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ABSTRACT 

The speed of DNA and RNA sequencing has long ago surpassed the capacity of laboratories to assign 

function to these sequences by direct experiment. Fortunately, function and other information can be 

effectively transferred to novel data from previously accumulated knowledge by sequence homology. 

This has resulted in the development of hundreds of novel homology-based methods. However, the 

tendency of method developers to be overoptimistic about their own results, biases in the evaluation 

metrics used to rank methods, inconsistency between different rankings and evaluation metrics, 

misplaced popularity of methods relative to their performance all indicate that, in many cases, clear 

knowledge of the comparative performance of different methods is lacking. This has two main 

consequences. First, researchers use suboptimal tools. Second, method development may go astray 

because the merits used for guiding method optimization are biased or unclear. To avoid these 

difficulties, further research is needed into methodology of evaluation and comparative studies. 

One core approach for transferring function by sequence homology is to create a multiple sequence 

alignment (MSA) that represents a given group of similar sequences. The resulting alignment can be 

applied to annotate novel sequences using profile hidden Markov models (HMMs), to create 

phylogenetic trees or to compare structural features. The application of MSAs and profile HMMs for 

genome annotation was explored in publication (I). Creating MSA has been addressed by a vast field 

of research, however there is a lack of independent comparative studies and no comparative studies 

for alignment strategies. In publication (II) a novel modular MSA aligner was implemented to aid in 

comparative evaluation of different MSA strategies. Different MSA strategies were then compared to 

each other and to the state-of-the-art MSA software on three benchmark databases. 

Another core approach has been to combine homology searches with assignment of annotation 

terms from a controlled vocabulary such as the Gene Ontology (GO). Hundreds of methods that assign 

GO terms to novel sequences have been introduced. The research community has also invested into 

the objective evaluation of these methods via third party competitions. However, the evaluation metrics 

and merits used in these competitions are still under active debate and need further research and 

development. In publication (III) a novel framework was introduced for the development of unbiased 

high-quality evaluation metrics. By testing 37 variations of popular metrics, our approach revealed 

strong differences between metrics, a list of clearly biased metrics, and a list of high-quality metrics that 

are well suited for the evaluation of GO annotations. 

In summary, this thesis presents novel frameworks and implementation platforms for comparative 

evaluation of two important classes of homology-based methods: MSA aligners and GO sequence 

classifiers. These results will be instrumental for developing more accurate MSA aligners, for eliminating 

many forms of bias inherent in contemporary evaluation protocols, for producing informative method 

rankings for non-specialist users and for guiding method development towards merits that truly reflect 

the utility of the designed tools. 
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1. INTRODUCTION 

High throughput DNA and RNA sequencing has created an information gap between the available 

sequence data and biological function that is attributed to these sequences. Fortunately, function can 

be transferred by homology to other sequences that are already described. This has led to the 

development of hundreds of methods that are rooted in sequence homology [1,2]. Such rapid 

development has created a challenge for an efficient information transfer within the community of 

researchers developing and applying these methodologies (see Fig 1). 

 

Figure 1 The role of comparative studies in researcher networks. 
A) Researcher networks that are limited to method developers and users have inefficient information flow 
(red dashed arrows) due to inconsistencies between benchmarks, evaluation metrics and evaluation 
settings applied by different researchers. In the illustrated toy example, Developer A reports performance in 
metric A on benchmark A, while Developers B reports performance in metric B on benchmark B. This 
complicates assessment of competitive methods for both developers as well as for the User who is 
accustomed to metric C and is not familiar with benchmark A. Furthermore, all three researchers are 
biased in their evaluation: both developers are inclined to promote their own methods while the User is 
biased towards a popular method C that has a long history of usage. B) The lack of centralized source of 
information creates an unnecessary load on communication. To keep updated, each user is required to 
read publications by all developers. Furthermore, in many cases the information transfer from the 
developer to the user will be inefficient due to the reasons outlined in A. C) Comparative study acts like a 
network hub processing information received from developers and redistributing it to other developers and 
users. D) Effective information flow is implemented by defining benchmark datasets, evaluation metrics, 
evaluation settings and by an unbiased design of the study. Included benchmarks and evaluation metrics 
should cover most evaluation criteria and user cases that are of importance to developers and users. 

The method users may not have the resources and expertise to compare and evaluate available 

and emerging methodologies [1]. For users it is also difficult to compare different methods due to each 
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author employing different evaluation metrics, benchmark datasets, evaluation settings and formats in 

their reports [1–3] (Fig 1A). For example, in the field of multiple sequence alignments (MSAs) this has 

led to the steady popularity of aligners that have long ago been surpassed in terms of accuracy by 

newer methods [4]. Similar developer-researcher gaps are common in several fields of computational 

biology [1]. 

The method developers are also challenged by similar issues. Different authors apply different 

evaluation metrics on different datasets with different settings resulting in noisy information transfer 

between developers (Fig 1A). It is also well established that authors experience pressure to report 

positive findings, which renders self-assessment prone to a number of biases [5–8]. 

Comparative studies can address most of these challenges. Comparative studies act like network 

hubs processing information received from developers and redistributing it to other developers and 

users (Fig 1C). Comparative studies can be divided into four main components (Fig 1D): defining 

benchmark datasets, evaluation metrics, evaluation settings and choosing a study design to address 

biases. Common benchmarks, evaluation metrics and evaluation settings define the common reference 

framework against which the performance of different methods can be mapped. Comparative studies 

are generally performed by a third-party research group, which can effectively address biases related 

to self-assessment. Bias can be further reduced by adopting prospective evaluation design, also known 

as challenges [7], in which evaluation datasets are hidden from all participants, or by applying blinded 

settings similar to biomedical research [9]. Centralizing evaluation to a single research group that 

publishes a single report also reduces the amount of communication required between community 

members (for illustration compare Fig 1B and 1C). 

The most credited advantage of comparative studies is their ability to address biases related to self-

assessment [2,7]. Thus, in the next section these biases are discussed more in detail. 
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2. SELF-ASSESSMENT IS PRONE TO BIAS 

Publications presenting novel methods are prone to many biases as a result of common practices in 

method development and policies of scientific journals [5–7,10]. 

Selective reporting refers to authors’ conscious or unconscious decisions to report method variants, 

parameters, data sets or other evaluation settings that show improvements while leaving negative 

findings unreported [7]. Selective reporting is similar to fishing-for-significance in biomedical and fishing-

for-improvement in bioinformatics research. Selective reporting can be aggravated by journal policies, 

when these favor papers demonstrating clear improvements over competing methods [5,7,10]. This 

phenomenon, known as publication bias, is well documented both in biomedical [5] and bioinformatics 

research [7,10]. For example, in a survey of 57 papers related to computational biology, all novel 

methods were introduced as the best in most of the assessed metrics and data sets [7]. In this study 

there was not a single exception to this rule. In another survey conducted on 55 articles (published 

during 2010-2012 in bioinformatics, computational statistics and machine learning), the method 

introduced by the author was almost always promoted as a general winner or as a method with 

important advantages [10]. 

Systematic bias is introduced when the model is evaluated on a dataset that is not independent of 

the data set used for estimating model parameters [7]. In this case evaluation will give overoptimistic 

results, because the testing data is more similar to the training data than datasets in real-life 

applications. Model overfitting refers to a similar scenario when models are well fitted to the training 

data, but perform poorly on other datasets. Systematic bias and model overfitting can occur in 

bioinformatics when the available datasets are scarce or undiversified. 

2.1 Advantages of comparative studies 

Third-party comparative studies can address many problems related to self-reporting and self-

evaluation. Comparative studies are likely to be less prone to publication bias, because the authors do 

not experience pressure to promote any particular method or to publish positive findings. In a literature 

review by Boulesteix et al., third-party evaluations were shown to identify clear winners less frequently 

and, in general, to report less drastic differences between the compared methods than self-conducted 

evaluations [10]. 

Comparative studies can also address systematic bias, model overfitting, selective reporting, fishing-

for-significance and fishing-for-improvements. Recently, several authors have published guidelines for 

designing and conducting comparative studies aimed at uncovering biases related to self-evaluation 

and producing consistent method rankings [1–3,8,11]. According to these guidelines comparative 

studies should be performed on independent benchmark datasets, that are ideally unrelated to the 

training datasets employed in method development [2,3,8,11]. These guidelines also recommend 

employing several different datasets and several different evaluation metrics [2,8,11]. Using several 

independent datasets with several evaluation metrics increases the likelihood of exposing any 
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overfitting present in compared methods and also counteracts selective reporting and fishing-for-

improvement [2,8]. 

In general, independent comparative studies have more resources and motivation to focus on 

healthy evaluation practices, which results in more consistent, objective and informative rankings of the 

compared methods [1,2,8]. The importance of these studies is increasingly recognized by the 

bioinformatics research community. In the last decade a growing number of independent comparative 

evaluations have been published for homology-based methods [1]. These include  genome assembling 

and characterization, read alignment, protein function prediction, RNA-Seq analysis, variant calling and 

multiple sequence alignments [1]. Additionally, several authors have focused on implementing software 

for evaluation [12,13]. Such software can generate key metrics and graphical reports that contribute to 

defining unbiased, efficient and reproducible evaluation frameworks. As several authors have pointed 

out, developing comprehensive evaluations requires a significant effort [2,14]. Thus, it is important to 

develop robust evaluation platforms that can serve as the starting point for novel comparative studies. 

Comparative studies can also help to identify similarities between different methods, which creates 

opportunities for code sharing and the emergence of standardized code libraries (e.g. SeqAn [15]). 

Standardized code libraries can markedly accelerate further method development, reduce resource 

drainage due to reimplementation of the same algorithms and are also likely to improve code reliability 

and maintenance. 

Scientific journals are also starting to recognize the importance of comparative studies. For example, 

PLOS Computational Biology, one of the leading journals in bioinformatics, launched in November 2018 

a new article category aimed exclusively for benchmarking. The aim is, as the editorial put it, to elevate 

comparative benchmarking where it belongs: “the heart of computational biology” [14].  

This thesis continues the trend of research in the domain of comparative studies. The scope of the 

thesis is focused on comparative studies for multiple sequence aligners (MSAs) and automated function 

predictors (AFPs). Both MSAs and AFPs are based on sequence homology, which is the primal source 

of information in many, if not the majority, of methods in bioinformatics. Thus, the next sections will 

focus on introducing the concept of homology and the underlying biological principles. 

2.2 Biological basis of sequence homology 

2.2.1 Biopolymers and the central dogma of molecular biology 

Figure 2 illustrates the central dogma as this was formulated by Francis Crick [16]. Crick postulated that 

in biological systems information can be transferred (i.e. copied between molecules) from 

deoxyribonucleic acid (DNA) to ribonucleic acid (RNA) to polypeptides (syn. proteins) [17]. All of these 

molecules are chains of monomers linked into long polymeric sequences. Monomers composing DNA 

are called nucleotides, of which there are four different types. Nucleotides are composed of three 

subunits: a phosphate group, a five carbon sugar and a base molecule, from which only the bases differ 

between different nucleotides. In DNA there are four different bases:  adenine (A), guanine (G), thymine 

(T) and cytosine (C). The monomers that compose RNA are also nucleotides, however thymine (T) is 

replaced with uracil (U). Monomers composing the polypeptides are the amino acids, of which there are 
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20 types in most species. Due to their linear polymeric structures, DNA, RNA and polypeptides can be 

represented by sequences of symbols which are collectively known as biological sequences. The 

significance of DNA, RNA and proteins is that these molecules direct the flow of information in biological 

systems implementing information storage, replication, transmission and translation into function [17]. 

 

Figure 2 Central dogma of molecular biology. Reproduction of Fig 2 from the famous publication by 
Francis Crick in 1970 [16]. The arrows indicate the flow of information. The central dogma states that 
between the classes of primal biopolymers information flows mainly from DNA to RNA to proteins. Crick 
further formulated that there are three groups of information transfer in biological systems [16]: (I) those for 
which evidence exists (solid arrows), (II) those for which no evidence existed but that might occur (dashed 
arrows) and (III) those that are very unlikely to occur (protein to DNA and protein to protein transfers). 50 
years later this dogma still holds with evidence that category (I) transfers represent the main flow of 
information, while reverse translation (e.g. in retroviruses) and direct translations [18] are special cases. 

DNA is a double helix structure consisting of two polynucleotide chains running in opposite directions 

that are held together by hydrogen bonds between opposing base pairs: A pairs to T and G pairs to C. 

The primary role of DNA is to store and replicate biological information. The double-stranded structure 

of DNA allows it to replicate precisely by separation of the two strands, followed by synthesis of two 

new strands, in accordance with the sequence of the original molecule [17] (Fig 3). 
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Figure 3 DNA replication generates two copies of the original sequence. Alternations to the 
original DNA sequence can be introduced by different mutation events. These include substitutions, 
insertions and deletions. Most of these mutations are introduced during DNA replication. (source: 
Wikimedia commons, “DNA replication split” by Madprime under CC0 1.0).  

RNA contains only a single polynucleotide chain that can be folded onto itself, to another RNA 

molecule or a single DNA-strand to form base-pairs similar to a DNA double helix. In RNA, thymine is 

replaced by uracil that can form a base pair to adenine [17]. RNA comes in many forms and has multiple 

functions. Here we are mainly interested in messenger RNA (mRNA) and its role in DNA transcription 

and translation. 

Transcription is the process of transferring information from DNA to mRNA (Fig 2). During 

transcription the DNA strands separate and serve as templates for synthesis of complementary strands 

of mRNAs [17]. 

During translation mRNA binds to ribosomes and is processed by these structures one triplet of 

nucleotides (known as codons) at a time. Thus, the sequence of amino acids (AAs) in the forming 

polypeptide is determined by triplet sequences in the mRNA and the triplet to AA correspondence. The 

correspondence between codons and AAs is known as the genetic code. The genetic code is largely 

conserved across different branches of the Tree of Life (see the next section) allowing a relatively 

precise automated conversion between DNA, RNA and polypeptide sequences.  

Proteins are chains of amino acids connected by peptide bonds and folded on themselves to form 

various secondary (syn. 2D) and tertiary (syn. 3D) structures [17]. 2D structures refer to local symmetric 

folding of the polypeptide chain (e.g. α-helixes and β-sheets) while the 3D structure refers to the overall 

3D shape of the folded chain. The 3D structure is also known as the fold of the protein. Protein domains 

refer to conserved parts of the polypeptide chain and the corresponding 3D folds that can form, function 

and evolve relatively independently. Complex proteins are formed by several domains often 

interconnected by linear motifs that have low folding complexity [17]. The significance of proteins is their 

ability to carry out a multitude of functions specified by the information encoded in DNA and required of 

the organism by its environment [17]. 

Ancestral DNA 

copy 1 

copy 2 



 

7 

2.2.2 Evolution and the Tree of Life 

The basis of biology lies in the theory of evolution and the assumption that all lifeforms can be traced 

to a common ancestor [19]. Evolutionary mechanisms operating over thousands or millions of 

generations create gradual changes in genetic composition of populations which eventually leads to 

emergence of novel genetic, structural and functional forms. Still, all extant life-forms remain connected 

by their evolutionary history. This idea was captured by the Tree of Life concept first proposed by 

Charles Darwin in his famous “On the origin of species” [19] and in the 1990’s reinvented by Woese et 

al [20] (see Fig 4). Based on sequence data, Woese et al. suggested that all extant taxa can be grouped 

into three domains: Bacteria, Archaea and Eukarya [20]. Although, the placement of the root and 

relationships between Achaea and Eukarya are still subject to debate [21], the main concept of 

relatedness of all organisms is now well established [21,22]. More recent and more detailed Trees of 

Life than that presented in Fig 4 have also been proposed [22,23]. 

 

 

Figure 4 The Tree of Life. The concept of a unifying phylogenetic tree that connects all living 
organisms was proposed by Charles Darwin in his famous work “On the origin of species” [19]. 
Contemporary scientists have created several versions of this tree. The consensus tree presented here is 
the update by Forterre [21] for the three-domain model by Woese et al. [20]. The main domains are 
Bacteria, Archae and Eukarya, with the latter two grouped by some authors into a monophyletic group 
Arkarya. Common ancestors are traceable for key taxonomic groups: LECA, Last Eukaryotic Common 
Ancestor; FME, First Metochondriate Eukarya; LACA and LBCA, Last Archael and Bacterial Common 
Ancestor; LARCA, Last Arkarya Common Ancestor; All taxonomic groups trace back to the LUCA node 
representing the Last Universal Common Ancestor. Source: Forterre [21]. 
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2.2.3 Sequence homology 

Sequence homology refers to the common evolutionary origin of the compared DNA or amino acid 

sequences [24]. Biological sequences evolve and change through time by mutations, that are mainly 

introduced during DNA replication events (see Fig 3). On the scale of a single gene (or protein) the 

most common mutations are point substitutions of one residue for another and insertions or deletions 

of single residues or short strips of residues. These events produce diversity on the population level 

that is then pruned down to functional variants by natural selection. Overall, biological sequences seem 

to evolve through networks of functional variants, were each variant has a biological function and is 

related to other functional variants by duplication and mutation events [25]. 

2.3 Comparative studies for multiple sequence aligners 

2.3.1 Multiple sequence alignments 

The goal of the multiple sequence alignment (MSA) is to find one-to-one correspondences (an 

alignment) of amino acids (or nucleotides) that descend from a common ancestor [26].  MSAs have a 

very broad range of applications. These include studies of evolutionary history and phylogenetics, 

protein structure and function, drug design, epidemiology, virulence, human genetics, cancer and 

biodiversity [26,27]. 

In phylogenetics each column of the MSA is treated as a character and residue values as the 

character states. The phylogeny program then searches for the evolutionary tree that by some criteria 

(e.g. parsimony) and a substitution model is optimal for explaining evolutionary relationships of the 

compared sequences [24]. To date, thousands of phylogenetic trees have been constructed [23], many 

of them based on MSAs. Coverage of sequences for extant taxa is continuously improving leading to 

efforts for global phylogenies that would connect all existing organisms. For example, Hug et al. used 

MSAs of ribosomal protein sequences from all sequenced genera to construct a comprehensive Tree-

of-Life [22]. 

In molecular biology, MSAs are often used as the initial source of information on structural and 

functional properties of novel biological sequences. For example, a newly sequenced gene can be 

aligned against homologs in a database to gain fast insight on structural and functional motifs that are 

likely to be present in the sequence. 

In epidemiological and virulence studies, MSAs are often used to visualize sequence variation 

responsible for virulence or drug resistance in pathological strains. For example, the NCBI Influenza 

Virus Resource [28] includes online MSA alignments and phylogenetic trees for human influenza strains 

[28]. NCBI offers similar resources for a number of zoonotic viruses [29] including the currently relevant 

SARS-Coronavirus-2 (referring here to the COVID19 outbreak in Wuhan, China). 

In human genetics, MSAs can be of value by highlighting regions of cross-taxonomic conservation 

in human genes linked to diseases. Locating mutations to conserved regions can help to elucidate the 

causative mechanisms of the disease [30]. In cancer research, missense substitution analysis has been 

developed to identify mutations linked to elevated cancer risk [31]. The central idea here is that 
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mutations in conserved regions and mutations falling outside the range of variation among related 

species elevate the risk of cancer. Both conserved regions and variation are detected in these analysis 

using high quality MSAs [32]. 

MSAs are also a prerequisite for position-specific scoring matrices (PSSMs) and profile hidden 

Markov models (profile HMMs), which are both important tools in computational biology. PSSMs and 

HMMs can be constructed from MSAs to represent families of related sequences [33]. Novel sequences 

can be compared against these models to identify homologs or homologous regions. PSSMs were 

introduced by Stormo et al. in 1982 [33] and have been applied in MSA visualizations, motif finding and 

increasing the sensitivity of database searches, such as PSI-BLAST [33–35]. HMMs were introduced 

later and represented a more advanced and accurate way to model sequence homology [36]. Large 

collections of biological sequence families are now available in HMM format in public databases such 

as Pfam [37] and TIGRFAM [38]. These databases can be searched for homologs using popular search 

engines such as SAM [39], HHsearch [40] and HMMER [41]. PSSMs and HMMs are discussed in more 

detail in sections 3.1 and 3.2, respectively. 

To summarize, there is as broad spectrum of applications that start with an MSA and depend on 

MSA quality. Evaluating, benchmarking and improving MSA quality is thus of considerable importance 

for many fields of biological and biomedical research. 

2.3.2 Motivation and goals 

Several authors [3,4,26] have discussed the motivation, aims and implementation options for 

comparative studies in the MSA field. The particular aims for MSA evaluation include 1) informing 

method developers on the pros and cons of different alignment algorithms [3,4,26], 2) providing updates 

on novel tools and their quality [3], 3) providing non-specialists with method rankings and 

recommendations [3] and 4) avoiding biases related to self-assessment [3,4]. These aims are in 

agreement with the general aims of comparative studies [1,2]. 

2.3.3 Defining benchmarks for multiple sequence alignments 

Computational models for sequence homology (discussed in 3.1.3) are imperfect and may not yield 

biologically meaningful alignments. To keep the field on track, several curated references, referred as 

MSA benchmarks, have been created. Most MSA benchmarks are based on expert-curated reference 

alignments derived from structural correspondence between aligned sequences [3,4]. 

The first large-scale benchmark designed specifically for the evaluation of MSA software was the 

Benchmark Alignment database (BAliBASE) published in 1999 [42]. Reference alignments in BAliBASE 

are mainly based on superposition of 3D and 2D protein structures followed by manual validation and 

refinement steps [26,42,43]. BAliBASE is to date considered by many authors to be the most useful 

benchmark for MSA [3,4,44] and is included in almost all of the comparative MSA studies. The utility of 

BAliBASE stems from its comprehensive coverage of different sequence types, that can potentially 

affect the alignment accuracy. The first release of BAliBASE (version 1.0) included five main datasets 

(references 1-5) [42]. Later releases expanded BAliBASE with refences 6-8 (release 2.0), reference 1-

5 update (release 3.0), reference 9 and reference 10 (release 4.0). 



 

10 

Following BAliBASE release in 1999 several other MSA benchmarks emerged. OXBench was 

published in 2003 [45], PREFAB in 2004 [46] and SABmark in 2005 [47]. Similar to BAliBASE, these 

benchmarks are based on superposition of 3D protein structures. Advantages of OXBench, PREFAB 

and SABmark are the large database size, extensive coverage of the protein fold space and fully 

automated compilation and updating procedures [45–47]. The main shortcoming of these benchmarks 

compared to BAliBASE is the lack of diversity in the reference sets [44]. These benchmarks do not 

cover the multitude of input sequence sets encountered in real-life situations [26,43]. Unlike BAliBASE, 

these benchmarks also lack manual refinement or other steps incorporating expert knowledge [4]. 

Historical development after the release of MSA benchmarks indicates that these had an important 

role in fostering MSA method development [3,26]. Benchmarks can be compared to network hubs, 

which greatly improved information flow within the MSA research community (see Fig 1 C). The release 

of BAliBASE highlighted the pros and cons of alignment algorithms [42]. Specifically, it was shown that 

no existing MSA algorithm was able to perform well on all reference sets. Global alignments were shown 

to perform well on conserved and local alignment on diverged sequences.  Also, all aligners struggled 

with sequence sets with below 20% pairwise identity [26,42,44]. This low range of identity, also known 

as the “twilight zone”, became one of the focal points of improvement for many novel MSA software 

[27]. Combining local and global alignments, consistency transformations and iterative refinement 

techniques, statistical algorithms and other innovations led to the publication of several novel software 

packages with notable improvement in performance. These included publication of T-Coffee in 2000 

[48], MAFFT in 2002 [49], Muscle in 2004 [46], ProbCons [50] and Kalign in 2005 [51], MSAProbs in 

2010 [52] and ClustalO in 2011 [53]. These software packages are discussed in more detail in section 

3.1.4. 

2.3.3.1 Performance metrics for MSA benchmarks 

Any discussion on benchmarks for MSA evaluation would be incomplete without a description of 

performance metrics. These define a function or a procedure that measures how accurately the MSA 

output by a given method matches the reference MSA. The most widely adopted performance metrics 

for MSAs are the sum-of-pairs score (SPS) and the true-column score (CS) [3]. These are the default 

metrics proposed for BAliBASE [26,42,43]. SPS is the recall of correctly aligned residue pairs averaged 

across all sequence pairs and CS is the recall of correctly aligned MSA columns. SPS is better suited 

for sets of distantly related sequences, since these may lack correctly aligned columns [3]. CS score is 

less sensitive to small differences in accuracy, but can be illustrative for sets of closely related 

sequences [3]. For PREFAB the proposed metric is the Q score, which correspond to the recall of 

correctly aligned residue pairs in the structurally aligned pair [46]. For SABmark the proposed metrics 

are FD and FM scores, which correspond to the recall and precision of correctly aligned residue pairs 

[47]. The SPS, Q and FD scores for these benchmarks are thus very similar. Also other metrics have 

been proposed, e.g. the structure-oriented metrics in the OXBench benchmark [45]. 
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2.3.4 Alternatives to MSA benchmarks 

Simulated datasets provide an appealing alternative to real benchmarks. These are sets of sequences 

and reference alignments generated under a known evolutionary model for substitutions, deletions and 

insertions. For this purpose many software packages have been developed including SIMPROT [54], 

Indel-Seq-Gen [55] and INDELible [56]. Generally, these implementations allow to tune the underlying 

evolutionary model with a number of input parameters. There are several clear advantages of simulated 

data relative to real benchmarks [4,57,58]. First, datasets can be generated with great efficiency. 

Second, the correct homology in these datasets is known. Third, a large variety of datasets with different 

mutation frequency, size and location of indels, length, domain composition and other properties can 

be generated in a short time [4,57,58]. Finally, simulations can generate alignments for non-coding 

regions which generally lack structure-based references [59]. 

Although applying simulated datasets can greatly simplify the evaluation process this approach has 

serious disadvantages. The main concern is that simulations are based on models of evolution that 

cannot account for all evolutionary forces operating in reality [4,60]. When comparative evaluation is 

centered on simulations, there is a serious risk of optimizing methods for scenarios that have little or no 

relevance to real biological data [4]. Another risk is that simulations can favor MSA methods with similar 

underlying evolutionary models [4]. For these reasons simulated data is often used in combination with 

real benchmarks [57,58].  

In addition to simulations, there are still other alternatives. For example, Dessimoz and Gil [60] 

proposed to use tests based on phylogenetic trees to evaluate MSA quality. Phylogeny based methods 

have an advantage of being independent of reference alignments [4]. These also provide a way to 

evaluate gap-rich and highly divergent regions [4]. The disadvantage of these methods is that they 

ignore any similarity between the aligned sequences that is not rooted in a common ancestor. It is 

known that structural or functional similarity may occur between unrelated residues by convergent 

evolution [61]. And though evolutionary applications of MSAs are mainly interested in homology, 

biologists are often interested as much in functional and structural similarities [61]. 

2.3.5 MSA comparative studies 

Table 1 presents a selection of comparative studies for MSA methods. These were published during 

2006-2014 evaluating the state of the art MSA aligners on benchmark datasets described in section 

1.4.3. Performance of the compared aligners is summarized by splitting methods into categories 

denoted “high” and “low accuracy” as well as “fast” and “slow”. Note that these categories are nominal 

and do not indicated absolute accuracy or speed. Table 1 can be used to draw general conclusions 

about MSA method performance. Results indicate that ProbCons and MAFFT are among the few 

programs that show consistently high accuracy across all evaluations and all datasets. MAFFT, Kalign 

and Muscle are consistently among the fastest MSA aligners. MAFFT seems to be the only program 

that consistently appears in both “fast” and “accurate” categories. 

Table 1 also illustrates typical benchmarks, evaluation metrics and evaluated methods in MSA 

comparative studies. Tests on different benchmarks resulted in different method rankings, which 

illustrates the importance of testing on many datasets [1,2]. Program suites included in different studies 
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were surprisingly similar (program versions are not considered here). All six studies included ClustalW 

[62] (published in 1994) or ClustalO [53] (2011), T-Coffee [48] (2000), MAFFT [49] (2002), Muscle [46] 

(2004) and ProbCons [50] (2005). Four out of six studies also included Kalign [51] (2005) and three out 

of six studies included POA [63] (2002). The number of compared MSA methods varied between eight 

to ten. The most common performance metrics were SPS and SC, although there was a certain 

discrepancy between metrics applied in different studies.  
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Table 1. MSA comparative studies. This table presents a selection of comparative studies for 
multiple sequence aligners (MSAs).  High accuracy and Low accuracy columns divide evaluated methods 
into two roughly equal-sized groups based on the performance metric used in the study. Fast and Slow 
columns divide methods into two groups based on their execution time. The absolute time threshold for 
fast-slow division is stated at the top of the method list whenever available. Exact method rankings are 
included as numbers whenever these are clearly stated in the original publication. References: 
Blackshields 2006* [44], Nuin 2006 [58], Perrodou 2008 [64], Thompson 2011 [26], Pais 2014 [65] and 
Pervez 2014 [57]. 
*Method ranking reported only for OXBench. For MAFFT and Dialign only the top performing variants are 
listed. 

Study Benchmark High accuracy Low accuracy Metric Fast Slow

Blackshields
2006*

OXBench 
Master

1. ProbCons
2. Muscle
3. MAFFT-ginsi 
4. PCMA
5. ClustalW

6. T-Coffee
7. Dialign-t
8. Align-m
9. POA

Shift score NA NA

Nuin 2006
Simprot 
simulated data

1. ProbCons
2. MAFFT-linsi
3. MAFFT-fftns2
4. T-Coffee
5. Muscle

6. Kalign
7. ClustalW
8. Dialign-T
9. Dialign2.2
10. POA

SPS

1. MAFFT-fftns2
2. Kalign
3. Muscle
4. POA
5. MAFFT-linsi

6. ClustalW
7. Dialign-T
8. Dialign2.2
9. ProbCons
10. T-Coffee

Nuin 2006
BAliBASE 3.0, 
Ref1-5

1. ProbCons
2. MAFFT-linsi
3. T-Coffee
4. Muscle
5. Kalign

6. ClustalW
7. MAFFT-fftns2
8. Dialign-T
9. Dialign2.2
10. POA

SPS NA NA

Perrodou 
2008

BAliBASE 3.0, 
Ref9, V11

1. ProbCons
2. MAFFT-linsi
3. Mummals
4. Muscle
5. Muscle-fast

6. T-Coffee
7. MAFFT-fftn2
8. Kalign
9. ClustalW
10. Dialign

Friedman test 
on SPS

<1000 sec
1. Kalign
2. MAFFT-fftns2
3. Muscle-fast
4. ClustalW
5. MAFFT-linsi

>1000 sec
6. Muscle
7. Dialign
8. ProbCons
9. T-Coffee
10. Mummals

Thompson 
2011

BAliBASE 4.0, 
Ref10

1. MAFFT-linsi
2. T-Coffee
3. ProbCons
4. MAFFT-fftns2

5. Kalign
6. Dialign
7. Muscle
8. ClustalW

CS

1. Kalign
2. MAFFT-fftns2
3. MAFFT-linsi
4. Muscle

5. ClustalW
6. Dialign
7. T-Coffee
8. ProbCons

Pais 2014
BAliBASE 3.0, 
Ref1-9

ProbCons
T-Coffee
ProbAlign
MAFFT

Muscle
ClustalO
ClustalW
Dialign-TX
POA

SPS and CS

ClustalW
Muscle
MAFFT
ClustalO

ProbCons
ProbAlign
T-Coffee

Pervez 2014
iSG simulated 
data

1. ProbCons
2. SATe
3. MAFFT-linsi
4. Kalign
5. Muscle

6. MAFFT-fttns2
7. T-Coffee
8. ClustalO
9. Dialign-TX
10. Multalin

SPS and CS

<1 h
1. MUSCLE
2. MAFFT-fttns2
3. Multalin
4. Kalign

>11 h
5. ClustalO
6. SATe
7. Dialign-TX
8. MAFFT-linsi
9. T-Coffee
10. ProbCons

Pervez 2014
BAliBASE 3.0, 
Ref1-5

SATe
ProbCons
MAFFT-linsi

T-Coffee
Muscle
ClustalO
Kalign
Dialign-TX
Multalin

SPS and CS

<1 h
1. Kalign
2. MUSCLE
3. MAFFT-fttns2
4. ClustalO
5. MAFFT-linsi

>1 h
6. Dialign-TX
7. Multalin
8. SATe
9. T-Coffee
10. ProbCons
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2.3.6 Limitations of MSA comparative studies 

It seems that many authors are still underestimating the importance of testing on different benchmarks 

[1,2]. Only three out of six studies in Table 1 included more than one benchmark in their evaluation. 

From these, two studies complemented BAliBASE with a simulated dataset [57,58] and only one study 

included more than one real benchmark. This was the study published by Blackshields et al. which 

included an exhaustive set of six real benchmarks [44]. The remaining three studies were based on one 

to several reference sets from BAliBASE. 

There was a certain amount of discrepancy between evaluation metrics applied in the examined 

studies (Table 1). Most studies reported sum-of-pairs and column scores which are the default 

performance metrics for BAliBASE. Still, some studies adopted unique evaluation metrics [44] or 

reported only method ranks based on statistical tests [64]. Differences in evaluation metrics creates 

difficulties for interpreting results (see Fig 1). For instance, it is not clear which differences in rankings 

are due to different benchmarks and which are due to different metrics. Furthermore, in many of these 

studies, clear rankings of the compared methods were not published. However, most of these studies 

did provide recommendations on pros and cons of different methods in the form of a discussion. 

Some authors did not report execution time [44], chose to report execution time in a confusing 

graphical format [65] or to report only relative execution times [58] (Table 1). 

Only one of the examined studies evaluated the effect of input parameters on the MSA accuracy 

(Table 1). Blackshields et al. [44] performed an extensive optimization of GOP and GEP penalties for 

three different methods (Muscle, ClustalW and MAFFT). 

Only one of the examined studies evaluated the effect of different alignment strategies and these 

were limited to iterative refinement in MAFFT (iterative refinement is discussed in section 3.1). MAFFT 

offers several iterative refinements that can be specified by input parameters [66]. These include a 

single iterative refinement (fft-ns-2), multiple iterative refinements (fft-nn-i), iterative refinement with 

consistency scores from local pairwise alignments (fft-linsi) and iterative refinement with consistency 

scores from global alignments (fft-ginsi). These options were included in the comparative study by 

Blackshields et al. [44] although there was no synthesis on the observed differences. Anyhow, the 

degree of control offered by MAFFT is rather an exception and even for MAFFT it is limited. Most MSA 

aligners offer even less control over the alignment algorithm. Thus, in most cases it is not possible to 

compare alignment strategies within the framework of comparative studies. Exploration and comparison 

of alignment strategies is thus left to method developers, which, however, can be biased and selective 

in their reporting (see section 1.1).  
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2.4 Automated function predictors 

Genes are sequenced at a much higher rate than their function or structure can be determined 

experimentally. This has created a demand for automated function predictors (AFPs), i.e. methods that 

can automatically predict function for novel sequences. Most of AFPs are based on homology and 

assign function to query sequences by comparison with sequences in annotated databases. The 

majority of sequences in these reference databases are also annotated with AFPs. Even in 

UniProtKB/SwissProt, which is one of the largest manually curated protein databases, 69.0% of the 

561k sequences are annotated by homology [67]. In  a much larger automatically curated 

UniProtKB/TrEMBL (172M sequences in 09_2019 release), all sequences are annotated by homology 

[68]. In many cases de novo experimental annotations can be considered redundant because homology 

to genes (or other sequences) that already have experimental annotation is a very strong evidence for 

similar function. 

The main goal of AFPs is to assign sequences with biologically meaningful function. Although 

function can be described in various ways, adopting a controlled vocabulary has many advantages. A 

controlled vocabulary improves communication between research groups, simplifies integration of 

computational tools into workflows and aids objective evaluation and comparison of different methods. 

The majority of AFP methods have adopted the Gene Ontology (GO) [69] as a controlled vocabulary 

for annotating genes [70]. 

2.4.1 Gene ontology 

Gene ontology (GO) is a predefined and curated set of functional terms or classes that are arranged 

into a hierarchical graph by their semantic relationships. In terms of graph theory, GO is a directed 

acyclic graph with vertices representing GO terms and edges representing semantic relationships 

between terms. GO comprises three orthogonal ontologies, which describe distinct aspects of gene 

products: molecular function (MF), cellular component (CC) and biological process (BP) [71,72]. MF 

ontology describes the function of gene products at the molecular level. CC ontology assigns gene 

products to cellular locations such as cytoplasm and cell membrane. BP ontology assigns gene 

products to pathways and to larger processes to which they contribute. 

GO release 2019-10 has 44.7K GO terms including 29.5K terms in BP, 11.1K terms in MF and 4.2K 

terms in CC subontologies [73]. This release has 7330K annotations for 1405K genes split almost 

equally between MC, CC and BP subontologies. Only about 11% (780K) of all annotations are labeled 

with evidence codes indicating direct experiment (evidence codes EXP and HTP). The vast majority of 

annotations are based on curated or fully automated AFPs: 46% are annotated by phylogeny-based 

AFP (code PHYLO referring to annotations with PAINT [74]), 27% by fully automated AFPs (code IEA), 

13% by various curated AFPs (codes ISS, ISO, ISA, ISM, IGC and RCA) and the remaining 4% are 

based on author or curator statements (codes TAS, NAS, IC and ND). 
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2.4.2 Comparative studies for automated function predictors 

Before turning to AFP comparative studies, it is appropriate to estimate the scale of the evaluated field. 

The latest large scale AFP challenges (see the next section) have covered over 100 AFP methods for 

each challenge [75,76]. Most likely these competitions did not cover all of the published methods. To 

make a better estimate, we searched PubMed with keywords “(novel OR new) function annotation 

method”. According to the search results an average of 600 studies introducing novel methods are 

published annually (Fig 5). Taking together the PubMed search and statistics from AFP challenges, we 

estimate that the number of novel AFPs published each year ranges in the hundreds. 

With this plethora of methodologies, it is difficult and time-consuming to keep updated on the best 

tools available. The situation is further complicated by the tendency of different method developers to 

use different evaluation metrics on different benchmarks (Fig 1). Furthermore, it is well established that 

authors are prone to a number of self-assessment biases (see section 1.1). These difficulties inhibit 

information flow within researcher communities involved in developing and applying AFP methodologies 

(Fig 1). As discussed in section 1.2, most of these difficulties can be addressed by comparative studies, 

which act as information hubs that process information from method developers and redistribute it to 

other developers and users. In the field of AFP, comparative studies have adopted the challenge-based 

format discussed here. 

 
Figure 5 Annual publications related to novel AFP methods. Statistics were collected by querying 
PubMed with keywords “(novel OR new) function annotation method”. Note that the number of annual 
publications ranges in hundreds. 

2.4.3 CAFA challenges 

The Critical Assessment of protein Function Annotation algorithms (CAFA) is a large-scale, third-party, 

prospective evaluation challenge for automated function predictors (AFPs) that assign gene or protein 

sequences with Gene Ontology [69] and Human Phenotype Ontology terms [77]. To date three CAFA 

competitions have been completed (years 2010-2011 [70], 2013-2014 [75] and 2016-2017 [76]) and the 

fourth competition is ongoing (years 2019-2020). The number of methods evaluated in CAFA I-III add 

up to 332 methods submitted by 154 research teams making these challenges truly large-scale [76]. 
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CAFA is based on prospective evaluation that can be subdivided into prediction, annotation growth 

and assessment phases. At the start of the competition a set of target protein-coding genes is selected. 

During the prediction phase, method developers can submit functional predictions for the target genes 

made by their methods. During the annotation growth phase, new experimental annotations are 

accumulated. In the assessment phase, submitted predictions are evaluated against the reference 

annotations accumulated during the annotation growth phase. This arrangement ensures independency 

between training and testing datasets. 

In CAFA I-III assessment was mainly based on four evaluation metrics: graphical precision-recall 

curves, area under the receiver operating characteristic curve (ROC AUC), Fmax and Smin (for details, 

see section 3.3). In the CAFA II article [75], the top 10 method rankings were published for Fmax, Smin 

and ROC AUC, while in the CAFA III preprint article [76], rankings were only published for Fmax and Smin. 

AFPs are compared on the full set of target genes and also on various subsets, such as eukaryotic and 

prokaryotic targets, as well as targets from selected key species like Escherichia coli and Arabidopsis 

thaliana. In this thesis, I only discuss results for evaluations on the full target set. Methods are compared 

against each other and against two baseline methods: a Naïve method (referred also as the null model), 

which assigns all genes the same set of GO terms with confidence scores derived from term 

frequencies, and BLAST, which assigns terms from top BLAST hits. 

2.4.4 Limitations of CAFA challenges 

Although CAFA is a step forward towards a more objective evaluation of AFP methods, it has several 

shortcomings. Several authors have expressed their concern about bias and instability of the produced 

AFP rankings. Gillis and Pavlidis [78] observed that the Fmax metric for CAFA is "unsatisfactory. ... by 

this measure, a null ‘prediction method’ outperforms most methods.” Furthermore, Kahanda et al. [79] 

pointed out that the ranking of methods may vary considerably between different CAFA metrics. 

In Table 2, the top 10 performing methods by Fmax, Smin and ROC AUC rankings are compared. We 

see that for all three subontologies there is considerable disagreement between different evaluation 

metrics. For example, in Fmax and Smin rankings for MF predictions in CAFA II only 5 out of 10 of the top 

performing methods are the same. The remaining 10 methods in these two lists are thus different. In 

CAFA III the situation is similar: 6 methods are the same and the remaining 8 methods are different. 

Furthermore, Fmax and Smin give different ranks even to the common methods in the top 10. 

Table 2. Comparing top 10 AFPs by different evaluation metrics in CAFA II-III. The number of common 
AFPs in the top 10 rankings by the compared metrics is listed in the last three columns. The green bar 
represents numerical values graphically. Here MF, Molecular Function, CC, Cellular Component, BP, 
Biological Process subontologies. AFP rankings were collected from [75,76]. 

Competition Metrics compared MF CC BP
CAFA 2 Fmax vs Smin 5 5 7
CAFA 2 Fmax vs AUC 5 7 7
CAFA 2 Smin vs AUC 4 4 5
CAFA 3 Fmax vs Smin 6 6 7  
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This discrepancy in method rankings creates confusion in the interpretation of CAFA results. There 

are several AFPs that appear top ranked in both Fmax and Smin lists, however there are also AFPs that 

appear with a good rank in only one or the other list. Furthermore, if the rankings differ this much, can 

they be considered an objective and unbiased guideline for AFP selection and future method 

development? Clearly, AFP evaluation requires further research in order to avoid such confusion in 

future competitions. In my opinion, the main source of confusion is the lack of research into the 

properties of different evaluation metrics. Different metrics are designed to monitor different types of 

errors and may have different biases, and thus can produce different rankings. For example, Fmax mainly 

monitors the number of false positive and false negative predictions while Smin monitors the information 

content of these erroneous predictions (for details, see section 3.3). In this thesis I argue that it may be 

necessary to redefine and adopt evaluation metrics that are currently used for AFP evaluation in order 

to exclude possible biases and to improve consistency of the resulting method rankings. 
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3. AIMS OF THE PRESENT STUDY 

The aim of this thesis is to investigate and develop frameworks for unbiased evaluation of homology-

based methods. This aim is approached from three different perspectives, each addressed by one 

publication. 

 

I Publication (I) introduces a novel homology-based method for annotation of gene-clusters. 

The questions that arise in this problem include: Given a clearly defined type of a gene-cluster, 

such as a pilus operon, how to detect genes that are related to it? How to select gene-clusters 

that are non-random? How to evaluate performance of a new annotation tool? 

 

II Publication (II) is focused on comparative evaluation of MSA alignment strategies.  The 

questions addressed here: Which alignment tools are available and what is their 

performance? What differences and similarities can be found in alignment strategies 

implemented by different tools and how do these impact alignment accuracy? Is it possible to 

achieve high performance by integrating the best parts from different MSA implementations? 

 

III The last publication (III) is focused on metrics for comparative evaluation of AFPs. This part 

attempts to answer the following questions: What evaluation metrics are commonly used in 

comparative studies of AFPs? Are these metrics unbiased? Are these metrics consistent? Are 

certain metrics better than others and how this can be quantified? Is it possible to design 

optimal metrics? 
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4. MATERIALS AND METHODS 

4.1 Multiple sequence alignment methods 

This section discusses more in detail algorithms and implementations for creating and benchmarking 

multiple sequence alignments (MSAs). The discussion progresses from classical algorithms for pairwise 

alignments, to multiple alignments, and further to the state-of-the-art implementations and 

benchmarking. The last part discusses a modular framework for comparative evaluation of MSA 

strategies introduced in publications (II). 

4.1.1 Pairwise sequence alignment 

Two sequences can be aligned with a simple scoring function and an optimization algorithm [24]. The 

minimal scoring function for aligning two sequences can be constructed from a set of substitution scores 

and gap penalties (equation 1). Substitution scores, S(xi,yi), define scores for all possible pairwise 

substitutions of aligned residues. For protein sequences this is a 20 x 20 substitution matrix. For global 

alignments, the substitution matrix may include any positive numbers with larger numbers assigned to 

the more likely substitutions. For local alignments, the expected score of two random sequences must 

be less than zero imposing constrains on the selected scores. When substitution scores are defined as 

log-likelihoods of target and background probabilities (discussed in 3.1.3) the resulting alignment will 

be a more accurate reconstruction of the evolutionary events connecting the two sequences. In the 

affine gap model, a gap opening penalty (GOP) is added once for each gap opening event and a gap 

extension penalty (GEP) is added for events extending the gap [24]. 

(1) 𝑆(𝑥, 𝑦) =  ∑ 𝑆(𝑥𝑖, 𝑦𝑖)    −  𝑑 ∗ 𝐺𝑂𝑃 − 𝑒 ∗ 𝐺𝐸𝑃 

Using this scoring function, an optimal global alignment can be constructed using the dynamic 

programming algorithm introduced by Needleman and Wunsch [80] and later refined by Gotoh [81]. 

Needleman-Wunsch is based on a simple rule, which states that the best score aligning prefixes xi and 

yj, S(xi,yj) depends only on the best scores for sequence prefixes that are one residue shorter. This 

allows optimal alignments to be constructed in a step-by-step fashion, at each step updating the matrix 

of the best scores. At the end of this procedure, the best score for the entire global alignment will be 

calculated as the last entry of the matrix. When calculating scores, we also keep pointers to the shorter 

alignments that we extend at each step. This allows for a trace back from the last pair of aligned residues 

to the first, yielding a global alignment. 

Many proteins tend to have a mosaic structure composed of functional domains and this structure 

can evolve over time by various recombinational events [82,83]. To find homology between multidomain 

proteins, we need to retrieve local alignments. Local alignments can be collected by modifying 

Needleman-Wunsch so that new alignments can be initiated at each alignment step. One of the first 

algorithms of this type was introduced by Smith and Waterman [84]. Smith-Waterman finds a single 

local alignment that gets the highest score. If we want to retrieve all local alignments that score above 
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a certain threshold, we can use Waterman-Eggert [85], which is a straightforward modification of Smith-

Waterman. 

4.1.2 Multiple sequence alignment 

To align multiple sequences, we also need a scoring function and an optimization algorithm. A simple 

and commonly applied scoring function is the sum-of-pairs score (equation 2). Here k and l are 

sequences and i is the alignment position. This scoring is an extension of equation (1), that simply sums 

scores for all pairwise sequence comparisons. Gap penalties are moved to the substitution matrix that 

now has scores for aligning each residue against a gap. 

(2) 𝑆𝑃(𝑚) = ∑ ∑ 𝑆(𝑚 , 𝑚 ) 

Adopting SP score leads to two core problems in constructing MSAs. First, optimal pairwise scores and 

alignments are often in conflict between pairs of aligned sequences. In other words, residues of all 

sequences cannot be arranged in columns such that these would correspond to optimal pairwise 

alignments. Second, optimization of the SP score is challenged by exponential time and memory 

complexity. Optimizing the SP score with dynamic programming requires O(LN) memory and O(2NLN) 

time, which is clearly intractable for more than a few sequences [24]. The main approach has been to 

relax the combinatorial search for the optimal alignment and to search instead for suboptimal solutions 

using heuristic algorithms. The most commonly used heuristic for building MSAs is progressive 

alignment [26]. This was introduced by Feng and Doolittle [86] and later extended by many authors. 

The general idea is to build a guide tree that relates individual sequences and then to progressively 

align sequences or groups of sequences using that tree. 

4.1.3 Alignment scoring models 

To understand different scoring models, it is important to recall that aligned sequences are a sample 

from a larger sequence space, where all sequences are interconnected by evolutionary events [25]. 

Because natural selection will only allow functional variants, the observed sequences in the sequence 

space are only the functional sequences. It also follows that mutations connecting observed sequences 

are restricted to mutations that preserve function [25]. Thus, observed mutations depend on the 

structure, position and function of the residues that are changed in evolutionary events. This allows us 

to model these events with statistical models of varying complexity. Substitution matrices are limited to 

the modeling of dependencies between mutations and the structural properties of different residues 

(e.g. hydrophobicity and size). Position specific scoring matrices (PSSM) add to the substitution model 

dependencies on sequence position. Hidden Markov Models (HMM) cover position dependent 

substitution events, but also insertions, deletions, duplications and, possibly, other events. 

4.1.3.1 Log-odds scores and substitution matrices 

Substitution matrices define scores for substituting any residue to any other residue. For nucleotide 

residues these are 4 by 4 matrices, and for amino acids 20 by 20 matrices. A substitution matrix can be 
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interpreted as a collection of log-odds ratios [87]. Each log-odds is then the logarithm of target and 

background probabilities (equation 3). Here the nominator (target probabilities) is the probabilistic model 

for observed substitution events and denominator (background probabilities) is the probabilistic model 

for observing random alignments. Target and background probabilities can be estimated empirically 

from a reference collection of aligned sequences. 

(3) 𝑆(𝑖, 𝑗) = log
,

( ) ( )
 

PAM matrices define log-odds for point accepted mutations (PAMs) at different average mutation rates 

[88]. These are the observed mutations, i.e. point mutations introduced by evolutionary events and 

accepted by natural selection. PAM scores were estimated by Dayhoff from a corpus of aligned 

sequences in 71 families of closely related proteins. From these data, Dayhoff estimated target and 

background probabilities that were used to calculated log-odds scores for PAM matrices. For example, 

PAM60 assumes an average of 60 PAMs for each 100 amino acids and PAM120 an average of 120 

PAMs. In practice, the lower the homology of the aligned sequences, the higher PAM index is 

appropriate for scoring the alignment [88].  

BLOSUM scores were estimated by Henikoff and Henikoff from local alignments from the BLOCKS 

database [89]. In BLOSUM matrices, target probabilities are estimated directly from subsets of 

sequences of varying evolutionary distance. For example, BLOSUM62 is estimated based on 

sequences with a mean pairwise identity of 62%. Commonly used BLOSUM matrices are BLOSUM45, 

BLOSUM62 and BLOSUM80. In practice, the lower the homology of aligned sequences, the lower 

BLOSUM index is appropriate for scoring the alignment. 

Scoring based on log-odds is convenient for detecting homology from the background of random 

similarity. Still, non-significant similarity does not exclude homology, which has been shown by many 

cases of structural comparison [90–92]. This has motivated researchers to develop more powerful 

scoring systems that are based on position-specific target frequencies derived from MSA-columns.  

4.1.3.2 MSA-based scoring: position-specific scoring matrices 

Position-specific scoring matrices (PSSMs) are estimated from MSAs. From each column in the MSA, 

target frequencies are estimated, normalized by background frequencies and log-odds are calculated. 

PSSMs can also include log-odds scores for gap insertions at each position in the MSA. PSSMs were 

introduced by Stormo et al. in 1982 and have been applied in MSA visualization, motif finding and 

increasing sensitivity of database searches, such as PSI-BLAST [33–35]. 

Compared to substitution matrices, PSSMs have advantages and disadvantages. The advantage is 

that PSSMs estimate substitution scores for each position. This is clearly a more realistic model for 

protein sequences, which can have multiple and complex interactions in their 3D structure. PSSM 

scores are also estimated from a relevant subsample which can have target frequencies deviating from 

PAM or BLOSUM estimates. The disadvantage is that PSSMs require a collection of related sequences 

and these must be arranged in an MSA. Also, PSSMs do not have a clear model for insertion and 

deletion events. 
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4.1.3.3 MSA-based scoring: profile-profile comparison 

The most  distant protein homologs can be detected by aligning HMM profiles against other HMM 

profiles. This approach has been implemented in HHsearch [40]. HHsearch defines a novel scoring 

function that relates the probability of two HMMs emitting the same amino acid at a given position to a 

null model distribution. Scores for all 20 amino acids at all positions are summed and a logarithm is 

taken, hence this scoring function is referred as the log-sum-of-odds score [40]. This scoring function 

in effect compares the distribution of emitted amino acids at each position in the aligned profiles, adding 

a positive score when these distributions match and a negative score when they mismatch. The two 

HMMs are aligned using dynamic programming similar to sequence to HMM alignments. Benchmarking 

on SCOP data showed that HHsearch was more sensitive in recovering distant families that belong to 

the same superfamily than both PSI-BLAST and HMMER. 

4.1.3.4 Added information from intermediate sequences 

For protein MSAs, pairwise identity below 20% is referred to as the twilight zone. For these cases, 

reconstructing homology can be difficult even for state-of-the-art software [27]. Since the aligned 

sequences are a sample from an interconnected sequence space, common origin of homologous 

residues is easier to reconstruct when intermediate sequences are added. For example, MAFFT-5 

showed ~10% improvement in the MSA accuracy by first adding close homologs to the input and then 

removing them from the output [93]. 

Including intermediate sequences can also guide MSA optimization. Due to exponential scaling (see 

3.1.2) most MSA implementations have adopted progressive alignments, which is challenged by 

inconsistencies between subalignments. By transforming scores in the subalignments to consider 

intermediate sequences, these conflicts can be relaxed. These techniques can be collectively referred 

as consistency transformations [27]. To understand relationships between various consistency 

transformations, it is illustrative to redefine the alignment scoring function in terms of an alignment 

graph. 

In our definition of the alignment graph residues are represented by vertices and homology by edges. 

Other definitions are possible: Rauch et al. used an alignment graph where sequence segments from 

synteny blocks were represented by vertices and alignments between these segments by edges [94]. 

In both definitions, edges representing the homology links can be made more consistent by integrating 

information from pathways that pass through one or more intermediate vertices. In T-Coffee, this was 

implemented as triplet library extension and considered all paths through a single intermediate vertex 

[48]. In MaxFlow, consistency was introduced by assigning edge weights equal to the ratio of common 

versus all neighbors (i.e. Jaccard index) of the paired vertices [95]. MaxFlow also introduced transitivity 

to the scoring function [95]. This was implemented by considering all possible paths between a pair of 

vertices and by assigning the edge weight to the minimal Jaccard index among these paths [95]. In 

publication (II) we introduced a simpler version of MaxFlow referred as the clique transformation. Like 

MaxFlow, clique transformation connects distant vertices by the minimal edge score among all possible 

paths between the vertices. Unlike the MaxFlow clique transformation does not reweight the edges with 

Jaccard index. 



 

24 

In ProbCons, consistency transformation was defined in probabilistic terms. The program starts by 

estimating posterior probabilities assigned by the underlying HMM model to all pairs of residues in all 

pairs of sequences. These are then used to estimate transformed scores by multiplying and summing 

probabilities for all possible paths via a single intermediate residue in a third sequence [50]. In essence 

this redefined triplet library extension (introduced in T-Coffee) in probabilistic terms. In MSAProbs, a 

weighted probability consistency transformation was introduced. Similar to ProbCons, scores from all 

paths via a single intermediate residue were summed, but each path was weighted using weights 

assigned to sequences in that path [52]. 

4.1.4 State-of-the-art software 

Most popular MSA implementations are based on progressive alignments [26,86] and have a similar 

architecture. First, pairwise similarities or distances are estimated between sequences and a guide tree 

is built. Second, several factors are combined to define a scoring function: sequence weights, 

substitution scores, gap penalties and, for some aligners, also a consistency transformation. Then 

sequences are aligned by the progressive procedure. Finally, the alignment is refined to reduce errors 

introduced by inconsistencies between pairwise alignments. In Table 3, I have summarized eight 

popular progressive aligners in terms of these basic steps. Table 3 also lists citation index by Google 

Scholar (retrieved 2019 November 10), execution time and SP performance on BALIBASE 3.0. These 

were the aligners compared in publication (II). 

Generally, an aligner starts by estimating pairwise homology, which is then used to build a guide 

tree. A good estimate of homology is the fractional identity which can be estimated from global 

alignments. The drawback here is the overall O(N2 L2) time complexity for building global alignments for 

all sequence pairs [24] (sometimes referred as the quadratic tree problem). K-mer counting and k-mer 

pattern scoring [24] are faster methods. K-mer counting estimates the number or the proportion of k-

mers shared between pairs of sequences. Variants of k-mer counting implemented in ClustalW [62], 

Muscle [46] and MAFFT [49] have O(N2 L) time complexity. Even better scaling can be achieved. 

MAFFT version 6 implements PartTree algorithm for constructing guide trees with O(N2 log(L)) time 

complexity [66]. In Kalign pairwise distances are estimated using fast string matching: Muth and Manner 

algorithm in Kalign 2 and Gene and Myers algorithm in Kalign 3 [96]. 

Pairwise similarities or the corresponding distances are used as input to a hierarchical clustering 

algorithm. For progressive alignments, Neighbor Joining [97] and UPGMA [98] have been popular, 

although it is possible to use any other clustering method. For example, ProbCons achieves high 

accuracy with a custom algorithm similar to UPGMA [50]. In publication (II), we have shown that single-

linkage clustering performs very well. 

Most aligners use the basic SP scoring scheme. The main differences are in the substitution scores 

and gap penalties. In ClustalW, sequences are aligned with different BLOSUM matrices depending on 

pairwise identity: sequences with high identity (80-100%) are aligned with BLOSUM80 and those with 

low identity (0-30%) with BLOSUM30 [62]. In MAFFT, all alignments are done with normalized PAM200 

[49] and in Kalign2 with GONNET250 [99]. Most aligners allow users to change the default substitution 

matrix. 
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MUSCLE does not use SP scoring for progressive alignment. Profiles are aligned with a log-

expectation score, that is based on target probabilities, background probabilities and position-specific 

residue frequencies estimated from the aligned profiles. Target and background probabilities are 

derived from the 240 PAM VTML substitution matrix [46].  

T-Coffee introduced a novel scoring function similar to our definition of the alignment graph. This 

combines any number of residue-to-residue homology links from local and global alignments as well as 

any other information sources. In the original T-Coffee program, global alignments were generated and 

scored with ClustalW and local alignments with Lalign [48]. This procedure defines a matrix of 

substitution scores for each pair of residues in each pair of sequences that is transformed for 

consistency and used for SP scoring during progressive alignment. 

In ProbCons, HMM emission probabilities are based on BLOSUM62 log-odd scores [50]. In 

MSAProbs there are two HMM models: emission probabilities of the first are based on BLOSUM62 and 

of the those of the second on Gonnet160 [100]. Substitution scores in these programs are defined as 

posterior match probability matrices. These specify posterior probabilities for matching any pair of 

residues given the HMM model. The posterior match probability matrices for each pair of sequences 

are calculated using variations of the Forward and Backward algorithms. 

Different aligners implement different gap models. ClustalW uses a position specific gap model that 

is further modified by several factors and a set of hierarchically applied rules [62]. MUSCLE, MAFFT 

and Kalign implement variations of the affine gap model. In ProbCons and MSAProb, gaps are modeled 

explicitly by the insertion states and fitted to the data.  In T-Coffee, gap penalties are only used to 

construct pairwise alignments. ProbCons, MSAProbs and T-Coffee do not use gap penalties during 

progressive alignment. 

Most MSA aligners implement sequence weighting, which is incorporated in the scoring function. 

Popular algorithms for sequence weighting are the position-based weighting [101], ClustalW method 

based on a guide tree [62] and the three-way method introduced by Gotoh [102]. Sequence weighting 

is thought to counteract bias introduced by the uneven sampling of the sequence space by the set of 

aligned sequences [62]. 

Once the guide tree and scoring function are defined, sequences can be aligned. At each fork of the 

guide tree two sequences or profiles are aligned using the SP-score and dynamic programming. 

Commonly used alignment algorithms are adaptations of Needleman-Wunsch [80], Gotoh [81] and 

Myers and Millers [103] algorithms (see Table 3). 

MSA output by progressive alignment can be iteratively refined to reduce inconsistencies between 

subalignments. In this process MSA is repeatedly divided into two parts and the resulting subalignments 

are realigned. The process of dividing MSA during refinement can be based on several strategies. 

These include the leave-one-out partitioning [104], random partitioning [105] and tree-dependent 

partitioning [106]. In random iterative refinement, the alignment is “cut” at a random row and realigned. 

In tree-dependent iterative refinement, an edge is selected from the guide tree and the alignment is 

divided into subalignments according to the two subtrees. In the leave-one-out refinement, single 

sequences are realigned to the rest of the alignment. 
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Table 3. Basic Architecture of eight popular MSA aligners: ClustalW [62], MUSCLE [46], MAFFT [49], ClustalO [53], T-Coffee [48], ProbCons [50], Kalign [99] and 
MSAProbs [52]. Column abbreviation: SP, sum-of-pairs performance on BaliBase 3.0, Time, time performance on BaliBase 3.0, Sim met, similarity metric, Dist met, 
distance metric, Refinement, consistency transformation and iterative refinement algorithm(s), Aligment, alignment algorithm(s), Weights, method for sequence 
weighting.Other abbreviations: fide, fractional identity, kmer, fraction of conserved k-mers or similar, 6mer, fraction of conserved 6-mers, G-score, posterior probability 
of the optimal global alignment as defined in [52], SP, sum-of-pairs score, WSP, weighted sum-of-pairs score, AGS, affinity gap score, M&M, Muth and Manner string 
matching, MM, Myers and Millers algorithm [103], NM, Needleman-Wunsch algorithm [80], Gotoh, Gotoh algorithm [81]. 

Method Citations SP Time Sim met Dist met Guide-tree Subst score Gap score Refinement Alignment Weights

ClustalW 62 261 0.75 9.48
fide

kmer
1 - fide

1 - kmer
NJ

BLOSUM/PAM
WSP

position specific AGS
based on

hierarchical rules
none profile-profile MM ClustalW

MUSCLE 26 500 0.82 5.18
fide

kmer 

1 - fide
1 - kmer

-log(1-pide-pide2/5)

NJ
UPGMA

BLOSUM/PAM
WSP

 AGS tree-dependent partitioning
profile-profile NW

Position-based
ClustalW

Three-way

MAFFT 7 288 0.87 14.70
6mer

FASTA
1 - 6mer

UPGMA
PartTree

Normalised
PAM200 WSP

gap model based on start 
and end gaps

tree-dependent partitioning + 
consistency transformation

profile-profile NW with 
constrains emposed by 
FFT homology blocks

ClustalW

ClustalO 7 171 0.84 3.37 mBed
K-means
UPGMA

HMM formulation profile-profile HMM

T-Coffee 6 505 0.86 226.27 fide 1 - fide NJ
SP based on

pairwise
alignments

ClustalW and Lalign 
defaults for pairwise

0 for progressive
consistency transformation

profile-profile Gotoh
none

ProbCons 1 194 0.86 113.70
 Expected 
accuracy

none
UPGMA 

derivative
SP from posterior 
probability matrix

0
probabilistic consistency 
transformation, random 

interative refinement
profile-profile NW none

Kalign 226 0.82 0.35 M&M none UPGMA GONNET250 SP
gap model based on gap 

insertion/extention and 
terminal gaps

additional info from feature 
annotations

profile-profile MM none

MSAProbs 190 0.88 105.68 Gscore
1 - Gscore(x,y)/

min{|x|,|y|}
UPGMA

WSP from posterior 
probability matrix

0
weighted pobabilistic 

consistency transformation, 
random iterative refinement

profile-profile NW ClustalW
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4.1.5 Multiple sequence alignment benchmarks 

BAliBASE benchmark includes a large collection of reference sets that cover a spectrum of variation 

and challenges encountered in alignment of protein sequences. To evaluate performance related to 

these factors, BAliBASE 1.0 included five different reference sets [42]. Reference 1 contained 

alignments for close relatives and alignments for distant relatives. Reference 2 contained alignments of 

orphan sequences with a group of close relatives. Reference 3 contained alignments of sequences in 

groups with high identity within groups and below 25% pairwise identity between groups. Reference 4 

and 5 contained large terminal and internal insertions [42]. References 1-5 from BAliBASE 3.0 were 

used for MSA evaluation in publication (II). 

Protein REFerence Alignment Benchmark (PREFAB) is a large database generated automatically 

by supplementing structural pairs from the FSSP database with homologs found through PSI-BLAST 

queries [46]. Each alignment set is filtered to have at most 80% identity and is limited to a set of 50 PSI-

BLAST homologs. There are 1682 alignments in the main set and 100 alignments in the weighted set 

(PREFAB 4.0). Notably, MSAs are evaluated against a single pair of structurally aligned sequences for 

each of the reference alignments. 

Sequence Alignment Benchmark (SABmark) contains pairwise structural alignments from SOFI and 

CE databases, that are organized according to SCOP classification [47]. SABmark 1.65 contains two 

main references: the “Twilight Zone” and “Superfamilies”. Twilight Zone reference is a collection of 1740 

single domain protein sequences grouped into 209 SCOP folds. Most sequences in this reference have 

pairwise identity well below 25%. Superfamilies reference contains 3280 single domain sequences 

grouped into 425 SCOP superfamilies. 

4.1.6 Modular Multiple Sequence Aligner (II) 

In publication (II) we analyzed contemporary MSA alignment strategies in terms of their finite 

components that can be rearranged for evaluation and optimization. We implemented a novel Modular 

Multiple Sequence Aligner (MMSA) in C++. Our implementation was based on SeqAn, an open source 

C++ library for sequence alignments created and updated by the scientific community [15,107]. By 

selecting SeqAn we supported implementation transparency, which, in our view, is important for efficient 

method development. Our implementation had a modular structure, which allowed us to swap different 

components of the alignment process and, thereby, to investigate their contribution to the alignment 

quality and computational efficiency. To compare alignment strategies, we systematically varied 

information sources, guiding trees, consistency transformations and iterative refinement strategies, 

evaluating the resulting alignments on BAliBASE and SABmark (II). 

To place this research into the context of existing MSA software, the best MMSA strategies were 

compared to a selection of MSA aligners (listed in Table 3) that have been previously included in similar 

comparative studies (see Table 1). Evaluation was done on three benchmark databases: BAliBASE 3.0 

[43], SABmark 1.65 [47] and PREFAB 4.0 [46]. 

For more details on this work please refer to the attached publication (II).  
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4.2 Annotating gene clusters 

In publication (I) we presented a novel homology-based method for LOcating Pilus operons (LOCP) in 

bacterial genomes. The key techniques employed in LOCP were: (i) homology searches with profile 

hidden Markov models (profile HMMs)  (ii) enrichment statistics and (ii) multiple hypothesis testing. 

Techniques employed in publication (I) are interlinked with publications (II) and (III). Namely, HMMs 

can be applied in sequence alignments, while homology searches and enrichment statistics are 

common strategies for AFPs.  

Annotation of genes by homology is a highly successful strategy that has been employed by many 

AFP methods. For example, in CAFA2 (see 1.5.3) homology was the most popular source of information 

among the compared methods [75]. The general strategy for AFPs is to search for homologs in an 

annotated database and then to use various enrichment statistics to transfer GO terms (or other 

annotations) from the k-nearest homologs to the target sequence [108–114]. Reference databases 

used by AFPs include UniProtKB, RefSeq and Pfam, and search engines employed include BLAST 

[115], PSI-BLAST [116], HMMER [117] and SANSParallel [118]. Here we discuss profile HMMs and 

HMMER search engine, which were the methods used in publication (I). 

4.2.1 Hidden Markov models and HMMER 

Profile hidden Markov models (HMMs) model all of the key evolutionary events that operate on single 

genes and proteins: substitutions, insertions and deletions. Constructing a profile HMM requires an 

MSA of the input sequences. The architecture of a profile HMM is constrained to a series of emission, 

insertion and deletion states [36]. Emission states are hidden states that assign probabilities for 

observing different residues at different sequence positions. Insertion states model the observed 

insertion events and deletion states the deletion events. Transition through a given path of hidden states 

can emit a number of observed sequences with different probabilities. In this way, a given profile HMM 

infers the probability distribution to the family of sequences that are modelled by that HMM. 

In a typical HMM architecture there is one emission or match state for each MSA column that is 

considered a homology match. Further, there are insertion states between each pair of emission states, 

which model insertions between matching columns, and two flanking insertions states to model a 

mismatching head and/or tail of the sequence. Finally, transitions to the deletion states are allowed from 

the begin state and all match states to model deletions. Once the model architecture is defined, 

transition and emission probabilities can be estimated from the MSA using maximum likelihood or other 

methods [24,36]. 

The scoring used with HMM profiles are the scores returned by the Viterbi, Forward or Backward 

algorithms [119]. Viterbi returns the probability of best path, the Viterbi path, through the model states 

to emit the observed sequence. Forward and backward algorithms return the overall posterior 

probability of emitting the observed sequence [24]. Alternately, these algorithms can return the log-odds 

scores corresponding to these probabilities. 

The most popular implementation for profile HMMs is the HMMER package [41]. Also, databases of 

profile HMMs representing protein families have emerged. The two major databases of this type are 
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Pfam [37] and TIGRFAMs [38]. Profile HMM formulation and database collections allow to search for 

distant homologs of a protein (and nucleotide) sequences. 

4.2.2 Enrichment statistics 

Gene-enrichment analysis uses enrichment statistics to transfer GO terms from the list of reference 

genes (e.g. hits from a database search) to the target gene [120]. Here, we want to find the probability 

of observing at least k annotations by term A in a set of n reference genes relative to a database of N 

genes with K annotations by A [120–122]. This defines the null model: the gene-set and annotation term 

are independent. In gene-set enrichment analysis the null model is usually specified as either binomial 

or hypergeometric distribution (equations 4 and 5). These p-values can be assigned as the confidence 

scores for the predicted GO terms or combined with other information. Statistical test based on 

hypergeometric distribution is also known as the one-tailed Fisher’s exact test [123] (equation 5). 

(4) P (𝑖 ≥ 𝑘) = ∑ ∗ (1 − )  

(5) 𝑃 (𝑖 ≥ 𝑘) =  ∑  

4.2.3 Enrichment statistics for gene-clusters 

Settings similar to the annotation of individual genes are encountered in the annotation of gene-clusters. 

Homologs to the reference genes or the profile HMMs are identified in the target genome and various 

enrichment statistics are calculated for the observed clusters of these genes. This problem is well 

illustrated by the computational methods for detection of prophages and phage-related sequences. 

Here we review two articles that are directly relevant to LOCP project (I): Phage_Finder [124] and 

ProFinder [125]. 

In both Phage_Finder and ProFinder, phage-related sequences are located by scanning target 

genomes against annotated databases. These scans retrieve matches to phage sequences or profile 

HMMs that are referred to as hits. ProFinder also implements clustering of hits into phage-like dense 

regions (PLDRs). PLDRs are located by inspecting every window that starts with a hit and covers 

between 5 to 300 genes. ProFinder assigns PLDRs p-values from a binomial distribution (equation 4). 

Theoretically, a better model for the “hits in a gene-cluster” problem would be a hypergeometric 

distribution (equation 5). The argument here is that hypergeometric distribution models sampling 

without replacement while binomial models sampling with replacement. Sampling with replacement 

does not hold for a bacterial genome that can include only a limited number of genes for each function. 

4.2.4 Significance tests for multiple gene-clusters 

When a series of gene-clusters is tested for significance, the probability of obtaining at least one false 

positive, referred as the family-wise error rate, exceeds the significance level, α, set for the individual 

tests [123]. This phenomenon is known as the problem of multiple hypothesis testing (see Fig 6). 
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Several methods have been proposed for controlling family-wise error rate [123]. One of the most 

statistically powerful of these methods is the Monte Carlo simulation [126].  

 

Figure 6 Family wise error rate in x tests. As the number of tests increases the family-wise error rate 
largely exceeds the significance level, α, set for the individual tests. In this example α = 0.01. 

The Monte Carlo method estimates the distribution of p-values directly from a set of simulated datasets 

for which the null hypothesis is true [126]. In this technique, S datasets are generated from a population 

of datasets that conform to the null hypothesis. Each dataset is assigned a p-value. The distribution of 

p-values from this null model is then used to estimate the probability of obtaining at least one false 

positive for any given significance level [126].  

4.2.5 Locating Pilus Operons (I) 

Publication (I) is an example of how a clearly defined class of genes and gene-clusters can be efficiently 

and accurately annotated in a bacterial genome. In this project, we focused on pilus operons in gram-

positive prokaryotes. However, the same general strategy can be applied to annotate other types of 

gene clusters. In publication (I) we followed the general ideas outlined in sections 3.2.1-4: we started 

by locating hits, i.e. genes related to pili, then we looked for clusters of hits, assigned p-values to located 

clusters and adjusted those p-values for multiple hypothesis testing. 

To detect genes with pilus-related features we collected HMM profiles from Pfam and TIGRPFAM 

databases that represent families of sortase enzymes and their recognition sites. In addition, using the 

HMMER2.0 package we constructed one HMM representing E-box and 4 HMMs representing 

stabilizing motifs that are characteristic of pilus genes. This collection of HMMs were then searched 

against the target genome and the matching genes were labeled as hits (I). 
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In the next step, we detected pilus-related gene-clusters that we named Pilus Like Dense Regions 

(PLDR). We iterated all genes in the genome clustering hits with at most gapmax non-hit intermediate 

genes. To separate random PLDRs from nonrandom, we selected the hypergeometric distribution as 

the null model. PLDRs were then assigned p-values using the one-tailed Fisher’s exact test. 

In the next step, we used Monte Carlo simulations to control family-wise error rate. In more detail, 

we generated random gene-clusters by sampling random genomes with the same number of genes, N, 

and hits, K, as in the target genome (sampling the  𝑠𝑝𝑎𝑐𝑒). These were sampled by generating 1000 

random permutations of hit position vector X, where Xi is the position of the i:th hit. For each simulation, 

PLDRs were detected and assigned p-values the same way as for the target genome. For each 

simulation in the 1000 simulation runs we collected the minimum p-value, pi,min. These values were then 

used to assign target PLDRs the family-wise error rates (referred in publication (I) as the adjusted p-

values, pAdj). 

For more details on the LOCP method please refer to the attached publication (I). 

 

 

4.3 Evaluation of automated function predictors 

4.3.1 Metrics commonly used in comparative studies 

Table 4 lists evaluation metrics used in AFP competitions and selected papers with focus on AFP 

evaluation. We see that many different metrics have been applied to AFP evaluation with no clear 

consensus on which particular metrics to use. Even in CAFA, evaluation metrics have changed between 

consecutive challenges: CAFA I started with precision-recall curves and Fmax, then was re-evaluated 

with ROC AUC, Lin and Resnik semantics; CAFA II abolished the use of Lin and Resnik semantics and 

introduced Smin; CAFA III introduced term-centric Fmax. This constant perturbation of metrics indicates 

an ongoing development of the field, and I believe that a fair consensus on which metrics to use is yet 

to be reached. In the next section definitions to the commonly used evaluation metrics (EvMs) are given, 

and their properties elucidated in more detail. 
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Table 4. Overview of some Evaluation Metrics used in AFP literature. The table presents selected 
AFP method papers, AFP competition papers and re-evaluations of competitions (re-eval). Semantics 
refers to semantic similarity measure. Other abbreviations as defined in section 3.3.2. Notice the variety of 
metrics used. 

Article Evaluated AFP Evaluation metric(s) 

Martin et al., 2004 [127] GOtcha 
Selectivity vs. p-value 

Coverage vs. p-value 

Engelhardt et al., 2005 [128] Sifter 
ROC curve 
Accuracy 

Götz et al.,2008 [114] BLAST2GO Accuracy 

Friedberg, 2006 [129] AFP 2005 Resnik semantics 

Hawking et al., 2008 [130] PFP Schlicker semantics 

Wass et al., 2008 [131] ConFunc Precision-Recall curve 

Chitale et al., 2009 [132] ESG 
Schlicker semantics 
Precision and Recall value 

Falda et al., 2012 [110] ARGOT2 Prec-Recall curve 

Engelhardt et al., 2011 [133] Sifter v2 
ROC curve 
Precision-Recall curve 

Minneci et al., 2013 [134] FFPred 2.0 
Fmax 
Precision-Recall curve 
SimGIC 

Radivojac et al., 2013 [70] CAFA I 
Fmax 
Precision-Recall curve 
Weighted Precision-Recall curve 

Gillis and Pavlidis, 2013 [78] CAFA I, re-eval 

Precision-Recall curve 
TC ROC AUC 
Resnik semantics 
Lin semantics 

Koskinen et al., [108] PANNZER 
Weighted Precision-Recall curve 
Lin semantics 

Jiang et al., 2016 [75] CAFA II 

Fmax 
Precision-Recall curve 
Smin 
TC ROC AUC 

Zhou et al., 2019 [76] CAFA III 

Fmax and TC Fmax 

Precision-Recall curve 

Smin 

TC ROC AUC 
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4.3.2 Metric properties and definitions 

4.3.2.1 Metrics for binary classifiers 

AFP methods assign sequences to functional classes. In most cases this can be reduced to a binary 

classification, that either assigns a sequence to a class (i.e. makes a positive classification) or not 

(makes a negative classification). In both cases, the assignment can be either true or false relative to a 

given reference classification that is considered to be the “ground truth”. Performance of a binary AFP 

that predicts class A for a set of gene sequences can be summarized by a 2 X 2 confusion matrix: 

Table 5. Confusion matrix for an AFP method. Here ref is the set of sequences that are known to have 
function A and pred is the set of sequences predicted to have function A by the evaluated AFP. The 
confusion matrix divides sequences into four cells. The true and false positives are the correct and false 
positive predictions, respectively. The true and false negatives are the correct and false negative 
predictions. For further details see the text. 

AFP\Truth x ∈ ref x ∉ ref 

x ∈ pred true positives false positives 

x ∉ pred false negatives true negatives 

 

In this table, the correct positive classifications are referred as the true positives, 𝑇𝑃 =  𝑝𝑟𝑒𝑑 ∩  𝑟𝑒𝑓, 

and the correct negative classifications as the true negatives, 𝑇𝑁 =  {𝑥 ∉  𝑝𝑟𝑒𝑑}  ∩  {𝑥 ∉  𝑟𝑒𝑓} . The 

erroneous positive classifications are referred as the false positives, 𝐹𝑃 = 𝑝𝑟𝑒𝑑\𝑟𝑒𝑓 and erroneous 

negative classifications as the false negatives, 𝐹𝑁 = 𝑟𝑒𝑓\𝑝𝑟𝑒𝑑. Probabilistic AFP methods will assign 

predictions with a score such as e-value or p-value. For these methods pred, TP, TN, FP and FN are 

all a function of a confidence threshold, th, at which the predictions are reported. In addition, let rank(x) 

be the rank of prediction x assigned by the AFP. Using these definitions, we can give closed-form 

expressions for many common Evaluation Metrics (EvMs) (see Table 6). 

  



 

34 

Table 6. Defining popular evaluation metrics. Abbreviations: pred, annotations predicted by the 
AFP, ref, annotations that are known to be true (i.e. reference or the ground truth annotations), TP, true 
positives, TN, true negatives, FP, false positives, FN, false negatives, th, classifier confidence threshold. 

(6) 𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚(𝒑𝒓𝒆𝒅, 𝒓𝒆𝒇, 𝒕𝒉) =
𝑻𝑷  𝑻𝑵

𝑻𝑷  𝑭𝑷  𝑭𝑵  𝑻𝑵
 

(7) 𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏(𝒑𝒓𝒆𝒅, 𝒓𝒆𝒇, 𝒕𝒉) =
𝑻𝑷

𝑻𝑷  𝑭𝑷
 

(8) 𝑹𝒆𝒄𝒂𝒍𝒍(𝒑𝒓𝒆𝒅, 𝒓𝒆𝒇, 𝒕𝒉) =  𝑺𝒆𝒏𝒔𝒊𝒕𝒊𝒗𝒊𝒕𝒚(𝒑𝒓𝒆𝒅, 𝒓𝒆𝒇, 𝒕𝒉)  =  
𝑻𝑷

𝑻𝑷  𝑭𝑵
 

(9) 𝑻𝑷𝑹(𝒑𝒓𝒆𝒅, 𝒓𝒆𝒇, 𝒕𝒉) =
𝑻𝑷

𝑻𝑷  𝑭𝑵
 

(10) 𝑭𝑷𝑹(𝒑𝒓𝒆𝒅, 𝒓𝒆𝒇, 𝒕𝒉) =
𝑭𝑷

𝑭𝑷  𝑻𝑵
 

(11) 𝑹𝑶𝑪 𝑨𝑼𝑪(𝒓𝒂𝒏𝒌, 𝒓𝒆𝒇, 𝒓𝒆𝒇𝒏𝒆𝒈)  =  
𝟏

|𝒓𝒆𝒇||𝒓𝒆𝒇𝒏𝒆𝒈|
 ∑ 𝒓𝒂𝒏𝒌(𝒙) −

|𝒓𝒆𝒇|(|𝒓𝒆𝒇| 𝟏)

𝟐𝒙∈𝒓𝒆𝒇  

(12) 𝑺𝒑𝒆𝒄𝒊𝒇𝒊𝒄𝒊𝒕𝒚(𝒑𝒓𝒆𝒅, 𝒓𝒆𝒇, 𝒕𝒉) = 𝟏 − 𝑭𝑷𝑹(𝒑𝒓𝒆𝒅, 𝒓𝒆𝒇, 𝒕𝒉)  =  
𝑻𝑵

𝑻𝑵  𝑭𝑷
  

(13) 𝑭(𝒑𝒓𝒆𝒅, 𝒓𝒆𝒇, 𝒕𝒉)  =  𝟐 ×  
𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 × 𝑹𝒆𝒄𝒂𝒍𝒍

𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏  𝑹𝒆𝒄𝒂𝒍𝒍
=  

𝟐 × 𝑻𝑷

𝟐 × 𝑻𝑷  𝑭𝑷  𝑭𝑵
 

(14) 𝑭𝒎𝒂𝒙(𝒑𝒓𝒆𝒅, 𝒓𝒆𝒇) =  𝒎𝒂𝒙
𝒕𝒉

𝟐 × 𝑻𝑷

𝟐 × 𝑻𝑷  𝑭𝑷  𝑭𝑵
 

(15) 𝑱𝒂𝒄𝒄(𝒑𝒓𝒆𝒅, 𝒓𝒆𝒇, 𝒕𝒉)  =  
|𝒑𝒓𝒆𝒅 ∩ 𝒓𝒆𝒇|

|𝒑𝒓𝒆𝒅 ∪ 𝒓𝒆𝒇|
=  

|𝑻𝑷|

|𝑻𝑷  𝑭𝑷  𝑭𝑵|
 

(16) 𝑱𝒂𝒄𝒄𝒎𝒂𝒙(𝒑𝒓𝒆𝒅, 𝒓𝒆𝒇)  =  𝒎𝒂𝒙
𝒕𝒉

|𝑻𝑷|

|𝑻𝑷  𝑭𝑷  𝑭𝑵|
 

 

EvMs defined in equations 6-16 are discussed below more in detail. 

Accuracy is defined as the proportion of correct classifications (TP + TN) to all classifications (TP + 

TN + FP + FN). Accuracy is a somewhat rough evaluation metric, because it does not distinguish 

between false positive and false negative errors. Another shortcoming of this metric is that it requires a 

clear definition of the true negatives. Functional annotations of genes often lack any meaningful 

estimates for the number of true negative annotations (see supplementary text in (III) for further 

discussion). 

Precision (also known as the positive predictive value) is defined as the proportion of true positives 

(TP) to all positive classifications (TP + FP). Recall (also known as sensitivity) is defined as the 

proportion of true positives (TP) to all ground truth positives (TP + FN). 

For a probabilistic AFP, precision can be plotted against recall at different thresholds, th, as a 

precision-recall curve. A limited number of precision-recall curves can be plotted on the same figure to 

compare different AFPs, but this is an inexact method. To compare several AFPs we generally need a 

single scalar evaluation metric. In the MouseFunc project, that evaluated AFPs for mouse genes, 

precision was assessed at several fixed recall values [135]. A more general scalar metric is the area 
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under the precision-recall curve [136], which we refer to as AUC-PR. One attractive property of 

precision-recall analysis is that it does not depend on true negatives (III). 

True positive rate (TPR) is equivalent to recall and sensitivity: it is the number of true positives (TP) 

relative to all ground truth positives (TP + FN). False positive rate (FPR) is the number of false positives 

(FP) relative to the number of ground truth negatives (FP + TN).  

In Receiver Operating Characteristic analysis (ROC analysis), TPR is plotted against FPR at 

different thresholds, th. Area under the ROC curve, ROC AUC, is a scalar metric derived from ROC 

analysis. AUC is closely related to the Mann-Whitney U-statistic and is an estimate of the probability 

that a binary classifier will rank positive prediction higher than a negative prediction [137]. Let ref 

represent our positive class for term A, namely all genes that are annotated with A according to our 

reference.  Let 𝑟𝑒𝑓𝑛𝑒𝑔 =  {𝑥 ∉  𝑟𝑒𝑓} represent our negative class and let rank(x) define the rank of 

sequence x as returned by the AFP. Then ROC AUC is defined by equation 11. 

Note that ROC AUC metric requires ranking of both ground truth positives and negatives. This can 

lead to ambiguity, because, in the case of assigning genes to functional terms, there is no clear definition 

for ground truth negatives. As we discussed in publication (III) true negatives can be defined as all 

genes in the reference that do not have function A. Or these can be all genes in the reference database 

that do not have function A. Or these can be all genes for the annotated organism that do not have this 

function, etc. 

Specificity or the true negative rate is the number of true negatives (TN) relative to the number of all 

ground truth negatives (TN + FP). Again, this metric depends on the number of true negatives which 

are often undefined. 

F-score is the harmonic mean of precision and recall. For probabilistic AFPs, a scalar metric called 

Fmax-score can be defined as the maximum of F-score values across all thresholds, th. 

Jaccard index or Jaccard coefficient is the number of annotations common to predicted and 

reference sets divided by the number of annotations in the joined set. For probabilistic AFPs it is 

convenient to use maximum Jaccard index over thresholds, th.  

4.3.2.2 Semantic similarity metrics 

Terms near the root of GO are general terms that convey little information and terms near the leaves of 

GO are more specific terms that convey more information.  At the same time more general terms have 

higher prior probabilities (i.e. larger class size) than more specific terms. This causes the naïve 

prediction of the more general non-informative GO terms to perform well in AFP comparisons [70,75]. 

This problem can be counteracted by metrics that consider the information content of the predicted GO 

terms. Information content was defined by Resnik as the negative log-likelihood of a given term y in a 

given annotation corpus [138] (equation 17 in Table 7). Thus, the more specific terms have higher 

information content and the more general terms have lower information content. 

Furthermore, terms in gene ontology are related semantically. This implies that information 

conveyed by the neighboring terms is lost in evaluation that rigidly divides terms into correct and 

erroneous. Therefore, metrics that consider the size of the assigned GO classes and/or semantics are 

likely to be more powerful in identifying truly informative AFPs [139,140]. 
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Before introducing semantic metrics, we need to extend our notation. Let i-index refers to all 

annotations for gene i, and j-index to all annotations with term j. For example, predi are predictions for 

gene i, refi are reference annotations for gene i. 

4.3.2.3 Semantic similarity for pairs of GO terms 

The Most Informative Common Ancestor (MICA) for nodes x and y is the common ancestor of nodes x 

and y that has the highest information content (equation 20 in Table 7). The ancestral nodes of x, A(x), 

denote the set of all ancestors in GO for node x. Using ancestral nodes and MICA we can define 

ancestral Jaccard index or AJacc (III), Resnik [138] and Lin [141] (equations 21-23 in Table 7). Note 

that these semantic similarity metrics define pairwise similarities and do not work as such for comparing 

sets of GO terms. 

The set of predicted GO terms can be scored against the correct set by considering all pairwise 

comparisons. This results in a similarity matrix, SIM, of pairwise scores (equation 24). In this notation, 

rows stand for predicted and columns for correct GO terms, sem can be any semantic similarity metric 

(e.g. Resnik). 

When semantic similarity metrics are used to evaluate AFPs, the SIM matrix needs to be converted 

to a scalar metric. As there are no clear recommendations for this, in publication (III) we have considered 

six alternatives for the function S, that converts SIM to a single score: 

 

A. Mean of matrix. This is the overall similarity between all classes in predi and refi. 

B. Mean of column maxima. This is the average of best hits in predi for classes in refi. 

C. Mean of row maxima. This is the average of best hits in refi for classes in predi. 

D. Mean of B and C. 

E. Minimum of B and C. 

F. Mean of concatenated row and column maxima of SIM. 

 

Method A is the all-pair arithmetic average proposed by Lord [142]. Methods B, C and D have been 

proposed previously by several authors [143–146]. Method B is inherently weak at monitoring false 

positives, because for each term in the reference set only the best match in the predicted set is used. 

Method C is weak at monitoring false negatives, because terms in the reference set that have no match 

in the predicted set are not penalized in any way. D aims to correct B and C but is still sensitive to 

outliers. Therefore, we proposed novel methods E and F as improvements to method D (III). E monitors 

the weaker of B and C and is therefore monitoring both false positives and false negatives. F combines 

two vectors used for B and C. 

Finally, the score returned by methods A to F is a function of the gene and threshold value. These 

can be converted to a scalar value by using the mean value across genes, i, and the max value across 

thresholds, th. The overall definition for an evaluation metric based on a pairwise semantic similarity is 

given in equation 25 in Table 7. Here, sem can be any semantic similarity function, such as Resnik, Lin 

or AJacc, and S is one of the six summation functions outlined above.  
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Table 7. Semantic similarity metrics for pairwise comparison of GO terms.  
Notations are explained in the text. 

(17) 𝒊𝒄𝑵𝒐𝒅𝒆(𝒙) = 𝒍𝒐𝒈
𝟏

𝒑(𝒙)
 

(18) 𝒊𝒄𝟏(𝑮) =  ∑ 𝒍𝒐𝒈(
𝟏

𝒑(𝒚)
)𝒚∈𝑮  

(19) 𝒊𝒄𝟐(𝑮) =  𝒍𝒐𝒈(
𝟏

∏ 𝒑(𝒚|𝑹(𝒚))𝒚∈𝑮
) =  ∑ 𝒍𝒐𝒈(

𝟏

𝒑(𝒚|𝑹(𝒚))
)𝒚∈𝑮  

(20) 𝑴𝑰𝑪𝑨(𝒙, 𝒚) = 𝒂𝒓𝒈𝒎𝒂𝒙
𝒛∈𝑨(𝒙)∩𝑨(𝒚)

𝒊𝒄𝑵𝒐𝒅𝒆(𝒛) 

(21) 𝑨𝑱𝒂𝒄𝒄(𝒙, 𝒚) =
|𝑨(𝒙) ∩ 𝑨(𝒚)|

|𝑨(𝒙) ∪ 𝑨(𝒚)| 
 

(22) 𝑹𝒆𝒔𝒏𝒊𝒌(𝒙, 𝒚) = 𝒊𝒄𝑵𝒐𝒅𝒆(𝑴𝑰𝑪𝑨(𝒙, 𝒚)) 

(23) 𝑳𝒊𝒏(𝒙, 𝒚) =
𝟐 × 𝒊𝒄𝑵𝒐𝒅𝒆(𝑴𝑰𝑪𝑨(𝒙,𝒚))

𝒊𝒄𝑵𝒐𝒅𝒆(𝒙)  𝒊𝒄𝑵𝒐𝒅𝒆(𝒚)
 

(24) 𝑺𝑰𝑴(𝒑𝒓𝒆𝒅𝒊, 𝒓𝒆𝒇𝒊, 𝒔𝒆𝒎) =  
𝒔𝒆𝒎(𝒑𝒓𝒆𝒅𝒊(𝟏), 𝒓𝒆𝒇𝒊(𝟏)) . . . 𝒔𝒆𝒎(𝒑𝒓𝒆𝒅𝒊(𝟏), 𝒓𝒆𝒇𝒊(𝒏))

. . . . . . . . .
𝒔𝒆𝒎(𝒑𝒓𝒆𝒅𝒊(𝒎), 𝒓𝒆𝒇𝒊(𝟏)) . . . 𝒔𝒆𝒎(𝒑𝒓𝒆𝒅𝒊(𝒎), 𝒓𝒆𝒇𝒊(𝒏))

 

(25) 𝑬𝒗𝑴(𝒑𝒓𝒆𝒅, 𝒓𝒆𝒇, 𝒔𝒆𝒎, 𝑺) = 𝒎𝒂𝒙
𝒕𝒉

𝟏

𝒈𝒆𝒏𝒆𝒔(𝒕𝒉)
∑ 𝑺( 𝑺𝑰𝑴(𝒑𝒓𝒆𝒅𝒊, 𝒓𝒆𝒇𝒊, 𝒔𝒆𝒎) )

𝒈𝒆𝒏𝒆𝒔(𝒕𝒉)
𝒊  

4.3.2.4 Semantic similarity for sets of GO terms 

Pesquita et al. introduced Jaccard index weighted by the information content, which they referred to as 

the SimSIG metric [143] (equation 26 in Table 8). 

Clark and Radivojac extended the definition of information content for individual GO terms to 

information content for GO subgraphs [18]. Let R(y) denote the set of immediate ancestors of term y. 

Then the likelihood of subgraph G can be factorized as a product of conditional probabilities p(y|R(y)). 

Information content of the subgraph G is then a sum of negative log-likelihoods of its component nodes 

(equation 19 in Table 7). 

Clark and Radivojac then defined remaining uncertainty, ru, as the mean gene-wise information 

content of the FN set and misinformation, mi, as the mean gene-wise information content of FP set. 

Based on these, they defined a scalar metric Smin [140] (equations 27-29 in Table 8).  
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Table 8. Semantic similarity metrics for sets of GO terms.  
Notations are explained in the text. 

(26) 𝑺𝒊𝒎𝑺𝑰𝑮(𝒑𝒓𝒆𝒅, 𝒓𝒆𝒇, 𝒕𝒉) = 𝒎𝒂𝒙
𝒕𝒉

𝟏

𝒏
∑

𝒊𝒄𝟏(𝑻𝑷𝒊)

𝒊𝒄𝟏(𝑻𝑷𝒊) 𝒊𝒄𝟏(𝑭𝑷𝒊) 𝒊𝒄𝟏(𝑭𝑵𝒊)

𝒏
𝒊  

(27) 𝒓𝒖(𝒑𝒓𝒆𝒅, 𝒓𝒆𝒇, 𝒕𝒉) =  
𝟏

𝒏
∑ 𝒊𝒄𝟐(𝑭𝑵𝒊)

𝒏
𝒊  

(28) 𝒎𝒊(𝒑𝒓𝒆𝒅, 𝒓𝒆𝒇, 𝒕𝒉) =
𝟏

𝒏
∑ 𝒊𝒄𝟐(𝑭𝑷𝒊)

𝒏
𝒊  

(29) 𝑺𝒎𝒊𝒏(𝒑𝒓𝒆𝒅, 𝒓𝒆𝒇) = 𝒎𝒊𝒏
𝒕𝒉

𝒓𝒖(𝒑𝒓𝒆𝒅, 𝒓𝒆𝒇, 𝒕𝒉)𝟐 + 𝒎𝒊(𝒑𝒓𝒆𝒅, 𝒓𝒆𝒇, 𝒕𝒉)𝟐 

4.3.3 Artificial Dilution Series (III) 

The CAFA challenges have demonstrated discrepancies in AFP rankings and possible biases in AFP 

evaluation (see section 1.5.4). Many of these issues can be addressed by selecting appropriate 

evaluation metrics or by adopting the existing metrics to the challenges of AFP evaluation. To aid metric 

selection and development we presented a novel method called Artificial Dilution Series (ADS, 

publication III).  Our approach uses existing GO annotation data to generate a series of GO annotation 

datasets with different levels of correctness (referred as signal). These datasets are then applied to 

evaluate candidate evaluation metrics (EvMs) in two separate tests. 

In our first test, scores for the tested EvM are calculated for datasets at different signal levels and 

these scores are compared to the signal values revealing discriminative properties of the metric. We 

refer to this test as the Rank Correlation test (RC test). Results from the RC test can be examined 

visually by plotting EvM scores as a series of boxplots, one boxplot for each signal level (for an example 

see Fig 4 in III). A metric that is discriminative will have compact and monotonically declining boxplots. 

Results are also summarized numerically by the RC score: the rank correlation between EvM scores 

and the signal level. 

In our second test, scores for the tested EvM are calculated for several false positive datasets and 

these are contrasted with scores for the ADS series. This second test is designed to reveal systemic 

biases in the tested EvM. We refer to this test as the False Positive test (FP test). Results can be 

visualized by plotting EvM scores for the tested false positive datasets on the boxplots from the first 

test. High quality EvMs are expected to assign false positive datasets scores that are close to scores 

from dilution series sets with zero signal. This second test also assigns a numerical FP score to each 

EvM: the approximated signal level of the artificial datasets with similar EvM scores (we select the 

maximum from all evaluated false positive datasets).  

These two tests, the RC and the FP tests, define an orthogonal scoring system against which EvMs 

can be evaluated and compared. In publication (III) we argued that both tests are required in order to 

screen for discriminative and unbiased EvMs. For more details on the ADS method please refer to the 

attached publication (III). 
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4.3.3.1 Evaluated metrics and datasets 

We compared representatives from various types of EvMs commonly used in comparative studies for 

AFPs (see section 3.3.1). The tested EvMs were grouped into three families: rank-based, semantic 

similarity-based and group-based metrics. We evaluated two rank-based metrics: area under ROC 

curve (AUC-ROC) and area under precision-recall curve (AUC-PR). From metrics based on semantic 

similarity, we evaluated Lin, Resnik and a novel AJacc metric. From group-based methods, we 

evaluated SimGIC and Smin. We also evaluated Fmax, one of the most popular evaluation metrics in 

machine learning. 

Most EvMs defined in section 3.3.2 can be further modified by using the same core function with 

different data structuring. By data structuring we refer to the gene centric, term centric or unstructured 

evaluations (III). In Gene Centric evaluation (GC) we evaluate the predicted set of GO terms against 

the true set separately for each gene and then summarize these values with the mean over all genes. 

In Term Centric evaluation (TC) we compare the set of genes assigned to a given GO term against the 

true set separately for each GO term and take the mean over all GO terms. In UnStructured evaluation 

(US) we compare predictions as a single set of gene–GO tuples disregarding any grouping by shared 

genes or GO terms. In total, we tested 37 different evaluation metrics (III). 

All metrics were tested on three annotation datasets: the evaluation set used in CAFA I [70], the 

evaluation set from the MouseFunc competition [135] and a random sample of 1000 well-annotated 

genes from the UniProt database (ftp://ftp.ebi.ac.uk/pub/databases/GO/goa/UniProt/, 01.2019). 

Annotations in CAFA I and MouseFunc datasets were updated with contemporary GO term annotations 

from UniProt (ftp://ftp.ebi.ac.uk/pub/databases/GO/goa/UniProt/, 01.2019). The selected datasets 

varied in the annotation depth and density which allowed us to test metric performance in different 

settings of AFP evaluation. 

4.3.3.2 Comparison with previous research 

To my knowledge, there has been little research on evaluation metrics with Gene Ontology (GO). Clark 

and Radivojac compare seven methods by looking at thresholds that optimize each evaluation metric, 

and explore if the selected thresholds are rational for classification purposes [140]. GO Semantic 

similarities [143] have been evaluated using correlation against other datasets, e.g. sequence similarity 

[147], but their performance as the classifier evaluation metrics has not been thoroughly tested. These 

reports lack quantification of metric performance and do not provide common reference points that are 

needed for the comparison of various evaluation metrics. Contrary to these, ADS framework defines 

two quantitative tests that serve as a reference against which any metric can be evaluated and 

compared (III). 

In the machine learning field, a large and thorough comparison by Ferri et al. [148] tested a large 

number of evaluation metrics under different challenging situations with artificial datasets. Sokolova and 

Lapalme discussed how measures are invariant towards the changes in the classifier results [149]. 

Seliya et al. and Ferri et al. compared similarities between evaluation measures [148,150]. These 

comparisons, however, used mainly artificial datasets and focused on a few challenging features at a 

time. Real data, on the other hand, tends to include combinations of challenging features. 
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Furthermore, the classification structures, used in previous machine learning articles, differs 

significantly from Gene Ontology (GO). These articles discuss almost solely either binary or multinomial 

classification tasks, where each item cannot be correctly classified to many classes simultaneously. 

Assignment of GO terms to biological sequences is a multiple binary classification task, where each 

item can correctly belong to many classes or might not belong to any of the available classes. In 

addition, GO prediction is further complicated by the correlations, created by the hierarchical structure 

of GO. All these specific properties of GO classification create evaluation challenges that are 

uncommon in machine learning. The ADS framework addresses these challenges by working with GO 

data, and by conserving complex correlations present in real-life GO annotations. 
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5. RESULTS AND DISCUSSION 

5.1 LOCP results (I) 

To evaluate the performance of LOCP, we manually compiled a benchmark of 20 complete gram-

positive bacterial genomes with gene-clusters conforming to one of the 10 pilus operon types that had 

been described at the time of publication. Our benchmark contained 28 pilus operons, 20 stains and 4 

species. Notably, all four bacterial species in our benchmark are pathogenic and have clinical 

importance: Corynebacterium diphtheria, Streptococcus agalactiae, Streptococcus pneumoniae and 

Streptococcus pyogenes.  

We ran LOCP on the benchmark assigning all genes an adjusted p-value. Genes labeled as hits 

were assigned the p-value of the corresponding PLDR and all other genes a p-value of 1. We then 

performed a standard ROC analysis (see 3.3.2). The ROC AUC was above 99% indicating almost 

perfect recognition of the pilus operons in our benchmark.  

We also used LOCP to identify pilus-related gene-clusters in all complete gram-positive genomes 

available at the time of publication (August 2008). From 181 genomes analyzed, 67 (37%) were 

predicted to have at least one putative pilus operon. Altogether, 98 PLDR were located including 20 

PLDRs corresponding to known pilus operons listed in the benchmark set and 78 PLDRs that, to our 

knowledge, had not yet been described. Notably, Corynebacterium diphtheriae had 3 PLDRs and 

Clostridium perfringens had 4 (I). 

LOCP analysis was repeated in October 2017 for complete genomes of gram-positive phyla: 

Actinobacteria, Firmicutes, Tenericutes and Chloroflexi. Here we found pilus-related gene-clusters in 

5306 (18%) out of 29507 gene assemblies. Table 9 lists a selection of bacterial species with identified 

PLDRs that are known pathogens or are otherwise significant to human health. From Table 9 we see 

that PLDRs are common in gram-positive pathogens, commensals and probiotic species. PLDRs were 

found in several significant pathogens including Corynebacterium diphtheriae, Listeria monocytogenes, 

Streptococcus pneumoniae and S. pyogenes. For Listeria monocytogenes we identified over 800 

assemblies with PLDRs and individual strains with up to 4 PLDRs. PLDRs were identified in several 

nosocomial pathogens associated with hospital infections and multi-drug resistance: these included 

Enterococcus faecalis, Enterococcus faecium and Staphylococcus aureus. For E. faecium and S. 

aureus, we identified hundreds of assemblies with PLDRs. Finally, PLDRs were identified in several 

members of Bifidobacterium and Lactobacillus genera. These are important commensals in human GI 

tract and are used to produce fermented foods and/or as probiotics. 

To summarize, PLDRs seem to be associated with significant interactions with the host and these 

interactions can take both pathological and mutualistic form. 

All PLDR predictions are available on LOCP website: http://ekhidna2.biocenter.helsinki.fi/LOCP/. 
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Table 9. Gram-positive bacteria with PLDRs predicted by LOCP analysis (2017). Assem, number of 
genome assemblies with at least one PLDR, PLDR, number of PLDRs per genome, GI, gastrointestinal, 
OC, oral cavity, UG, urogenital. The table includes a selection of significant pathogens, zoonotic species, 
common commensals and probiotic species. 

Species Assem PLDR Significance Ref 

Actinomyces 
naeslundii (oris) 

17 1-2 
Human OC commensal 
Periodontal disease and tooth decay 

[151] 

Bacillus cereus 14 2-3 
Food contamination leading to GI symptoms e.g. 
diarrhea 

[152] 

Bifidobacterium 
adolescentis  

18 1-4 
Human GI commensal 
Fermentation in food industry; Probiotic 

[153] 

Bifidobacterium 
bifidum 

14 1-2 Human GI commensal; Probiotic [153] 

Bifidobacterium 
breve 

12 1-2 Human GI commensal; Probiotic [153] 

Bifidobacterium 
dentium  

2 3 Human pathogen causing tooth decay [154] 

Clostridioides 
difficile 

21 1 
Human GI commensal 
Toxic strains cause colitis and diarrhea 

[155] 

Clostridium 
botulinum 

16 1-2 
Foodborne and wound botulism in humans and 
livestock 

[156] 

Clostridium 
perfringens  

38 1-3 
One of the leading causes of food poisoning in 
humans and domestic animals 

[157] 

Corynebacterium 
diphtheriae 

83 1-3 Human pathogen causing diphtheria [158] 

Corynebacterium 
jeikeium 

15 1-2 Opportunistic multiresistant nosocomial pathogen [159] 

Corynebacterium 
striatum 

9 1-3 Opportunistic nosocomial pathogen [160] 

Entercoccus 
faecalis 

81 1-2 
Human GI commensal 
Multiresistant nosocomial infections 
Endocarditis, meningitis, sepsis 

[161] 

Enterococcus 
faecium  

443 1-4 
Human GI commensal 
Multiresistant nosocomial infections 
Meningitis and Endocarditis in neonates 

[161] 

Eubacterium sp. 15 1-4 Associated with bacterial vaginosis [162] 

Lactobacillus sp. 233 1-3 
Human GI and UG commensals 
Fermentation in food industry; Probiotic 

[163, 
164] 

Listeria 
monocytogenes 

826 1-4 
Over 2000 listeriosis cases yearly in EU, high 
fatality rates 
GI symptoms, septicaemia, CNS sequelae 

[165, 
166] 

Propionibacterium 
freudenreichii 

10 1-2 Probiotic; Cheese production [167] 

Staphylococcus 
argenteus 

102 1-3 Human pathogen; Alpha-haemolytic  [168] 
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Staphylococcus 
aureus 

515 1-3 

Opportunistic nosocomial pathogen 
Methicillin-resistant strains (MRSA) 
Skin lesions, sinusitis, meningitis, pneumonia, 
endocarditis, sepsis 

[169] 

Staphylococcus 
hyicus 

1 2 
Animal pathogen; Zoonotic 
Skin diseases in livestock 

[170] 

Streptococcus 
canis 

1 2 
Opportunistic pathogen in dogs and cats;  Zoonotic 
Skin infections, sepsis, abortions 

[171] 

Streptococcus 
oralis 

18 1-3 Human OC commensal and opportunistic pathogen [172] 

Streptococcus 
parasanguinis 

10 1-2 
Human OC commensal 
Participates in plaque formation 

[173] 

Streptococcus 
pneumoniae 

592 1-2 
Community acquired pneumonia, meningitis 
Penicillin-resistant strains (PRSP) 

[174, 
175] 

Streptococcus 
pyogenes 

90 1-3 
Group A Streptococci (GAS) pathogen 
Pharyngitis, skin lesions, cellulitis, necrotizing 
fasciitis, rheumatic fever, glomerulonephritis, other 

[176] 

Streptococcus 
suis 

74 1-3 Infections in domestic pig; Zoonotic [177] 

Trueperella 
pyogenes 

3 1-4 
Opportunistic pathogen in livestock 
Common cause of mastitis in cattle and pyometra 
in dogs 

[178] 

 

5.2 Modular MSA results (II) 

5.2.1 Comparing pairwise alignments and guide trees 

In our first test, we evaluated the contribution of different pairwise information sources to the MSA 

quality. Our results showed that both local and global pairwise alignments are required to construct high 

quality MSA (II). Similar results were previously reported using the T-Coffee aligner on BAliBASE [48]. 

Adding GTG motif information had a minor effect on the MSA quality increasing quality scores by an 

average of 1% for BAliBASE and SABmark. 

In the second test, we compared methods for the construction of guide trees. We found that single 

linkage clustering was the best option for all reference sets in BAliBASE and SABmark. Contrary to our 

expectations, this method produced more accurate alignments than commonly used neighbor joining 

or UPGMA (II). However, we note that these results were obtained for alignments without consistency 

transformation or iterative refinement. It is likely that the aforementioned techniques would render the 

impact of the guide tree to be less significant.  

5.2.2 Comparing consistency and clique transformations 

In our third test, we compared consistency transformations. The best option was either TripletSeqAn or 

TripletSeqAn repeated twice for all five references in BAliBASE and in the overall evaluation. The second 



 

44 

best option was either TripletT-Coffee or the MaxFlow method (II). Clique transformation decreased the 

MSA quality. Applying clique transformation after TripletSeqAn did not improve MSA quality (II). 

The concept of consistency transformation was introduced by Notredame et al. [48], who also 

demonstrated superior performance of this strategy on BAliBASE. The utility of this technique was then 

recognized by many authors and applied in many MSA implementations with reported superior 

performance [50,52,65,66]. Also, in independent comparative studies, ProbCons, MAFFT-linsi, 

ProbAlign and Mummals, which all implement consistency transformation, appear as top performers 

(see Table 1).  

Better results with TripletSeqAn compared to TripletT-Coffee demonstrated that introducing new edges 

necessary for consistency does improve MSA quality. This is in agreement with previous reports [94]. 

Improvement with MaxFlow demonstrated the utility of transitive homology links for MSA alignments. 

Previously, MaxFlow scoring was applied to recover distant homologs [179], but was never before 

tested on MSA benchmarks. MaxFlow implements consistency transformation by weighting edges in 

the alignment graph (i.e. homology links) by the number of common neighbors divided by the number 

of all neighbors. Links between distant homologs are then introduced by considering all possible 

pathways through the alignment graph and by weighting these links by the weakest pairwise link in the 

path (II). Clique transformation also considers all possible  pathways in the alignment graph, but keeps 

pairwise weights from the original graph, i.e. no consistency measure is introduced. Thus, our results 

demonstrate that transitive homology links improve alignments, but only if these links incorporate 

consistency. 

5.2.3 Comparing strategies for iterative refinement  

The tree-dependent iterative refinement was the best iterative refinement method for improving MSA 

quality, although, all tested iterative refinement strategies improved MSA quality. Random tree-based 

partitioning (TreeRandom) and breadth-first partitioning (TreeBF) yielded similar alignment quality (Tables 

5 and 6 in (II)). Furthermore, performance of these iterative refinement strategies was comparable to 

the best consistency transformation, TripletSeqAn, in both alignment quality and execution time (Tables 

5 and 6 in (II)). The random partitioning, although yielding some improvement, was clearly inferior to 

both tree-based strategies and the consistency transformation (II).  

The notion that tree-dependent partitioning and consistency transformations can be equally accurate 

and equally fast is a novel finding. Previous MSA implementations have either included only the iterative 

refinement or combined refinement with consistency transformation without directly contrasting these 

two strategies. For example, in Muscle [46] tree-dependent partitioning is the main strategy for 

enhancing alignment accuracy. In comparative studies, Muscle had almost invariably lower accuracy 

than aligners implementing consistency transformation (Table 1). However, these differences do not 

necessary stem from superiority of the consistency transformation over iterative refinement (i.e. it may 

be due to different gap models, substitution scores etc.). ProbCons [50] and MSAprobs [52] also 

implement iterative refinement, however, here it is an optional step, and the main strategy for improving 

alignment quality is the consistency transformation. MAFFT (version 6 and later) implements tree-
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dependent iterative refinement, but again, it is inseparably combined with consistency scores and thus 

cannot be contrasted to the consistency strategy [66]. 

In summary, previous implementations do not support comparison of the iterative refinement to the 

consistency transformation while comparisons of programs that implement one or the other strategy is 

ambiguous. In this respect, publication (II) was the first study where these two strategies were directly 

compared. Additionally, we found that random iterative refinement is clearly a weaker option than the 

tree-dependent partitioning. This might be of significance since certain high quality aligners, such as 

ProbCons and MSAprobs, implement random partitioning. Changing partitioning strategies for these 

aligners might further improve their accuracy. Based on our results we can recommend the tree-

dependent iterative refinement as a simpler but worthy option for the consistency transformation. 

5.2.4 The best strategy and the best MSA software 

The overall best strategy for our modular aligner was to use global and local pairwise alignments 

complemented with GTG motifs as input information; to apply TripletSeqAn consistency transformation; 

and to align the sequences using a single linkage guiding tree (II). 

Comparison of the popular MSA aligners and the best MMSA strategy showed the importance of 

consistency transformation and the tree-dependent iterative refinement. The top four most accurate 

aligners were consistently the same for all three benchmarks: the most accurate aligner was MSAProbs, 

followed closely by ProbCons, T-Coffee and MAFFT. This ranking is in good agreement with previous 

comparative studies (see Table 1). The accuracy margin for these top four aligners was quite narrow 

(see Tables 7 and 8 in publication II). Our own best strategy fell into the same accuracy ranges: level 

with T-Coffee for BAliBASE and just below the T-Coffee for SABmark (II). 

These results demonstrate that the best contemporary multiple sequence aligners operate within a 

narrow accuracy margin. Furthermore, all top scoring aligners perform consistency transformation and 

the very best also the iterative refinement. Our own modular implementations of the consistency 

transformation and the iterative refinement also produced comparable MSA quality.  

Our further attempts to improve alignments by introducing transitive homology links did not produce 

the anticipated results. We tested repeated consistency transformation, MaxFlow and clique 

transformations and adding GTG motifs to the MSA scoring function. Although the GTG motifs, 

MaxFlow and clique transformation did produce some improvements for subsets in BAliBASE, these 

were minor and not consistent. 

Also, by varying different components of the general progressive framework, we were not able to 

induce improvements in MSA quality over the top-ranking methods. However, we note that this study 

does not cover all known components and alternatives for the progressive alignment strategy. For 

example, we did not cover different options for sequence weighting, substitution matrices, gap models 

and conserved homology blocks. Alignments based on HMM formulation and statistical consistency 

were also out of scope. Thus, there are still plenty of options and combinations that might prove to be 

fruitful in improving alignment accuracy. 



 

46 

5.2.5 Method rankings and recommendations 

According to our results, the most accurate aligner (on all three benchmarks) was MSAProbs, followed 

closely by ProbCons and MAFFT (II). The three fastest aligners were Kalign, ClustalW and ClustalO, 

although we do not recommend using Kalign or ClustalW due to the overall low accuracy of these 

aligners. The fastest among the most accurate aligners was MAFFT, which was up to six times faster 

than MSAProbs on the BAliBASE benchmark. Based on these results, we recommend MSAProbs for 

user cases that require the best possible MSA quality and are not limited in execution time. For 

producing fast alignments and for aligning large sequence sets we recommend using ClustalO. Finally, 

for the best compromise between speed and accuracy, we recommend using MAFFT. 

 

5.3 ADS results (III) 

We compared 37 evaluation metrics for GO classifiers using ADS on three different datasets. The 

results showed that many of these metrics are extremely biased and must not be used for evaluation 

of GO AFP methods. The results also identified a single metric that performed well on all datasets and 

a set of high-quality metrics that showed dataset-dependent performance. 

Our first observation was that metric performance varied drastically in both ADS and FPS tests. This 

is illustrated in Figure 4 in publication (III), which compares US AUC-ROC, Fmax, Smin, Resnik A, Resnik 

D and Lin D. We see a clear separation across ADS signal levels in the boxplots for Fmax (RC = 0.982) 

and Smin (RC = 0.985), and the next best separation for US AUC-ROC. All three semantic similarity 

measures (Resnik A, Resnik D and Lin D) performed poorly in the ADS test: Resnik and Lin boxplots 

have wide interquartile ranges and low RC scores. The US AUC-ROC failed in the FP test: it ranks the 

FP sets as equally good as ADS sets at signal = 1. Note, that FP sets do not convey any real information, 

but are designed to reveal biases in EvMs. Also, Fmax had low performance in the FP test. From these 

metrics only Smin had good performance in both tests. 

5.3.1 Comparing area under the curve metrics 

In Figure 5 in publication (III) we compared the performance of different AUC metrics. These results 

demonstrate that unstructured and gene-centric ROC-AUC metrics have high correlation with signal 

level, but fail in FP tests (top row in Fig 5 in (III)). This is somewhat expected, because AUC has been 

criticized for being a noisy metric with sensitivity to sample size and class imbalance [150,182]. Still, 

variations of AUC metric have been used extensively in AFP evaluation [70,75,78,128,133]. Our results 

clearly demonstrate that the only unbiased version of ROC-AUC is the term-centric ROC-AUC and that 

any other versions should not be used for AFPs predicting GO terms (i.e. GO classifiers). We also 

tested precision-recall AUC (PR-AUC), which, to our knowledge, has never previously been applied to 

GO classifiers. Our results showed that PR-AUC (bottom row in Fig 5 in (III)) consistently outperformed 

ROC-AUC in ADS correlation scores. Notably, unstructured and gene-centric versions of PR-AUC 

showed less profound but similar bias to the ROC-AUC metrics and should not be used for GO 

classifiers. 
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5.3.2 Improving semantic similarity metrics 

We compared the following GO semantic similarities: Resnik, Lin and Ancestor Jaccard (AJacc), each 

coupled with six different semantic summation methods, A-F (III). Our results revealed that summations 

methods have a much stronger influence on metric quality than the core semantic similarity function 

(see Fig 6 in (III)). Differences between summation methods A to F were drastic. Summation methods 

A (matrix mean) and C (mean of row maxima) failed in the RC test and methods B (mean of column 

maxima) and D (mean of B and C) failed in the FP test. The only methods that performed well in both 

tests were the novel methods introduced in this study: methods E (minimum of B and C)  and F (mean 

of concatenated row and column maxima). Differences between core semantic functions were less 

prominent, however, metrics based on information content (Lin and Resnik) seemed to have better 

performance. 

We also tested the unstructured and gene-centric variations of SimGIC, Smin and Jacc (III). All of 

these demonstrated very high correlation to the ADS signal level (high RC score) and reasonable 

performance in the FP tests (low FP score). Unstructured versions outperformed the gene-centric 

versions in RC test, FP test or both (III). 

5.3.3 Making clear recommendations 

Based on our results we were able to recommend which metrics are well suited for AFP evaluation and 

which are clearly not (see Table 1 in (III)). 

First, we discuss metrics that showed poor performance. Notably, all of these metrics have been 

used in AFP research, and some of these metrics have been widely used (see Table 4). Based on the 

very high FP scores of US and GC versions of both ROC-AUC and PR-AUC, these metrics should 

never be used in AFP evaluation. Although Fmax is preferred for its simplicity, our results demonstrate 

that Fmax is also biased for naïve predictions (high FP score). Also, in CAFA I Fmax ranked the naïve 

method above 7 out of 10 (for “easy targets”) and above 9 out of 10 (for “difficult targets”) top performing 

AFPs in the task of assigning molecular function-related GO terms [70]. Additionally, CAFA rankings 

based on Fmax differ significantly from rankings based on Smin (see Table 2), a metric that we found to 

be reliable. Thus, all the mounting evidence indicates that Fmax is biased and should not be used in AFP 

evaluation. We also recommend avoiding summation methods A (matrix mean), B (mean of column 

maxima), C (mean of row maxima) and D (mean of B and C) in EvMs based on pairwise semantic 

similarity. 

The metrics that showed good performance were the weighted Jaccard (SimGIC), Smin and term-

centric (TC) versions of AUC. The most consistent metric with high RC and FP values across all 

datasets was US SimGIC, which we recommend as the most stable high-quality metric. We also give a 

list of potentially recommended metrics, which showed high performance on one or two datasets: TC 

AUC-PR and TC AUC-ROC, Lin E, Resnik E and Smin. We note that our results indicate options for 

further improvements for many of these metrics. 
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5.3.4 Developing metrics with ADS 

Results for ROC-AUC and Fmax demonstrate that ADS can quickly and efficiently locate shortcomings 

in GO evaluation metrics. The core ADS library is written in C++ and is quite fast, allowing us to run 

conclusive tests within a single day. This creates a platform for fast development of metrics based on 

their performance. Using ADS, we were able to experiment with different variations of metrics that, 

based on our theoretical understanding, could potentially eliminate bias for false positive predictions or 

improve rank correlation. Comparing variations that showed good and bad performance in rank 

correlation and false positive tests often pinpointed theoretical explanations for these differences. 

The numerous positive findings reported in publication (III) demonstrate that the tandem application 

of practical and theoretical metric development approaches is very efficient. Using ADS, we designed 

the novel PR-AUC metric and showed that its term-centric version has very good discriminative 

properties as well as stability across different datasets and no bias (Fig 5 in (III)). Additionally, we were 

able to design novel summation methods E and F for the family of semantic similarity metrics and to 

demonstrate that these were superior to previous standards A and D (Fig 6 in (III)). Finally, we 

demonstrated that for metrics based on information content, the unstructured versions had better 

discriminative performance (III). Thus, this work also provides a general framework for developing and 

improving evaluation metrics. 

5.3.5 Signal and noise models 

ADS implements a combination of error and signal models that might be the focus of future studies. 

The current signal model is based on a set of correct GO annotations. From these annotations, a 

random fraction of GO terms is rotated randomly in the small space of 2 to 4 ancestral nodes. The 

current error model represents hard-to-distinguish and misinformative errors: GO terms that have no 

semantic relationship to the correct terms and that are assigned scores from the same distribution as 

the correct GO terms. A legitimate question arises: Does this signal and error models represent real life 

AFPs? This question can be approached by collecting AFP predictions from the literature or large scale 

competitions such as CAFA. This data could be analyzed to elucidate statistical and other properties of 

common AFPs. This analysis may discover novel information about biases and challenges involved in 

the comparative evaluation of real life AFPs. 

Another question that arises is whether it is necessary to model signal and noise in real life AFPs in 

order to perform informative EvM evaluation? The key idea here is that modelling the “simplest case” 

of all possible AFPs might be sufficient to spot the high quality and low quality metrics. This is the 

approach taken in the ADS project. The current ADS implementation checks metric performance on a 

signal model that is very close to the ground truth reference and an error model that is very far from the 

reference. We argue that if a metric does not work for this simple case, then it is also likely to fail on 

AFPs that produce more subtle errors or signal that is more distant to the ground truth. Refining and 

justifying this “simplest case” approach is another possible way of developing the ADS project. In 

general, the ADS approach can encompass various models for signal and error.  



 

49 

6. CONCLUSIONS AND PERSPECTIVES 

This thesis has focused on comparative studies for homology-based methods. These were addressed 

in three articles, one introducing a novel annotation method and two others introducing frameworks for 

comparative evaluation.  

Publication (I) presented a novel method for detecting pilus operons in bacterial genomes. This 

illustrated the application of homology-based methods for the annotation of biological sequences. Using 

the developed LOCP method, we were able to retrieve 5306 putative pilus operons from the available 

whole genomes of monoderm bacteria. The vast majority of these operons were novel findings, and 

many were located in bacteria that are known to be significant human pathogens, commensals or 

probiotics. The enrichment of species that have significant human interactions among those predicted 

with pilus operons indicates that LOCP has notable potential for contributing valuable information for 

ongoing and future bacteriological and medical studies. 

Publication (II) addressed the topic of comparative evaluation of MSA methods. Particularly, we were 

interested in revealing which alignment strategies are the top performers and how these relate to the 

state-of-the-art MSA implementations. We had several interesting findings that may prove informative 

for future method development in the MSA field. 

As our minor findings in (II) we concluded that single linkage clustering is as good as the more 

popular UPGMA and neighbor joining for constructing the guide trees. Also, in support of the existing 

notion, we found that pairwise local and global alignments provide sufficient information for constructing 

high quality MSAs. Contrary to our expectations, conserved GTG motifs had minor effect on MSA 

quality. We also found that transitive homology links, as implemented by the clique transformation, did 

not improve accuracy. 

As our main finding in (II) we were able to demonstrate the importance of consistency 

transformations and iterative refinement techniques. We concluded that MSA aligners implementing 

statistical consistency were the most accurate, and that triplet library extension that introduced new 

edges “on demand” was more accurate than the more conservative triplet library extension. We also 

found that MaxFlow is less accurate than both triplet library extensions. Additionally, we found that the 

performance of iterative refinement depends critically on the type of alignment partitioning: the tree-

dependent restricted partition was found to be clearly superior to random partitioning. We also found 

that tree-dependent iterative refinement is very similar in accuracy and execution time to the best 

consistency transformations. This later finding can be applied to future MSA implementations that can 

benefit from the simplicity of the iterative refinement and from the straightforward tradeoff this technique 

offers between computational time and accuracy. Another implication is that the most accurate aligners 

(MSAProbs and ProbCons), which currently implement random iterative refinements, may benefit from 

adopting the tree-dependent strategy. 

In publication (II) we also fulfilled the more traditional function of a comparative study by providing 

clear method rankings and recommendations for method users. Based on our results we recommend  

MSAProbs or ProbCons for the best accuracy, ClustalO for maximal speed and MAFFT for the best 

combination of both accuracy and speed. We also note that the latest MAFFT implementation has many 
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options for making tradeoffs between accuracy and speed, and is generally more flexible than ClustalO. 

Although, these recommendations appear simple and to some extent repeat previous studies, it is still 

of considerable importance to communicate these results to a wider research audience. Currently, only 

a minority of researchers seems to be aware of the most accurate and fast MSA tools, while the majority 

seems to favor MSA tools that are drastically outdated. 

In publication (III) we presented the Artificial Dilution Series (ADS), which is the first framework for 

selecting and developing evaluation metrics (EvMs) for GO classifiers. We were motivated by the 

discrepancies and confusion related to method rankings in CAFA challenges. Using ADS, we 

demonstrated that several EvMs used in CAFA and other comparative studies are either biased or 

indiscriminative. We were able to improve existing EvMs and to make clear recommendations. 

Using the ADS framework, we demonstrated that most gene-centric (GC) and unstructured (US) 

EvMs that do not consider GO class size are biased. This consideration has been partly acknowledged 

in CAFA challenges which rightly avoided all AUC EvMs except the term-centric (TC) ROC-AUC, which 

is insensitive to class-imbalance. Still, the CAFA challenges did use Fmax, which is also gene-centric 

and does not have any mechanism for addressing the class-imbalance problem. Using ADS, we 

demonstrated that Fmax is indeed clearly biased for naïve and other false positive predictions that simply 

assign the same set of large uninformative GO classes to all genes. Furthermore, we demonstrated 

that the term-centric EvMs and EvMs that include information content in their definition are immune to 

the class-imbalance problem. Particularly, we showed that TC AUC, Smin, SimGIC, Lin E/F and Resnik 

E/F are immune to bias induced by class-imbalance. 

The practical implications of these findings apply to method rankings in completed and future AFP 

comparative studies. For example, CAFA rankings based on TC ROC-AUC and Smin seem valid, while 

those based on Fmax are questionable. In future CAFA challenges, it might be advisable to include AFP 

rankings based on SimGIC, which demonstrated consistently high performance across all datasets. 

Rankings based on high performing semantic similarity metrics, such as Lin E/F and Resnik E/F, would 

also elucidate method performance from a novel perspective. These EvMs consider semantically similar 

predictions and are not limited to the binary true or false evaluation inherent in other metrics. 

More generally, ADS provides the first universal framework for testing and developing EvMs for AFP 

evaluation. EvMs are the core components of AFP comparative studies and, thus, applying the more 

discriminative and objective EvMs will certainly improve information flow within the researcher 

community concerned with AFP development and application. 

ADS was designed for EvMs for GO annotations, however, similar problems are encountered with 

other biological ontologies. Generally, ontologies in biosciences tend to contain hierarchical and graph-

like dependencies that can give rise to various forms of bias. This calls for extending the ADS framework 

to other biological ontologies. 

To conclude, I would like to recap the importance of comparative evaluation studies for 

bioinformatics and biosciences at large. Identifying limitations and strong sides of different solutions, 

reducing bias related to self-assessment, providing clear rankings and recommendations and 

communicating this information in clear and recognizable format both to users and method developers 

is likely to drastically improve information flow within the scientific community.  
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