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REVIEW ARTICLE

Local ocular renin–angiotensin–aldosterone system: any connection with
intraocular pressure? A comprehensive review

Mervi Holappaa, Heikki Vapaataloa and Anu Vaajanenb

aMedical Faculty, Department of Pharmacology, University of Helsinki, Helsinki, Finland; bDepartment of Ophthalmology,
Tampere University Hospital, Tampere, Finland

ABSTRACT
The renin–angiotensin system (RAS) is one of the oldest and most extensively studied human
peptide cascades, well-known for its role in regulating blood pressure. When aldosterone is
included, RAAS is involved also in fluid and electrolyte homeostasis. There are two main axes of
RAAS: (1) Angiotensin (1–7), angiotensin converting enzyme 2 and Mas receptor
(ACE2–Ang(1–7)–MasR), (2) Angiotensin II, angiotensin converting enzyme 1 and angiotensin II
type 1 receptor (ACE1–AngII–AT1R). In its entirety, RAAS comprises dozens of angiotensin pepti-
des, peptidases and seven receptors. The first mentioned axis is known to counterbalance the
deleterious effects of the latter axis. In addition to the systemic RAAS, tissue-specific regulatory
systems have been described in various organs, evidence that RAAS is both an endocrine and
an autocrine system. These local regulatory systems, such as the one present in the vascular
endothelium, are responsible for long-term regional changes. A local RAAS and its components
have been detected in many structures of the human eye. This review focuses on the local ocu-
lar RAAS in the anterior part of the eye, its possible role in aqueous humour dynamics and intra-
ocular pressure as well as RAAS as a potential target for anti-glaucomatous drugs.

KEY MESSAGES

� Components of renin–angiotensin–aldosterone system have been detected in different struc-
tures of the human eye, introducing the concept of a local intraocular renin–angiotensin–al-
dosterone system (RAAS).

� Evidence is accumulating that the local ocular RAAS is involved in aqueous humour dynam-
ics, regulation of intraocular pressure, neuroprotection and ocular pathology making
components of RAAS attractive candidates when developing new effective ways to treat
glaucoma.

Abbreviations: ACE1: angiotensin-converting enzyme 1; ACE2: angiotensin-converting enzyme
related carboxypeptidase, angiotensin converting enzyme 2; AGT: angiotensinogen; AH: aqueous
humour; AMD: age-related macular degeneration; Ang (X-X): angiotensin (following numbers in
parenthesis refer to the numbers of amino acid residues); Ang I, II, III, IV: angiotensin I, II, III, IV;
Ang A: angiotensin A; AP-A, -N, -M, -B: aminopeptidase-A, -N, -M, -B; ARB: Ang II type 1 receptor
blocker; AT1R, -2R, -4R: angiotensin II type 1, -2, -4 receptor; B1/B2 receptor: bradykinin receptor;
BMP: bone morphogenetic protein; BP: blood pressure; CAGE: chymostatin-sensitive Ang II gen-
erating enzyme; CP: carboxypeptidase; CTGF: connective tissue growth factor; DIZE: diminazene
aceturate; DP: diabetic retinopathy; ECM: extracellular matrix; EM: electron microscope; EP: endo-
peptidase; fXIIa: factor XII activated; HPLC: high performance liquid chromatography; HSD1 and
2: 11b-hydroxysteroid dehydrogenase type 1 and 2; ICC: immunocytochemistry; ICH: immunohis-
tochemistry; IF: indirect immunofluorescence; IOP: intraocular pressure; ISH: in situ hybridization;
MasR: Mas receptor, Ang (1–7) receptor type; MgrD: Mas-related G-protein-coupled receptor D;
MR: mineralocorticoid receptor; MS: mass spectrometry; NEP: neprilysin; NO: nitric oxide; NPE:
non-pigmented ciliary epithelium; NTG: normal tension glaucoma; PAI-1: plasminogen activator
inhibitor 1; PCP: prolyl-carboxypeptidase; PEP: prolyl-endopeptidase; (P)RR: (pro)renin receptor;
RAAS: renin–angiotensin–aldosterone system; RIA: radioimmunoassay; ROP: retinopathy of pre-
maturity; TGF-b: transforming growth factor b; tPA: tissue-type plasminogen activator
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Introduction

Glaucoma is one of the leading causes of blindness,
globally affecting approximately 80 million people in
2020 [1,2]. Due to the fact that glaucoma can be
asymptomatic for a long time, the number of people
suffering from glaucoma is probably much higher. It is
estimated that 20 years from now, there will be over
100 million people suffering from glaucoma [2].

Glaucoma, with its numerous subtypes, is a multi-
factorial neurodegenerative disease in which damage
to the optic nerve and retinal ganglion cell axons
cause visual field defects and irreversible vision loss
[3–5]. If left untreated, glaucoma can lead to total
blindness. Even though the underlying mechanism in
glaucoma aetiology is still incompletely understood,
different genetic and biological risk factors, such as
age, race, family history, diabetes as well as structural
properties like pseudoexfoliation and myopia have
been identified [6–8]. Intraocular pressure (IOP) is con-
sidered to be the most important of all the risk factors
so far identified for glaucoma [4,9]. The complex aeti-
ology of glaucoma complicates the development of
effective therapies [3,10]. Thus today, only treatments
capable of lowering the IOP have been proven effect-
ive in slowing down disease progression [11,12].
Recently, it has been proposed that more attention
should be paid to neuroprotective agents and thera-
pies for glaucoma treatment [13,14].

Interestingly, a local ocular RAAS in the human eye
has been associated with the development of glau-
coma and other eye disorders such as diabetic retin-
opathy (DR), age-related macular degeneration (AMD)
and retinopathy of prematurity (ROP) [15–21]. In this
review, we focus on a local ocular RAAS and its pos-
sible connection to aqueous humour (AH) dynamics
and hence to the pathology of glaucoma as well as
the potential role of this local RAAS in neuroprotec-
tion. A literature search was conducted with PubMed
and Google Scholar using the following search terms
and their combinations to narrow down the literature:
AH, IOP, RAS, tissue RAS, aldosterone, angiotensin,
Ang I, Ang II, Ang (1–7), Ang (1–9), Ang (3–4), alaman-
dine, ACE1 and ACE2, MasR, Mas-related G-protein
coupled receptor D (MrgD), angiotensin receptor,
AT1R, AT2R, AT4R, eye disorder, glaucoma and neuro-
protection. Eventually 239 articles were chosen based
on their relevance.

Renin–angiotensin–aldosterone system

The origins of RAAS research can be traced back to
1898 when the Finnish scientist Robert Tigerstedt and

his Swedish student Per Bergman were examining a
kidney extract and identified a blood pressure (BP) ele-
vating substance, later called renin [22–24]. Now
today, over 120 years after its initial discovery, our
understanding of the RAAS cascade and its compo-
nents has expanded and it now has a recognized role
in (patho)physiology [23]. Indeed, several enzymes,
peptides and receptors operating within RAAS cascade
have been identified during the last century e.g. new
targets on which to focus in drug development
[25–28]. Today, much of the RAAS research concen-
trates on the two main axes of RAAS as well as how
disturbances in the interaction of these two axes can
lead to pathological events not only at the systemic
but also at the level of individual organs [28]. Figure 1
illustrates the complexity of the RAAS cascade. This
review will focus mainly on the key components of
RAAS, which means that several peptidases, proteases
and peptides lie beyond the scope. In addition, the
Kallikrein–Kinin system, which is recognized to interact
at multiple levels with RAAS, is not examined in detail
here [16].

Systemic RAAS

Renin is a highly specific aspartyl protease; it activates
the RAAS cascade by hydrolysing its only known sub-
strate: angiotensinogen (AGT) to angiotensin I (Ang I)
[29]. AGT is the precursor of all of the angiotensin
peptides; AGT is mainly synthesized and released into
the bloodstream from the liver, e.g. in response to
inflammation, insulin and oestrogen [30]. Interestingly,
some organs, such as heart and kidney, are also
known to produce AGT [30]. Renin, on the other hand,
is mainly synthesized, stored and released in renal
juxtaglomerular cells in response to decreased arterial
BP, reductions in sodium levels or increased activity of
sympathetic nervous system [31,32]. Renin is synthe-
sized as an inactive form called prorenin [33]. The pro-
sequence is first cleaved by kallikrein, cathepsin B or
proconvertase before fully active renin is released into
the circulation [31,33]. Renin, and its less active form
prorenin, can mediate vasoconstrictive effects via
(pro)renin receptor ((P)RR) [33–35].

When formed, a weak prohormone and vasocon-
strictor Ang I, which is a decapeptide, is usually further
cleaved into smaller peptides such as the octapeptide,
angiotensin II (Ang II) by angiotensin converting
enzyme type 1 (ACE1) [36] or other enzymes such as
tonin [37], trypsin [38], kallikrein [39], cathepsin G [40]
and chymase [41–43]. The last five enzymes listed
above are regarded as alternative pathways for the
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production of Ang II which may be important in
(patho)physiology [44–46] but will not be discussed
further in this review. ACE1 is present locally in various
tissues and body fluids [47]. In order to convert Ang I
into Ang II, i.e. the removal of two amino acid residues
from the carboxyl terminus of Ang I, ACE1 needs
chloride to improve substrate binding as well as the
presence of Zn2þ which is complexed with activated
water molecule in the enzyme’s active site [36,48].
Since the ACE1 mediating pathway is considered to
be the main pathway for the formation of Ang II,
blockade of ACE1 reduces Ang II concentrations and
on the other hand, elevates Ang (1–7) levels [49]. This

explains why ACE inhibitors are widely used as antihy-
pertensive medications [50]. However, the enzymes
involved in the alternative pathways for Ang II forma-
tion may attempt to restore the decline in Ang II lev-
els evoked by ACE1 inhibition [49].

Ang II is a vasoactive peptide that exerts its physio-
logical effect such as vasoconstriction, fibrosis and
inflammation via G-protein coupled angiotensin type 1
receptor (AT1R) [51–53]. Ang II also stimulates the
release of aldosterone and vasopressin both of which
cause an elevation of BP [54]. After the discovery of
captopril in the 1970s [55], other antihypertensive
drugs that target components of the RAAS cascade
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Figure 1. The renin–angiotensin–aldosterone system. The two main axes of the RAAS cascade:Q4 ACE1–Ang II–AT1R axis (blue lines),
ACE2–Ang (1–7)–MasR axis (red lines) are highlighted in colour. As many of the angiotensin peptides can interact with several dis-
tinctive receptors, reduced affinity is illustrated with dashed lines. One novel route, ACE2-alamandine-MgrD (green lines) could
constitute a new protective axis of RAAS as alamandine and its receptor MrgD have similar functions to Ang (1–7) and MasR i.e.
exerting vasodilating and antiproliferative effects. The effect of Ang II and Ang III to stimulate aldosterone release is shown with
grey lines. In order that aldosterone can bind to its receptor, MR, the HSD2 enzyme must be present in order to convert cortisol
to cortisone as cortisol binds to MR with much higher affinity than aldosterone. In the kallikrein–kinin system, kallikreins release
vasoactive peptides, i.e. kinins, from their substrates, kininogens. The crosstalk between RAAS and the kallikrein–kinin system
occurs at the peptide, enzyme as well as the receptor levels. ACE1: Angiotensin-converting enzyme 1; ACE2: Angiotensin-convert-
ing enzyme related carboxypeptidase; Ang I, II, III, IV: Angiotensin I, II, III, IV; Ang A: Angiotensin A; AT1R, �2 R, �4 R: Angiotensin
II type 1, �2, �4 receptor; AP: Aminopeptidase (-A, -N, -M, -B); B1/B2 receptor: Bradykinin receptors; CAGE: Chymostatin-sensitive
Ang II generating enzyme; CP: Carboxypeptidase; EP: Endopeptidase; fXIIa: factor XII activated; HSD2: 11b-hydroxysteroid dehydro-
genase type 2; MgrD: Mas-related G-protein-coupled receptor D; MasR: Mas receptor, Ang(1–7) receptor type; MR: mineralocortic-
oid receptor; NEP: Neprilysin; PCP: Prolyl-carboxypeptidase; PEP: Prolyl-endopeptidase; tPA: Tissue-type plasminogen activator. In
angiotensin peptides, the numbers in parenthesis refers to the numbers of amino acid residues. The figure is updated from
Vaajanen et al. [210].
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were developed [49,56]. Ang II type 1 receptor block-
ers (ARB) emerged from this research programme;
these drugs prevent the vasoconstrictive effects of
Ang II by blocking its main receptor, AT1R [57]. Ang II
can also activate the angiotensin type 2 receptor
(AT2R), the receptor considered to be protective. In
this respect, Ang II can inhibit AT1R-mediated effects
by directly binding to this receptor and on the other
hand, counterbalance the deleterious effects of AT1R
signalling by eliciting vasodilatory, antihypertensive,
proapoptotic as well as antiproliferative effects [58].

Angiotensin III (Ang III) and angiotensin IV (Ang IV)
are generated from Ang II by either ACE1 and amino-
peptidase A or by aminopeptidase N [23,59]. Ang III
can be further cleaved by aminopeptidases N, M and
B to form Ang IV [59,60]. Both Ang III and Ang IV are
believed to exert their actions via AT1 receptors
[61,62]. However, Ang III is a vasoconstrictive peptide
that has higher affinity for AT2 receptors whereas Ang
IV prefers the angiotensin type IV receptors (AT4R)
[23,62,63]. AT4 receptors are found throughout the
body, e.g. in the brain, lung and kidney tissue; these
receptors are involved in cognitive and proliferative
functions [63].

Angiotensin (1–9) (Ang (1–9)) releases arachidonic
acid, promotes the formation of nitric oxide, increases
bradykinin activity, may reduce BP via AT2R activation
and participates in inhibiting platelet function [64–67].
Ang (1–9) can be generated from Ang I by several
enzymes e.g. ACE2 [68], carboxypeptidase A or cathe-
psin A [64,69]. ACE2, first cloned in 2000, shares 42%
sequence identity with its homologue, ACE1 [70].
ACE2 has been detected in various organs such as
heart, kidney, lung, liver and interestingly in the
human eye [68,71,72]. ACE2 converts Ang I into Ang
(1–9) and Ang II into Ang (1–7) [68,73–76]. The enzym-
atic activity of ACE2 is regulated by chloride ions simi-
larly as in ACE1 activity [33]. However, ACE2 activity is
not affected by ACE inhibitors, i.e. its activity is not
blocked by the commonly used antihypertensive med-
ications, which explains why the ACE2-Ang(1–7)-MasR
axis is considered as a novel target in cardiovascular
drug research [73,77].

Ang (1–7) is known to have biological functions
opposite to those of Ang II [60]; it can be metabolised
from Ang II by ACE2, prolyl-endopeptidase and prolyl-
carboxypeptidase [23,78] or from Ang (1–9) by ACE1
and NEP [74] or directly from Ang I or from prohor-
mone Ang (1–12), bypassing the biosynthesis of the
vasoconstrictor Ang II [78,79]. Ang (1–7), a counter-
regulator of Ang II, exerts its vasodilating and antipro-
liferative effects via yet another receptor type; MasR

[67,80]. Ang (1–7) may also bind to AT1 and AT2
receptors although it displays considerable AT2R
selectivity over AT1R [62,67,80]. MasR, a G-protein
coupled receptor has been found in several organs
including kidney, heart, brain and human eye [81].
Since Ang (1–7) possesses anti-arrhythmogenic, antith-
rombogenic, growth-inhibitory and vasoconstriction
inhibitory properties, it can be considered as a pro-
tective and key counter-regulatory component
of the RAAS cascade [75,82,83]. These beneficial
effects of Ang (1–7) on the pathology of multiple
diseases such as hypertension [77,78,80,84] and dia-
betic nephropathy [85–88] have only recently been
discovered, opening new possibilities for further drug
development.

Ang (1–7) can then be further metabolized into
shorter angiotensin peptides such as the newly discov-
ered antiproliferative and vasodilating peptide Ang (3,
4) [89] or it can be decarboxylated into alamandine
(Ala–Arg–Val–Tyr–Ile–His–Pro), which also has antiproli-
ferative and vasodilating properties [90–93]. Recently,
the newly discovered compound, alamandine, has
been postulated to counterbalance the harmful effects
of the ACE1–Ang II–AT1R axis both systemically and
locally. Ang (3–4) exerts its antihypertensive and natri-
uretic effects via AT2 receptors [89] whereas alaman-
dine mediates its vasodilating actions via yet another
receptor type Mas-related G-protein coupled receptor
D (MrgD) [94,95]. These two novel components of
RAAS, alamandine and its receptor MrgD, are similar in
function and in structure to Ang (1–7) and its receptor
MasR, constituting a new protective axis of RAAS
[92,93,96]. Ang (3–4) can also be seen as one of the
protective peptides produced by the RAAS cascade
since it can inhibit ACE1, elevate Ang (1–7) levels and
reduce the levels of both Ang II and aldosterone in
plasma [89]. This short peptide is also able to perme-
ate extensively through intestinal cells and is known
to be highly resistant to hydrolysis. For these reasons,
it has been suggested that Ang (3–4) could well be
effective when administered orally—another new
aspect of RAAS giving drug developers new targets on
which to focus [89]. Whether Ang (3–4) or alamandine
will have significant therapeutic roles in other organs
remains to be resolved.

A mineralocorticoid hormone, aldosterone, is the
end product of an RAAS cascade [97]. Ang II as well as
Ang III stimulate aldosterone release from adrenal
glands which is also the main site of aldosterone syn-
thesis [97,98]. After secretion, aldosterone exerts its
effects on sodium and fluid homeostasis via the min-
eralocorticoid receptor (MR) [21]. However, another
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endogenous ligand, cortisol, binds to MR with much
higher affinity than aldosterone [99]. If the MR is to be
activated by its specific ligand aldosterone, then the
11b-hydroxysteroid dehydrogenase type 2 (HSD2)
enzyme must be present since it converts cortisol into
cortisone, which has much reduced affinity for MR.
Together with Ang II, aldosterone stimulates fibrosis,
inflammation, cell proliferation, neovascularization and
oxidative stress [21,97].

Tissue RAAS

Today, the importance of RAAS as a localized system
capable of affecting the functions of individual organs
is well recognized. These tissue-specific regulatory sys-
tems have been detected in many organs such as
brain, heart, intestine and eye, proving that RAAS is
not simply an endocrine but also an autocrine system
[100,101]. Ganten et al. [102] were the first to observe
that RAAS is not only an endocrine circulatory system
but also an organ-specific system that has important
regulatory roles at the tissue level, e.g. eliciting cell
growth, proliferation and protein synthesis [23,45,101].
Based on the origin of Ang II, local RAAS can be
described either as extrinsic or intrinsic: in the former
case, Ang II originates from the circulation while in
the latter case, Ang II is synthesized locally [60]. As
some local RAA systems are reliant on systemic RAAS
while other RAA systems function independently of
the systemic RAAS, producing their own components
locally, RAAS can be considered as a key proteolytic
system that possesses intracrine, autocrine, paracrine
as well as endocrine functions in the human
body [45,60,101].

The ophthalmic literature focussing on RAAS dates
back to 1977 when Igic et al. described ACE1 activity
in homogenates derived from retina [103]. Now, all of
the key components of RAAS including ACE1-Ang II-
AT1R and ACE2-Ang(1–7)-MasR have been identified in
retinal as well as non-retinal structures of the human
eye [71,81,100,104]. So far, neither Ang IV nor AT4R
have been identified in the human eye. Table 1 sum-
marizes the distribution of RAAS components in non-
retinal structures of the human eye.

As the blood–ocular barrier prevents circulatory
angiotensinogen, Ang I and Ang II from passing into
the intraocular compartment and since the Ang I and
Ang II concentrations in retina, choroid and anterior
uveal tract have been shown to be higher than in
plasma, it is believed that RAAS components in ocular
tissue must be produced locally, i.e. there must be an
intrinsic ocular RAAS [16]. While the local ocular RAAS

has been linked to different eye diseases such as DR,
AMD, ROP and glaucoma, its overall significance in
ocular (patho)physiology is still somewhat unclear
[15,16,21,100,104]. In animal models, RAAS has also
been linked to uveitis [132–138] and cataract
[139–141]. Furthermore, ocular RAAS has been sug-
gested to play a role in the regulation of IOP as it can
alter AH dynamics [101,112,142]. Moreover, systemic
administration of antihypertensive drugs acting
through RAAS, such as ACE inhibitors [143], and ARB
blockers [144] as well as topical administration of ACE
inhibitors [145,146], ARB blockers [147,148] and renin
inhibitors [149], have been shown to reduce IOP.

RAAS involvement in AH dynamics and IOP

Glaucoma

Glaucoma, with its numerous subtypes, is a multifac-
torial optic neuropathy that leads to death of retinal
ganglion cells and the loss of retinal neurons thus
causing an irreversible disturbance of vision [150,151].
This devastating eye disease can be challenging to
diagnose, as glaucoma can be asymptomatic for a
long period of time [152]. Even though IOP is one of
the best known risk factors for glaucoma, there are
many still unknown factors having an important role
in the pathogenesis of neuropathy, i.e. factors evoking
oxidative stress or otherwise damaging the nerve fibre
layer. Not every patient diagnosed with glaucoma has
an elevated IOP value nor do all patients with high
IOP invariably develop glaucoma [10]. However, IOP is
seen as the only modifiable risk factor for glaucoma,
meaning that at present, only pressure reducing treat-
ments have been effective in slowing down disease
progression [11,12,153–155]. Increasing attention is
now being paid to developing neuroprotective mole-
cules and therapies [13,14,156].

Since the IOP depends on the balance between the
formation and outflow of AH, all anti-glaucomatous
treatments such as medicated eye drops, laser therapy
and surgical procedures, aim to lower IOP either by
decreasing AH formation or by increasing AH outflow
[10–12,153–155,157] with the latter being the main
mechanism of their ocular hypotensive action.

Iop

As AH formation is pressure-insensitive, it remains rela-
tively constant even at high pressure conditions [158].
On the contrary, AH drainage is sensitive to pressure
variations. In order to keep IOP within an acceptable
physiological range, corrective adjustments need to be
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made to resistance to AH outflow rather than lowering
AH formation [158,159]. AH is a mixture of different
growth factors, proteins, amino acids, electrolytes,
cytokines as well as organic and inorganic solutes
[160–164]. AH is continuously produced by the ciliary
body [165] in order to feed the non-vascularized ocu-
lar structures [166] and it is removed from the anterior
chamber through the trabecular, uveoscleral or the
uveolymphatic pathways [167]. The AH circulation
removes excretory products, transports neurotransmit-
ters and it also enables mediators and inflammatory
cells to circulate in the eye [166,168]. An optimal IOP
is necessary to maintain the correct shape of the
human eye as well as sustaining its optical and refract-
ive properties [169–172]. AH flow against resistance
creates an IOP of about 15 ± 5mmHg [165,169,170].

However, postural variations [173], physical exercise
[174–177], sleeping, aging and some systematic dis-
eases such as diabetes can cause variations in IOP
[167]. The diurnal fluctuation of IOP, which is about
5mmHg in healthy subjects, may also be linked to
glucocorticoid secretion as the highest level of cortisol
is usually detected in the morning [178].

The epithelial cells lining the ciliary body produce
AH, which is secreted into the posterior chamber
through active secretion, diffusion or ultrafiltration
[166]. Diffusion and ultrafiltration, neither of which
require cellular activity or energy, account for only
10–20% of all AH formation [166]. Hydrolysis of adeno-
sine triphosphate (ATP) by Naþ/Kþ ATPase produces
enough energy to allow the active and selective secre-
tion and transport of ions and molecules across the
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Table 1. Renin–angiotensin–aldosterone system components described in different structures of the human eye.
Component Eye structure Reference Analytical technique

Prorenin Bulbar conjunctiva, cornea, aqueous humour,
iris, ciliary body/NPE, vitreous, sclera

[105–109] RT-PCRþ IF, ICC staining, IHC staining,
immune-EM, enzyme kinetic assay

Renin Bulbar conjunctiva, cornea, iris, ciliary body/
NPE, vitreous, sclera

[105,108,109] RT-PCRþ IF, IHC staining, enzyme kinetic
assay, sandwich assay

AGT Bulbar conjunctiva, cornea, aqueous humour,
iris, ciliary body/NPE, vitreous, sclera

[105,110–112] RT-PCRþ IF, SDS-PAGEþ nano-ESI-LC/MS/MS,
gel electrophoresisþ immunoblotting, IHC
staining, PCR

ACE1 Bulbar conjunctiva, cornea, trabecular
meshwork, aqueous humour, iris, ciliary
body/NPE, tears/lacrimal gland, vitreous,
optic nerve head, sclera

[71,105,113–121] ELISA, RT-PCRþ IF, IHC staining, enzyme
activity assay, inhibitor binding assay,
solid-phase chemiluminescence
immunoassay, 2D gel
electrophoresisþ ESI-MS-MSþ LCQ,
Sep-PakþHPLCþ RIA

ACE2 Aqueous humour [71] ELISA
HSD1 Cornea, trabecular meshwork, ciliary body/

NPE, lens
[122–124] mRNA hybridizationþ silver grains counting,

IHC stainingþ RT-PCR, IF-ISH
HSD2 Cornea, trabecular meshwork, ciliary body/

NPE, lens
[122,124,125] mRNA hybridizationþ silver grains counting,

IHC staining
Ang I Aqueous humour, iris, ciliary body/

NPE, vitreous
[126,127] Sep-PakþHPLCþ RIA, HPLC

Ang II Bulbar conjunctiva, cornea, trabecular
meshwork, aqueous humour, iris, ciliary
body/NPE, vitreous, optic nerve head

[113,126–128] IHC staining, Sep-PakþHPLCþ RIA, HPLC,
RIA, ICC stainingþ confocal imaging

Ang (1–7) Trabecular meshwork, aqueous humour,
ciliary body/NPE

[71,81,128] ELISA, IHC stainingþ light and fluorescent
microscopy, ICC
stainingþ confocal imaging

Aldosterone Lens [129] RIA
(P)RR Bulbar conjunctiva, cornea, iris, ciliary body/

NPE, sclera
[105] RT-PCRþ IF

AT, unknown subtype Iris, ciliary body/NPE [130,131] radioligand binding assay, angiotensin-
evoked contractions antagonised by 8-Ala-
Ang II in a competitive manner

AT1R Bulbar conjunctiva, cornea, iris, ciliary body/
NPE, optic nerve head

[105,112,128] RT-PCRþ IF, PCR, competitive membrane-
binding assay, ICC
stainingþ confocal imaging

AT2R Iris, ciliary body/NPE, optic nerve head [128] competitive membrane-binding assay, ICC
stainingþ confocal imaging

MasR Cornea, trabecular meshwork, ciliary
body/NPE

[81] IHC stainingþ light and
fluorescent microscopy

MR Cornea, trabecular meshwork, ciliary body/
NPE, lens

[121–124] mRNA hybridizationþ silver grains counting,
IHC staining, RT-PCR

Table modified and updated from the table published by Holappa et al. [104]. ACE1, -2: Angiotensin converting enzyme 1, -2; AGT: Angiotensinogen;
Ang I, -II: Angiotensin I, -II; Ang (1–7): Angiotensin (1–7); AT1R, -2R, -4R: Angiotensin II type 1, 2, 4 receptor; EM: electron microscope; HSD-1, -2: 11b-
hydroxysteroid dehydrogenase type 1, -2; HPLC: high performance liquid chromatography; ICC: immunocytochemistry; ICH: immunohistochemistry; IF:
indirect immunofluorescence; ISH: in situ hybridization; MasR: Mas receptor; MS: mass spectrometry; MR: mineralocorticoid receptor; NPE: non-pigmented
ciliary epithelium; (P)RR: (pro)renin receptor; RIA: radioimmunoassay.
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epithelium against a concentration gradient [166,169].
In addition, active transport of Naþ into the posterior
chamber causes water flow from the stromal pool into
the posterior chamber [179,180].

From the posterior chamber, AH flows between the
lens and the iris into the anterior chamber after which
it can be excreted either through the trabecular or
uveoscleral pathways. A novel so-called uveolymphatic
pathway has also been described, which may even be
a target for new glaucoma treatments [172,181]. In
addition, AH can exit the eye via iris vessels, corneal
endothelium and anterior vitreous body [181,182] but
their significance to AH dynamics is minimal. In the
trabecular pathway, which is the main route of drain-
age, AH flows through the porous, AH filtering tra-
becular meshwork, the endothelial lining of Schlemm’s
canal itself, the collecting channels and aqueous veins
into the circulatory system [158,166,172]. This process
is known to be passive with the AH movement being
driven by the pressure gradient (IOP) [168,181,183].
The actin cytoskeleton and the adhesions of trabecular
meshwork cells affect the fluid outflow but the rate
limiting step is considered to be the flow through the
endothelium in the inner wall of Schlemm’s
canal [168,184–188].

The uveoscleral and the novel uveolymphatic path-
ways together carry approximately 10% of all AH out-
flow [181]. In the uveoscleral pathway, AH drains
through the ciliary muscle and supraciliary space
across the posterior sclera into the choroidal vessels
and systemic circulation [189–191]. AH drainage
through the uveoscleral pathway does not rely on a
pressure gradient [191,192]. This drainage route may
also undergo age-dependent changes [181,191,192].
The uveolymphatic pathway is located in channels of
the ciliary body stroma and in the intestinal space
between ciliary muscle bundles [193]. This route of
drainage is thought to function as a backup system
for AH drainage as most of the AH is disposed via tra-
becular or uveoscleral routes [193]. However, as men-
tioned before, this route of drainage may be a new
target for anti-glaucoma drugs.

The effects of RAAS components on IOP

The complex aetiology of glaucoma complicates the
development of effective therapies [3,10]. Interestingly,
RAAS components have been identified in the ocular
structures involved in AH formation and drainage.
Multiple animal experiments as well as human studies
provide support for the concept that RAAS inhibiting
drugs could be potential anti-glaucomatous drugs in

the future, as ACE inhibitors [143,145,146,194], ARBs
[144,147,148] and renin inhibitors [149] all are able to
improve AH outflow, thus lowering IOP. In human
studies, a topically administered ACE inhibitor (SCH
33861) [195] and orally administered ACE inhibitor,
captopril [143] reduced IOP significantly. The observed
effect of captopril on IOP was due to increased AH
outflow [143]. Furthermore, AT1R-blockade by oral los-
artan for primary open angle glaucoma patients with
or without hypertension was shown to significantly
increase AH outflow and lower IOP in all patients with
a mean reduction of 16%, even though the BP reduc-
tion was only evident in subjects with arterial hyper-
tension [144].

The ability of topically administered RAAS inhibitors
to lower IOP in both normotensive and hypertensive
eyes has been demonstrated in multiple animal stud-
ies. In anaesthetized monkeys, a topically applied 0.3%
solution of a renin inhibitor (ABBOTT-64662) com-
monly known as enalkiren, lowered IOP [149].
Similarly, there was a reduction in IOP in unanesthe-
tized rabbits at 90min after topical administration of
0.1 and 0.3% solutions of enalkiren. No alterations in
systemic BP and heart rate were observed during that
study [149]. In African Green monkeys, 0.0005–0.5%
solution of enalaprilat, the bioactive metabolite of the
pro-drug enalapril, significantly lowered IOP [196].
Furthermore, in acute and chronic rabbit models of
ocular hypertension, topical administration of ACE
inhibitors enalaprilat, ramiprilat and fosinopril pro-
moted time-dependent reduction of IOP for over 4 h.
The observed effect on IOP was comparable to that
achievable with betaxolol and pilocarpine whereas the
use of enalapril and ramipril, which are both prodrugs,
did not affect IOP [145]. However, it can be specu-
lated, if the duration of observation in the previous
study was long enough in order for a prodrug to exert
clear effects on IOP, i.e. another study found a signifi-
cant reduction in IOP caused by enalapril maleate in
conscious normotensive rabbits at 10 h after its topical
application [197]. In the same study, a maximum
decline in IOP with 1 and 2.9% enalaprilat solutions
was first observed at 4 h after administration with a
duration of action exceeding 10 h. The ability of top-
ical enalaprilat and losartan to reduce significantly IOP
has also been described in normotensive and hyper-
tensive rat eyes [198,199]. In canine eyes, an ACE
inhibitor, spiraprilate (SCH 33861), was shown to lower
IOP and this reduction in IOP levels was also associ-
ated with a significant reduction in serum ACE activity
and a slight decrease in aqueous ACE [200]. As ACE
inhibitors in general lower BP by causing
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vasodilatation, they may suppress AH production as
secretory processes in ciliary body are known to be
blood flow dependent i.e. AH production is impaired
when blood flow is reduced below a critical level
[201]. Since ACE inhibitors not only decrease Ang II
levels in AH but also inhibit bradykinin breakdown,
which leads to enhanced prostaglandin synthesis, this
latter property could also improve AH drainage
through uveoscleral outflow, resulting in IOP lowering
[127,196,202–204]. By preventing the breakdown of
bradykinin, ACE inhibitors also promote vasodilatation
through increased nitric oxide formation and
decreased endothelin-1 synthesis and cause an inacti-
vation of reactive oxygen species while inhibiting pro-
oxidative mechanisms within the vasculature
[205–207]. As NO has IOP reducing abilities [208],
dual-acting medications that act as ACE inhibitors and
NO donors could potentially effectively lower IOP
[209] .

Since MasR and ACE2 are expressed in ocular tis-
sues (see Table 1), the IOP lowering properties of the
MasR activating heptapeptide Ang (1–7) and the ACE2
activating diminazene aceturate (DIZE) have been
studied, with promising outcomes [94,210–214].
Topically administered Ang (1–7) achieved a significant
IOP reduction that was completely blocked by the
MasR antagonist (A-779), minimally inhibited by a
non-peptide selective AT2R antagonist (PD123319)
and without any inhibition by AT1R antagonist (olme-
sartan) [210]. Interestingly, however, Ang (1–7) injec-
tions delivered either intracamerally or intravitreally,
did not promote AH outflow. Rats with experimentally
induced ocular hypertension showed a significant
decrease in IOP, less retinal ganglion cell death as well
as reduced optic nerve degeneration when treated
with chitosan inserts that released ACE2 continuously
activating DIZE [215]. In contrast to Ang (1–7), Ang II
has mainly negative effects on human eye although
some results are controversial. In rabbits and monkeys,
intracameral injections of Ang II have been shown to
reduce AH outflow [202,216]. The negative effect of
Ang II on AH outflow was blocked by treatment with
an AT1R antagonist but not with an AT2R antagonist;
similarly in rabbits, intracameral injections of an AT1R
antagonist elevated uveoscleral outflow by 24% [210].

As described earlier, ARBs can, at least to some
extent, increase uveoscleral outflow. More importantly
perhaps, ARBs have been claimed to suppress the cell
death of retinal ganglion cells independently of their
IOP-lowering properties [217–219]. Orally administered
candesartan has been shown to protect against the
thinning of the ganglion cell complex and prevent the

progressive loss of retinal ganglion cell death in a
mouse model of normotensive glaucoma (NTG) [219]
as well as in rats with induced chronic glaucoma
[218]. In addition, in mice with elevated IOP, treatment
with losartan has been described to exert neuropro-
tective effects on retinal ganglion cells [217]. In a
recent study, the IOP lowering and neuroprotective
effects of three different systemically administered
ARBs, losartan, irbesartan and telmisartan were studied
[220]. BP was significantly lowered by all three ARBs
when compared to the vehicle control, whereas IOP
was significantly reduced by irbesartan and telmisartan
but not by losartan probably due to non-equipotent
dosages. In the same study, pSmad2 immunohisto-
chemistry was performed on sagittal sections of eyes
to investigate the effect of ARBs on TGFb signalling in
that organ. In mice fed with normal chow, pSmad2
was detected in the inner nuclear layer of the retina
and in the retinal ganglion cell layer, evidence for the
presence of TGFb signalling in the inner retina. Only in
mice treated with telmisartan in the feed, was pSmad2
fluorescence reduced in the retinal ganglion cell layer
whereas in mice treated with losartan and irbesartan,
no significant effect was detected. Interestingly, sys-
temic administration of aldosterone has been claimed
to evoke a dose-dependent progressive loss of retinal
ganglion cells [221,222]. In NTG rats, systemically
administered aldosterone caused a loss of retinal gan-
glion cells, thinning of the retinal nerve fibre layer and
optic nerve cupping. In addition, treatment with a
mineralocorticoid receptor blocker, spironolactone,
improved retinal ganglion cell survival independently
of any effects on IOP [222]. All of these studies sup-
port the concept of aldosterone’s role in RAAS at least
to some extent, in the regulation of neurodegenera-
tion. Moreover, the dual ability of ARBs to lower IOP
and act as neuroprotective agents is promising when
searching for new effective ways to treat glau-
coma [219,220,223].

To conclude, the IOP is the sum of AH formation
and outflow and most of the AH drainage occurs
through the trabecular pathway. The extracellular
matrix (ECM) in the trabecular meshwork contributes
considerably to resistance to AH outflow and therefore
disturbances in ECM homeostasis can increase outflow
resistance and lead to elevated IOP and to the devel-
opment of glaucomatous eyes [224]. Hence, it has
been speculated that the positive effects of RAAS
blockade on IOP may be mediated through a restor-
ation of the homeostasis in the ECM. The interplay
between RAAS and growth factors as well as the pres-
ence of regulatory proteins in the ECM of the
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trabecular meshwork have been described. AT1R acti-
vation stimulates transforming growth factor b (TGF-b)
signalling which in turn augments connective tissue
growth factor (CTGF) expression, suppresses Wnt/b
catenin signalling and reduces bone morphogenetic
protein (BMP) activity, all of which lead to alterations
in ECM protein gene expression and hence to ECM
deposition [224]. TGF-b also reduces matrix metallo-
proteinase expression via the stimulation of plasmino-
gen activator inhibitor 1 (PAI-1) thus actively
abolishing ECM remodelling. The AT4R activation by
Ang II promotes PAI-1 release and for that reason,
Ang II inhibits the breakdown of ECM in the trabecular
meshwork. Ang II can also promote collagen synthesis
in vivo and augment cell proliferation in the trabecular
meshwork [225]. ACE 2, the enzyme that cleaves Ang
II into Ang (1–7), is able to suppress the profibrotic
effects of Ang II while enhancing Ang (1–7) signalling
through MasR [224]. Disturbances in the interplay of
the two main axes of RAAS may indeed exert detri-
mental effects in ECM homeostasis, observed as
changes in IOP values.

Mineralocorticoid antagonists (RU 26752 and ZK
91587) seem to mainly affect AH formation rather
than drainage [226,227] although MR, HSD1 and HSD2
have been described in the ciliary body as well as in
trabecular meshwork (see Table 1). It remains to be
resolved whether aldosterone can affect the trabecular
meshwork. In most glaucoma patients, the systemic
application of mineralocorticoids into the eye does
not affect IOP [228]. In some cases, however, the sys-
temic administration of mineralocorticoids may greatly
increase IOP [226]. Sodium transport across the ciliary
body NPE/PE bi-layer and hence AH formation may be
partly regulated by HSD1 activity as oral treatment
with an HSD1 inhibitor (carbenoxolone) reduced IOP
by 17.5% [124]. In a randomized, placebo-controlled
study, orally administered carbenoxolone reduced IOP
by 10% in patients with ocular hypertension [123].

For years, it has been suggested that there are pos-
sible connections and even an interplay between BP and
IOP, and hence between hypertension and glaucoma
[229]. As the RAAS operates at the systemic level as well
as at the tissue level, components of this key proteolytic
pattern have been of special interest. There are reports
that Ang II disturbs sodium handling in ciliary and renal
tubular epithelium, which could explain the possible link-
age between hypertension and glaucoma [230]. On the
other hand, hypertension can affect the blood supply to
the optic nerve by causing microvascular damage and
defects in the autoregulation of the posterior ciliary cir-
culation whereas hypotension induced by

antihypertensive medication may harm the optic nerve
fibres [231–233].

Only a few population-based studies have been pub-
lished during the last couple of years aimed at determin-
ing possible associations between systemic
cardiovascular medication and IOP [229,234,235]. The
results of these studies are somewhat contradictory and
not able to confirm this relationship. The first published
study conducted in a British population stated that the
use of systemic b-blockers and nitrates was independ-
ently associated with lower IOP values [235]. In the
second study performed in a multiethnic Asian popula-
tion, the systemic use of b-blockers was associated inde-
pendently with lower IOP values whereas the systemic
use of ACE inhibitors, ARBs, statins and sulfonylureas was
found to elevate the IOP values [234]. In fact, the
observed associations have been modest at best. In the
third and newest population-based study, the Gutenberg
Health Study conducted in Germany, none of the cardio-
vascular medications and especially neither the selective
nor non-selective systemic use of b-blockers was associ-
ated with lower IOP in a statistically significant man-
ner [229].

Nonetheless, there is accumulating evidence for a
local ocular RAAS involvement in IOP homeostasis,
neuroprotection and ocular pathology, suggesting that
a local ocular RAAS may play a role in AH dynamics,
IOP and hence at least to some extent, in the path-
ology of glaucoma.

Conclusion

Today, RAAS is recognized as a key proteolytic system
that operates both at the systemic and tissue level,
controlling a wide spectrum of (patho)physiological
activities. Since its pivotal role in BP and fluid balance
regulator is recognized, the research on RAAS is now
concentrating on its role in the physiology in different
organs including the human eye. RAAS components
have been detected in various structures in the eye,
hinting at the involvement of intraocular RAAS in dif-
ferent eye diseases such as DR, age-regulated macular
degeneration, ROP and glaucoma. Location of RAAS
components in the ocular structures participating in
the formation and outflow of AH makes their role in
AH dynamics and IOP regulation plausible. Therefore,
components of RAAS are potential targets for the
development of anti-glaucomatous drugs. The pres-
ence of RAAS constituents in retina, and neuroprotec-
tive properties of RAAS antagonists without effects on
IOP, suggest them as lead molecules in the search for
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new effective ways to treat the whole entity
of glaucoma.
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