of identifying diurnal dynamics in the NEP
decrease due to O3 (Figures 4, 5). During the Spring season,
the average dNEP(O3) followed a pronounced bell-shape curve
at the Lindcove site, where the maximum effect of O3 was
observed during the middle hours of the day, coinciding with
FO3cum peak (Figure 4F). The same pattern was found for
Bugac (Figure 4B) sites, although the bell-shape was slightly
accentuated. At Auchencorth (Figure 4A) and Castelporziano
(Figure 4C) larger effects of FO3st were recorded at the end of
the afternoon. The damaging effect of instantaneous O3 followed
an exponential decrease during the day at Bosco Fontana site
(Figure 4D), opposite to the shape of the response to FO3cum.
The damaging effect of O3 peaked at 10:00 h, when FO3cum was
still low. At Blodgett (Figure 4E) no significant variations were
found during the day.

For the Summer season, average dNEP(O3) showed a bell-
shape curve which follows the FO3st trend at Grignon and
Lindcove (Figures 5A,B, respectively), while at Bosco Fontana
(Figure 5C) the dNEP (FO3cum) presents the same pattern as
during the Spring season.

How O3 Reduces NEP According to
Other Environmental Factors
For the sites where a negative effect of O3 over NEP was found
(Au, Bu, Gr, BF, CPZ, Bl and Ci), the correlation between the
negative fraction of dNEP(FO3st) or dNEP(FO3cum) and the
other environmental variables was tested through Spearman
partial correlation (Table 6).

No correlation was found for Auchencorth Moss, where no
values were statistically significant. Solar radiation enhanced
O3 detrimental effect at Bugac, Bosco Fontana and Blodgett
during Spring and at Lindcove during Summer, while it had

the opposite effect at Castelporziano during Spring and at
Bosco Fontana during Summer. The correlation between air
temperature and dNEP(O3) was significant only at Blodgett,
where air temperature decreased O3 damage during Spring. The
increase of vpd depressed O3 damage at Bosco Fontana and
Castelporziano during Spring, and at Lindcove during Summer.
Increasing swc reduced O3 damage at Bugac and Bosco Fontana
during Spring, and increased O3 damage at Lindcove during
both Spring and Summer. The O3 concentration at canopy level
increased O3 damage at Bugac, Grignon, Blodgett and Lindcove
whilst it had an opposite effect on Castelporziano and Bosco
Fontana vegetation.

DISCUSSION

How O3 pollution alters vegetation carbon sequestration
capacity is considered an important component of global
change (Ashmore and Bell, 1991), but few studies have
quantified its impact over ecosystems. Some of them confirm
a detrimental effect of O3 over vegetation occurring in
sites where ambient O3 concentrations are typically high
(Zapletal et al., 2011; Fares et al., 2013), while others did
not find any effect of high levels of tropospheric ozone
concentrations (Zona et al., 2014; Verryckt et al., 2017).
Results of these studies are difficult to interpret in the context
of ozone/plant interactions because of the great variability
among site characteristics, vegetation type and methodological
approaches (Cailleret et al., 2018).

This work demonstrates that ANN modeling is a useful
tool to understand O3 – NEP correlation considering other
co-varying environmental factors. r2 values produced by ANN
were found higher than r2 values produced by MLR, indicating
that a non-linear statistical data modeling approach as ANN
is more appropriate in modeling complex relationships such
the dependence of NEP from co-varying environmental factors.
Our results are in line with other ecological studies in literature
which compared the two methods and found ANN models more
accurate than MLR (e.g. Lek et al., 1996; Paruelo and Tomasel,
1997; Brion et al., 2005). The strength of ANN lies in its fully
inductive approach, which allows multidimensional relationships
to be investigated without a priori knowledge of the shape of these
relations. Coupling ANN analysis with EC provided a picture of
the current status of O3 pollution effects over ecosystems.

Although overfitting was controlled in this work, high
r2 values calculated between simulations and measured
data (Table 3) indicates that the possibility of overfitting
from ANN exists.

We did not carry out an assessment of whether the model
accuracy was significantly better for the training or test subsets
than for the final validation subset in each case, and so cannot
provide an indication of whether or not the model was actually
overfitted to the training data. However, in this work, the power
and flexibility of ANN in fitting the data is an advantage and
not a limitation, indeed the aim was not to find a general model
for NEP, but to evaluate the influence of a variable (O3) in each
single study site.
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FIGURE 2 | Averaged partial derivative of NEP (dNEP) with respect to the corresponding input variable (FO3st or FO3CUM) ± standard deviation, calculated using
Spring data. (A) Auchencorth Moss (Au), (B) Bugac (Bu), (C) Castelporziano (CPZ), (D) Bosco Fontana (BF), (E) Blodgett (BL), (F) Lindcove (Ci).

FIGURE 3 | Average partial derivative of NEP (dNEP) with respect to the corresponding input variable (FO3st or FO3CUM) ± standard deviation, calculated using
Summer data. (A) Grignon (Gr), (B) Lindcove (Ci), (C) Bosco Fontana (BF).

Artificial neural network performance analysis found that
both FO3st and FO3cum are suitable indicators for predicting
NEP reduction, depending on season and type of vegetation.
Since FO3cum is obtained from cumulated values of FO3st, an
analysis of correlation between the two variables was performed
with the aims of verifying the degree of dependence of the
two variables. None or low correlation was found for most of
the study sites. That may suggest that the O3 dose entering
the stomata is discontinuous and that vegetation is subjected
to O3 pulses rather than a constant flux. However, we did not

find any relation between the degree of correlation between the
two variables and the selection of ANN model best predictor,
which means that the most suitable predictor was selected for
each site and season regardless of how discontinuous the O3
fluxes were, and it probably depends on vegetation type and
climate conditions.

Of the eleven sites tested, four ecosystems were free from
O3 damage. These sites were the Finnish Scots pine forest
(Hyytiälä), the Dutch Douglas fir plantation (Speulderbos),
the Belgian poplar plantation (Lochristi) and the Italian
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FIGURE 4 | Gray bars: negative fraction of partial derivative of NEP with respect to FO3st (A–C) or FO3CUM (D–F) averaged over hours of day, ± standard deviations.
Asterisks: FO3st (A–C) or FO3CUM (D–F) averaged over hours of day. All variables presented in this figure were transformed between 0 and 1.

FIGURE 5 | Gray bars: negative fraction of partial derivative of NEP with respect to FO3st (A,B) or FO3CUM (C) averaged over hours of day, ±standard deviations.
Asterisks: FO3st (A,B) or FO3CUM (C) averaged over hours of day. All variables presented in this figure were transformed between 0 and 1.

mixed forest (Ispra). These results are in line with Zona
et al. (2014), who did not find a negative relationship
between O3 and net ecosystem exchange at Lochristi. All
of these ecosystems are located in northern areas with
the exception of Ispra, where O3 concentrations are not
particularly high compared with typical high ozone-prone
Mediterranean sites (Table 2) and this may support the
hypothesis that low to moderate ozone concentrations
and therefore lower stomatal ozone fluxes may generate
cumulative exposure to ozone far below possible critical levels in
northern ecosystems.

Seven ecosystems showed a significant but limited NEP loss
due to O3 entering the stomata: the United Kingdom shrubland
(Auchencorth Moss), the Hungarian grassland (Bugac), the
Italian Holm oak forest (Castelporziano), the Californian pine
plantation (Blodgett) during the Spring season, the French
cropland (Grignon) during Summer, the Italian mixed forest
(Bosco Fontana) and the Californian Citrus orchard (Lindcove)
during both Spring and Summer seasons. Mean NEP loss was
estimated at between 0.15 and 2.64%.

These values are low compared with other studies:
for example Fares et al. (2013) adopted more traditional
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TABLE 6 | Spearman partial correlation coefficients of the negative partial
derivative of dNEP(O3) (FO3sto for Au, Bu, Gr, CPZ and Ci in Summer; FO3cum for
BF, Bl and Ci in Spring) with respect to solar radiation (rad), air temperature (t),
vapor pressure deficit (vpd), soil water content (swc) and O3 concentration at
canopy level([O3]).

Site Season rad t vpd swc [O3]

Au SP −0.01 0.04 −0.01 0.01 0.00

Bu SP −0.29 0.14 −0.02 0.29 −0.20

Gr S 0.01 0.09 −0.03 0.04 −0.14

BF SP −0.16 −0.09 0.12 0.49 0.38

S 0.25 0.02 0.06 0.09 0.34

CPZ SP 0.10 −0.04 0.18 0.06 0.19

BL SP −0.16 0.32 −0.02 n.a. −0.32

Ci SP 0.26 0.30 −0.24 −0.40 −0.08

S −0.58 −0.11 0.23 −0.27 −0.26

Bold numbers indicate statistically significant correlations (p < 0.05). Note that,
since dNEP is negative, positive coefficients indicate that the negative effect of O3
on NEP decreases when the other variable increases, while negative coefficients
indicate that the negative effect of O3 is further exacerbated by an increase in the
other variable. Explanation of acronyms of the site names can be found in Table 1.

statistical methods based on step-wise regression analysis
and multivariate analysis and found up to 12–19% of the
carbon assimilation reduction in Blodgett and Lindcove sites
explained by O3 entering the stomata. Such results suggest
that either our approach is extremely conservative and does
not appropriately attribute O3 effect, or statistical methods
adopted in earlier studies may have overestimated O3 effects
by including the effects of covariates in the predictive model
of NEP. It should be noted, however, that both approaches
focus on the quantification of the instantaneous or near-
instantaneous effect of O3 on NEP, and capture neither the
effect of this NEP reduction on biomass reduction which
may further reduce NEP in the future nor the long-term
effects of leaf injury.

Among the northern sites affected by O3, Auchencorth Moss
showed higher sensitivity to O3 damage. This was despite non-
stomatal deposition being the principal sink of O3 at this
site, representing 70% of the overall O3 flux (Fowler et al.,
2001), and where moorland mosses like Sphagnum are relatively
tolerant to elevated O3 concentrations (Rinnan et al., 2003).
The reason of the depression of NEP linked to O3 entering the
stomata can be attributed to the increase of the plant respiration
rate, as already observed by Niemi et al. (2002) for moorland
vegetation, as a result of the plants repairing O3 damaged tissues
(Williamson et al., 2015).

Partial derivative results indicate that the O3 effects on
NEP are highly non-linear and site-specific. In almost
all study sites, positive relationships between stomatal
O3 flux and NEP were found. Both are controlled by
stomatal conductance and thus, in the absence of O3
damage, stomatal O3 fluxes positively correlated with NEP,
as already observed by Proietti et al. (2016). This also
implies that a limited effect of ozone on stomatal closure
may still take place, as this matches with a moderate
reduction in NEP.

Episodes in which O3 detrimental effect occurred were
identified from the models using partial derivative analysis.
These episodes were correlated to climatic variables showing
that O3 damage dependence on weather varies with the climate.
O3 damage occurred primarily during Spring, especially for
those sites where stomatal conductance decreases in Summer as
affected by water availability (see Table 2). Partial correlation
analysis showed that swc decreases the O3 negative effect
for those sites where no drought stress occurred (Blodgett
and Bosco Fontana).

In Mediterranean regions, drought periods (which coincide
with high O3 levels) limit stomatal conductance, protecting
vegetation from O3 oxidative stress (Paoletti, 2006). At Lindcove,
a well irrigated Mediterranean citrus plantation as previously
reported by Fares et al. (2012), O3 detrimental effects were
observed both during Spring and Summer and positively
correlate with swc. In these warm periods, with O3 concentrations
often exceeding 80 ppb, the mean stomatal O3 fluxes were 3.29
and 3.19 nmol m−2s−1 during the central hours of the day
during Spring and Summer, respectively. swc was not a significant
predictor of O3 damage at Castelporziano, a Mediterranean
Holm oak forest, where the high water table (Bucci, 2006)
protected trees from water stress, although during Spring high
stomatal fluxes were associated with high levels of precipitations
(Savi and Fares, 2014).

The inclusion of O3 concentration at canopy level in the
partial correlation analysis showed that NEP damage does
not always occur at peak O3 concentrations, as the case
of the Italian sites of Bosco Fontana and Castelporziano.
It must be noted that being photochemically produced, O3
concentrations tend to peak when solar radiation is high and
that BVOC emitted by some tree species can contribute to
ozone formation (Monks et al., 2015). When radiation increases,
vpd also increases, causing stomatal closure and leading to a
protective effect against O3 entering the leaves (Mereu et al.,
2009; Fares et al., 2010b, 2014). For the same sites, partial
correlation analysis highlights that when solar radiation and
vpd increase, O3 impact on NEP decreases. We do not exclude
that to some minor extend high reactive terpenoid emissions
at Castelporziano and Bosco Fontana in the central hours of
the day [documented by Fares et al. (2013) and Acton et al.
(2016)] may be responsible for ozone scavenging in the gas
phase, thus reducing the amount of ozone entering stomata.
This phenomenon of mid-day exclusion of O3 damage does
not happen in the Mediterranean Ponderosa pine plantation at
Blodgett, this species being relatively insensitive to vpd when
drought is not a limiting factor (Panek and Goldstein, 2001). At
this site, air temperature was found to be a limiting factor for
O3 damage during Spring, when high temperature constrained
gas exchange (Panek and Goldstein, 2001) and helped reduce O3
oxidative stress.

At Auchencorth Moss, the relation of O3 damage to weather
remains unclear, although a significant negative effect of O3
on NEP was found. O3 damage estimates were averaged over
the course of the day, with the aim of highlighting hourly
patterns. For some sites (Lindcove, Bugac and Grignon), the
detrimental effect of O3 followed a bell-shaped curve, thus
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suggesting that most of damage to photosynthetic apparatus
occurred rapidly during hours of maximum O3 absorption.
Interestingly, for Auchencorth Moss and Castelporziano, major
damage was observed at the end of the afternoon, indicating
that: (1) high vpd reduces stomatal conductance, and therefore
O3 damage, during the central hours of the day; and (2) to
some extent plants may be able to detoxify O3 during hours
of maximum exposure to the pollutant, while at the end of the
day detoxification capacity of leaves decreases. While there is
evidence of a mid-day depression of stomatal conductance in
those sites (Fares et al., 2010a, 2014), the second hypothesis is
highly speculative and deserves further investigation. However,
the possibility of changes in reducing power during the day
has been previously described by Dizengremel et al. (2008)
who showed decreasing foliar level of antioxidants during the
afternoon hours in response to oxidative stress. Conversely, O3
damaging effect and O3 absorption were completely decoupled
at Bosco Fontana, where the O3 damaging effect peaks in
the morning, under low O3 concentrations, suggesting the
occurrence of species-specific acclimatization phenomena along
the day which we cannot explain in this study.

CONCLUSION

This work clearly suggests that long-term datasets are required
to identify O3 damage to vegetation under field conditions. We
found that O3 has a detrimental effect on NEP, although damage
can be sporadic and is driven by specific weather conditions and
in general, has lower magnitude compared with observations
carried out through manipulative experiments or in the field
using traditional statistical methods. Our results suggest that
vegetation response to O3 depends not only on pollution level
but also on how the ecosystems respond to climate variables.
Future climate changes may therefore either expose ecosystems
to further O3 damage by increasing temperatures or rather lead
to a reduction in ozone damage in drought-prone ecosystems.
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