
Linear Time Construction of Indexable Founder
Block Graphs
Veli Mäkinen
Department of Computer Science, University of Helsinki, Finland
veli.makinen@helsinki.fi

Bastien Cazaux
Department of Computer Science, University of Helsinki, Finland

Massimo Equi
Department of Computer Science, University of Helsinki, Finland
massimo.equi@helsinki.fi

Tuukka Norri
Department of Computer Science, University of Helsinki, Finland
tuukka.norri@helsinki.fi

Alexandru I. Tomescu
Department of Computer Science, University of Helsinki, Finland
alexandru.tomescu@helsinki.fi

Abstract
We introduce a compact pangenome representation based on an optimal segmentation concept that
aims to reconstruct founder sequences from a multiple sequence alignment (MSA). Such founder
sequences have the feature that each row of the MSA is a recombination of the founders. Several
linear time dynamic programming algorithms have been previously devised to optimize segmentations
that induce founder blocks that then can be concatenated into a set of founder sequences. All
possible concatenation orders can be expressed as a founder block graph. We observe a key property
of such graphs: if the node labels (founder segments) do not repeat in the paths of the graph, such
graphs can be indexed for efficient string matching. We call such graphs segment repeat-free founder
block graphs.

We give a linear time algorithm to construct a segment repeat-free founder block graph given an
MSA. The algorithm combines techniques from the founder segmentation algorithms (Cazaux et al.
SPIRE 2019) and fully-functional bidirectional Burrows-Wheeler index (Belazzougui and Cunial,
CPM 2019). We derive a succinct index structure to support queries of arbitrary length in the paths
of the graph.

Experiments on an MSA of SARS-CoV-2 strains are reported. An MSA of size 410× 29811 is
compacted in one minute into a segment repeat-free founder block graph of 3900 nodes and 4440
edges. The maximum length and total length of node labels is 12 and 34968, respectively. The index
on the graph takes only 3% of the size of the MSA.
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1 Introduction

Computational pangenomics [13] ponders around the problem of expressing a reference
genome of a species in a more meaningful way than as a string of symbols. The basic problem
in such generalized representations is that one should still be able to support string matching
type of operations on the content. Another problem is that any representation generalizing
set of sequences also expresses sequences that may not be part of the real pangenome. That is,
a good representation should have a feature to control over-expressiveness and simultaneously
support efficient queries.

In this paper, we develop the theory around one promising pangenome representation
candidate, the founder block graph. This graph is a natural derivative of segmentation
algorithms [28, 12] related to founder sequences [34].

Consider a set of individuals represented as lists of variations from a common reference
genome. Such a set can be expressed as a variation graph or as a multiple sequence alignment.
The former expresses reference as a backbone of an automaton, and adds a subpath for each
variant. The latter inputs all variations of an individual to the reference, creating a row for
each individual into a multiple alignment. Figure 1 shows an example of both structures
with 6 very short genomes.

A multiple alignment of much fewer founder sequences can be used to approximate the
input represented as a multiple alignment as well as possible, meaning that each original row
can be mapped to the founder multiple alignment with a minimum amount of row changes
(discontinuities). Finding an optimal set of founders is NP-hard [29], but one can solve
relaxed problem statements in linear time [28, 12], which are sufficient for our purposes. As
an example on the usefulness of founders, Norri et al. [28] showed that, on a large public
dataset of haplotypes of human genome, the solution was able to replace 5009 haplotypes with
only 130 founders so that the average distance between row jumps was over 9000 base pairs
[28]. This means that alignments of short reads (e.g. 100 bp) very rarely hit a discontinuity,
and the space requirement drops from terabytes to just tens of gigabytes. Figure 1 shows
such a solution on our toy example.

A block graph is a labelled directed acyclic graph consisting of consecutive blocks, where a
block represents a set of sequences of the same length as parallel (unconnected) nodes. There
are edges only from nodes of one block to the nodes of the next block. A founder block graph
is a block graph with blocks representing the segments of founder sequences corresponding
to the optimal segmentation [28]. Fig. 1 visualises such a founder block graph: There the
founder set is divided into 3 blocks with the first, the second, and the third containing
sequences of length 4, 4, and 3, respectively. The coloured connections between sequences
in consecutive blocks define the edges. Such graphs interpreted as automata recognise the
input sequences just like variation graphs, but otherwise recognise a much smaller subset of
the language. With different optimisation criteria to compute the founder blocks, one can
control the expressiveness of this pangenome representation.

In this paper, we show that there is a natural subclass of founder block graphs that admit
efficient index structures to be built that support exact string matching on the paths of such
graphs. Moreover, we give a linear time algorithm to construct such founder block graphs
from a given multiple alignment. The construction algorithm can also be adjusted to produce
a subclass of elastic-degenerate strings [8], which also support efficient indexing.
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Figure 1 (a) Input multiple alignment, (b) a set of founders with common recombination positions
as a solution to a relaxed version of founder reconstruction, (c) a variation graph encoding the input
and (d) a founder block graph. Here the input alignment and the resulting variation graph are
unrealistically bad; the example is made to illustrate the founders.

The founder block graph definition given above only makes sense if we assume that
our input multiple alignment is gapless, meaning that the alignment is simply produced by
putting strings of equal length under each other, like in Figure 1. We develop the theory
around founder block graphs under gapless multiple alignments. However, most of the results
can be extended to handle gaps properly.

We start in Sect. 2 by putting the work into the context of related work. In Sect. 3 we
introduce the basic notions and tools. In Sect. 4 we study the property of founder block
graphs that enable indexing. In Sect. 5 we give the linear time construction algorithm. In
Sect. 6 we develop a succinct index structure that supports exact string matching in linear
time. In Sect. 7 we consider the general case of having gap symbols in multiple alignment.
We report some preliminary experiments in Sect. 8 on the construction and indexing of
founder block graphs for a collection of SARS-CoV-2 strains. We consider future directions
in Sect. 9.

2 Related work

Indexing directed acyclic graphs (DAGs) for exact string matching on its paths was first
studied by Sirén et al. in WABI 2011 [31]. A generalization of Burrows-Wheeler transform [11]
was proposed that supported near-linear time queries. However, the proposed transformation
can grow exponentially in size in the worst case. Many practical solutions have been
proposed since then, that either limit the search to short queries or use more time on queries
[33, 22, 25, 19, 24, 32]. More recently, such approaches have been captured by the theory on
Wheeler graphs [18, 20, 2].

Since it is NP-hard to recognize if a given graph is Wheeler [20], it is of interest to look
for other graph classes that could provide some indexability functionality. Unfortunately,
quite simple graphs turn out to be hard to index [15, 16] (under the Strong Exponential
Time Hypothesis). In fact, the reductions by Equi et al. [15, 16] can be adjusted to show
that block graphs cannot be indexed in polynomial time to support fast string matching. But
as we will see later, further restrictions on block graphs change the situation: We show that
there exists a family of founder block graphs that can be indexed in linear time to support
linear time queries.

WABI 2020
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Block graphs have also tight connection to generalized degenerate (GD) strings and their
elastic version. These can also be seen as DAGs with a very specific structure. Matching a
GD string is computationally easier and even linear time online algorithms can be achieved to
compare two such strings, as analyzed by Alzamel et al. [3]. The elastic counterpart requires
more care, as studied by Bernardini et al. [8]. Our results on founder block graphs can be
casted on GD strings and elastic strings, as we will show later.

Finally, our indexing solution has connections to succinct representations of de Bruijn
graphs [10, 9, 7]. Compared to de Bruijn graphs that are cyclic and have limited memory
(k-mer length), our solution retains the linear structure of the block graph.

3 Definitions and basic tools

3.1 Strings
We denote integer intervals by [i..j]. Let Σ = {1, . . . , σ} be an alphabet of size |Σ| = σ. A
string T [1..n] is a sequence of symbols from Σ, i.e. T ∈ Σn, where Σn denotes the set of
strings of length n under the alphabet Σ. A suffix of string T [1..n] is T [i..n] for 1 ≤ i ≤ n.
A prefix of string T [1..n] is T [1..i] for 1 ≤ i ≤ n. A substring of string T [1..n] is T [i..j] for
1 ≤ i ≤ j ≤ n. Substring T [i..j] where j < i is defined as the empty string.

The lexicographic order of two strings A and B is naturally defined by the order of
the alphabet: A < B iff A[1..i] = B[1..i] and A[i + 1] < B[i + 1] for some i ≥ 0. If
i+ 1 > min(|A|, |B|), then the shorter one is regarded as smaller. However, we usually avoid
this implicit comparison by adding end marker 0 to the strings.

Concatenation of strings A and B is denoted AB.

3.2 Founder block graphs
As mentioned in the introduction, our goal is to compactly represent a gapless multiple
sequence alignment (MSA) using a founder block graph. In this section we formalize these
concepts.

A gapless multiple sequence alignment MSA[1..m, 1..n] is a set of m strings drawn from Σ,
each of length n. Intuitively, it can be thought of as a matrix in which each row is one of the
m strings. Such a structure can be partitioned into what we call a segmentation, that is, a
collection of sets of shorter strings that can represent the original alignment.

I Definition 1 (Segmentation). Let MSA[1..m, 1..n] be a gapless multiple alignment and let
R1, R2, . . . , Rm be the strings in MSA. A segmentation S of MSA is a set of b sets of strings
S1, S2, . . . , Sb such that for each 1 ≤ i ≤ b there exist interval [x(i)..y(i)] such that Si =
{Rt[x(i)..y(i)] | 1 ≤ t ≤ m}. Furthermore, it holds x(1) = 1, y(b) = n, and y(i) = x(i+1) − 1
for all 1 ≤ i < b, so that S1, S2, . . . , Sb covers the MSA. We call W (Si) = y(i) − x(i) + 1 the
width of Si.

A segmentation of a MSA can naturally lead to the construction of a founder block graph.
Let us first introduce the definition of a block graph.

I Definition 2 (Block Graph). A block graph is a graph G = (V,E, `) where ` : V → Σ+ is a
function that assigns a string label to every node and for which the following properties hold.
1. {V 1, V 2, . . . , V b} is a partition of V , that is, V = V 1 ∪ V 2 ∪ . . . ∪ V b and V i ∩ V j = ∅

for all i 6= j;
2. if (v, w) ∈ E then v ∈ V i and w ∈ V i+1 for some 1 ≤ i ≤ b− 1;
3. if v, w ∈ V i then |`(v)| = |`(w)| for each 1 ≤ i ≤ b and if v 6= w, `(v) 6= `(w).
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Figure 2 An example of two strings, GCG and ATTCGATA , occurring in G(S).

As a convention we call every V i a block and every `(v) a segment.
Given a segmentation S of a MSA, we can define the founder block graph as a block graph

induced by S. The idea is to have a graph in which the nodes represents the strings in S
while the edges retain the information of how such strings can be recombined to spell any
sequence in the original MSA.

IDefinition 3 (Founder Block Graph). A founder block graph is a block graph G(S) = (V,E, `)
induced by S as follows: For each 1 ≤ i ≤ b we have Si = {`(v) : v ∈ V i} and (v, w) ∈ E
if and only if there exists i ∈ [1..b − 1] and t ∈ [1..m] such that v ∈ V i, w ∈ V i+1 and
Rt[j..j + |`(v)|+ |`(w)| − 1] = `(v)`(w) with j = 1 +

∑i−1
h=1 W (Sh).

We regard the edges of (founder) block graphs to be directed from left to right. Consider
a path P in G(S) between any two nodes. The label `(P ) of P is the concatenation of labels
of the nodes in the path. Let Q be a query string. We say that Q occurs in G(S) if Q is a
substring of `(P ) for any path P of G(S). Figure 2 illustrates such queries.

In our example in Figure 1, the intervals corresponding to the segmentation would be
[1..4], [5..8], [9..11], and the induced founder block graph has thus 3 blocks with 9 nodes and
11 edges in total.

3.3 Basic tools
A trie [14] of a set of strings is a rooted directed tree with outgoing edges of each node
labeled by distinct characters such that there is a root to leaf path spelling each string in the
set; shared part of the root to leaf paths to two different leaves spell the common prefix of
the corresponding strings. Such a trie can be computed in O(N log σ) time, where N is the
total length of the strings, and it supports string queries that require O(q log σ) time, where
q is the length of the queried string.

An Aho-Corasick automaton [1] is a trie of a set of strings with additional pointers
(fail-links). While scanning a query string, these pointers (and some shortcut links on them)
allow to identify all the positions in the query at which a match for any of the strings
occurs. Construction of the automaton takes the same time as that of the trie. Queries take
O(q log σ + occ) time, where occ is the number of matches.

A suffix array [26] of string T is an array SA[1..n+ 1] such that SA[i] = j if T ′[j..n+ 1] is
the j-th smallest suffix of string T ′ = T0, where T ∈ {1, 2, . . . , σ}n, and 0 is the end marker.
Thus, SA[1] = n+ 1.

Burrows-Wheeler transform BWT[1..n + 1] [11] of string T is such that BWT[i] =
T ′[SA[i]− 1], where T ′ = T0 and T ′[−1] is regarded as T ′[n+ 1] = 0.

A bidirectional BWT index [30, 6] is a succinct index structure based on some auxiliary
data structures on BWT. Given a string T ∈ Σn, with σ ≤ n, such index occupying
O(n log σ) bits of space can be built in O(n) time and it supports finding in O(q) time if a
query string Q[1..q] appears as substring of T [6]. Moreover, such query returns an interval
pair ([i..j],[i′..j′]) such that suffixes of T starting at positions SA[i], SA[i+ 1], . . . , SA[j] share

WABI 2020



7:6 Linear Time Construction of Indexable Founder Block Graphs

a common prefix matching the query. Interval [i′..j′] is the corresponding interval in the
suffix array of the reverse of T . Let ([i..j],[i′..j′]) be the interval pair corresponding to query
substring Q[l..r]. A bidirectional backward step updates the interval pair ([i..j],[i′..j′]) to
the corresponding interval pair when the query substring Q[l..r] is extended to the left into
Q[l − 1..r] or to the right into Q[l..r + 1]. This takes constant time [6]. A fully-functional
bidirectional BWT index [4] expands the steps to allow contracting symbols from the left or
from the right. That is, substring Q[l..r] can be modified into Q[l + 1..r] or to Q[l..r − 1]
and the the corresponding interval pair can be updated in constant time.

Among the auxiliary structures used in BWT-based indexes, we explicitly use the rank
and select structures: String B[1..n] from binary alphabet is called a bitvector. Operation
rank(B, i) returns the number of 1s in B[1..i]. Operation select(B, j) returns the index i
containing the j-th 1 in B. Both queries can be answered in constant time using an index
requiring o(n) bits in addition to the bitvector itself [23].

4 Subclass of founder block graphs admitting indexing

We now show that there exists a family of founder block graphs that admit a polynomial time
constructable index structure supporting fast string matching. First, a trivial observation:
the input multiple alignment is a founder block graph for the segmentation consisting of only
one segment. Such founder block graph (set of sequences) can be indexed in linear time to
support linear time string matching [6]. Now, the question is, are there other segmentations
that allow the resulting founder block graph to be indexed in polynomial time? We show
that this is the case.

I Definition 4. Founder block graph G(S) is segment repeat-free if each `(v) for v ∈ V
occurs exactly once in G(S).

Our example graph (Fig. 1) is not quite segment repeat-free, as TAT occurs also as
substring of paths starting with ATAT.

I Proposition 5. Segment repeat-free founder block graphs can be indexed in polynomial time
to support polynomial time string queries.

To prove the proposition, we construct such an index and show how queries can be
answered efficiently.

Let P (v) be the set of all paths starting from node v and ending in a sink node. Let
P (v, i) be the set of suffix path labels {`(L)[i..] | L ∈ P (v)} for 1 ≤ i ≤ |`(v)|. Consider
sorting P = ∪v∈V,1≤i≤|`(v)|P (v, i) in lexicographic order. Then one can binary search any
query string Q in P to find out if it occurs in G(S) or not. The problem with this approach
is that P is of exponential size.

However, if we know that G(S) is segment repeat-free, we know that the lexicographic
order of `(L)[i..], L ∈ P (v), is fully determined by the prefix `(v)[i..|`(v)|]`(w) of `(L)[i..],
where w is the node following v on the path L. Let P ′(v, i) denote the set of suffix path
labels cut in this manner. Now the corresponding set P ′ = ∪v∈V,1≤i≤|`(v)|P

′(v, i) is no longer
of exponential size. Consider again binary searching a string Q on sorted P ′. If Q occurs in
P ′ then it occurs in G(S). If not, Q has to have some `(v) for v ∈ V as its substring in order
to occur in G(S).

To figure out if Q contains `(v) for some v ∈ V as its substring, we build an Aho-Corasick
automaton [1] for {`(v) | v ∈ V }. Scanning this automaton takes O(|Q| log σ) time and
returns such v ∈ V if it exists.
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To verify such potential match, we need several tries [14]. For each v ∈ V , we build tries
R(v) and F(v) on the sets {`(u)−1 | (u, v) ∈ E} and {`(w) | (v, w) ∈ E}, respectively, where
X−1 denotes the reverse x|X|x|X|−1 · · ·x1 of string X = x1x2 · · ·x|X|.

Assume now we have located (using the Aho-Corasick automaton) v ∈ V with `(v) such
that `(v) = Q[i..j], where v is at the k-th block of G(S). We continue searching Q[1..i− 1]
from right to left in trie R(v). If we reach a leaf after scanning Q[i′..i − 1], we continue
the search with Q[1..i′ − 1] on trie R(v′), where v′ ∈ V is the node at block k − 1 of G(S)
corresponding to the leaf we reached in the trie. If the search succeeds after reading Q[1]
we have found a path in G(S) spelling Q[1..j]. We repeat the analogous procedure with
Q[j..m] starting from trie F(v). That is, we can verify a candidate occurrence of Q in G(S)
in O(|Q| log σ) time, as the search in the tries takes O(log σ) time per step. Note however,
that there could be several labels `(v) occurring as substrings of Q, so we need to do the
verification process for each one of them separately. There can be at most |Q| such candidate
occurrences, due to the distinctness of node labels in G(S). In total, this search can take at
most O(|Q|2 log σ) time.

We are now ready to specify a theorem that reformulates Proposition 5 in detailed form.

I Theorem 6. Let G = (V,E) be a segment repeat-free founder block graph with blocks
V 1, V 2, . . . , V b such that V = V 1∪V 2∪· · ·∪V b. We can preprocess an index structure for G in
O((N+W |E|) log σ) time, where {1, . . . , σ} is the alphabet for node labels,W = maxv∈V |`(v)|,
and N =

∑
v∈V |`(v)|. Given a query string Q[1..q] ∈ {1, . . . , σ}q, we can use the index

structure to find out if Q occurs in G. This query takes O(|Q|2 log σ) time.

Proof. With preprocessing time O(N log σ) we can build the Aho-Corasick automaton [1].
The tries can be built in O(log σ)(

∑
v∈V (

∑
(u,v)∈E |`(u)|+

∑
(v,w)∈E |`(w)|)) = O(|E|W log σ)

time. The required queries on these structures take O(|Q|2 log σ) time.
To avoid the costly binary search in sorted P ′, we instead construct the bidirectional BWT

index [6] for the concatenation C =
∏

i∈{1,2,...,b}
∏

v∈V i,(v,w)∈E `(v)`(w)0. Concatenation C
is thus a string of length O(|E|W ) from alphabet {0, 1, 2, . . . , σ}. The bidirectional BWT
index for C can be constructed in O(|C|) time, so that in O(|Q|) time, one can find out if Q
occurs in C [6]. This query equals that of binary search in P ′. J

We remark that founder block graphs have a connection with generalized degenerate
strings (GD strings) [3]. In a GD string, sets of strings of equal length are placed one after
the other to represent in a compact way a bigger set of strings. Such set contains all possible
concatenations of those strings, which are obtained by scanning the individual sets from left
to right and selecting one string from each set. The length of the strings in a specific set is
called width, and the sum of all the widths of all sets in a GD string is the total width. Given
two GD strings of the same total width it is possible to determine if the intersection of the
sets of strings that they represent is non empty in linear time in the size of the GD strings
[3]. Thus, the special case in which one of the two GD string is just a standard string can be
seen also as a special case of a founder block graph in which every segment is fully connected
with the next one and the length of the query string is equal to the maximal length of a path
in the graph.

We consider the question of indexing GD strings (fully connected block graphs) to search
for queries Q shorter than the total width. We can exploit the segment repeat-free property
to yield such an index.

I Theorem 7. Let G = (V,E) be a segment repeat-free GD string a.k.a. a fully connected
segment repeat-free founder block graph with blocks V 1, V 2, . . . , V b such that V = V 1 ∪ V 2 ∪
· · · ∪ V b and (v, w) ∈ E for all v ∈ V i and w ∈ V i+1, 1 ≤ i < b. We can preprocess an index

WABI 2020



7:8 Linear Time Construction of Indexable Founder Block Graphs

structure for G in O((N +W |E|) log σ) time, where {1, . . . , σ} is the alphabet for node labels,
W = maxv∈V `(v), and N =

∑
v∈V `(v). Given a query string Q[1..q] ∈ {1, . . . , σ}q, we can

use the index structure to find out if Q occurs in G. This query takes O(|Q| log σ) time.

Proof. Recall the index structure of Theorem 6. for the case of GD strings, we can simplify
it as follow.

We keep the same BWT index structure and the Aho-Corasick automaton, but we do
not need any tries. After finding at most |Q| occurrences of substrings of Q in the graph
using the Aho-Corasick automaton on node labels, we mark the matching blocks accordingly.
If 2 marked blocks have exactly one marked neighboring block and |Q| − 2 blocks have 2
marked neighboring blocks, then we have found an occurrence, otherwise not. J

Observe that max(N,W |E|) ≤ mn, where m and n are the number of rows and number
of columns, respectively, in the multiple sequence alignment from where the founder block
graph is induced. That is, the index construction algorithms of the above theorems can be
seen to be almost linear time in the (original) input size. We study succinct variants of
these indexes in Sect. 6, and also improve the construction and query times to linear as side
product.

5 Construction of segment repeat-free founder block graphs

Now that we know how to index segment repeat-free founder block graphs, we turn our
attention to the construction of such graphs from a given MSA. For this purpose, we will
adapt the dynamic programming segmentation algorithms for founders [28, 12].

The idea is as follows. Let S be a segmentation of MSA[1..m, 1..n]. We say S is valid if it
induces a segment repeat-free founder block graph G(S) = (V,E). We build such valid S for
prefixes of MSA from left to right, minimizing the maximum block length needed.

5.1 Characterization lemma
Given a segmentation S and founder block graph G(S) = (V,E) induced by S, we can ensure
that it is valid by checking if, for all v ∈ V , `(v) occurs in the rows of the MSA only in the
interval of the block V i, where V i is the block of V such that v ∈ V i.

I Lemma 8 (Characterization). Let x(i) = 1+
∑i−1

h=1 W (Sh). A segmentation S is valid if and
only if, for all blocks V i ⊆ V , 1 ≤ t ≤ m and j 6= x(i), if v ∈ V i then Rt[j..j+|`(v)|−1] 6= `(v).

Proof. To see that this is a necessary condition for the validity of S, notice that each row of
MSA can be read through G, so if `(v) occurs elsewhere than inside the block, then these
extra occurrences make S invalid. To see that this is a sufficient condition for the validity of
S, we observe the following:
a) For all (v, w) ∈ E, `(v)`(w) is a substring of some row of the input MSA.
b) Let (x, u), (u, y) ∈ E be two edges such that U = `(x)`(u)`(y) is not a substring of any

row of input MSA. Then any substring of U either occurs in some row of the input MSA
or it includes `(u) as its substring.

c) Thus, any substring of a path in G either is a substring of some row of the input MSA,
or it includes `(u) of case b) as its substring.

d) Let α be a substring of a path of G that includes `(u) as its substring. If `(z) = α for
some z ∈ V , then `(u) appears at least twice in the MSA. Substring α makes S invalid
only if `(u) does. J
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5.2 From characterization to a segmentation
Among the valid segmentations, we wish to select an optimal segmentation under some
goodness criteria. Earlier work [28, 12] has considered various goodness criteria, solving the
associated segmentation problems in linear time. In this paper, we focus on minimizing the
maximum width of the segments. For example, the (non-valid) segmentation in Figure 1
has score 4, as the intervals of the segments are [1..4], [5..8], and [9..11]. That is, as
W (S1) = 4− 1 + 1 = 4, W (S2) = 8− 5 + 1 = 4, W (S3) = 11− 9 + 1 = 3, the maximum of
these is 4. This criteria is analogous to one studied by Cazaux et al. [12], and appears to be
the most natural one to be studied together with validity constraint; both deal directly with
the segment intervals.

Let us now develop a dynamic programming recurrence for finding the minimum scoring
valid segmentation with the score being the maximum width. Let s(j′) be the score of a
minimum scoring valid segmentation S1, S2, . . . , Sb of prefix MSA[1..m, 1..j′], where the score
is defined as max

i:1≤i≤b
W (Si). We can compute

s(j) = min
j′:0≤j′≤v(j)

max(j − j′, s(j′)), (1)

where v(j) is the largest integer such that segment MSA[1..m, v(j) + 1..j] is valid. The
segment is valid iff each substring MSA[i, v(j) + 1..j], for 1 ≤ i ≤ m, occurs as many times
in MSA[1..m, v(j) + 1..j] as in the whole MSA. If such v(j) does not exist for some j, we set
v(j) = 0. The intuition is that [j′ + 1..j] forms the last valid segment of the segmentation,
and since s(j′) is the score of optimal valid segmentation of MSA[1..m, 1..j′], the maximum of
s(j′) and the length of the last segment decides the score s(j). To initialize the recurrence,
one can set s(0) = 0 and s(j) =∞ for 1 ≤ j ≤ J for which v(j) is undefined. The recurrence
can then be applied for j ∈ [J + 1..n].

We can compute the score s(n) of the optimal segmentation of MSA in O(nsmax) time after
preprocessing values v(j) in O(mnsmax log σ) time, where smax = maxj:v(j)>0 s(j). For the
former, one can start comparing max(j − j′, s(j′)) from j′ = v(j) decreasing j′ by one each
step, and then the value j − j′ grows bigger than s(j′) at latest after s(j)− (j − v(j)) ≤ s(j)
steps. For preprocessing, we build the bidirectional BWT index of the MSA in O(mn) time
[6]. At column j, consider the trie containing the reverse of the rows of M [1..m, 1..j]. Search
the trie paths from the bidirectional BWT index until the number of leaves in each trie
subtree equals the length of the corresponding BWT interval. Let j′ be the column closest
to j where this holds for all trie paths. Then one can set v(j) = j′. The O(m(j − v(j)) log σ)
time construction of the trie has to be repeated for each column. As j − v(j) ≤ s(j), the
claimed preprocessing time follows.

5.3 Faster preprocessing
We can do the preprocessing in O(mn) time.

I Theorem 9. Given a multiple sequence alignment MSA[1 . . .m, 1 . . . n], values v(j) for each
1 ≤ j ≤ n can be computed in O(mn) time, where v(j) is the largest integer such that segment
MSA[1..m, v(j) + 1..j] is valid.

Proof. Let us build the bidirectional BWT index [6] of MSA rows concatenated into one
long string. We will run several algorithms in synchronization over this BWT index, but we
explain them first as if they would be run independently.
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Algorithm 1 searches in parallel all rows from right to left advancing each by one position
at a time. Let k be the number of parallel of steps done so far. We can maintain a bitvector
M that at k-th step stores M [i] = 1 iff BWT [i] is the k-th last symbol of some row.

Algorithm 2 uses the variable length sliding window approach of Belazzougui and Cunial
[4] to compute values v(j). Let the first row of MSA be T [1..n]. Search T [1..n] backwards in
the fully-functional bidirectional BWT index [4]. Stop the search at T [j′ + 1..n] such that
the corresponding BWT interval [i′..i] contains only suffixes originating from column j′ + 1
of the MSA, that is, spelling MSA[a, j′ + 1..n] in the concatenation, for some rows a. Set
vb(n) = j′ for row b = 1. Contract T [n] from the search string and modify BWT interval
accordingly [4]. Continue the search (decreasing j′ by one each step) to find T [j′ + 1..n− 1]
s.t. again the corresponding BWT interval [i′..i] contains only suffixes originating from
column j′+ 1. Update vb(n− 1) = j′ for row b = 1. Continue like this throughout T . Repeat
the process for all remaining rows b ∈ [2..m], to compute v2(j), v3(j), . . . , vm(j) for all j. Set
v(j) = mini v

i(j) for all j.
Let us call the instances of the Algorithm 2 run on the rest of the rows as Algorithms

3, 4, . . . ,m+ 1.
Let the current BWT interval in Algorithms 2 to m+ 1 be [j′ + 1..j]. The problematic

part in them is checking if the corresponding active BWT intervals [i′a..ia] for Algorithms
a ∈ {2, 3, . . . ,m + 1} contain only suffixes originating from column j′ + 1. To solve this,
we run Algorithm 1 as well as Algorithms 2 to m + 1 in synchronization so that we are
at the k-th step in Algorithm 1 when we are processing interval [j′ + 1..j] in rest of the
algorithms, for k = n− j′. In addition, we maintain bitvectors B and E such that B[i′a] = 1
and E[ia] = 1 for a ∈ {2, 3, . . . ,m+1}. For each M [i] that we set to 1 at step k with B[i] = 0
and E[i] = 0, we check if M [i− 1] = 1 and M [i+ 1] = 1. If and only if this check fails on
any i, there is a suffix starting outside column j′ + 1. This follows from the fact that each
suffix starting at column j′ + 1 must be contained in exactly one of the distinct intervals of
the set I = {[i′a..ia]}a∈{2,3...m+1}. This is because I cannot contain nested interval pairs as
all strings in segment [j′ + 1..j] of MSA are of equal length, and thus their BWT intervals
cannot overlap except if the intervals are exactly the same.

Finally, the running time is O(mn), since each extend-left and contract-right operations
take constant time [4], and since the bitvectors are manipulated locally only on indexes that
are maintained as variables during the execution. J

5.4 Faster main algorithm

Recall Eq. (1). Before proceeding to the involved optimal solution, we give some insights by
first improving the running time to logarithmic per entry.

As it holds v(1) ≤ v(2) ≤ · · · ≤ v(n), the range where the minimum is taken grows as j
grows. Now, [j′..j′+s(j′)] can be seen as the effect range of s(j′): for columns j > j′+s(j′) the
maximum from the options is j− j′. Consider maintaining (key, value) pairs (s(j′) + j′, s(j′))
in a binary search tree (BST). When computing s(j) we should have pairs (s(j′)+j′, s(j′)) for
1 ≤ j′ ≤ v(j) in BST. Value s(j) can be computed by taking range minimum on BST values
with keys in range [j..∞]. Such query is easy to solve in O(logn) time. If there is nothing
in the interval, s(j) = j − v(j). Since this is semi-open interval on keys in range [1 . . . 2n],
BST can be replaced by van Emde Boas tree to obtain O(n log logn) time computation of
all values [17]. Alternatively, we can remove elements from the BST once they no longer can
be answers to queries, and we can get O(n log smax) solution. To obtain better running time,
we need to exploit more structural properties of the recurrence.
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Cazaux et al. [12] considered a similar recurrence and gave a linear time solution for it.
In what follows we modify that technique to work with valid ranges.

For j between 1 and n, we define

x(j) = maxArgminj′∈[1..v(j)] max(j − j′, s(j′))

I Lemma 10. For any j ∈ [1..n− 1], we have x(j) ≤ x(j + 1).

Proof. By the definition of x(.), for any j ∈ [1..n], we have for j′ ∈ [1..x(j)− 1], max(j −
j′, s(j′)) ≥ max(j − x(j), s(x(j))) and for j′ ∈ [x(j) + 1..v(j)], max(j − j′, s(j′)) > max(j −
x(j), s(x(j))).

We assume that there exists j ∈ [1..n − 1], such that x(j + 1) < x(j). In this case,
x(j + 1) ∈ [1..x(j)− 1] and we have max(j − x(j + 1), s(x(j + 1))) ≥ max(j − x(j), s(x(j))).
As v(j+1) ≥ v(j), x(j) ∈ [x(j+1)+1..v(j+1)] and thus max(j+1−x(j+1), s(x(j+1))) <
max(j + 1− x(j), s(x(j))). As x(j + 1) < x(j), we have j − x(j + 1) > j − x(j). To simplify
the proof, we take A = j − x(j + 1), B = s(x(j + 1)), C = j − x(j) and D = s(x(j)). Hence,
we have max(A,B) ≥ max(C,D), max(A+ 1, B) < max(C + 1, D) and A > C. Now we are
going to prove that this system admits no solution.

Case where A = max(A,B) and C = max(C,D). As A > C, we have A + 1 > C + 1
and thus max(A+ 1, B) > max(C + 1, D) which is impossible because max(A+ 1, B) <
max(C + 1, D).
Case where B = max(A,B) and C = max(C,D). We can assume that B > A (in
the other case, we take A = max(A,B)) and as A > C, we have B > C + 1 and
thus max(A + 1, B) > max(C + 1, D) which is impossible because max(A + 1, B) <
max(C + 1, D).
Case where A = max(A,B) and D = max(C,D). We have A > D and A > C,
thus max(A + 1, B) > max(C + 1, D) which is impossible because max(A + 1, B) <
max(C + 1, D).
Case where B = max(A,B) and D = max(C,D). We have B ≥ D and A > C,
thus max(A + 1, B) ≥ max(C + 1, D) which is impossible because max(A + 1, B) <
max(C + 1, D).

J

I Lemma 11. By initialising s(1) to a threshold K, for any j ∈ [1..n], we have s(j) ≤
max(j,K).

Proof. We are going to show by induction. The base case is obvious because s(1) =
K ≤ max(1,K). As s(j) = minj′:1≤j′≤v(j) max(j − j′, s(j′)), by using induction, s(j) ≤
minj′:1≤j′≤v(j) max(j,K) ≤ max(j,K) J

Thanks to Lemma 11, by taking the threshold K = n+ 1, the values s(j) are in O(n) for
all j in [1..n− 1].

I Lemma 12. Given j? ∈ [x(j − 1) + 1..v(j)], we can compute in constant time if

j? = maxArgminj′∈[j?..v(j)] max(j − j′, s(j′)).

Proof. We need just to compare k = max(j − j?, s(j?)) and s(j�) where j� is in
Argminj′∈[j?+1..v(j)]s(j′). If k is smaller than s(j�), k is smaller than all the s(j′) with
j′ ∈ [j? + 1..v(j)] and thus for all max(j − j′, s(j′)). Hence we have
j? = maxArgminj′∈[j?..v(j)] max(j − j′, s(j′)).
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Otherwise, s(j�) ≥ k and as k ≥ j − j?, max(j − j�, s(j�)) ≥ k. In this case j? 6=
maxArgminj′∈[j?..v(j)] max(j − j′, s(j′)). By using the constant time semi-dynamic range
maximum query by Cazaux et al. [12] on the array s(.), we can obtain in constant time j�
and thus check the equality in constant time. J

I Theorem 13. The values s(j), for all j ∈ [1..n], can be computed in O(n) time after an
O(nm) time preprocessing.

Proof. We begin by preprocessing all the values of v(j) in O(mn) (Theorem 9). The idea
is to compute all the values s(j) by increasing order of j and by using the values x(j). For
each j ∈ [1..n], we check all the j′ from x(j − 1) to v(j) with the equality of Lemma 12 until
one is true and thus corresponds to x(j). Finally, we add s(j) = max(j − x(j), s(x(j))) to
the constant time semi-dynamic range maximum query and continue with j + 1. J

6 Succinct index for segment-free founder block graphs

Recall the indexing solutions of Sect. 4 and the definitions from Sect. 3.
We now show that explicit tries and Aho-Corasick automaton can be replaced by some

auxiliary data structures associated with the Burrows-Wheeler transformation of the concat-
enation C =

∏
i∈{1,2,...,b}

∏
v∈V i,(v,w)∈E `(v)`(w)0.

Consider interval SA[i..k] in the suffix array of C corresponding to suffixes having `(v) as
prefix for some v ∈ V . From the segment repeat-free property it follows that this interval can
be split into two subintervals, SA[i..j] and SA[j + 1..k], such that suffixes in SA[i..j] start with
`(v)0 and suffixes in SA[j + 1..k] start with `(v)`(w), where (v, w) ∈ E. Moreover, BWT[i..j]
equals multiset {`(u)[|`(u)| − 1] | (u, v) ∈ E} sorted in lexicographic order. This follows by
considering the lexicographic order of suffixes `(u)[|`(u)| − 1]`(v)0 . . . for (u, v) ∈ E. That is,
BWT[i..j] (interpreted as a set) represents the children of the root of the trie R(v) considered
in Sect. 4.

We are now ready to present the search algorithm that uses only the BWT of C and
some small auxiliary data structures. We associate two bitvectors B and E to the BWT of
C as follows. We set B[i] = 1 and E[k] = 1 iff SA[i..k] is maximal interval with all suffixes
starting with `(v) for some v ∈ V .

Consider the backward search with query Q[1..q]. Let SA[j′..k′] be the interval after
matching the shortest suffix Q[q′..q] such that BWT[j′] = 0. Let i = select(B, rank(B, j′))
and k = select(E, rank(B, j′)). If i ≤ j′ and k′ ≤ k, index j′ lies inside an interval SA[i..k]
where all suffixes start with `(v) for some v. We modify the range into SA[i..k], and continue
with the backward step on Q[q′ − 1]. We check the same condition in each step and expand
the interval if the condition is met. Let us call this procedure expanded backward search.

We can now strictly improve Theorems 6 and 7 as follows.

I Theorem 14. Let G = (V,E) be a segment repeat-free founder block graph (or a segment
repeat-free GD string) with blocks V 1, V 2, . . . , V b such that V = V 1 ∪ V 2 ∪ · · · ∪ V b. We
can preprocess an index structure for G occupying O(W |E| log σ) bits in O(W |E|) time,
where {1, . . . , σ} is the alphabet for node labels and W = maxv∈V `(v). Given a query string
Q[1..q] ∈ {1, . . . , σ}q, we can use expanded backward search with the index structure to find
out if Q occurs in G. This query takes O(|Q|) time.

Proof. (sketch) As we expand the search interval in BWT, it is evident that we still find all
occurrences for short patterns that span at most two nodes, like in the proof of Theorem 6.
We need to show that a) the expansions do not yield spurious occurrences for such short
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Table 1 Segment of MSA with and without gaps.

segment of MSA gaps removed
-AC-CGATC- ACCGATC
-A-CCGATCC ACCGATCC
AAC-CGATC- AACCGATC
AAC-CGA-C- AACCGAC

patterns and b) the expansions yield exactly the occurrences for long patterns that we earlier
found with the Aho-Corasick and tries approach. In case b), notice that after an expansion
step we are indeed in an interval SA[i..k] where all suffixes match `(v) and thus corresponds
to a node v ∈ V . The suffix of the query processed before reaching interval SA[i..k] must be
at least of length |`(v)|. That is, to mimic Aho-Corasick approach, we should continue with
the trie R(v). This is identical to taking backward step from BWT[i..k], and continuing
therein to follow the rest of this implicit trie.

To conclude case b), we still need to show that we reach all the same nodes as when using
Aho-Corasick, and that the search to other direction with L(v) can be avoided. These follow
from case a), as we see.

In case a), before doing the first expansion, the search is identical to the original algorithm
in the proof of Theorem 6. After the expansion, all matches to be found are those of case b).
That is, no spurious matches are reported. Finally, no search interval can include two distinct
node labels, so the search reaches the only relevant node label, where the Aho-Corasick and
trie search simulation takes place. We reach all such nodes that can yield a full match for
the query. J

7 Gaps in multiple alignment

We have so far assumed that our input is a gapless multiple alignment. Let us now consider
how to extend the results to the general case. The idea is that gaps are only used in the
segmentation algorithm to define the valid ranges, and that is the only place where special
attention needs to be taken; elsewhere, whenever a substring from MSA rows is read, gaps
are treated as empty strings. That is, A-GC-TA- becomes AGCTA.

It turns out that allowing gaps in MSA indeed makes the computation of valid ranges
more difficult. To see this, consider the example in Table 1. The second column in Table 1
shows the sequences after gaps are removed. Without even seeing the rest of the MSA, one
can see that this is not a valid block, as the first string is a prefix of the second. With gapless
MSAs this was not possible and the algorithm in Sect. 5.3 exploited this fact.

Modifying the construction algorithm to handle gaps properly is possible, but non-trivial.
We leave this extension to journal version; see however Sections 8 and 9 for some further
insights.

Despite the computation of the segmentation is affected by gaps in MSA, once such valid
segmentation is found, the rest of the results stay unaffected. All the proposed definitions
extend to this interpretation by just omitting gap symbols when reading the strings. The
consequence for founder block graph is that strings inside a block can be of variable length.
Interestingly, with this interpretation Theorem 7 can be expressed with GD strings replaced
by elastic strings [8].
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8 Implementation and experiments

We implemented several methods proposed in this paper. The implementation is available
at https://github.com/algbio/founderblockgraphs. Some preliminary experiments are
reported below.

8.1 Construction
We implemented the founder block graph construction algorithm of Sect. 5.2 with the faster
preprocessing routine of Sect. 5.3. In place of fully-functional bidirectional BWT index, we
used similar routines implemented in compressed suffix trees of SDSL library [21]; this affects
the theoretical running time by a logarithm factor.

To test the implementation we downloaded 1484 strains of SARS-CoV-2 strains stored in
NCBI database.1 We created a multiple sequence alignment of the strains using ViralMSA[27].
We then filtered out rows that contained gaps or N’s. We were left with a multiple sequence
alignment of 410 rows and 29811 columns. Our algorithm took 58 seconds to produce the
optimal segmentation on Intel(R) Xeon(R) CPU, E5-2690, v4, 2.60GHz. There were 3352
segments in the segmentation, the maximum segment length was 12, and the maximum
number of founder segments in a block was 12. The founder block graph had 3900 nodes
and 4440 edges. The total length of node labels was 34968. The graph size was thus less
than 1% of the MSA size.

We also implemented support to construct founder block graphs for general MSA’s that
contain gaps. The modification to the gapless case was that nested BWT intervals needed to
be detected. We stopped left-extension as soon as the BWT intervals contained no other
repeats than those caused by nestedness. This left valid range undefined on such columns,
but for the rest the valid range can still be computed correctly (undefined values could be
postprocessed using matching statistics [5] on all pairs of prefixes preceding suffixes causing
nested intervals). Initial experiments show very similar behaviour to the gapless case, but we
defer further experiments until the implementation is mature enough.

8.2 Indexing
We implemented the succinct indexing approach of Sect. 6. On the founder block graph of
the previous experiment, the index occupied 87 KB. This is 3% of the original input size, as
the encoding of the input MSA with 2 bits per nucleotide takes 2984 KB.

Figure 3 shows an experiment with indexes built on different size samples of the MSA
rows, and with querying patterns of varying length sampled from the same rows. As can be
seen, the query times are not affected by the size of the MSA samples (showing independence
of the input MSA), but only on their length (showing linear dependency on the query length).

9 Discussion

One characterization of our solution is that we compact those vertical repeats in MSA that
are not horizontal repeats. This can be seen as positional extension of variable order de
Bruijn graphs. Also, our solution is parameter-free unlike de Bruijn approaches that always
need some threshold k, even in the variable order case.

1 https://www.ncbi.nlm.nih.gov/, accessed 24.04.2020.

https://github.com/algbio/founderblockgraphs
https://www.ncbi.nlm.nih.gov/
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Figure 3 Running time of querying patterns from the founder block graph. The sample sizes
(for MSA row subsets) are shown on the right-hand side of each plot. The plots show averages and
distribution over 10 repeats of each search, where one search consist of a set of query patterns of
given length randomly sampled from the respective MSA row subset. The pattern set sample size
(10,20,30,40, respectively) grows by the MSA sample size, but the reported numbers are normalized
so that the query time (milliseconds) is per pattern. This experiment was run on Intel(R) Core(TM)
i5-4308U CPU, 2.80GHz.

The founder block graph concept could also be generalized so that it is not directly
induced from a segmentation. One could consider cyclic graphs having the same segment
repeat-free property. This could be an interesting direction in defining parameter-free de
Bruijn graphs.

For journal version we plan to include a proper extension of the approach to general
MSA’s containing gaps. Our implementation already contains support for such MSA’s, but
the theory framework still requires some more work to show that such extension can be done
without any effect on the running time.

On the experimental side, there is still much more work to be done. So far, we have not
optimized any of the algorithms for multithreading nor for space usage. For example, one
could use BWT indexes engineered for highly repetitive text collections to build the founder
block graphs in space proportional of the compressed MSA. Such optimizations are essential
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for applying the approach on e.g. human genome data. Past experience on similar solutions
[28] indicate that our approach should easily be applicable to much larger datasets than
those we covered in our preliminary experiments.

Finally, this paper only scratches the surface of a new family of pangenome representations.
There are myriad of options how to optimize among the valid segmentations [28, 12], e.g. by
optimizing the number of founder segments [28] or controlling the over-expressiveness of the
graph, rather than minimizing the maximum block size as studied here.
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